JP5537258B2 - Method for producing bell structure particles - Google Patents

Method for producing bell structure particles Download PDF

Info

Publication number
JP5537258B2
JP5537258B2 JP2010115370A JP2010115370A JP5537258B2 JP 5537258 B2 JP5537258 B2 JP 5537258B2 JP 2010115370 A JP2010115370 A JP 2010115370A JP 2010115370 A JP2010115370 A JP 2010115370A JP 5537258 B2 JP5537258 B2 JP 5537258B2
Authority
JP
Japan
Prior art keywords
particles
resin
inorganic material
bell structure
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010115370A
Other languages
Japanese (ja)
Other versions
JP2011001258A (en
Inventor
武司 脇屋
博隆 伊原
誠 高藤
昭二 永岡
智洋 城崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Kumamoto Prefecture
Original Assignee
Sekisui Chemical Co Ltd
Kumamoto Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Kumamoto Prefecture filed Critical Sekisui Chemical Co Ltd
Priority to JP2010115370A priority Critical patent/JP5537258B2/en
Publication of JP2011001258A publication Critical patent/JP2011001258A/en
Application granted granted Critical
Publication of JP5537258B2 publication Critical patent/JP5537258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は、製造上の制限が少なく、耐熱性に優れ、かつ、振動や音を減衰させる能力の高い鈴構造粒子に関する。 The present invention relates to a bell structure particle that has few manufacturing limitations, is excellent in heat resistance, and has a high ability to attenuate vibration and sound.

近年、振動を吸収したり、音を吸収したりする目的に用いる制振材や遮音板等の制震材の材料として、鈴構造体が注目されている。鈴構造体とは、殻体の空孔内に、該殻体よりも小さな核微粒子が内包された構造体を意味する。このような鈴構造体に振動や音を照射した場合、入射した運動エネルギーが殻体の空孔内での核微粒子の運動に変換され、消費されることから、極めて高い効率で振動や音を減衰させることができる。例えば、特許文献1には、このような鈴構造体を含む制震材が記載されている。 In recent years, bell structures have attracted attention as materials for damping materials such as damping materials and sound insulation plates used for the purpose of absorbing vibration or absorbing sound. The bell structure means a structure in which core fine particles smaller than the shell are encapsulated in the holes of the shell. When such a bell structure is irradiated with vibration or sound, the incident kinetic energy is converted into the motion of the nuclear particles in the vacancies of the shell and consumed. Can be attenuated. For example, Patent Document 1 describes a vibration damping material including such a bell structure.

特許文献1では、多孔質の板状体の空孔中に核微粒子を配置しているが、例えば、鈴構造を有する粒子(鈴構造粒子)を用いれば、適当なバインダーに鈴構造粒子を分散させ塗工することにより、容易に制振性や遮音性が付与された部材を製造することができる。 In Patent Document 1, the core particles are arranged in the pores of the porous plate-like body. For example, if particles having a bell structure (bell structure particles) are used, the bell structure particles are dispersed in an appropriate binder. By applying them, it is possible to easily manufacture a member to which vibration damping properties and sound insulation properties are imparted.

特許文献2及び特許文献3には、中空部を有する殻体と、前記中空部に外から入射する運動エネルギーを吸収する核とを有する鈴構造粒子が開示されている。
特許文献2には、有機材料の殻と無機材料の核との間に昇華特性又は蒸発特性を有する中間材を設けて、上記中間材を所定の温度に加熱して上記殻外に昇華又は蒸発させる鈴構造粒子の製造方法が記載されている。また、特許文献3には、有機材料の殻と無機材料の核との間に極性溶媒からなる中間材を設けて、上記中間材を所定の温度に加熱し蒸発させる方法により、上記殻体の内部であって上記殻体と核との間に空間を形成する鈴構造粒子の製造方法が記載されている。
Patent Literature 2 and Patent Literature 3 disclose bell structure particles having a shell having a hollow portion and a nucleus that absorbs kinetic energy incident on the hollow portion from the outside.
In Patent Document 2, an intermediate material having sublimation characteristics or evaporation characteristics is provided between the shell of the organic material and the core of the inorganic material, and the intermediate material is heated to a predetermined temperature to be sublimated or evaporated outside the shell. A method for producing the bell structure particles is described. In Patent Document 3, an intermediate material made of a polar solvent is provided between the shell of the organic material and the core of the inorganic material, and the intermediate material is heated to a predetermined temperature to evaporate the shell material. A method for producing bell structure particles is described which forms a space between the shell and the nucleus inside.

しかし、特許文献1、2に記載された鈴構造粒子は、空間形成材料として昇華性材料や有機溶剤を用いるため、殻体形成時に空間形成材層が不安定となり、均質な鈴構造粒子を製造することが困難であるという問題があった。また、特許文献1、2に記載された鈴構造粒子は、殻体及び核微粒子のいずれか、又は、いずれもが樹脂材料からなるものであった。このような樹脂材料を用いた鈴構造粒子は、製造が容易である一方、耐熱性が低いという問題があった。また、殻体が樹脂材料からなる場合、制震材を構成するマトリックスとの混練の際の加熱や衝撃等により、溶融してしまったり、破壊されてしまったりするという問題があった。更に、樹脂材料を用いた鈴構造粒子の場合、入射した運動エネルギーの消費効率が低く、期待したほどには振動や音を減衰させることができないことがあるという問題もあった。 However, since the bell structure particles described in Patent Documents 1 and 2 use a sublimable material or an organic solvent as a space forming material, the space forming material layer becomes unstable at the time of shell formation, and a uniform bell structure particle is manufactured. There was a problem that it was difficult to do. In addition, the bell structure particles described in Patent Documents 1 and 2 are either shells or core fine particles, or both are made of a resin material. While the bell structure particles using such a resin material are easy to manufacture, there is a problem that the heat resistance is low. Further, when the shell body is made of a resin material, there is a problem that the shell body is melted or broken due to heating or impact during kneading with the matrix constituting the damping material. Furthermore, in the case of bell structure particles using a resin material, there is a problem that the consumption efficiency of incident kinetic energy is low, and vibrations and sounds may not be attenuated as expected.

これに対して特許文献4には、核の材料となるセラミック材料と、殻体の材料となるセラミック材料とのコアシェル粒子を作製した後、焼結させる際にそれぞれの収縮率の差を利用して、核と殻体との間に空隙を形成させる方法が記載されている。しかしながら、特許文献4に記載された方法では、焼結の際に核と殻体とが融着してしまうことがあり、また、材料が極めて限定されることから、製造上の制限が大きいという問題があった。 On the other hand, in Patent Document 4, the difference between the shrinkage rates is used when the core-shell particles of the ceramic material that is the core material and the ceramic material that is the shell material are prepared and then sintered. Thus, a method for forming a void between the nucleus and the shell is described. However, in the method described in Patent Document 4, the core and the shell may be fused during sintering, and the material is extremely limited. There was a problem.

特許文献5には、無機材料からなる核の表面に炭酸塩の中間層を形成させ、該中間層の表面に金属酸化物の殻体を形成させた後、上記炭酸塩を酸により除去する方法が開示されている。しかしながら、特許文献5に記載された方法では、酸で炭酸塩を除去をする際に、金属酸化物の殻体も劣化してしまったり、殻体に炭酸塩が溶出する細孔ができてしまったりすることから、充分な強度を有する鈴構造粒子を製造できないという問題があった。 In Patent Document 5, a carbonate intermediate layer is formed on the surface of a core made of an inorganic material, a metal oxide shell is formed on the surface of the intermediate layer, and then the carbonate is removed with an acid. Is disclosed. However, in the method described in Patent Document 5, when the carbonate is removed with an acid, the shell of the metal oxide is deteriorated, or pores from which the carbonate is eluted are formed in the shell. As a result, the bell structure particles having sufficient strength cannot be produced.

特開平9−226035号公報Japanese Patent Laid-Open No. 9-226035 特開2000−148156号公報JP 2000-148156 A 特開2006−249150号公報JP 2006-249150 A 特開2006−335611号公報JP 2006-335611 A 特開2008−74645号公報JP 2008-74645 A

本発明は、製造上の制限が少なく、耐熱性に優れ、かつ、振動や音を減衰させる能力の高い鈴構造粒子を提供することを目的とする。 It is an object of the present invention to provide bell structure particles that have few manufacturing restrictions, are excellent in heat resistance, and have a high ability to attenuate vibration and sound.

本発明は、殻体の空孔内に該殻体よりも小さな核微粒子が内包された鈴構造粒子であって、前記殻体及び核微粒子のいずれもが無機材料からなる鈴構造粒子である。
以下に本発明を詳述する。
The present invention is a bell structure particle in which core fine particles smaller than the shell body are encapsulated in pores of the shell body, and both the shell body and the core fine particle are bell structure particles made of an inorganic material.
The present invention is described in detail below.

本発明者は、鋭意検討の結果、核微粒子と殻体との中間層に樹脂を利用することにより、簡便かつ容易に、殻体及び核微粒子のいずれもが無機材料からなる鈴構造粒子を製造できることを見出した。そして、この製造方法により製造した、殻体及び核微粒子のいずれもが無機材料からなる鈴構造粒子は、極めて耐熱性に優れ、かつ、振動や音を減衰させる能力の高いことを見出し、本発明を完成した。 As a result of intensive studies, the present inventor has produced bell structure particles in which both the shell and the core particles are made of an inorganic material simply and easily by using a resin for the intermediate layer between the core and the core particles. I found out that I can do it. Then, the bell structure particles produced by this production method, both of the shell and the core fine particles made of an inorganic material, are found to be extremely excellent in heat resistance and have a high ability to attenuate vibrations and sounds. Was completed.

本発明の鈴構造粒子は、殻体の空孔内に該殻体よりも小さな核微粒子が内包された構造を有する。図1及び図2に、本発明の鈴構造粒子の一例を表す模式図を示した。 The bell structure particle of the present invention has a structure in which core fine particles smaller than the shell are encapsulated in the pores of the shell. The schematic diagram showing an example of the bell structure particle | grains of this invention was shown in FIG.1 and FIG.2.

上記殻体は、空孔を有する粒子を意味する。図1及び図2においては、ただ1つの空孔を有する単孔粒子として記載されているが、これに限定されない。即ち、上記核微粒子を内包可能な空孔を有するものであれば、複数の空孔を有する多孔粒子であってもよい。
上記殻体の形状(外観)は特に限定されないが、球状が好適である。
上記殻体の空孔の形状は特に限定されないが、球状が好適である。
The above shell means particles having pores. In FIG. 1 and FIG. 2, it is described as a single-pore particle having only one hole, but it is not limited to this. That is, a porous particle having a plurality of pores may be used as long as it has pores that can contain the above-mentioned core fine particles.
The shape (external appearance) of the shell is not particularly limited, but a spherical shape is preferable.
The shape of the holes in the shell is not particularly limited, but a spherical shape is preferable.

上記殻体の空孔内に内包される核微粒子は、1個であってもよいし、2個以上の複数であってもよい。図1は、ただ1個の核微粒子を内包する鈴構造粒子を示しており、図2は、2個以上の核微粒子を内包する鈴構造粒子を示している。
上記核微粒子の形状は特に限定されないが、球状が好適である。
The number of core fine particles contained in the pores of the shell may be one, or two or more. FIG. 1 shows a bell structure particle containing only one core particle, and FIG. 2 shows a bell structure particle containing two or more core particles.
The shape of the core fine particle is not particularly limited, but a spherical shape is preferable.

上記殻体及び核微粒子は、いずれも無機材料からなる。殻体及び核微粒子が無機材料からなることにより、高い耐熱性を発揮することができる。また、核微粒子が無機材料であることにより、樹脂材料に比べて比重が重いことから、従来の樹脂材料からなる鈴構造粒子に比べて入射した運動エネルギーの消費効率が高く、振動や音を減衰させる性能を向上させることができる。 Both the shell and the core fine particles are made of an inorganic material. High heat resistance can be exhibited when the shell and the core fine particles are made of an inorganic material. In addition, since the nuclear fine particles are inorganic materials, the specific gravity is heavier than that of resin materials, so that the kinetic energy consumption efficiency is higher than that of conventional resin-made bell structure particles, and vibration and sound are attenuated. Performance can be improved.

上記殻体及び核微粒子を構成する無機材料は特に限定されず、4〜14属の金属及びこれらを主成分とした合金、及びその酸化物、窒化物、炭化物が挙げられる。
上記金属は、例えば、アルミニウム、ケイ素、チタン、バナジウム、鉄、コバルト、銅、ニッケル、亜鉛、ゲルマニウム、ジルコニウム、モリブデン、ロジウム、パラジウム、インジウム、スズ、白金、金等が挙げられる。
上記合金は、例えば、ステンレス、半田等が挙げられる。
上記金属及びこれらを主成分とする合金の酸化物、窒化物、炭化物は、例えば、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化鉄、酸化亜鉛、酸化インジウム、酸化スズ、酸化(インジウム−スズ)、酸化(亜鉛−アルミニウム)、酸化(亜鉛−ガリウム)、窒化ケイ素、炭化ケイ素等が挙げられる。
これらの無機材料は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、核微粒子を構成する無機材料としては、安価に製造できることから、酸化ケイ素(シリカ)、酸化チタン(チタニア)、酸化鉄(フェライト)、炭化ケイ素、ニッケルが好適である。
なお、上記殻体を構成する無機材料と、上記核微粒子を構成する無機材料とは同一であってもよく、相違していてもよい。
The inorganic material constituting the shell and the core fine particles is not particularly limited, and examples thereof include metals of 4 to 14 groups, alloys containing these as main components, and oxides, nitrides, and carbides thereof.
Examples of the metal include aluminum, silicon, titanium, vanadium, iron, cobalt, copper, nickel, zinc, germanium, zirconium, molybdenum, rhodium, palladium, indium, tin, platinum, and gold.
Examples of the alloy include stainless steel and solder.
The oxides, nitrides, and carbides of the above metals and alloys containing them as main components include, for example, aluminum oxide, silicon oxide, titanium oxide, iron oxide, zinc oxide, indium oxide, tin oxide, oxide (indium-tin), Examples thereof include oxidation (zinc-aluminum), oxidation (zinc-gallium), silicon nitride, and silicon carbide.
These inorganic materials may be used independently and 2 or more types may be used together. Of these, silicon oxide (silica), titanium oxide (titania), iron oxide (ferrite), silicon carbide, and nickel are suitable as the inorganic material constituting the core fine particles because they can be manufactured at low cost.
In addition, the inorganic material which comprises the said shell, and the inorganic material which comprises the said nuclear fine particle may be the same, and may differ.

本発明の鈴構造粒子は、上記殻体の空孔内に上記核微粒子のみが内包されていてもよいし、上記核微粒子の他に液体を内包していてもよい。液体を内包することにより、振動や音を減衰させる性能を更に向上させることができる。 In the bell structure particles of the present invention, only the core fine particles may be included in the pores of the shell, or a liquid may be included in addition to the core fine particles. By including the liquid, the performance of attenuating vibration and sound can be further improved.

本発明の鈴構造粒子の粒子径は、用途によって異なるが、好ましい下限は500nm、好ましい上限は100μmである。本発明の鈴構造粒子の粒子径が500nm未満であると、核微粒子の質量が小さくなりすぎ、充分な運動エネルギーの消費が困難となることがある。本発明の鈴構造粒子の粒子径が100μmを超えると、本発明の鈴構造粒子を利用した制震材の物性が鈴構造粒子により大きく影響を受け、機械的強度が低下することがある。本発明の鈴構造粒子の粒子径のより好ましい下限は1μm、より好ましい上限は50μmである。 The particle diameter of the bell structure particles of the present invention varies depending on the application, but the preferable lower limit is 500 nm and the preferable upper limit is 100 μm. If the particle diameter of the bell structure particles of the present invention is less than 500 nm, the mass of the core fine particles becomes too small, and it may be difficult to consume sufficient kinetic energy. When the particle diameter of the bell structure particles of the present invention exceeds 100 μm, the physical properties of the vibration control material using the bell structure particles of the present invention are greatly affected by the bell structure particles, and the mechanical strength may be lowered. The more preferable lower limit of the particle diameter of the bell structure particles of the present invention is 1 μm, and the more preferable upper limit is 50 μm.

上記核微粒子の大きさは、上記殻体よりも小さければ特に限定されないが、充分な振動や音を減衰させる能力を発揮するためには、上記核微粒子が上記殻体の空孔内で自由に運動できることが重要である。一方、上記核微粒子が上記殻体の空孔に比べて小さすぎても、充分な振動や音を減衰させる能力を発揮することはできない。上記核微粒子の体積(2個以上の場合には、全ての核微粒子の体積の合計)が、上記核微粒子が内包される上記殻体の空孔の体積の5〜50%であることが好ましい。 The size of the nuclear fine particle is not particularly limited as long as it is smaller than the shell, but in order to exert sufficient vibration and sound damping capability, the nuclear fine particle can freely move within the shell pores. It is important to be able to exercise. On the other hand, even if the nuclear fine particles are too small as compared with the holes of the shell, sufficient ability to attenuate vibration and sound cannot be exhibited. The volume of the core fine particles (in the case of two or more, the total volume of all the core fine particles) is preferably 5 to 50% of the volume of the vacancies in the shell body in which the core fine particles are encapsulated. .

上記核微粒子の粒子径は、核微粒子の材質(比重)にもよるが、好ましい下限は100nm、好ましい上限は95μmである。上記核微粒子の粒子径が100nm未満であると、核微粒子の質量が小さくなりすぎ、充分な運動エネルギーの消費が困難となることがある。上記核微粒子の粒子径が95μmを超えると、充分な振動や音を減衰させる能力を発揮するために鈴構造粒子の粒子径を大きくせざるを得ず、本発明の鈴構造粒子を利用した制震材の物性が鈴構造粒子により大きく影響を受け、機械的強度が低下することがある。 The particle diameter of the core fine particles depends on the material (specific gravity) of the core fine particles, but the preferable lower limit is 100 nm and the preferable upper limit is 95 μm. When the particle diameter of the nuclear fine particles is less than 100 nm, the mass of the nuclear fine particles becomes too small, and it may be difficult to consume sufficient kinetic energy. If the particle diameter of the above-mentioned core fine particle exceeds 95 μm, the particle diameter of the bell structure particle has to be increased in order to exhibit sufficient ability to attenuate vibration and sound, and the control using the bell structure particle of the present invention is inevitable. The physical properties of the seismic material are greatly affected by the bell structure particles, and the mechanical strength may decrease.

上記殻体の厚みは特に限定されず、使用目的に応じて適宜選択すればよいが、好ましい下限は100nm、好ましい上限は5μmである。上記殻体の厚みが100nm未満であると、バインダー樹脂への混練時や上記核微粒子の振動により殻体が壊れてしまうことがある。上記殻体の厚みが5μmを超えると、錫構造粒子の粒子径や質量が大きくなるため、充分な制震機能を発現するためには制震体中に多量の鈴構造粒子を添加しなければならなくなる。 The thickness of the shell is not particularly limited, and may be appropriately selected according to the purpose of use. The preferable lower limit is 100 nm, and the preferable upper limit is 5 μm. If the thickness of the shell is less than 100 nm, the shell may be broken during kneading into the binder resin or due to vibration of the core fine particles. If the thickness of the shell exceeds 5 μm, the particle size and mass of the tin structure particles will increase. Therefore, in order to exhibit a sufficient vibration control function, a large amount of bell structure particles must be added to the vibration control body. No longer.

本発明の鈴構造粒子は、例えば、以下の2種の製造方法により製造することができる。
第1の製造方法は、上記殻体の空孔内に1個の核微粒子が内包される本発明の鈴構造粒子の製造方法である。
第2の製造方法は、上記殻体の空孔内に2個以上の核微粒子が内包される本発明の鈴構造粒子の製造方法である。
これらの製造方法もまた、本発明の1つである。以下に、本発明の鈴構造粒子の製造方法を詳しく説明する。
The bell structure particles of the present invention can be produced, for example, by the following two production methods.
The first production method is a method for producing the bell structure particles of the present invention in which one core fine particle is encapsulated in the pores of the shell.
The second production method is a method for producing the bell structure particles of the present invention in which two or more nuclear fine particles are encapsulated in the pores of the shell.
These manufacturing methods are also one aspect of the present invention. Below, the manufacturing method of the bell structure particle | grains of this invention is demonstrated in detail.

第1の製造方法は、1個の無機微粒子を樹脂で被覆して被覆粒子を調製する工程と、上記被覆粒子を更に無機材料で被覆して二重被覆粒子を調製する工程と、上記二重被覆粒子を加熱する工程とを有する鈴構造粒子の製造方法である。 The first production method includes a step of preparing a coated particle by coating one inorganic fine particle with a resin, a step of preparing a double-coated particle by further coating the coated particle with an inorganic material, and the double It is a manufacturing method of a bell structure particle which has a process of heating covering particles.

第1の鈴構造粒子の製造方法では、まず、1個の無機微粒子を樹脂で被覆して被覆粒子を調製する工程を行う。
上記無機微粒子は、得られる本発明の鈴構造粒子において核微粒子となるものである。
In the first method for producing bell-shaped particles, first, a step of preparing coated particles by coating one inorganic fine particle with a resin.
The inorganic fine particles are to be core fine particles in the resulting bell structure particles of the present invention.

上記樹脂は、空気、窒素、アルゴン下で燃焼、分解するものであれば特に限定されず、例えば、ポリスチレン樹脂、アクリル樹脂、ビニルエステル樹脂、アセタール樹脂、セルロース誘導体、エポキシ樹脂等が挙げられる。これらの樹脂は単独で用いてもよく、2種以上を併用してもよい。
なかでも、比較的低温にて解重合し、気化する、ポリスチレン、ポリメタクリル酸メチル、ポリメタクリル酸イソブチル、ポリメタクリル酸t−ブチルを主成分とした樹脂が好適である。
The resin is not particularly limited as long as it burns and decomposes under air, nitrogen, and argon, and examples thereof include polystyrene resin, acrylic resin, vinyl ester resin, acetal resin, cellulose derivative, and epoxy resin. These resins may be used alone or in combination of two or more.
Among these, resins mainly composed of polystyrene, polymethyl methacrylate, polyisobutyl methacrylate, and t-butyl polymethacrylate that depolymerize and vaporize at a relatively low temperature are preferable.

上記無機微粒子を樹脂で被覆して被覆粒子を調製する方法は特に限定されず、例えば、界面重合法による方法、グラフト重合法による方法、ヘテロ凝集による方法等が挙げられる。
また、比較的厚い樹脂層が必要な場合には、いったん上記各方法により無機微粒子の表面に種層を形成し、該種層に上記樹脂の原料となる重合性単量体を吸収させた後、該重合性単量体を重合して厚い樹脂層を形成させるシード重合法も好適である。なお、上記種層としては、上記重合性単量体を吸収することが可能な高分子化合物を用いる。
The method for preparing the coated particles by coating the inorganic fine particles with a resin is not particularly limited, and examples thereof include a method using an interfacial polymerization method, a method using a graft polymerization method, and a method using heteroaggregation.
In addition, when a relatively thick resin layer is required, after forming a seed layer on the surface of the inorganic fine particles by each of the above methods and absorbing the polymerizable monomer that is a raw material of the resin in the seed layer, A seed polymerization method in which the polymerizable monomer is polymerized to form a thick resin layer is also suitable. As the seed layer, a polymer compound that can absorb the polymerizable monomer is used.

第1の鈴構造粒子の製造方法では、次いで、上記被覆粒子を更に無機材料で被覆して二重被覆粒子を調製する工程を行う。上記無機材料からなる被覆層は、得られる本発明の鈴構造粒子において殻体となるものである。 In the first method for producing the bell structure particles, a step of preparing double coated particles by further coating the coated particles with an inorganic material is performed. The coating layer made of the inorganic material is a shell in the resulting bell structure particles of the present invention.

上記被覆粒子を更に無機材料で被覆して二重被覆粒子を調製する方法は特に限定されず、例えば、界面ゾルゲル法、メッキ等が利用可能である。
無機材料として比較的堅く、かつ、耐久性の高い材料である酸化ケイ素(シリカ)や酸化チタン(チタニア)を用いる場合は、界面ゾルゲル法が好適に用いられる。
更に、比較的厚い殻層を形成させるには、上記無機材料の粉体を被覆粒子表面へヘテロ凝集法やメカノケミカル法により集積させ、その後、ゾルゲル法やメッキ法を行う方法も好適である。
The method for preparing the double coated particles by further coating the coated particles with an inorganic material is not particularly limited, and for example, an interfacial sol-gel method, plating, or the like can be used.
When silicon oxide (silica) or titanium oxide (titania), which is a relatively hard and highly durable material, is used as the inorganic material, the interfacial sol-gel method is preferably used.
Furthermore, in order to form a relatively thick shell layer, a method in which the powder of the inorganic material is accumulated on the surface of the coated particles by a heteroaggregation method or a mechanochemical method, and then a sol-gel method or a plating method is also suitable.

第1の鈴構造粒子の製造方法では、次いで、上記二重被覆粒子を加熱する工程を行う。加熱により、上記樹脂からなる被覆層を分解するとともに、上記無機材料からなる被覆層を焼結させる。これにより、本発明の鈴構造粒子が形成される。
上記温度は、用いた樹脂の分解温度以上、かつ、上記無機材料からなる被覆層を焼結させる温度以上である。例えば、樹脂からなる被覆層がポリメタクリル酸メチル、無機材料からなる被覆層が酸化ケイ素の場合、ポリメタクリル酸メチルの解重合温度は300℃以上であり、酸化ケイ素の焼結温度は500℃以上である。従って、加熱温度を500℃以上とすれば、上記樹脂からなる被覆層を分解するとともに、上記無機材料からなる被覆層を焼結させることができる。
In the manufacturing method of the first bell structure particles, the step of heating the double-coated particles is then performed. The coating layer made of the resin is decomposed by heating, and the coating layer made of the inorganic material is sintered. Thereby, the bell structure particles of the present invention are formed.
The said temperature is more than the decomposition temperature of the used resin, and more than the temperature which sinters the coating layer which consists of the said inorganic material. For example, when the coating layer made of resin is polymethyl methacrylate and the coating layer made of an inorganic material is silicon oxide, the depolymerization temperature of polymethyl methacrylate is 300 ° C. or higher, and the sintering temperature of silicon oxide is 500 ° C. or higher. It is. Therefore, when the heating temperature is 500 ° C. or higher, the coating layer made of the resin can be decomposed and the coating layer made of the inorganic material can be sintered.

第2の製造方法は、無機微粒子を複数個含有する樹脂粒子を調製する工程と、上記樹脂粒子を無機材料で被覆して被覆粒子を調製する工程と、上記被覆粒子を加熱する工程とを有する鈴構造粒子の製造方法である。 The second production method includes a step of preparing resin particles containing a plurality of inorganic fine particles, a step of coating the resin particles with an inorganic material to prepare coated particles, and a step of heating the coated particles. This is a method for producing bell structure particles.

第2の鈴構造粒子の製造方法では、まず、無機微粒子を複数個含有する樹脂粒子を調製する工程を行う。
上記無機微粒子及び樹脂については、第1の鈴構造粒子の製造方法と同様である。
In the second bell structure particle manufacturing method, first, a step of preparing resin particles containing a plurality of inorganic fine particles is performed.
About the said inorganic fine particle and resin, it is the same as that of the manufacturing method of the 1st bell structure particle.

上記無機微粒子を複数個含有する樹脂粒子を調製する方法は特に限定されず、例えば、上記樹脂の原料となる重合性単量体と無機粒子を懸濁重合、乳化重合等により、複合粒子を調整する方法や、上記重合性単量体と無機粒子とをバルク重合又は溶液重合にて複合化し、粉砕する方法や、上記樹脂と無機粒子とを、コアセルべーション法、転相乳化法、液中乾燥法、造粒法等により複合化する方法等が用いられる。更に、粒径を揃えるため、湿式又は乾式の分級を行ってもよい。真球状の樹脂粒子を得るには、懸濁重合法、乳化重合法、コアセルべーション法、転相乳化法、液中乾燥法が好適に用いられる。 The method for preparing the resin particles containing a plurality of the above-mentioned inorganic fine particles is not particularly limited. For example, the composite particles are prepared by suspension polymerization, emulsion polymerization, etc. of the polymerizable monomer and inorganic particles used as the raw material of the resin. A method of compounding the polymerizable monomer and inorganic particles by bulk polymerization or solution polymerization and pulverizing, or a method of coacervation, phase inversion emulsification, A method of compounding by a drying method, a granulation method, or the like is used. Furthermore, wet or dry classification may be performed in order to make the particle diameter uniform. In order to obtain true spherical resin particles, suspension polymerization, emulsion polymerization, coacervation, phase inversion emulsification, and submerged drying are preferably used.

第2の鈴構造粒子の製造方法では、次いで、上記樹脂粒子を無機材料で被覆して被覆粒子を調製する工程を行う。上記無機材料からなる被覆層は、得られる本発明の鈴構造粒子において殻体となるものである。 In the second method for producing the bell structure particles, a step of coating the resin particles with an inorganic material to prepare coated particles is then performed. The coating layer made of the inorganic material is a shell in the resulting bell structure particles of the present invention.

上記樹脂粒子を無機材料で被覆して被覆粒子を調製する方法は特に限定されず、例えば、界面ゾルゲル法、メッキ等が利用可能である。
無機材料として比較的堅く、かつ、耐久性の高い材料である酸化ケイ素(シリカ)や酸化チタン(チタニア)を用いる場合は、界面ゾルゲル法が好適に用いられる。
更に、比較的厚い殻層を形成させるには、上記無機材料の粉体を被覆粒子表面へヘテロ凝集させ、その後、ゾルゲル法やメッキ法を行う方法も好適である。
A method for preparing the coated particles by coating the resin particles with an inorganic material is not particularly limited, and for example, an interfacial sol-gel method, plating, or the like can be used.
When silicon oxide (silica) or titanium oxide (titania), which is a relatively hard and highly durable material, is used as the inorganic material, the interfacial sol-gel method is preferably used.
Furthermore, in order to form a relatively thick shell layer, a method in which the inorganic material powder is heteroaggregated on the surface of the coated particles and then a sol-gel method or a plating method is also suitable.

第2の鈴構造粒子の製造方法では、次いで、上記被覆粒子を加熱する工程を行う。加熱により、上記樹脂を分解するとともに、上記無機材料からなる被覆層を焼結させる。これにより、本発明の鈴構造粒子が形成される。
上記温度は、用いた樹脂の分解温度以上、かつ、上記無機材料からなる被覆層を焼結させる温度以上である。
In the second bell structure manufacturing method, the step of heating the coated particles is then performed. The resin is decomposed by heating, and the coating layer made of the inorganic material is sintered. Thereby, the bell structure particles of the present invention are formed.
The said temperature is more than the decomposition temperature of the used resin, and more than the temperature which sinters the coating layer which consists of the said inorganic material.

本発明の鈴構造粒子は、その優れた吸音声、遮音性及び制振性を生かして、各種用途に用いられる。例えば、自動車、航空機、電車、家電、電子機器の部品、構造材及び防音材、として好適である。 The bell structure particles of the present invention are used for various applications by taking advantage of their excellent sound absorption, sound insulation and vibration control. For example, it is suitable as a part for automobiles, airplanes, trains, home appliances, electronic devices, structural materials, and soundproofing materials.

本発明によれば、製造上の制限が少なく、耐熱性に優れ、かつ、振動や音を減衰させる能力の高い鈴構造粒子を提供することができる。 According to the present invention, it is possible to provide bell structure particles that are less restricted in production, excellent in heat resistance, and high in ability to attenuate vibrations and sounds.

1個の核微粒子を殻体の空孔内に内包する本発明の鈴構造粒子の一例を表す模式図である。It is a schematic diagram showing an example of the bell structure particle of the present invention in which one core fine particle is encapsulated in the pores of the shell. 2個以上の核微粒子を殻体の空孔内に内包する本発明の鈴構造粒子の一例を表す模式図である。It is a schematic diagram showing an example of the bell structure particle | grains of this invention which encloses two or more nuclear fine particles in the void | hole of a shell.

以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
粒径450nmのシリカ粒子(日産化学社製、MP−4540M)20gをエタノール100mLに分散させ、3−メタクリロイルプロピルトリメトキシシラン2gを添加した後、70℃で12時間撹拌することにより、表面疎水化シリカ粒子を得た。
得られた表面疎水化シリカ粒子10gを80%エタノール水溶液中に分散させた後、スチレン10g、アゾビスイソブチロニトリル0.1gを添加し、窒素雰囲気下70℃で分散重合させることにより、表面にスチレン樹脂を主成分とした皮膜(スチレン樹脂層)を有するシリカ粒子(被覆粒子)を得た。
得られた被覆粒子におけるスチレン樹脂層の厚みは約200nmであった。
Example 1
Hydrophobic surface is obtained by dispersing 20 g of silica particles having a particle size of 450 nm (manufactured by Nissan Chemical Co., Ltd., MP-4540M) in 100 mL of ethanol and adding 2 g of 3-methacryloylpropyltrimethoxysilane, followed by stirring at 70 ° C. for 12 hours. Silica particles were obtained.
After 10 g of the obtained surface hydrophobized silica particles were dispersed in an 80% ethanol aqueous solution, 10 g of styrene and 0.1 g of azobisisobutyronitrile were added, and dispersion polymerization was performed at 70 ° C. in a nitrogen atmosphere. Silica particles (coated particles) having a film (styrene resin layer) containing styrene resin as a main component were obtained.
The thickness of the styrene resin layer in the obtained coated particles was about 200 nm.

得られた被覆粒子を80%エタノール水溶液200gに分散させ、28%−アンモニア水1gを添加した後、20%テトラエトキシシラン−エタノール溶液100gを12時間かけて滴下し、ゾルゲル反応させることにより、被覆粒子の表面にシリカ層が形成された二重被覆粒子を得た。
得られた二重被覆粒子の最外層であるシリカ層の厚みは約150nmであった。
The obtained coated particles were dispersed in 200 g of 80% ethanol aqueous solution, and after adding 28 g-ammonia water 1 g, 100 g of 20% tetraethoxysilane-ethanol solution was added dropwise over 12 hours to cause sol-gel reaction. Double-coated particles having a silica layer formed on the surface of the particles were obtained.
The thickness of the silica layer that is the outermost layer of the obtained double-coated particles was about 150 nm.

得られた二重被覆粒子を、電気炉にて500℃で3時間加熱することにより、メタクリル酸メチル樹脂の分解と最外シリカ層の焼結とを行い、殻体の空孔内に1個の核粒子が内包された鈴構造粒子1を得た。
得られた鈴構造粒子1の粒子径は1.1μmであった。
The obtained double-coated particles are heated in an electric furnace at 500 ° C. for 3 hours to decompose the methyl methacrylate resin and sinter the outermost silica layer. The bell structure particles 1 in which the core particles were encapsulated were obtained.
The resulting bell structure particle 1 had a particle size of 1.1 μm.

(実施例2)
粒径5μmのシリカ粒子(積水化学工業社製、ミクロパールSI)10gを80%エタノール水溶液中に分散させた後、スチレン1g、アゾビスイソブチロニトリル0.01gを添加し、窒素雰囲気下70℃で分散重合させることにより、表面にスチレン樹脂薄膜(種層)を有するシリカ粒子を得た。
得られた種層を有するシリカ粒子を洗浄後、1%ラウリル硫酸ナトリウム水溶液中に分散させ、スチレン10g、過酸化ベンゾイル0.01gを添加し、室温で24時間撹拌し、更に70℃で12時間シード重合させることにより、表面にスチレン樹脂を主成分とする皮膜(スチレン樹脂層)を有するシリカ粒子(被覆粒子)を得た。
得られた被覆粒子におけるスチレン樹脂層の厚みは約1μmであった。
(Example 2)
After 10 g of silica particles having a particle diameter of 5 μm (Micropearl SI, manufactured by Sekisui Chemical Co., Ltd.) are dispersed in an 80% ethanol aqueous solution, 1 g of styrene and 0.01 g of azobisisobutyronitrile are added, and the atmosphere is 70 under a nitrogen atmosphere. Silica particles having a styrene resin thin film (seed layer) on the surface were obtained by dispersion polymerization at ° C.
The obtained silica particles having a seed layer are washed, dispersed in a 1% sodium lauryl sulfate aqueous solution, 10 g of styrene and 0.01 g of benzoyl peroxide are added, stirred at room temperature for 24 hours, and further at 70 ° C. for 12 hours. By carrying out seed polymerization, silica particles (coated particles) having a film (styrene resin layer) containing styrene resin as a main component on the surface were obtained.
The thickness of the styrene resin layer in the obtained coated particles was about 1 μm.

得られた被覆粒子を20%エタノール水溶液中に分散させ、粒径450nmのシリカ粒子(日産化学社製、MP−4540M)を添加し、スチレン樹脂層の表面にヘテロ凝集させた。水洗後、80%エタノール水溶液200gに分散させ、28%−アンモニア水1gを添加した後、20%テトラエトキシシラン−エタノール溶液100gを12時間かけて滴下し、ゾルゲル反応させることにより、被覆粒子の表面にシリカ層が形成された二重被覆粒子を得た。
得られた二重被覆粒子の最外層であるシリカ層の厚みは約0.5μmであった。
The obtained coated particles were dispersed in a 20% ethanol aqueous solution, silica particles having a particle diameter of 450 nm (manufactured by Nissan Chemical Co., Ltd., MP-4540M) were added, and heteroaggregated on the surface of the styrene resin layer. After washing with water, dispersing in 200 g of 80% ethanol aqueous solution, adding 1 g of 28% -ammonia water, and then dropping 100 g of 20% tetraethoxysilane-ethanol solution over 12 hours to cause sol-gel reaction, the surface of the coated particles Double-coated particles having a silica layer formed thereon were obtained.
The thickness of the silica layer which is the outermost layer of the obtained double-coated particles was about 0.5 μm.

得られた二重被覆粒子を、電気炉にて500℃で3時間加熱することにより、スチレン樹脂の分解と最外シリカ層の焼結とを行い、殻体の空孔内に1個の核粒子が内包された鈴構造粒子2を得た。
得られた鈴構造粒子2の粒子径は8.0μmであった。
The obtained double-coated particles are heated in an electric furnace at 500 ° C. for 3 hours to decompose the styrene resin and sinter the outermost silica layer. The bell structure particles 2 containing the particles were obtained.
The resulting bell structure particle 2 had a particle size of 8.0 μm.

(実施例3)
粒径200nmのシリカ粒子(日産化学社製、MP−2040)10gをエタノール100mLに分散させ、3−メタクリロイルプロピルトリメトキシシラン1gを添加した後、70℃で12時間撹拌することにより、表面疎水化シリカ粒子を得た。
メタクリル酸メチル10g、表面疎水化シリカ粒子5g、アゾビスイソブチロニトリル0.01gを均一に分散させた後、200rpmの撹拌下、5%ポリビニルピロリドンK30水溶液1000gに懸濁させ、窒素雰囲気下70℃で12時間重合することにより、複数のシリカ粒子が内包されたメタクリル酸メチル樹脂粒子を得た。得られたシリカ粒子内包メタクリル酸メチル樹脂粒子の平均粒径は約10μmであった。
(Example 3)
Surface dispersion is made by dispersing 10 g of silica particles having a particle size of 200 nm (manufactured by Nissan Chemical Co., MP-2040) in 100 mL of ethanol and adding 1 g of 3-methacryloylpropyltrimethoxysilane, followed by stirring at 70 ° C. for 12 hours. Silica particles were obtained.
After uniformly dispersing 10 g of methyl methacrylate, 5 g of surface hydrophobized silica particles, and 0.01 g of azobisisobutyronitrile, the mixture was suspended in 1000 g of a 5% polyvinylpyrrolidone K30 aqueous solution with stirring at 200 rpm. By polymerizing at a temperature of 12 ° C. for 12 hours, methyl methacrylate resin particles containing a plurality of silica particles were obtained. The average particle diameter of the resulting methyl methacrylate resin particles encapsulating silica particles was about 10 μm.

得られたシリカ粒子内包メタクリル酸メチル樹脂粒子を20%エタノール水溶液に分散させ、粒径450nmのシリカ粒子(日産化学社製、MP−4540M)を添加し、メタクリル酸メチル樹脂粒子表面にヘテロ凝集させた。水洗後、0%エタノール水溶液200gに分散させ、28%−アンモニア水1gを添加した後、20%テトラエトキシシラン−エタノール溶液150gを12時間かけて滴下し、ゾルゲル反応させることにより、シリカ粒子内包メタクリル酸メチル樹脂粒子の表面にシリカ層が形成された被覆粒子を得た。
得られた被覆粒子の最外層であるシリカ層の厚みは約0.8μmであった。
Silica particle-encapsulated methyl methacrylate resin particles obtained are dispersed in a 20% ethanol aqueous solution, silica particles having a particle size of 450 nm (manufactured by Nissan Chemical Co., Ltd., MP-4540M) are added, and heteroaggregated on the surface of the methyl methacrylate resin particles. It was. After washing with water, dispersing in 200 g of a 0% ethanol aqueous solution, adding 1 g of 28% -ammonia water, then dropping 150 g of a 20% tetraethoxysilane-ethanol solution over 12 hours and causing a sol-gel reaction, the methacrylic silica containing silica particles Coated particles in which a silica layer was formed on the surfaces of the acid methyl resin particles were obtained.
The thickness of the silica layer which is the outermost layer of the obtained coated particles was about 0.8 μm.

得られた被覆粒子を、電気炉にて500℃で3時間加熱することにより、メタクリル酸メチル樹脂の分解と最外シリカ層の焼結とを行い、殻体の空孔内に複数個の核微粒子が内包された鈴構造粒子3を得た。
得られた鈴構造粒子3の粒子径は11.5μmであった。
The obtained coated particles are heated in an electric furnace at 500 ° C. for 3 hours to decompose the methyl methacrylate resin and to sinter the outermost silica layer, so that a plurality of nuclei are contained in the holes of the shell. Bell structure particles 3 in which fine particles were encapsulated were obtained.
The resulting bell structure particle 3 had a particle size of 11.5 μm.

(評価)
ポリプロピレン系樹脂(三井化学社製「LA880」)を200℃でプラストミル混練し、実施例1で得られた鈴構造粒子1、実施例2で得られた鈴構造粒子2、実施例3で得られた鈴構造粒子3、及び、比較例1として粒径10μmのシリカ粒子を、それぞれ40重量%添加し、更に60秒間混練した。得られた混練物を加熱プレス装置を用いて180℃、1分間加熱プレスして、長さ300mm、幅2.5mm、厚さ5mmの樹脂プレートを作製した。
なお、参考例1として、防音粒子を添加しないポリプロピレン系樹脂のみの樹脂プレートも作製した。
(Evaluation)
Polypropylene resin ("LA880" manufactured by Mitsui Chemicals, Inc.) is plastmilled at 200 ° C, and the bell structure particles 1 obtained in Example 1, the bell structure particles 2 obtained in Example 2, and the example 3 The bell structure particles 3 and silica particles having a particle diameter of 10 μm as Comparative Example 1 were added in an amount of 40% by weight and kneaded for 60 seconds. The obtained kneaded material was heated and pressed at 180 ° C. for 1 minute using a heating press apparatus to prepare a resin plate having a length of 300 mm, a width of 2.5 mm, and a thickness of 5 mm.
In addition, as Reference Example 1, a resin plate made only of a polypropylene resin without adding soundproof particles was also produced.

作製した各実施例、比較例及び参考例に係る樹脂プレートを、20℃の環境下でリオン社製の損失係数測定器(RION sound and vibration signal analyzer SA−74)で、周波数1000Hz近辺における損失係数(η)を測定した。
結果を表1に示した。
なお、損失係数(η)の数値が0.1以上であれば、一般に防音部材として充分な性能を有するといえる。
The resin plates according to each of the examples, comparative examples, and reference examples were measured with a loss factor measuring instrument (RION sound and vibration signal analyzer SA-74) manufactured by Lion under an environment of 20 ° C. (Η) was measured.
The results are shown in Table 1.
In addition, if the numerical value of loss factor ((eta)) is 0.1 or more, it can generally be said that it has sufficient performance as a soundproof member.

Figure 0005537258
Figure 0005537258

本発明によれば、製造上の制限が少なく、耐熱性に優れ、かつ、振動や音を減衰させる能力の高い鈴構造粒子を提供することができる。 According to the present invention, it is possible to provide bell structure particles that are less restricted in production, excellent in heat resistance, and high in ability to attenuate vibrations and sounds.

1 1個の核微粒子を殻体の空孔内に内包する鈴構造粒子
1’2個以上の核微粒子を殻体の空孔内に内包する鈴構造粒子
2 殻体
3 核微粒子書
1 Bell structure particle that encloses one core particle in a shell hole 1 'Bell structure particle that includes two or more core particles in a shell hole 2 Shell body 3 Core particle book

Claims (4)

1個の無機微粒子を樹脂で被覆して被覆粒子を調製する工程と、前記被覆粒子を更に無機材料で被覆して二重被覆粒子を調製する工程と、前記二重被覆粒子を加熱して前記樹脂からなる被覆層を分解する工程とを有する鈴構造粒子の製造方法であって、
前記無機微粒子及び無機材料は、4〜14属の金属、4〜14属の金属を含む合金、4〜14属の金属若しくは合金の酸化物、4〜14属の金属若しくは合金の窒化物、又は、4〜14属の金属若しくは合金の炭化物であり、
前記樹脂は、空気、窒素、アルゴン下で燃焼、分解するものであり、
前記二重被覆粒子を加熱して前記樹脂からなる被覆層を分解する工程は、上記樹脂の分解温度以上、かつ、上記無機材料からなる被覆層を焼結させる温度以上の温度で加熱することにより行われるものである
ことを特徴とする鈴構造粒子の製造方法。
A step of preparing a coated particle by coating one inorganic fine particle with a resin, a step of preparing a double-coated particle by further coating the coated particle with an inorganic material, and heating the double-coated particle to A method for producing bell-structured particles having a step of decomposing a coating layer made of a resin ,
The inorganic fine particles and the inorganic material are metals of 4 to 14 metals, alloys containing 4 to 14 metals, 4 to 14 metals or oxides of alloys, 4 to 14 metals or alloys of nitrides, or 4 to 14 metal or alloy carbides,
The resin burns and decomposes under air, nitrogen and argon,
The step of heating the double-coated particles to decompose the coating layer made of the resin is performed by heating at a temperature equal to or higher than the decomposition temperature of the resin and the temperature for sintering the coating layer made of the inorganic material. A method for producing bell-structured particles, characterized in that it is performed .
無機微粒子を複数個含有する樹脂粒子を調製する工程と、前記樹脂粒子を無機材料で被覆して被覆粒子を調製する工程と、前記被覆粒子を加熱して前記樹脂を分解する工程とを有する鈴構造粒子の製造方法であって、
前記無機微粒子及び無機材料は、4〜14属の金属、4〜14属の金属を含む合金、4〜14属の金属若しくは合金の酸化物、4〜14属の金属若しくは合金の窒化物、又は、4〜14属の金属若しくは合金の炭化物であり、
前記樹脂は、空気、窒素、アルゴン下で燃焼、分解するものであり、
前記被覆粒子を加熱して前記樹脂を分解する工程は、上記樹脂の分解温度以上、かつ、上記無機材料からなる被覆層を焼結させる温度以上の温度で加熱することにより行われるものである
ことを特徴とする鈴構造粒子の製造方法。
A bell having a step of preparing resin particles containing a plurality of inorganic fine particles, a step of coating the resin particles with an inorganic material to prepare coated particles, and a step of heating the coated particles to decompose the resin A method for producing structured particles, comprising:
The inorganic fine particles and the inorganic material are metals of 4 to 14 metals, alloys containing 4 to 14 metals, 4 to 14 metals or oxides of alloys, 4 to 14 metals or alloys of nitrides, or 4 to 14 metal or alloy carbides,
The resin burns and decomposes under air, nitrogen and argon,
The step of decomposing the resin by heating the coated particles is performed by heating at a temperature equal to or higher than a decomposition temperature of the resin and a temperature equal to or higher than a temperature at which the coating layer made of the inorganic material is sintered. A method for producing bell structure particles characterized by the above.
無機材料は、酸化ケイ素又は酸化チタンであり、樹脂は、ポリスチレン、ポリメタクリル酸メチル、ポリメタクリル酸イソブチル又はポリメタクリル酸t−ブチルを含有するものであって、二重被覆粒子を加熱して前記樹脂からなる被覆層を分解する工程において500℃以上に加熱することを特徴とする請求項1記載の鈴構造粒子の製造方法。The inorganic material is silicon oxide or titanium oxide, and the resin contains polystyrene, polymethyl methacrylate, polyisobutyl methacrylate, or t-butyl polymethacrylate, and the double-coated particles are heated to The method for producing bell-structured particles according to claim 1, wherein heating is performed to 500 ° C or higher in the step of decomposing the coating layer made of resin. 無機材料は、酸化ケイ素又は酸化チタンであり、樹脂は、ポリスチレン、ポリメタクリル酸メチル、ポリメタクリル酸イソブチル又はポリメタクリル酸t−ブチルを含有するものであって、被覆粒子を加熱して樹脂を分解する工程において500℃以上に加熱することを特徴とする請求項2記載の鈴構造粒子の製造方法。The inorganic material is silicon oxide or titanium oxide, and the resin contains polystyrene, polymethyl methacrylate, polyisobutyl methacrylate, or t-butyl polymethacrylate, and decomposes the resin by heating the coated particles. The method for producing bell structure particles according to claim 2, wherein heating is performed to 500 ° C or higher in the step of performing.
JP2010115370A 2009-05-19 2010-05-19 Method for producing bell structure particles Active JP5537258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115370A JP5537258B2 (en) 2009-05-19 2010-05-19 Method for producing bell structure particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009121119 2009-05-19
JP2009121119 2009-05-19
JP2010115370A JP5537258B2 (en) 2009-05-19 2010-05-19 Method for producing bell structure particles

Publications (2)

Publication Number Publication Date
JP2011001258A JP2011001258A (en) 2011-01-06
JP5537258B2 true JP5537258B2 (en) 2014-07-02

Family

ID=43559552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115370A Active JP5537258B2 (en) 2009-05-19 2010-05-19 Method for producing bell structure particles

Country Status (1)

Country Link
JP (1) JP5537258B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5399886B2 (en) * 2009-12-25 2014-01-29 宇部エクシモ株式会社 Method for producing hollow inorganic particles, and hollow inorganic particles
US8360258B2 (en) 2010-11-15 2013-01-29 Pacific Market International, Llc Beverage container closure
JP7280127B2 (en) * 2019-06-28 2023-05-23 日揮触媒化成株式会社 Bell-shaped particles, coating liquid containing the particles, and substrate with transparent coating containing the particles
WO2021020473A1 (en) * 2019-07-31 2021-02-04 京セラ株式会社 Ceramic package and production method therefor
WO2022181789A1 (en) * 2021-02-26 2022-09-01 国立大学法人山形大学 Porous metal structure body having bell-like structure, and method for manufacturing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000148156A (en) * 1998-11-05 2000-05-26 Hiroshi Yamada Bell structured particle, its manufacture, and vibration absorber
JP4861634B2 (en) * 2005-03-18 2012-01-25 国立大学法人 名古屋工業大学 Method for producing silica hollow particles
JP4826141B2 (en) * 2005-06-03 2011-11-30 トヨタ自動車株式会社 Soundproof material and manufacturing method thereof
JP2008074645A (en) * 2006-09-19 2008-04-03 Nittetsu Mining Co Ltd Manufacturing process of hollow particle of granule-encapsulating metal oxide
JP5192760B2 (en) * 2007-09-11 2013-05-08 花王株式会社 Composite hollow mesoporous silica particles
JP5499442B2 (en) * 2008-04-10 2014-05-21 株式会社豊田中央研究所 Metal oxide encapsulated mesoporous silica capsule
US7914846B2 (en) * 2008-04-17 2011-03-29 Toyota Motor Engineering & Manufacturing North America, Inc. Method for encapsulating reactive metal hydrides
JP2009263444A (en) * 2008-04-23 2009-11-12 Kaneka Corp Base material comprising hollow silicone fine particle or bell-structure silicone fine particle including core particle in hollow particle

Also Published As

Publication number Publication date
JP2011001258A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5537258B2 (en) Method for producing bell structure particles
Dou et al. Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation
EP3383941B1 (en) A composite shielding material and a process of making the same
Yang et al. Large-deformation and high-strength amorphous porous carbon nanospheres
Wang et al. Strategic synthesis of trimetallic Au@ Pd@ Pt core− shell nanoparticles from poly (vinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts
JP3265653B2 (en) Composite particles, hollow particles and their production method
US4917857A (en) Process for producing metallic or ceramic hollow-sphere bodies
Ye et al. Microstructure and microwave absorption performance variation of SiC/C foam at different elevated-temperature heat treatment
JP2007320847A5 (en)
CN105694356A (en) Porous hollow phenolic resin nanospheres and carbon nanospheres and preparation method
WO2013010245A1 (en) A reticulated open-cell foam modified by fibers extending across and between the cells of said foam and preparation methods thereof
JP2018531150A5 (en)
JP2012503694A (en) Semi-finished metal products
Liu et al. Novel strategy to prepare hierarchically porous ceramic microspheres via a self-assembly method on tunable superamphiphobic surfaces
CN108137315A (en) The preparation of core-shell material based on carbon nanotube
CN103788526A (en) Preparation method of silver-loaded polymer microspheres
Chadha et al. Bioinspired techniques in freeze casting: a survey of processes, current advances, and future directions
Cao et al. Fabrication, mechanical properties, and multifunctionalities of particle reinforced foams: A review
Han et al. Preparation of sizable and uniform‐sized spherical ceramic foams: drop‐in‐oil and agar gelation
KR101373228B1 (en) Method of preparing multipurpose monodisperse hollow mesoporous silica particles
CN105153453B (en) Nanometer Copper/polymeric hollow complex microsphere and preparation method thereof
CN115497445A (en) Sound absorbing material, sound generating device, and electronic apparatus
Chen et al. Progress in electrohydrodynamic atomization preparation of energetic materials with controlled microstructures
US20180201508A1 (en) Carbon Nanotube Foams with Controllable Architecture and Methods
Yu et al. Acoustic properties of polyurethane composite with both millimeter-scale closed cavity and nanometer-scale semi closed cavity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130208

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20130208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140425

R150 Certificate of patent or registration of utility model

Ref document number: 5537258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250