JP5535837B2 - Processing method of measurement data in crack deformation monitoring of structures - Google Patents

Processing method of measurement data in crack deformation monitoring of structures Download PDF

Info

Publication number
JP5535837B2
JP5535837B2 JP2010199446A JP2010199446A JP5535837B2 JP 5535837 B2 JP5535837 B2 JP 5535837B2 JP 2010199446 A JP2010199446 A JP 2010199446A JP 2010199446 A JP2010199446 A JP 2010199446A JP 5535837 B2 JP5535837 B2 JP 5535837B2
Authority
JP
Japan
Prior art keywords
data
measurement data
crack
measurement
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010199446A
Other languages
Japanese (ja)
Other versions
JP2012057993A (en
Inventor
究 津野
孝仁 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2010199446A priority Critical patent/JP5535837B2/en
Publication of JP2012057993A publication Critical patent/JP2012057993A/en
Application granted granted Critical
Publication of JP5535837B2 publication Critical patent/JP5535837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、構造物や軌道等に計測機器を設置して自動計測を行う場合の、適切な計測頻度の設定方法と、蓄積される膨大なデータを温度変化等に起因する変動や誤差の影響を考慮して処理する方法に係り、特に、構造物のひび割れの変状監視における計測データの処理方法に関するものである。   The present invention provides a method for setting an appropriate measurement frequency when measuring equipment is installed on a structure, a track, or the like, and the influence of fluctuations and errors caused by temperature changes on the accumulated data. In particular, the present invention relates to a method for processing measurement data in monitoring deformation of a structure for cracks.

従来、構造物にひび割れなどの変状が見られ進行することが懸念される場合や、近接施工が行われる場合などにおいて、構造物や軌道等の状況を監視することがある。このような監視に自動計測技術を用いた場合、データそのものは1〜数分間隔で取れることから、膨大な計測データが蓄積される。   Conventionally, there are cases in which the state of a structure, a track, or the like is monitored in the case where there is a concern that the structure is deformed such as a crack and is advanced, or in the case where close construction is performed. When the automatic measurement technique is used for such monitoring, the data itself can be taken at intervals of 1 to several minutes, and thus a large amount of measurement data is accumulated.

また、従来、構造物や軌道等の状況を監視するための計測技術やこれを自動計測する方法は既に開発されている。例えば、光ファイバを用いたひずみ計測や、導電性の塗料を用いたひび割れ計測などが提案されている。   Conventionally, a measurement technique for monitoring the state of a structure, a track, and the like and a method for automatically measuring this have already been developed. For example, strain measurement using an optical fiber and crack measurement using a conductive paint have been proposed.

また、地震時のトンネルの覆工挙動のデータをリアルタイムに把握するようにした、地震時のトンネル覆工挙動の計測システムが提案されている(下記特許文献1参照)。   In addition, a measurement system for the tunnel lining behavior at the time of an earthquake has been proposed (see Patent Document 1 below), in which data on the lining behavior of the tunnel at the time of an earthquake is grasped in real time.

一方、自動計測によって得られる膨大なデータを処理する技術は、十分に確立されていないのが現状である。   On the other hand, at present, a technique for processing a huge amount of data obtained by automatic measurement has not been sufficiently established.

特開2009−300323号公報JP 2009-300343 A

しかしながら、上記のような計測データは、温度変化等に起因する変動や誤差の影響を受けるが、これを適切に処理する技術が提案されておらず、多くの場合1〜数時間の平均値を取って動向を見るなど、膨大な計測データを有効に活用できていないのが現状である。   However, measurement data such as those described above are affected by fluctuations and errors due to temperature changes and the like, but techniques for appropriately processing this have not been proposed, and in many cases an average value of 1 to several hours is obtained. At present, the vast amount of measurement data cannot be effectively utilized, such as looking at trends.

特に、構造物のひび割れの変状監視においては、一般的に管理基準値を設けて計測データとの比較を行っているが、計測データそのものが温度変化等に起因して変動することから、一時的に管理基準値を超えてもそれが変状の進行によるものかが瞬時に判断できず、対応が遅れることもある。   In particular, in the monitoring of cracks in structures, control reference values are generally set and compared with measured data. However, the measured data itself fluctuates due to temperature changes, etc. Even if the control standard value is exceeded, it is impossible to instantly determine whether it is due to the progress of deformation, and the response may be delayed.

本発明は、上記状況に鑑みて、自動計測によって得られる膨大なデータを的確に処理することができる、構造物のひび割れの変状監視における計測データの処理方法を提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a method for processing measurement data in monitoring the deformation of a crack in a structure, which can accurately process enormous data obtained by automatic measurement.

本発明は、上記目的を達成するために、
〔1〕構造物のひび割れ幅の経時変化データを時刻歴の波形とみなしてローパスフィルタをかけ、温度変化に起因する変動を除去する構造物のひび割れの変状監視における計測データの処理方法であって、前記ローパスフィルタは2日あるいは1週間のローパスフィルタであって、このローパスフィルタをかけることによって前記計測データにおける温度の日変化を除去するようにしたことを特徴とする。
In order to achieve the above object, the present invention provides
[1] lowpass filter is regarded as a time history of the waveform changes over time data for crack width of structure creation, there the processing method of the measurement data in the Deformation monitoring cracks in structure to eliminate variations due to temperature changes The low-pass filter is a two-day or one-week low-pass filter, and by applying the low-pass filter, a daily change in temperature in the measurement data is removed .

本発明によれば、構造物のひび割れの変状監視において、自動計測によって得られる膨大なデータを的確に処理することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the deformation | transformation monitoring of the crack of a structure, the enormous data obtained by automatic measurement can be processed accurately.

本発明に係る無線センサを用いた自動計測の状況を示す図面代用写真である。It is a drawing substitute photograph which shows the condition of the automatic measurement using the wireless sensor which concerns on this invention. 本発明に係るひび割れ幅変化の自動計測結果の例(坑口付近)を示す図である。It is a figure which shows the example (near a wellhead) of the automatic measurement result of the crack width change which concerns on this invention. 本発明に係るフーリエ変換の結果を示す図である。It is a figure which shows the result of the Fourier-transform which concerns on this invention. 本発明に係る計測データの間引きを示す図である。It is a figure which shows the thinning-out of the measurement data based on this invention. 本発明に係るサンプリング間隔を変えた場合のフーリエスペクトルを示す図である。It is a figure which shows the Fourier spectrum at the time of changing the sampling interval which concerns on this invention. 本発明に係る変動の誤差の影響を考慮したデータ処理フローチャートである。6 is a data processing flowchart in consideration of the influence of fluctuation error according to the present invention. 本発明に係る温度変化処理の例(その1)を示す図である。It is a figure which shows the example (the 1) of the temperature change process which concerns on this invention. 本発明に係る温度変化処理の例(その2)を示す図である。It is a figure which shows the example (the 2) of the temperature change process which concerns on this invention.

本発明の構造物のひび割れ幅の経時変化データを時刻歴の波形とみなしてローパスフィルタをかけ、温度変化に起因する変動を除去する構造物のひび割れの変状監視における計測データの処理方法であって、前記ローパスフィルタは2日あるいは1週間のローパスフィルタであり、このローパスフィルタをかけることによって前記計測データにおける温度の日変化を除去するようにした。 Lowpass filter considers aging data Crack Width of structure creation of the present invention the time history of the waveform, a processing method of the measurement data in the Deformation monitoring cracks in structure to eliminate variations due to temperature changes The low-pass filter is a two-day or one-week low-pass filter. By applying this low-pass filter, the daily change in temperature in the measurement data is removed.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

トンネルのひび割れの変状監視に自動計測技術を用いた場合、膨大な計測データが蓄積されるが、温度変化等に起因する変動や誤差の影響を受けて十分に活用することができない。そこで、温度変化等に起因する変動や誤差を考慮した実務的なデータ処理方法について検討した。   When automatic measurement technology is used for monitoring crack deformation in a tunnel, a large amount of measurement data is accumulated, but it cannot be fully utilized due to fluctuations and errors caused by temperature changes and the like. Therefore, a practical data processing method that considers fluctuations and errors caused by temperature changes and the like was examined.

まず、トンネルのひび割れの変状監視における自動計測について説明する。   First, automatic measurement in tunnel crack deformation monitoring will be described.

図1は本発明に係る無線センサを用いた自動計測の状況を示す図面代用写真である。   FIG. 1 is a drawing-substituting photograph showing the state of automatic measurement using a wireless sensor according to the present invention.

図1(a)は鉄道トンネル内のひび割れにひずみ式ひび割れ幅計1と子機2が取り付けられた様子を示しており、図1(b)は鉄道トンネルの坑口に配置される親機3と、この親機3に接続されパソコン(図示なし)に接続される配線4とを示している。   FIG. 1A shows a state in which a strain-type crack width meter 1 and a slave unit 2 are attached to a crack in a railway tunnel, and FIG. 1B shows a master unit 3 disposed at a wellhead of the railway tunnel. The wiring 4 connected to the parent device 3 and connected to a personal computer (not shown) is shown.

このように、ひずみ式ひび割れ幅計1を鉄道トンネル5のひび割れに取り付け、それにより自動計測されたデータを無線を用いて坑口まで伝送するようにしている。   In this way, the strain-type crack width meter 1 is attached to a crack in the railway tunnel 5 so that automatically measured data is transmitted to the wellhead using radio.

図2は本発明に係るひび割れ幅変化の自動計測結果の例(坑口付近)を示す図である。   FIG. 2 is a diagram showing an example (near the wellhead) of an automatic measurement result of crack width change according to the present invention.

この図において、aはひび割れ幅、bは温度を示している。   In this figure, a indicates the crack width and b indicates the temperature.

図2に示すように、自動計測データは温度変化に起因する変動や誤差を含んでいる。したがって、このようなデータを有効に活用するには、適当なサンプリング間隔を選択し、温度変化の影響を除去するための適切な処理が必要となる。   As shown in FIG. 2, the automatic measurement data includes fluctuations and errors due to temperature changes. Therefore, in order to effectively use such data, it is necessary to select an appropriate sampling interval and perform an appropriate process for removing the influence of the temperature change.

次に、計測データの周波数分析について説明する。   Next, frequency analysis of measurement data will be described.

サンプルデータの概要を表1に示す。   A summary of the sample data is shown in Table 1.

図3は本発明に係るフーリエ変換の結果を示す図であり、図3(a)はひび割れ幅計(1)(ID7,坑口近傍,10分間隔)の特性図、図3(b)はひび割れ幅計(2)(ID5,坑口より15m,1分間隔)の特性図、図3(c)はひび割れ幅計(3)(ID6,坑口より87m,1分間隔)の特性図を示す。 FIG. 3 is a diagram showing the result of Fourier transform according to the present invention, FIG. 3 (a) is a characteristic diagram of a crack width meter (1) (ID7, near a wellhead, 10 minutes interval), and FIG. 3 (b) is a crack. Characteristic diagram of width meter (2) (ID5, 15 m from wellhead, 1 minute interval), FIG. 3 (c) shows characteristic diagram of crack width meter (3) (ID6, 87 m from wellhead, 1 minute interval).

図3に示すように、サンプルデータを時刻歴の波形とみなし、フーリエ変換による周波数分析を行った。   As shown in FIG. 3, the sample data was regarded as a time history waveform, and frequency analysis was performed by Fourier transform.

その結果、24時間にピークを持ち、また、坑口に近いほど温度の日変化の影響を受けやすく、24時間のピークが大きい傾向にあることがわかった。   As a result, it was found that there was a peak at 24 hours, and that the closer to the wellhead, the more easily affected by the daily change in temperature, and the peak at 24 hours tended to be large.

次に、ひび割れ幅変化の計測間隔について検討した。   Next, the measurement interval of crack width change was examined.

表1及び図3に示すサンプルデータでは、計測間隔を1分あるいは10分としているが、図4のようにサンプリングを間引いたデータをつくり、同様にフーリエ変換による周波数分析を行った。   In the sample data shown in Table 1 and FIG. 3, the measurement interval is set to 1 minute or 10 minutes. However, data obtained by thinning sampling as shown in FIG. 4 was created, and frequency analysis was similarly performed by Fourier transform.

図5は本発明に係るサンプリング間隔を変えた場合のフーリエスペクトルを示す図である。   FIG. 5 is a diagram showing a Fourier spectrum when the sampling interval according to the present invention is changed.

図5(a)は10分間隔と1分間隔との比較を示す図、図5(b)は1時間間隔と1分間隔との比較を示す図、図5(c)は4時間間隔と1分間隔との比較を示す図、図5(d)は12時間間隔と1分間隔との比較を示す図である。   FIG. 5 (a) is a diagram showing a comparison between a 10 minute interval and a 1 minute interval, FIG. 5 (b) is a diagram showing a comparison between a 1 hour interval and a 1 minute interval, and FIG. 5 (c) is a 4 hour interval. FIG. 5D is a diagram showing a comparison with a 1 minute interval, and FIG. 5D is a diagram showing a comparison with a 12 hour interval and a 1 minute interval.

これらの図から、10分間隔あるいは1時間間隔データのスペクトルは、1分間隔データとほとんど同一であるが、4時間あるいは12時間間隔のデータでは差が見られる。   From these figures, the spectrum of 10-minute or 1-hour interval data is almost the same as that of 1-minute interval data, but there is a difference in 4-hour or 12-hour interval data.

上記からして、計測データのサンプリング間隔は1時間間隔程度とするのが合理的であると考えられる。   From the above, it is considered reasonable to set the sampling interval of measurement data to about one hour.

次に、温度日変化の対処方法について検討した。   Next, we examined how to deal with daily temperature changes.

図6は本発明に係る変動の誤差の影響を考慮したデータ処理フローチャートである。温度の日変化による影響を除去するため、
(1)ひび割れ幅の経時変化のデータをフーリエ変換し(ステップS1)、
(2)周波数領域でフィルタをかけ(単純化のため矩形のフィルタとする)(ステップS2)、
(3)フーリエ逆変換により時刻歴のデータに戻す(ステップS3)、という処理を行った。
FIG. 6 is a data processing flowchart in consideration of the influence of fluctuation errors according to the present invention. To eliminate the effects of daily temperature changes,
(1) Fourier transform the data of the crack width over time (step S1),
(2) Apply a filter in the frequency domain (for simplicity, use a rectangular filter) (step S2),
(3) A process of returning to time history data by inverse Fourier transform (step S3) was performed.

図7は本発明に係る温度変化処理の例(その1)を示す図であり、図7(a)はひび割れ幅計(1)(ID7)による計測データに2日あるいは1週間のローパスフィルタをかけて処理した例を示す図、図7(b)はひび割れ幅計(2)(ID5)による2日あるいは1週間のローパスフィルタをかけて処理した例を示す図である。   FIG. 7 is a diagram showing an example (part 1) of temperature change processing according to the present invention. FIG. 7 (a) shows a measurement data obtained by a crack width meter (1) (ID7) with a low pass filter for two days or one week. FIG. 7B is a diagram showing an example of processing by applying a low-pass filter for two days or one week by a crack width meter (2) (ID5).

図7からも明らかなように、2日あるいは1週間のローパスフィルタをかけたところ、温度の日変化による影響を除去することができた。   As apparent from FIG. 7, when the low-pass filter was applied for two days or one week, the influence due to the daily change in temperature could be eliminated.

図8は本発明に係る温度変化処理の例(その2)を示す図であり、図7(a)における6000〜8000データからなる2000データを抜粋した図である。   FIG. 8 is a diagram showing an example (part 2) of the temperature change processing according to the present invention, and is a diagram excerpting 2000 data composed of 6000 to 8000 data in FIG. 7A.

この図8から明らかなように、生データaと2日のローパスフィルタをかけたデータbと1週間のローパスフィルタをかけたデータcとが明確に示されており、温度の日変化による影響を除去できていることが分かる。   As is apparent from FIG. 8, the raw data a, the data b obtained by applying a low pass filter for two days, and the data c obtained by applying a low pass filter for one week are clearly shown. It can be seen that it has been removed.

上記したように、本発明によれば、適当なサンプリング間隔を決定して自動計測を行い、さらにそのデータから温度日変化による影響を除去することによって、膨大な自動計測データを的確に処理し活用することができる。   As described above, according to the present invention, automatic measurement is performed by determining an appropriate sampling interval, and further, by removing the influence of daily temperature variation from the data, a large amount of automatic measurement data is accurately processed and utilized. can do.

なお、上記実施例では、トンネルのひび割れの変状監視における計測データの処理方法として記述したが、この処理方法は、構造物や軌道などの計測データの処理方法として広範に利用可能である。   In the above-described embodiment, the measurement data processing method for monitoring the crack deformation of the tunnel is described. However, this processing method can be widely used as a measurement data processing method for structures, tracks, and the like.

また、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   Further, the present invention is not limited to the above-described embodiments, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

本発明の構造物のひび割れの変状監視における計測データの処理方法は、自動計測によって得られる膨大なデータを的確に処理することができる、構造物のひび割れの変状監視における計測データの処理方法として利用可能である。   The processing method of measurement data in the monitoring of deformation of a structure according to the present invention is a processing method of measurement data in monitoring of deformation of a structure that can accurately process a huge amount of data obtained by automatic measurement. Is available as

1 ひずみ式ひび割れ幅計
2 子機
3 親機
4 配線
5 鉄道トンネル
1 Strain-type crack width meter 2 Slave unit 3 Master unit 4 Wiring 5 Railway tunnel

Claims (1)

構造物のひび割れ幅の経時変化データを時刻歴の波形とみなしてローパスフィルタをかけ、温度変化に起因する変動を除去する構造物のひび割れの変状監視における計測データの処理方法であって、前記ローパスフィルタは2日あるいは1週間のローパスフィルタであり、該ローパスフィルタをかけることによって前記計測データにおける温度の日変化を除去するようにしたことを特徴とする構造物のひび割れの変状監視における計測データの処理方法。 A method for processing measurement data in the crack monitoring of a structure to remove a variation caused by a temperature change by considering a time-dependent change data of a crack width of a structure as a waveform of a time history and applying a low pass filter , The low-pass filter is a two-day or one-week low-pass filter, and the diurnal change in temperature in the measurement data is removed by applying the low-pass filter. How to process the data.
JP2010199446A 2010-09-07 2010-09-07 Processing method of measurement data in crack deformation monitoring of structures Expired - Fee Related JP5535837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010199446A JP5535837B2 (en) 2010-09-07 2010-09-07 Processing method of measurement data in crack deformation monitoring of structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010199446A JP5535837B2 (en) 2010-09-07 2010-09-07 Processing method of measurement data in crack deformation monitoring of structures

Publications (2)

Publication Number Publication Date
JP2012057993A JP2012057993A (en) 2012-03-22
JP5535837B2 true JP5535837B2 (en) 2014-07-02

Family

ID=46055287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010199446A Expired - Fee Related JP5535837B2 (en) 2010-09-07 2010-09-07 Processing method of measurement data in crack deformation monitoring of structures

Country Status (1)

Country Link
JP (1) JP5535837B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108592811A (en) * 2018-03-26 2018-09-28 中震(北京)工程检测股份有限公司 A kind of building structure Fracture Deformation real-time dynamic monitoring system and recognition methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975443B2 (en) * 2003-01-20 2007-09-12 株式会社山武 Sensor device
JP4610310B2 (en) * 2004-11-25 2011-01-12 株式会社フジタ Method for detecting cracks inside structures
JP2008107198A (en) * 2006-10-25 2008-05-08 Sankyo Eng Kk Self-management support system of concrete structure, self-management support server, and self-management support program

Also Published As

Publication number Publication date
JP2012057993A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
CN109073713B (en) Apparatus, system, and method for measuring internal impedance of a test battery using frequency response
US9161126B2 (en) Systems and methods for protecting a speaker
JP6896375B2 (en) Integrated transformer health monitoring architecture
US8868284B2 (en) Virtual monitoring of aircraft fleet loads
Nuij et al. Higher-order sinusoidal input describing functions for the analysis of non-linear systems with harmonic responses
US20160014507A1 (en) Systems and methods for protecting a speaker
Hu et al. Comparison of different statistical approaches for removing environmental/operational effects for massive data continuously collected from footbridges
CN111971942B (en) Anomaly detection and processing of seasonal data
US11815566B2 (en) System and method of determining age of a transformer
US8839180B1 (en) Dielectric reliability assessment for advanced semiconductors
ATE520037T1 (en) METHOD FOR MONITORING AND ADJUSTING A CIRCUIT PERFORMANCE
Zhang et al. A new approach to analysis of surface topography
JP5535837B2 (en) Processing method of measurement data in crack deformation monitoring of structures
CN104360178B (en) A kind of inverter low-frequency noise measurement and method for diagnosing faults
JP2020511217A5 (en)
US8635044B2 (en) Transient thermal modeling of multisource power devices
Xu et al. Field PMU Test and Calibration Method—Part I: General Framework and Algorithms for PMU Calibrator
US8467993B2 (en) Measurement tool monitoring using fleet measurement precision and tool matching precision analysis
JP7149499B2 (en) Data analysis method, data analysis device and data analysis program
Hashemian et al. A practical review of methods for measuring the dynamic characteristics of industrial pressure transmitters
Lesieutre et al. A system response persistence measure for use in ambient data monitoring
TWI506583B (en) Analysis system and method thereof
Yadav et al. Modelling Component Failure Rates Utilizing Sensor-Based Degradation Data
Srinivasagupta et al. New in situ sensor modeling approach to measurement validation
JP2011174766A (en) Apparatus deterioration evaluation support method and apparatus deterioration evaluation support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5535837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees