JP5535669B2 - Titanate compound powder and cosmetics - Google Patents
Titanate compound powder and cosmetics Download PDFInfo
- Publication number
- JP5535669B2 JP5535669B2 JP2010016298A JP2010016298A JP5535669B2 JP 5535669 B2 JP5535669 B2 JP 5535669B2 JP 2010016298 A JP2010016298 A JP 2010016298A JP 2010016298 A JP2010016298 A JP 2010016298A JP 5535669 B2 JP5535669 B2 JP 5535669B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- compound
- titanate
- treatment
- titanic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Cosmetics (AREA)
Description
本発明は、塗料組成物,フィルム,コーティング組成物,化粧料等の構成材料として有用な扁平形状を有するチタン酸化合物の粒子からなる粉末及びこれを含有してなる化粧料等の組成物に関する。 The present invention relates to a powder composed of particles of a titanate compound having a flat shape useful as a constituent material for coating compositions, films, coating compositions, cosmetics, and the like, and compositions such as cosmetics containing the powder.
塗料、フィルム,コーティング組成物、化粧料等の各種組成物に配合される無機顔料として、従来マイカ,タルク,ガラスフレーク,MIO(マイカ状酸化チタン)等が使用されてきた。近時、これらの顔料ないし充填材として、各種の合成無機粉末の使用が試みられ、例えば、特開昭4−321517号公報には、薄片状チタン酸カリウム粒子(K2Ti6O13)からなる粉末が展延性,隠蔽性などに優れ、塗料や化粧料等の顔料として好適に使用し得ることが開示され、特開2000−230168号公報には、一定の組成・結晶構造を有するチタン酸塩(AxMy□zTi2-(x+y))の薄片状粉末が樹脂充填剤,塗料充填剤等として使用されることが開示されている。また、特開平5−163117号公報には、薄片状のチタン酸カリウム粒子からなる粉末を顔料として配合することにより、展延性,滑沢性,付着性,隠蔽性等に優れた化粧料が得られることが開示されている。 Conventionally, mica, talc, glass flakes, MIO (mica-like titanium oxide) and the like have been used as inorganic pigments to be blended in various compositions such as paints, films, coating compositions, and cosmetics. Recently, various synthetic inorganic powders have been used as these pigments or fillers. For example, JP-A-4-321517 discloses flaky potassium titanate particles (K 2 Ti 6 O 13 ). It is disclosed that the resulting powder is excellent in spreadability, hiding properties, etc., and can be suitably used as a pigment for paints and cosmetics. JP-A 2000-230168 discloses titanic acid having a certain composition and crystal structure. flaky powder salt (a x M y □ z Ti 2- (x + y)) is a resin filler, it is used as a coating material filling agent is disclosed. JP-A-5-163117 discloses a cosmetic material excellent in spreadability, lubricity, adhesion, hiding property, etc. by blending powder composed of flaky potassium titanate particles as a pigment. Is disclosed.
上記合成無機化合物であるチタン酸化合物の薄片状粒子からなる粉末は、天然産原料に由来するマイカ,タルク等に比し、分散性にすぐれ薄片状の形態的効果として配向性も良好である。しかし、これらのチタン酸化合物は結晶内にアルカリ金属イオン(カリウムイオン,ナトリウムイオン等)を含み、そのアルカリイオンは溶出し易い。このことは、塗料やコーティング組成物,化粧料等の有機系組成物に配合される場合、組成物の変質・劣化を誘起し、また環境・人体への影響等を招く要因ともなる。
本発明は、塗料、フィルム,コーティング組成物、化粧料等の顔料として、上記不具合を伴わず、展延性,滑沢性,付着性,隠蔽性等に優れ、かつ抗菌性,防錆性等を備えたチタン酸化合物粉末及びこれを配合して調製される化粧料等を提供するものである。
The powder composed of flaky particles of a titanic acid compound, which is a synthetic inorganic compound, has excellent dispersibility and good orientation as a flaky morphological effect as compared with mica, talc and the like derived from natural raw materials. However, these titanic acid compounds contain alkali metal ions (potassium ions, sodium ions, etc.) in the crystals, and the alkali ions are easily eluted. When this is blended in an organic composition such as a paint, a coating composition, or a cosmetic, it causes deterioration and deterioration of the composition, and also causes an influence on the environment and the human body.
The present invention, as a pigment for paints, films, coating compositions, cosmetics, etc., is not accompanied by the above problems, has excellent spreadability, lubricity, adhesion, hiding properties, etc., and has antibacterial properties, rust prevention properties, etc. The present invention provides a titanic acid compound powder provided and a cosmetic prepared by blending the same.
本発明のチタン酸化合物粉末は、下記の組成及び結晶構造を有するチタン酸化合物A,B,C,D,E又はFからなり、平均大きさ:1〜30μm、平均厚さ:0.05〜3μmの扁平形状を有する粒子の粉末である。
以下の説明において、R1及びR2の元素群はそれぞれ下記のとおりである。
R1…Li,Mg,Ca,Zn,Ni,Cu,Fe,Al
R2…Li,Mg,Ca,Co,Ni,Cu,Zn,Sr,Ag,Sn,Ba
The titanic acid compound powder of the present invention comprises titanic acid compounds A, B, C, D, E or F having the following composition and crystal structure, average size: 1 to 30 μm, average thickness: 0.05 to It is a powder of particles having a flat shape of 3 μm.
In the following description, the element groups of R 1 and R 2 are as follows.
R 1 ... Li, Mg, Ca, Zn, Ni, Cu, Fe, Al
R 2 ... Li, Mg, Ca, Co, Ni, Cu, Zn, Sr, Ag, Sn, Ba
(A)チタン酸化合物A
TiO6八面体の4稜共有の連鎖からなるアナターゼ型結晶構造を有し、Ti席の一部がR1 (但し、Caを除く)元素群から選ばれる1種ないし2種以上の金属イオンで置換されたアナターゼ型チタン酸化合物である。
(A) Titanate compound A
TiO 6 octahedron has anatase-type crystal structure consisting of four-ridge shared chain, and part of Ti seat is one or more metal ions selected from R 1 (excluding Ca) element group It is a substituted anatase type titanate compound.
(B)チタン酸化合物B
TiO6八面体の連鎖により形成される層状結晶構造を有し、Ti席の一部がR1元素群から選ばれる1種ないし2種以上の金属イオンで置換されていると共に、結晶層間にR2元素群から選ばれる1種ないし2種以上の金属イオンが存在するチタン酸層間化合物である。
(B) Titanate compound B
It has a layered crystal structure formed by a chain of TiO 6 octahedrons, a part of the Ti seat is substituted with one or more metal ions selected from the R1 element group, and an R2 element is interposed between crystal layers It is a titanic acid intercalation compound in which one or more metal ions selected from the group are present.
(C)チタン酸化合物C
一般式 MTinO2n+m/2
[式中、M:Li,Mg,Ca,Zn,Ni,Cu,Fe,Alから選ばれる金属元素の1種ないし2種以上、n:0.5〜2、m:Mの価数]
で示されるチタン酸化合物である。
(C) Titanate compound C
Formula MTi n O 2n + m / 2
[Wherein, M: one or more metal elements selected from Li, Mg, Ca, Zn, Ni, Cu, Fe, Al, n: 0.5-2, m: valence of M]
It is a titanic acid compound shown by these.
(D)チタン酸化合物D
一般式 MTinO2n+m/2
[式中、M:Li,Mg,Ca,Zn,Ni,Cu,Fe,Alから選ばれる金属元素の1種ないし2種以上、n:0.5〜2、m:Mの価数]
で示されるチタン酸化合物(前記チタン酸化合物C)の結晶相と、チタニア結晶相(アナターゼ型又はルチル型)とが結合したチタニア複合チタン酸化合物である。
このチタニア複合チタン酸化合物Dの複合量比(チタン酸化合物C結晶相/チタニア結晶相)は、例えば約1/3(モル比)である。
(D) Titanate compound D
Formula MTi n O 2n + m / 2
[Wherein, M: one or more metal elements selected from Li, Mg, Ca, Zn, Ni, Cu, Fe, Al, n: 0.5-2, m: valence of M]
The titania compound titanate compound in which the crystal phase of the titanate compound (the titanate compound C) and the titania crystal phase (anatase type or rutile type) are combined.
The composite amount ratio (titania compound C crystal phase / titania crystal phase) of the titania composite titanate compound D is, for example, about 1/3 (molar ratio).
(E)チタン酸化合物E
一般式 MTinO2n+m/2
[式中、M:Li,Mg,Ca,Zn,Ni,Cu,Fe,Alから選ばれる金属元素の1種ないし2種以上、n:0.5〜2、m:Mの価数]
で示されるチタン酸化合物(前記チタン酸化合物C)の2種以上の結晶相が結合した複合チタン酸化合物である。
(E) Titanate compound E
Formula MTi n O 2n + m / 2
[Wherein, M: one or more metal elements selected from Li, Mg, Ca, Zn, Ni, Cu, Fe, Al, n: 0.5-2, m: valence of M]
A composite titanic acid compound in which two or more crystal phases of the titanic acid compound (the titanic acid compound C) are combined.
(F)チタン酸化合物F
一般式 MTinO2n+m/2
[式中、M:Li,Mg,Ca,Zn,Ni,Cu,Fe,Alから選ばれる金属元素の1種ないし2種以上、n:0.5〜2、m:Mの価数]
で示されるチタン酸化合物(前記チタン酸化合物C)の2種以上の結晶相と、チタニア結晶(アナターゼ型又はルチル型)とが結合した複合チタン酸化合物である。その複合量比(チタン酸化合物C結晶相の合計量/チタニア結晶相)は、例えば3/1(モル比)である。
(F) Titanate compound F
Formula MTi n O 2n + m / 2
[Wherein, M: one or more metal elements selected from Li, Mg, Ca, Zn, Ni, Cu, Fe, Al, n: 0.5-2, m: valence of M]
And a titanic acid compound (anatase type or rutile type) and a composite titanic acid compound in which two or more crystal phases of the titanic acid compound (the titanic acid compound C) are combined. The composite amount ratio (total amount of titanate compound C crystal phase / titania crystal phase) is, for example, 3/1 (molar ratio).
本発明のチタン酸化合物A〜Fの扁平形状の粒子からなる粉末は、結晶構造、化学的安定性及び形態的特徴により、塗料組成物,化粧料等の顔料として良好な分散性,配向性を有すると共に、これを化粧料の顔料として、例えばファンデーション,アイシャドウ,頬紅,口紅,ネイルエナメル等に配合することにより、良好な展延性,滑沢性,光沢性,ツヤ,ハリ,付着性,隠蔽性を付与し、他方塗料等に配合される場合は、上記諸特性のほか、塗膜の耐熱性,耐摩耗性などの改善効果をもたらす。 The powder comprising the flat particles of the titanate compounds A to F of the present invention has good dispersibility and orientation as a pigment for coating compositions, cosmetics and the like due to the crystal structure, chemical stability and morphological characteristics. In addition to having this as a cosmetic pigment, for example, foundation, eye shadow, blusher, lipstick, nail enamel, etc., it has good spreadability, lubricity, gloss, gloss, firmness, adhesion, hiding In addition to the above-mentioned characteristics, when it is blended with other paints, it brings about improvement effects such as heat resistance and wear resistance of the coating film.
特に亜鉛を構成元素として含有するチタン酸亜鉛は、化粧料の顔料として適用される場合、肌に対する刺激発現性が低く、敏感肌用化粧料の顔料として好適である。また、チタン酸化合物B(層間にR2元素が導入されている層間化合物)は、層間に存在する金属イオンにより、例えば銅イオンや銀イオンを含む場合は抗菌作用を、亜鉛イオンを含む場合は抗菌作用や防錆作用を発揮する。 In particular, zinc titanate containing zinc as a constituent element, when applied as a cosmetic pigment, has low irritation to the skin and is suitable as a pigment for cosmetics for sensitive skin. In addition, titanic acid compound B (an intercalation compound in which R 2 element is introduced between layers) has an antibacterial action when it contains, for example, copper ions or silver ions due to metal ions existing between the layers, and when it contains zinc ions. Demonstrates antibacterial and antirust effects.
本発明のチタン酸化合物粉末は、平均大きさ1〜30μm、平均厚さ0.05〜3μmの扁平形状を有する。「大きさ」は各粒子の最長差し渡し径と最短差し渡し径との相加平均値であり、「平均大きさ」とはそのメジアン(積算分布曲線の50%に相当する大きさ)を指し、「平均厚さ」とは各粒子の厚さについて上記と同じくメジアンを意味している。平均大きさを1〜30μmの範囲に規定しているのは、これに満たない大きさでは、反射率が低く光沢性の乏しいものとなり、逆にこれを超える粗大な粒サイズでは、分散性が悪く、塗料や化粧料等の付着性が低下し、塗料では耐候性の改善効果も弱くなるからである。好ましくは、2〜10μmである。また、平均厚さを0.05〜3μmの範囲に規定しているのは、これに満たない厚さでは、機械強度に乏しく、組成物の調製時に破砕し易く所定の扁平形状を安定に維持することが困難となるからであり、他方これを超える過大な厚さでは、塗料や化粧料等に使用される場合、膜面の平滑性や光沢性に乏しくなるからである。好ましくは0.05〜1μmである。この扁平形状は、後記のように粉末製造工程における中間生成物の湿式粉砕処理により調整される。 The titanic acid compound powder of the present invention has a flat shape with an average size of 1 to 30 μm and an average thickness of 0.05 to 3 μm. “Size” is an arithmetic mean value of the longest diameter and the shortest diameter of each particle, and “average size” means the median (size corresponding to 50% of the integrated distribution curve). “Average thickness” means the median in the same manner as described above for the thickness of each particle. The average size is specified in the range of 1 to 30 μm. If the size is less than this, the reflectance is low and the glossiness is poor. Conversely, if the grain size is larger than this, the dispersibility is low. This is because the adhesion of paints and cosmetics is lowered, and the effect of improving weather resistance is weakened by paints. Preferably, it is 2-10 micrometers. In addition, the average thickness is specified in the range of 0.05 to 3 μm. If the thickness is less than this, the mechanical strength is poor and the composition is easily crushed during preparation of the composition, and the predetermined flat shape is stably maintained. On the other hand, if the thickness exceeds this range, when used in paints and cosmetics, the smoothness and glossiness of the film surface will be poor. Preferably it is 0.05-1 micrometer. This flat shape is adjusted by wet pulverization of the intermediate product in the powder production process as described later.
次にチタン酸化合物A〜Fのそれぞれの製造工程について説明する。
以下の説明では、原料調製に使用される「酸化チタン」、「酸化アルカリ金属」、「R1金属酸化物」「R2金属酸化物」及び「M金属酸化物」の各用語は加熱によりそれぞれの金属酸化物を生成する化合物を包含する意味で使用している。
Next, each manufacturing process of the titanic acid compounds A to F will be described.
In the following description, the terms “titanium oxide”, “alkali metal oxide”, “R 1 metal oxide”, “R 2 metal oxide”, and “M metal oxide” used for the preparation of the raw materials are respectively determined by heating. It is used in the meaning including the compound which produces | generates this metal oxide.
(A)[チタン酸化合物A]の粉末製造
[原料の調製]
酸化チタン,酸化アルカリ金属(K2O,Na2O,Li2O等),及びR1 (但し、Caを除く)金属酸化物を所定量比で配合し均一に混合して出発原料とする。
酸化チタンのモル数をmTiO2、R1 (但し、Caを除く)金属酸化物のモル数をmR1、酸化アルカリ金属のモル数をmALKとして表すと、その配合量比[(mTiO2+mR1)/mALK]は、約4/1〜8/1の範囲に調整するのがよい。この範囲からはずれると、TiO6八面体構造の生成効率が悪くなる。
原料調製において、R1 (但し、Caを除く)金属酸化物として2種以上の酸化物、例えば酸化亜鉛(ZnO)と酸化マグネシウム(MgO)を複合使用する場合は、製品粉末として、TiO6八面体のTi席の一部を亜鉛イオン及びマグネシウムイオンで置換されたチタン酸化合物Aが得られる。
(A) powder production in the titanic acid compound A] [material made tone]
Titanium oxide, alkali metal oxide (K 2 O, Na 2 O, Li 2 O, etc.), and R 1 (excluding Ca) metal oxide are mixed at a predetermined ratio and mixed uniformly to obtain a starting material. .
When the number of moles of titanium oxide is expressed as m TiO2 , R 1 (excluding Ca) , the number of moles of metal oxide is expressed as m R1 , and the number of moles of alkali metal oxide is expressed as m ALK , the mixing ratio [(m TiO 2 + m R1 ) / m ALK ] is preferably adjusted to a range of about 4/1 to 8/1 . When deviating from this range, the generation efficiency of the TiO 6 octahedral structure is deteriorated.
In steel stock preparation, R 1 2 or more oxides as (but excluding Ca) metal oxides, for example, when magnesium oxide and zinc oxide (ZnO) a (MgO) complexed used, as a product powder, TiO 6 A titanic acid compound A in which a part of the octahedral Ti seat is substituted with zinc ions and magnesium ions is obtained.
[一次焼成処理]
出発原料を温度約950〜1250℃で適当時間(例えば2Hr)保持することにより、焼成反応生成物として、層状構造を有するチタン酸カリウムR1 (但し、Caを除く)金属化合物(層間にアルカリ金属イオン配位)からなる固化物を得る。処理温度を上記範囲に規定するのは、それに満たない低温域では、焼成反応を効率よく生起させることができず、他方これを超える高温処理では、処理物の溶融をきたすからである。
[Primary firing process]
By holding the starting material at a temperature of about 950 to 1250 ° C. for an appropriate time (for example, 2 Hr), a potassium titanate R 1 (excluding Ca) metal compound having a layered structure as a calcination reaction product (alkaline metal between layers ) A solidified product consisting of ion coordination is obtained. The reason why the treatment temperature is defined in the above range is that the firing reaction cannot be efficiently caused in a low temperature range that is less than that range, while the high temperature treatment exceeding this causes melting of the treated product.
[アルカリ金属イオン溶出処理]
一次焼成反応生成物(固化物)を十分量の水(固化物重量の約100倍量)に浸漬し、これに酸溶液、例えば、硫酸,塩酸,酢酸等を適量添加し攪拌下に、結晶層間のアルカリ金属イオンの全量を溶出させる。
[Alkali metal ion elution treatment]
Immerse the primary firing reaction product (solidified product) in a sufficient amount of water (about 100 times the weight of the solidified product), add an appropriate amount of acid solution such as sulfuric acid, hydrochloric acid, acetic acid, etc. The total amount of alkali metal ions between the layers is eluted.
[湿式粉砕処理]
上記アルカリ金属イオン溶出処理と併行し又は溶出処理の後、湿式粉砕処理を施す。該固化物はアルカリ金属イオンの溶出に伴ってある程度の粉化を生じるが、それだけでは製品粉末として必要な扁平状粒子に粉化させることができない。その扁平形状(平均大きさ及び厚さ)は湿式粉砕処理により調節される。湿式粉砕処理は、例えば家庭用ミキサー等を使用して行なうことができる。このほか乳化分散機,湿式ボールミル等を使用して行なうこともできる。湿式粉砕における媒質は、水,酸水溶液,有機溶媒,アルコール等を使用でき、媒質の量は、固化物処理量の約20〜250倍(重量)としてよい。
[Wet grinding process]
In parallel with the elution treatment of the alkali metal ions or after the elution treatment, a wet pulverization treatment is performed. The solidified product is pulverized to some extent with the elution of alkali metal ions, but it cannot be pulverized into flat particles necessary as a product powder by itself. The flat shape (average size and thickness) is adjusted by wet grinding. The wet pulverization treatment can be performed using, for example, a home mixer. In addition, an emulsifying and dispersing machine, a wet ball mill, or the like can be used. As the medium in the wet pulverization, water, an aqueous acid solution, an organic solvent, alcohol or the like can be used, and the amount of the medium may be about 20 to 250 times (weight) the solidified material processing amount.
[乾燥処理]
湿式粉砕処理の後、液中から粉砕物を回収し脱水したうえ、乾燥(例えば約100℃に約24Hr保持)することにより、水和チタン酸化合物の扁平状粒子からなる粉末を得る。
[Drying process]
After the wet pulverization treatment, the pulverized product is recovered from the liquid, dehydrated, and dried (for example, held at about 100 ° C. for about 24 hours) to obtain a powder composed of flat particles of a hydrated titanate compound.
[二次焼成処理]
上記水和チタン酸化合物の粉末を、約400〜600℃に適当時間保持(例えば2Hr)することにより結晶構造を変換する。処理温度を約400℃以上とするのは、構造変換を効率よく進めるためであり、約600℃を上限とするのは、これを超えると、アナターゼ相以外の結晶相が析出し目的とする複合化合物の収率が低下するからである。
この焼成処理によりチタン酸化合物Aの扁平状粒子からなる粉末を得る。
[Secondary firing process]
The crystal structure is converted by holding the hydrated titanic acid compound powder at about 400 to 600 ° C. for an appropriate time (for example, 2 hours). The reason why the processing temperature is about 400 ° C. or higher is to promote the structural transformation efficiently, and the upper limit is about 600 ° C. If the upper limit is exceeded, the crystalline phase other than the anatase phase precipitates and the intended composite This is because the yield of the compound decreases.
By this baking treatment, a powder composed of flat particles of titanate compound A is obtained.
(2)[チタン酸化合物B(層間化合物)]の粉末製造
[原料調製]〜[水和チタン酸化合物粉末の収得]
前記チタン酸化合物Aの製造工程における「原料の調整」「一次焼成処理」「アルカリ金属イオン溶出処理」「湿式粉砕処理」及び「乾燥処理」と同じ処理工程を経て水和チタン酸化合物(乾燥粉末)を得る。
(2) Powder production of [titanic acid compound B (interlayer compound)] [raw material preparation] to [acquisition of hydrated titanic acid compound powder]
In the production process of the titanic acid compound A, the hydrated titanic acid compound (dry powder) is subjected to the same processing steps as the “preparation of raw materials”, “primary firing treatment”, “alkali metal ion elution treatment”, “wet pulverization treatment” and “drying treatment”. )
[R2金属イオン導入処理]
上記乾燥粉末(水和チタン酸化合物)を、適当量の水(粉末重量の約100倍量)に浸漬する。これにR2金属塩(硫酸塩,塩酸塩,硝酸塩等)の溶液を適量添加し、緩和な攪拌条件下に適当時間保持することにより、水和チタン酸化合物の結晶層間にR2金属イオンを導入する。
[R 2 metal iontophoresis process]
The dry powder (hydrated titanic acid compound) is immersed in an appropriate amount of water (about 100 times the powder weight). An appropriate amount of R 2 metal salt (sulfate, hydrochloride, nitrate, etc.) solution was added to this, and the R2 metal ion was introduced between the crystal layers of the hydrated titanate compound by maintaining the solution under moderate stirring conditions for an appropriate time. To do.
[乾燥処理]
上記処理液から粉末を回収し、脱水後、乾燥(約300℃に約24Hr保持)して、チタン酸層間化合物であるチタン酸化合物Bの扁平状粒子からなる粉末を得る。
[Drying process]
The powder is collected from the treatment liquid, dehydrated, and dried (maintained at about 300 ° C. for about 24 hours) to obtain a powder composed of flat particles of titanate compound B, which is a titanate intercalation compound.
(C)[チタン酸化合物C]の粉末製造
[原料の調整]
前記チタン酸化合物Aの製造工程における「原料の調整」「一次焼成処理」「アルカリ金属イオン溶出処理」「湿式粉砕処理」及び「乾燥処理」と同じ処理工程を経て水和チタン酸化合物の乾燥粉末を得る。但し出発原料の調製には「R1金属酸化物」に代え「M金属酸化物」の1種ないし2種以上を使用。
上記水和チタン酸化合物粉末に、M金属酸化物の粉末を加え均一に混合して原料を調製する。混合するM金属酸化物のM元素は、該乾燥粉末(水和チタン酸化合物)のM元素と同種の元素である。
(C) Powder production of [titanic acid compound C] [Preparation of raw materials]
Dry powder of hydrated titanic acid compound through the same processing steps as "preparation of raw materials", "primary firing process", "alkali metal ion elution process", "wet grinding process" and "drying process" in the manufacturing process of titanic acid compound A Get. However, one or more of “M metal oxide” is used instead of “R 1 metal oxide” for preparing the starting material.
M metal oxide powder is added to the hydrated titanic acid compound powder and mixed uniformly to prepare a raw material. The M element of the M metal oxide to be mixed is the same element as the M element of the dry powder (hydrated titanate compound).
上記原料の調整における、水和チタン酸化合物粉末とM金属酸化物粉末との配合量比は、M金属の価数、水和物の組成、目的とするチタン酸化合物の組成等により異なるので、一概に規定することはできないが、具体例を下記に示す。(mHTIOは水和チタン酸化合物のモル比、mMはM金属酸化物のモル比を表している)。
・Mが1価金属で、目的物がM2TiO3の場合:mHTIO/mM=1/1.5〜1/1.75
・Mが2価金属で、
目的物がM2TiO4の場合:mHTIO/mM=1/2.5〜1/3.25
目的物がMTiO3の場合:mHTIO/mM=1/1〜1/1.5
目的物がMTi2O5の場合:mHTIO/mM=1/0.25〜1/0.625
・Mが3価金属で、目的物がM2TiO5の場合:mHTIO/mM=1/0.5〜1/1.25
The blending ratio of the hydrated titanic acid compound powder and the M metal oxide powder in the preparation of the raw material varies depending on the valence of M metal, the composition of the hydrate, the composition of the target titanate compound, etc. Although it cannot be defined generally, a specific example is shown below. ( M HTIO represents the molar ratio of the hydrated titanate compound, and mm represents the molar ratio of the M metal oxide).
When M is a monovalent metal and the target product is M 2 TiO 3 : m HTIO / m M = 1 / 1.5 to 1 / 1.75
・ M is a divalent metal.
When the object is M 2 TiO 4 : m HTIO / m M = 1 / 2.5 to 1 / 3.25
When the target is MTiO 3 : m HTIO / m M = 1 / 1-1 to 1 / 1.5
When the target is MTi2O5: m HTIO / m M = 1 / 0.25 to 1 / 0.625
When M is a trivalent metal and the target product is M 2 TiO 5 : m HTIO / m M = 1 / 0.5 to 1 / 1.25
[焼成処理]
上記粉末混合物を、900〜1300℃の温度域に適当時間(例えば2Hr)保持する。処理温度がこれに満たないと、構造変換の反応を効率よく進めることが困難となり、他方これを超える高温域では、組成により反応物の溶融をきたす場合があるからである。
この焼成処理により反応生成物として、MTinO2n+m/2(チタン酸M金属化合物)の扁平状粒子からなるチタン酸化合物Cの粉末を得る。
[Baking treatment]
The powder mixture is held in a temperature range of 900 to 1300 ° C. for an appropriate time (for example, 2 hours). If the treatment temperature is less than this, it is difficult to efficiently proceed the structural transformation reaction, while in the high temperature range exceeding this, the reaction product may be melted depending on the composition.
As a reaction product by the firing process to obtain a powder of MTi n O 2n + m / 2 ( titanate M metal compound) titanate compound consists flat particles C.
(D)[チタン酸化合物D(チタニア複合化合物)]の粉末の製造
[原料の調整]〜[水和チタン酸化合物粉末の収得]
前記チタン酸化合物Aの製造工程における「原料の調整」「一次焼成処理」「アルカリ金属イオン溶出処理」「湿式粉砕処理」及び「乾燥処理」と同じ処理工程を経て水和チタン酸化合物の乾燥粉末を得る。但し出発原料の調整には、「R1金属酸化物」に代え、「M金属酸化物」の1種ないし2種以上を使用。
(D) Production of powder of [titanic acid compound D (titania composite compound)] [Preparation of raw materials] to [Acquisition of hydrated titanic acid compound powder]
Dry powder of hydrated titanic acid compound through the same processing steps as "preparation of raw materials", "primary firing process", "alkali metal ion elution process", "wet grinding process" and "drying process" in the manufacturing process of titanic acid compound A Get. However, one or more of “M metal oxide” is used instead of “R1 metal oxide” for the adjustment of starting materials.
[焼成処理]
上記乾燥粉末(水和チタン酸化合物)を焼成処理に付して結晶構造を変換する。処理温度は被処理物の組成により異なるので、一概に規定できないが、約700〜900℃の温度域に適当時間(例えば2Hr)保持することにより達成される。
この焼成処理により、MTinO2n+m/2(チタン酸M金属化合物)結晶相とチタニア結晶相(アナターゼ型又はルチル型)とが結合した扁平状粒子からなるチタン酸化合物Dの粉末を得る。
[Baking treatment]
The dry powder (hydrated titanic acid compound) is subjected to a firing treatment to convert the crystal structure. Since the treatment temperature varies depending on the composition of the object to be treated, it cannot be defined unconditionally, but it can be achieved by maintaining the temperature in a temperature range of about 700 to 900 ° C. for an appropriate time (for example, 2 hours).
This firing process to obtain a powder of MTi n O 2n + m / 2 ( titanate M metal compound) crystalline phase titania crystalline phase (anatase type or rutile type) and consists of flat particles bound titanate compound D .
(E)[チタン酸化合物E(複合チタン酸化合物)]の製造
[原料調製]〜[水和チタン酸化合物粉末の収得]
前記チタン酸化合物Aの製造工程における「原料の調整」「一次焼成処理」「アルカリ金属イオン溶出処理」「湿式粉砕処理」及び「乾燥処理」と同じ処理工程を経て水和チタン酸化合物(乾燥粉末)を得る。但し出発原料の調製には、「R1金属酸化物」に代え、「M金属酸化物」の1種ないし2種以上を使用。
(E) Production of [titanic acid compound E (complex titanic acid compound)] [Preparation of raw materials] to [Acquisition of hydrated titanic acid compound powder]
In the production process of the titanic acid compound A, the hydrated titanic acid compound (dry powder) is subjected to the same processing steps as the “preparation of raw materials”, “primary firing treatment”, “alkali metal ion elution treatment”, “wet pulverization treatment” and “drying treatment”. ) However, instead of “R1 metal oxide”, one or more of “M metal oxide” is used for the preparation of the starting material.
[M金属イオン導入処理]
上記乾燥粉末(水和チタン酸化合物)を、適当量の水(粉末重量の約100倍量)に浸漬する。これにM金属塩(硫酸塩,塩酸塩,硝酸塩等)の溶液を適量添加し、緩和な攪拌条件下に適当時間保持することにより、水和チタン酸化合物の結晶層間にM金属イオンを導入する。層間に導入されるM金属イオンの元素種は、水和チタン酸化合物のM金属と同種又は異種であり、製造しようとするチタン酸化合物Eの組成に応じて選択される。
[M metal ion introduction treatment]
The dry powder (hydrated titanic acid compound) is immersed in an appropriate amount of water (about 100 times the powder weight). An appropriate amount of a solution of M metal salt (sulfate, hydrochloride, nitrate, etc.) is added to this, and M metal ions are introduced between the crystal layers of the hydrated titanate compound by holding for an appropriate time under mild stirring conditions. . The element type of the M metal ion introduced between the layers is the same or different from the M metal of the hydrated titanate compound, and is selected according to the composition of the titanate compound E to be produced.
[乾燥処理]
上記処理の後、液中から粉末を回収し、脱水、乾燥(約300℃に約24Hr保持)して、結晶層間にM金属イオンが導入されたチタン酸層間化合物の粉末を得る。
[二次焼成処理]
上記チタン酸層間化合物に、結晶構造を変換するための焼成処理を施す。処理温度は、化合物の組成により異なるので一概に規定できないが、約900〜1300℃に適当時間(例えば2Hr)保持することにより達成される。
この焼成処理により、2種以上のチタン酸化合物の結晶相が結合した複合化合物の扁平状粒子からなるチタン酸化合物Eの粉末を得る。
[Drying process]
After the treatment, the powder is recovered from the liquid, dehydrated and dried (maintained at about 300 ° C. for about 24 hours) to obtain a titanic acid intercalation compound powder in which M metal ions are introduced between crystal layers.
[Secondary firing process]
The titanic acid intercalation compound is subjected to a baking treatment for converting the crystal structure. Although the treatment temperature varies depending on the composition of the compound and cannot be defined unconditionally, it is achieved by maintaining the treatment temperature at about 900 to 1300 ° C. for an appropriate time (for example, 2 hours).
By this baking treatment, a titanic acid compound E powder composed of flat particles of a composite compound in which crystal phases of two or more kinds of titanic acid compounds are combined is obtained.
(F)[チタン酸化合物F(チタニア複合化合物)]の製造
[原料調製]〜[水和チタン酸化合物粉末の収得]
前記チタン酸化合物Aの製造工程における「原料の調整」「一次焼成処理」「アルカリ金属イオン溶出処理」「湿式粉砕処理」及び「乾燥処理」と同じ処理工程を経て水和チタン酸化合物(乾燥粉末)を得る。但し出発原料の調製には、「R1金属酸化物」に代えて、「M金属酸化物」の1種ないし2種以上を使用。
(F) Production of [titanic acid compound F (titania composite compound)] [raw material preparation] to [acquisition of hydrated titanic acid compound powder]
In the production process of the titanic acid compound A, the hydrated titanic acid compound (dry powder) is subjected to the same processing steps as the “preparation of raw materials”, “primary firing treatment”, “alkali metal ion elution treatment”, “wet pulverization treatment” and “drying treatment”. ) However, in preparation of the starting material, one or more of “M metal oxide” is used instead of “R1 metal oxide”.
[M金属イオン導入処理]
上記乾燥粉末(水和チタン酸化合物)に、M金属イオン導入処理を施し、結晶層間にM金属イオンが導入されたチタン酸層間化合物を得る。金属イオン導入処理は、前記チタン酸化合物Eの製造工程におけるそれと同様の処理条件により行なえばよい。
[M metal ion introduction treatment]
The dry powder (hydrated titanate compound) is subjected to M metal ion introduction treatment to obtain a titanate interlayer compound in which M metal ions are introduced between crystal layers. The metal ion introduction treatment may be performed under the same treatment conditions as those in the production process of the titanate compound E.
[乾燥処理]
上記処理液から粉末を回収し、脱水、乾燥(約300℃に約24Hr保持)することにより、結晶層間にM金属イオンが導入されたチタン酸層間化合物の粉末を得る。
[焼成処理]
上記チタン酸層間化合物に、結晶構造を変換するための焼成処理を施す。処理温度は、化合物の組成により異なるので一概に規定できないが、約900〜1300℃に適当時間(例えば2Hr)保持することにより達成される。
焼成処理により、2種以上のチタン酸化合物の結晶相とチタニア結晶相(アナターゼ型又はルチル型)とが結合した複合化合物(チタニア結晶相は、出発原料に配合された酸化チタンの過剰分が未反応残留分として析出することにより生成)の扁平状粒子からなるチタン酸化合物Fの粉末を得る。
[Drying process]
The powder is recovered from the treatment liquid, dehydrated and dried (maintained at about 300 ° C. for about 24 hours) to obtain a powder of titanic acid intercalation compound in which M metal ions are introduced between crystal layers.
[Baking treatment]
The titanic acid intercalation compound is subjected to a baking treatment for converting the crystal structure. Although the treatment temperature varies depending on the composition of the compound and cannot be defined unconditionally, it is achieved by maintaining the treatment temperature at about 900 to 1300 ° C. for an appropriate time (for example, 2 hours).
A composite compound in which the crystal phase of two or more kinds of titanate compounds and a titania crystal phase (anatase type or rutile type) are bonded by the baking treatment (the titania crystal phase has an excess of titanium oxide blended in the starting material). A titanic acid compound F powder consisting of flat particles produced by precipitation as a reaction residue is obtained.
本発明のチタン酸化合物粉末を使用する塗料,化粧料等の組成物の調製は、チタン酸化合物粉末が配合される点を除いて常法に従って行うことができる。例えば化粧料の調製では、本発明のチタン酸化合物粉末を顔料とし、これに化粧原料として一般的な成分、例えばワセリン,マイクロクリスタリンワックス等の炭化水素類、ホホバ油等のエステル類、牛脂,オリーブ油等のトリグリセライド、セタノール,オレイルアルコール等の高級アルコール類,ステア燐酸,オレイン酸等の脂肪酸、グリセリン等の高アルコール、各種界面活性剤(非イオン系,アニオン系,カチオン系等)、増粘剤(エタノール,カーボポール等)、防腐剤、紫外線吸収剤、抗酸化剤、着色顔料等が適宜使用される。 Preparation of compositions such as paints and cosmetics using the titanate compound powder of the present invention can be performed according to a conventional method except that the titanate compound powder is blended. For example, in the preparation of cosmetics, the titanate compound powder of the present invention is used as a pigment, and general ingredients as cosmetic raw materials, for example, hydrocarbons such as petrolatum and microcrystalline wax, esters such as jojoba oil, beef tallow, olive oil Triglycerides such as cetanol, oleyl alcohol, fatty acids such as stearic acid and oleic acid, high alcohols such as glycerin, various surfactants (nonionic, anionic, cationic, etc.), thickeners ( Ethanol, carbopol, etc.), preservatives, ultraviolet absorbers, antioxidants, color pigments and the like are appropriately used.
化粧料の調製におけるチタン酸化合物の配合量は、従来の体質顔料や真珠光沢顔料が使用される場合と特に異ならず、例えば油性ファンデーションでは約2〜70重量%,プレスドパウダーでは約15〜90重量%とし、口紅では0.1〜15重量%,アイシャドウでは約1〜85重量%,ネイルエナメルでは約0.1〜1重量%としてよく、配合のための混練についてもヘンシェルミキサー,リボンミキサー,V型ブレンダー,ニーダー,3本ロール,押出し機等の従来採用されている方法を化粧料の種類に応じて適用すればよい。 The amount of titanate compound in the preparation of the cosmetic is not particularly different from the case where conventional extender pigments and pearlescent pigments are used. For example, the oily foundation has about 2 to 70% by weight, and the pressed powder has about 15 to 90%. % By weight, 0.1-15% by weight for lipstick, about 1-85% by weight for eye shadow, about 0.1-1% by weight for nail enamel. A conventionally employed method such as a V-type blender, a kneader, a three-roller, or an extruder may be applied according to the type of cosmetic.
また塗料組成物、例えば樹脂塗料の調製においては、主剤である樹脂、例えばエポキシ樹脂,不飽和ポリエステル樹脂,エポキシアクリレート樹脂等に、本発明のチタン酸化合物粉末のほか、任意添加剤として、体質顔料(タルク,シリカ,硫酸バリウム,パーライト)、着色顔料(亜鉛華,ベンガラ,酸化チタン)、防食顔料(亜鉛末,アルミ粉,塩基性クロム酸塩,燐酸亜鉛)、沈降防止剤,増粘剤,消泡剤,界面活性剤,希釈剤,溶剤(メチルイソブチルケトン)等を、必要に応じ適量配合し、ロールミル等の混合機で混合分散することにより調製することができ、使用に際して主剤樹脂の剤種に応じた硬化剤・硬化促進剤を添加されて塗装に供される。チタン酸化合物粉末の配合量は、樹脂固形分100重量部に対し、例えば約10〜70重量部とすることができる。 In the preparation of coating compositions, for example, resin coatings, extender pigments can be used as optional additives in addition to the titanic acid compound powders of the present invention to resins that are main ingredients, such as epoxy resins, unsaturated polyester resins, and epoxy acrylate resins. (Talc, silica, barium sulfate, perlite), colored pigment (zinc white, bengara, titanium oxide), anticorrosive pigment (zinc powder, aluminum powder, basic chromate, zinc phosphate), anti-settling agent, thickener, An antifoaming agent, surfactant, diluent, solvent (methyl isobutyl ketone), etc., can be prepared by blending appropriate amounts as necessary and mixing and dispersing with a mixer such as a roll mill. A curing agent / curing accelerator according to the species is added and used for painting. The compounding quantity of a titanic acid compound powder can be about 10-70 weight part with respect to 100 weight part of resin solid content, for example.
[実施例1(A化合物粉末の製造)]
(1)原料調製
酸化チタン(TiO2),炭酸カリウム(K2CO2)及び酸化亜鉛(ZnO)の各粉末を、60/25/15(重量比)(≒4/1/1,モル比)の割合(重量比)で均一に混合する。
(2)焼成処理
上記粉末混合物をアルミナるつぼに入れ、電気炉内で1100℃に2Hr保持し、焼成反応生成物である層状結晶構造を有するチタン酸カリウム亜鉛の固化物を得る。
[Example 1 (Production of Compound A powder)]
(1) Raw material preparation Each powder of titanium oxide (TiO 2 ), potassium carbonate (K 2 CO 2 ), and zinc oxide (ZnO) was mixed into 60/25/15 (weight ratio) (≈4 / 1/1, molar ratio. ) In a proportion (weight ratio).
(2) Firing treatment The powder mixture is put in an alumina crucible and held at 1100 ° C. for 2 hours in an electric furnace to obtain a solidified product of potassium zinc titanate having a layered crystal structure as a firing reaction product.
(3)脱カリウム処理及び湿式粉砕処理
上記固化物を、水(固化物重量の100倍量)に浸漬し、これに工業用硫酸を加えプロペラ攪拌下に5Hrを要して、結晶層間のカリウムイオンの全量を溶出させる。ついで家庭用ミキサーにより10分間を要して粉砕処理する。
(4)乾燥処理
粉砕物を液中から回収し、100℃に2Hr保持する。
得られる乾燥物は、H0.8Zn0.4Ti1.6O4・nH2Oで表される水和チタン酸化合物の粒子からなる粉末である。
(3) Depotassium treatment and wet pulverization treatment The above solidified product is immersed in water (100 times the weight of the solidified product), industrial sulfuric acid is added thereto, and 5 Hr is required with propeller stirring, and potassium between the crystal layers. Elute the total amount of ions. Then, it is pulverized by a home mixer for 10 minutes.
(4) Drying treatment The pulverized material is recovered from the liquid and kept at 100 ° C. for 2 hours.
The obtained dried product is a powder composed of particles of a hydrated titanic acid compound represented by H 0.8 Zn 0.4 Ti 1.6 O 4 .nH 2 O.
(5)焼成処理
上記チタン酸化合物粉末をアルミナるつぼに入れ、500℃に2Hr保持する。
焼成反応生成物として、アナターゼ結晶を形成するTiO6八面体のTiの一部が亜鉛イオンで置換されたアナターゼ型結晶相を有するチタン酸亜鉛化合物の粒子からなる粉末を得た。
この粉末は、平均大きさ:約5μm,平均厚さ:約0.5μmの扁平形状を有する白色粒子である。
(5) Calcination treatment The titanate compound powder is put in an alumina crucible and held at 500 ° C. for 2 hours.
As a calcination reaction product, a powder composed of particles of a zinc titanate compound having an anatase type crystal phase in which a part of Ti of TiO 6 octahedron forming anatase crystal was substituted with zinc ions was obtained.
This powder is white particles having a flat shape with an average size of about 5 μm and an average thickness of about 0.5 μm.
[実施例2(B化合物粉末の製造)]
(1)原料
実施例1の工程(4)で得られた乾燥粉末(水和チタン酸化合物H0.8Zn0.4Ti1.6O4・nH2Oの粒子)を使用。
(2)金属イオン導入処理
上記乾燥粉末を水(乾燥粉末重量の100倍量)に浸漬し、これに2mol/Lの硝酸亜鉛溶液を加え、緩和な攪拌流下に1Hrを要して亜鉛イオンを導入する。
[Example 2 (Production of B compound powder)]
(1) Raw material The dry powder (particles of hydrated titanic acid compound H 0.8 Zn 0.4 Ti 1.6 O 4 .nH 2 O) obtained in step (4) of Example 1 was used.
(2) Metal ion introduction treatment The above dry powder is immersed in water (100 times the dry powder weight), 2 mol / L of zinc nitrate solution is added thereto, and 1 Hr is required under a gentle stirring flow to generate zinc ions. Introduce.
(3)乾燥処理
上記液中から粉末を回収し、脱水後、300℃に24Hr保持する。
得られた粉末は、TiO6八面体のTi席の一部が亜鉛イオンで置換され、その結晶層間に亜鉛イオンが存在するチタン酸亜鉛層間化合物の粒子からなる粉末である。
この粉末は、平均大きさ:約5μm,平均厚さ:約0.5μmの扁平形状を有する白色粒子である。
(3) Drying treatment Powder is recovered from the above liquid, and after dehydration, maintained at 300 ° C. for 24 hours.
The obtained powder is a powder composed of particles of a zinc titanate intercalation compound in which a part of the Ti site of the TiO 6 octahedron is substituted with zinc ions and zinc ions are present between the crystal layers.
This powder is white particles having a flat shape with an average size of about 5 μm and an average thickness of about 0.5 μm.
[実施例3(B化合物粉末の製造)]
(1)原料
実施例1の工程(4)で得られた乾燥粉末((水和チタン酸化合物H0.8Zn0.4Ti1.6O4・nH2Oの粒子)を使用。
(2)金属イオン導入処理
上記乾燥粉末を水(100倍量,重量)に浸漬し、これに2mol/Lの硝酸リチウム溶液を加え、緩和な攪拌流下に1Hrを要してリチウムイオンを導入する。
[Example 3 (Production of B compound powder)]
(1) Raw material The dry powder ((hydrated titanic acid compound H 0.8 Zn 0.4 Ti 1.6 O 4 .nH 2 O particles) obtained in step (4) of Example 1 was used.
(2) Metal ion introduction treatment The above dry powder is immersed in water (100 times amount, weight), a 2 mol / L lithium nitrate solution is added thereto, and lithium ions are introduced by taking 1 Hr under a gentle stirring flow. .
(3)乾燥処理
上記液中から粉末を回収し、脱水後、300℃に24Hr保持する。
得られた粉末は、TiO6八面体のTi席の一部が亜鉛イオンで置換され、その結晶層間にリチウムイオンが存在するチタン酸リチウム亜鉛層間化合物の粒子からなる粉末である。
この粉末は、平均大きさ:約5μm,平均厚さ:約0.5μmの扁平形状を有する白色粒子である。
(3) Drying treatment Powder is recovered from the above liquid, and after dehydration, maintained at 300 ° C. for 24 hours.
The obtained powder is a powder composed of particles of a lithium zinc titanate intercalation compound in which a part of the Ti site of the TiO 6 octahedron is substituted with zinc ions and lithium ions are present between the crystal layers.
This powder is white particles having a flat shape with an average size of about 5 μm and an average thickness of about 0.5 μm.
[実施例4(B化合物粉末の製造)]
(1)原料調製
酸化チタン(TiO2),炭酸カリウム(K2CO2)及び水酸化マグネシウム(Mg(OH)2)の各粉末を、62/27/11(重量比)(≒4/1/1,モル比)の割合で均一に混合する。
(2)焼成処理
上記粉末混合物をアルミナるつぼに入れ、電気炉内で1100℃に2Hr保持し、焼成反応生成物として、層状結晶構造を有するチタン酸カリウムマグネシウムの固化物を得る。
[Example 4 (Production of B compound powder)]
(1) Raw material preparation Each powder of titanium oxide (TiO 2 ), potassium carbonate (K 2 CO 2 ), and magnesium hydroxide (Mg (OH) 2 ) was converted into 62/27/11 (weight ratio) (≈4 / 1 / 1, molar ratio).
(2) Firing treatment The above powder mixture is put in an alumina crucible and held at 1100 ° C. for 2 hours in an electric furnace to obtain a solidified product of potassium magnesium titanate having a layered crystal structure as a firing reaction product.
(3)脱カリウム処理及び湿式粉砕処理
上記固化物を、水(固化物重量の100倍量)に浸漬し、これに工業用硫酸を加えプロペラ攪拌下に5Hrを要して、結晶層間に存在するカリウムイオンの全量を溶出させる。ついで家庭用ミキサーにより10分間を要して粉砕処理する。
(3) Depotassium treatment and wet pulverization treatment The above solidified product is immersed in water (100 times the weight of the solidified product), industrial sulfuric acid is added thereto, and 5Hr is required under propeller stirring, and it exists between crystal layers. Elute the total amount of potassium ions. Then, it is pulverized by a home mixer for 10 minutes.
(4)乾燥処理
粉砕物を液中から回収し、100℃に2Hr保持する。
乾燥粉末として、H0.8Mg0.4Ti1.6O4・nH2Oで表される水和チタン酸化合物の粒子からなる粉末を得る。
(5)金属イオン導入処理
上記乾燥粉末を、水(100倍量,重量)に浸漬し、これに2mol/Lの硝酸銅溶液を加え、緩和な攪拌流下に1Hrを要して銅イオンを導入する。
(4) Drying treatment The pulverized material is recovered from the liquid and kept at 100 ° C. for 2 hours.
As a dry powder, a powder composed of particles of a hydrated titanate compound represented by H 0.8 Mg 0.4 Ti 1.6 O 4 .nH 2 O is obtained.
(5) Metal ion introduction treatment The above dry powder is immersed in water (100-fold amount, weight), 2 mol / L copper nitrate solution is added thereto, and copper ions are introduced by taking 1 Hr under a gentle stirring flow. To do.
(6)乾燥処理
上記処理液から粉末を回収し、脱水後、300℃に24Hr保持する。
得られた粉末は、TiO6八面体のTi席の一部がマグネシウムイオンで置換され、その結晶層間に銅イオンが存在するチタン酸銅マグネシウム層間化合物の粒子からなる粉末である。
この粉末は、平均大きさ:約6μm,平均厚さ:約0.8μmの扁平形状を有する水色粒子である。
(6) Drying treatment Powder is collected from the treatment solution, and after dehydration, maintained at 300 ° C. for 24 hours.
The obtained powder is a powder composed of particles of a copper-magnesium titanate intercalation compound in which a part of the Ti site of the TiO 6 octahedron is substituted with magnesium ions and copper ions are present between the crystal layers.
This powder is light blue particles having a flat shape with an average size of about 6 μm and an average thickness of about 0.8 μm.
[実施例5(C化合物粉末の製造)]
(1)原料の調合
実施例1の工程(4)で得られた乾燥粉末(水和チタン酸化合物H0.8Zn0.4Ti1.6O4・nH2Oの粒子)と酸化亜鉛(ZnO)粉末とを、48/52の割合(重量比)で均一に混合する。
(2)焼成処理
上記粉末混合物をアルミナるつぼに入れ、電気炉内で1100℃に2Hr保持する。焼成反応生成物として、チタン酸亜鉛(Zn2TiO4)の粒子からなる粉末を得た。
この粉末は、平均大きさ:約6μm,平均厚さ:約0.7μmの扁平形状を有する白色粒子である。
[Example 5 (Production of C compound powder)]
(1) Preparation of raw material Dry powder (particles of hydrated titanic acid compound H 0.8 Zn 0.4 Ti 1.6 O 4 .nH 2 O) obtained in step (4) of Example 1 and zinc oxide (ZnO) powder , 48/52 (weight ratio).
(2) Firing treatment The powder mixture is placed in an alumina crucible and held at 1100 ° C. for 2 hours in an electric furnace. As a calcination reaction product, a powder composed of particles of zinc titanate (Zn 2 TiO 4 ) was obtained.
This powder is white particles having a flat shape with an average size of about 6 μm and an average thickness of about 0.7 μm.
[実施例6(D化合物粉末の製造)]
(1)原料
実施例1の工程(4)で得られた乾燥粉末(水和チタン酸化合物H0.8Zn0.4Ti1.6O4・nH2Oの粒子)を使用。
(2)焼成処理
上記乾燥粉末をアルミナるつぼに入れ、電気炉内で800℃に2Hr保持する。
焼成反応生成物として、チタン酸亜鉛(ZnTiO3)結晶相とチタニア(TiO2,アナターゼ)結晶相とが結合したチタニア複合チタン酸亜鉛化合物の粒子からなる粉末を得た。
この粉末は、平均大きさ:約5μm,平均厚さ:約0.5μmの扁平形状を有する白色粒子である。
[Example 6 (Production of D compound powder)]
(1) Raw material The dry powder (particles of hydrated titanic acid compound H 0.8 Zn 0.4 Ti 1.6 O 4 .nH 2 O) obtained in step (4) of Example 1 was used.
(2) Firing treatment The dried powder is put in an alumina crucible and held at 800 ° C. for 2 hours in an electric furnace.
As a firing reaction product, a powder composed of particles of a titania composite zinc titanate compound in which a zinc titanate (ZnTiO 3 ) crystal phase and a titania (TiO 2 , anatase) crystal phase were combined was obtained.
This powder is white particles having a flat shape with an average size of about 5 μm and an average thickness of about 0.5 μm.
[実施例7(E化合物粉末の製造)]
(1)原料
実施例2で得られたチタン酸亜鉛層間化合物(チタン酸化合物B)の粉末を使用。
[Example 7 (Production of E compound powder)]
(1) Raw material The powder of the zinc titanate intercalation compound (titanate compound B) obtained in Example 2 was used.
(2)焼成処理
上記粉末をアルミナるつぼに入れ、電気炉内で900℃に2Hr保持する。
焼成反応生成物として、チタン酸亜鉛(ZnTiO3)結晶相とチタン酸亜鉛(Zn2TiO4)結晶相とが結合した複合チタン酸化合物の粒子からなる粉末を得た。
この粉末は、平均大きさ:約6μm,平均厚さ:約0.7μmの扁平形状を有する白色粒子である。
(2) Firing treatment The powder is put in an alumina crucible and held at 900 ° C. for 2 hours in an electric furnace.
As a calcination reaction product, a powder composed of composite titanate compound particles in which a zinc titanate (ZnTiO 3 ) crystal phase and a zinc titanate (Zn 2 TiO 4 ) crystal phase were combined was obtained.
This powder is white particles having a flat shape with an average size of about 6 μm and an average thickness of about 0.7 μm.
[実施例8(F化合物粉末の製造)]
(1)原料
実施例3で得られたチタン酸亜鉛層間化合物(チタン酸化合物B)の粉末を使用。
[Example 8 (Production of F compound powder)]
(1) Raw material The powder of the zinc titanate intercalation compound (titanate compound B) obtained in Example 3 is used.
(2)焼成処理
上記粉末をアルミナるつぼに入れ、電気炉内で1100℃に2Hr保持する。
焼成反応生成物として、チタン酸亜鉛(Zn2TiO4)結晶相、チタン酸リチウム(Li2TiO3)結晶相およびチタニア(TiO2,ルチル型)結晶相が結合したチタニア複合チタン酸化合物の粒子からなる粉末を得た。
このものは、平均大きさ:約7μm,平均厚さ:約0.8μmの扁平形状を有する白色粒子である。
(2) Firing treatment The powder is put in an alumina crucible and held at 1100 ° C. for 2 hours in an electric furnace.
Titanium composite titanic acid compound particles in which zinc titanate (Zn 2 TiO 4 ) crystal phase, lithium titanate (Li 2 TiO 3 ) crystal phase and titania (TiO 2 , rutile type) crystal phase are combined as a firing reaction product A powder consisting of
This is white particles having a flat shape with an average size of about 7 μm and an average thickness of about 0.8 μm.
[実施例9(化粧料の調製)]
チタン酸化合物の扁平状粒子からなる粉末<1>,<2>又は<3>を顔料とし、下記組成を有する化粧料(パウダーファンデーション)<1>,<2>及び<3>を調製する。
[顔料]
・チタン酸化合物粉末<1>
剤種:チタン酸亜鉛(Zn2TiO4)粉末(実施例5による)
扁平形状:平均大きさ5μm,厚さ0.7μm
・チタン酸化合物粉末<2>
剤種:チタニア複合チタン酸化合物(ZnTiO3−TiO2)
・粉末(実施例6による)
扁平形状:平均大きさ5μm,厚さ0.5μm
・チタン酸化合物粉末<3>
剤種:複合チタン酸化合物(ZnTiO3−Zn2TiO4)
・粉末(実施例7による)
扁平形状:平均大きさ6μm,厚さ0.7μm
[Example 9 (Preparation of cosmetics)]
Cosmetics (powder foundation) <1>, <2> and <3> having the following composition are prepared using powder <1>, <2> or <3> comprising flat particles of titanic acid compound as pigments.
[Pigment]
・ Titanate powder <1>
Agent type: Zinc titanate (Zn 2 TiO 4 ) powder (according to Example 5)
Flat shape: average size 5μm, thickness 0.7μm
・ Titanate powder <2>
Agent type: titania composite titanic acid compound (ZnTiO 3 —TiO 2 )
Powder (according to Example 6)
Flat shape: average size 5μm, thickness 0.5μm
・ Titanate compound powder <3>
Agent type: Compound titanic acid compound (ZnTiO 3 —Zn 2 TiO 4 )
Powder (according to Example 7)
Flat shape: average size 6μm, thickness 0.7μm
上記化粧料<1>〜<3>はいずれも、展延性,滑沢性,光沢,付着力及び感触等に優れている。また抗菌性,防錆性を有し、かつ敏感肌等に対する刺激発現性も低く安心して使用することができる。 All of the cosmetics <1> to <3> are excellent in spreadability, lubricity, gloss, adhesion and feel. In addition, it has antibacterial and rustproof properties and has low irritation to sensitive skin and can be used safely.
本発明の実施形態について具体例を以下に示す。
(1)(チタン酸化合物A)
TiO6八面体の4稜共有の連鎖からなるアナターゼ型結晶形態を有し、Ti席の一部が、前記R1 (但し、Caを除く)元素群から選ばれる1種ないし2種以上の金属イオンで置換されたチタン酸化合物の粒子からなる粉末。該粒子は、平均大きさ:1〜30μm,平均厚さ:0.05〜3μmの扁平形状を有する。
(2)R1元素が亜鉛であるチタン酸亜鉛化合物の扁平状粒子からなる上記1項の粉末。
(3)R1元素が銅であるチタン酸銅化合物の扁平状粒子からなる上記1項の粉末。
(4)R1元素がマグネシウムであるチタン酸マグネシウム化合物の扁平状粒子からなる上記1項の粉末。
(5)R1元素が鉄であるチタン酸鉄化合物の扁平状粒子からなる上記1項の粉末。
(6)R1元素がアルミニウムであるチタン酸アルミニウム化合物の扁平状粒子からなる上記1項の粉末。
(7)R1元素がリチウムであるチタン酸リチウム化合物の扁平状粒子からなる上記1項の粉末。
(8)R1元素が亜鉛及び銅であるチタン酸亜鉛銅化合物の扁平状粒子からなる上記1項の粉末。
Specific examples of the embodiment of the present invention are shown below.
(1) (Titanate Compound A)
One or two or more metals selected from the group of R 1 (excluding Ca), having anatase-type crystal form composed of TiO 6 octahedron four-ridge shared chain Powder composed of particles of titanate compound substituted with ions. The particles have a flat shape with an average size of 1 to 30 μm and an average thickness of 0.05 to 3 μm.
(2) The powder of item 1 above, comprising flat particles of a zinc titanate compound in which R 1 element is zinc.
(3) The powder according to item 1 above, comprising flat particles of a copper titanate compound in which the R 1 element is copper.
(4) The powder of item 1 above, comprising flat particles of a magnesium titanate compound in which R 1 element is magnesium.
(5) The powder according to item 1 above, comprising flat particles of an iron titanate compound in which R 1 element is iron.
(6) The powder of item 1 above, comprising flat particles of an aluminum titanate compound in which R 1 element is aluminum.
(7) The powder according to the above item (1), comprising flat particles of a lithium titanate compound in which R 1 element is lithium.
(8) The powder according to the above item 1, comprising flat particles of a zinc copper titanate compound in which R 1 elements are zinc and copper.
(9)(チタン酸化合物B)
TiO6八面体の連鎖による層状結晶構造を有し、Ti席の一部が前記R1元素群から選ばれる1種ないし2種以上の金属イオンで置換され、結晶層間に前記R1元素群から選ばれる1種ないし2種以上の金属イオンが配位したチタン酸層間化合物の粒子からなる粉末。該粒子は、平均大きさ:1〜30μm,平均厚さ:0.05〜3μmの扁平形状を有する。
(10)R1元素が亜鉛、R2元素が亜鉛であるチタン酸亜鉛層間化合物の扁平状粒子からなる上記9項の粉末。
(11)R1元素が亜鉛、R2元素が銅であるチタン酸銅亜鉛層間化合物の扁平状粒子からなる上記9項の粉末。
(12)R1元素が銅、R2元素が亜鉛であるチタン酸亜鉛銅層間化合物の扁平状粒子からなる上記9項の粉末。
(13)R1元素が亜鉛、R2元素が銀であるチタン酸銀亜鉛層間化合物の扁平状粒子からなる上記9項の粉末。
(14)R1元素が亜鉛、R2元素がリチウムであるチタン酸リチウム亜鉛層間化合物の扁平状粒子からなる上記9項の粉末。
(15)R1元素がリチウム、R2元素がリチウムであるチタン酸リチウム層間化合物の扁平状粒子からなる上記9項の粉末。
(16)R1元素がマグネシウム、R2元素が亜鉛であるチタン酸亜鉛マグネシウム層間化合物の扁平状粒子からなる上記9項の粉末。
(9) (Titanate Compound B)
Having a layered crystal structure by TiO 6 octahedra chain, to one not part of Ti seat is selected from the R 1 element group is substituted with two or more metal ions, from the R 1 group of elements between crystal layers A powder comprising particles of a titanic acid intercalation compound coordinated with one or more selected metal ions. The particles have a flat shape with an average size of 1 to 30 μm and an average thickness of 0.05 to 3 μm.
(10) The powder as described in 9 above, comprising flat particles of a zinc titanate intercalation compound in which the R 1 element is zinc and the R 2 element is zinc.
(11) The powder according to item 9 above, comprising flat particles of a copper zinc titanate intercalation compound in which the R 1 element is zinc and the R 2 element is copper.
(12) The powder according to item 9 above, comprising flat particles of a zinc titanate-copper intercalation compound in which the R 1 element is copper and the R 2 element is zinc.
(13) The powder according to item 9 above, comprising flat particles of a silver zinc titanate intercalation compound in which the R 1 element is zinc and the R 2 element is silver.
(14) The powder of the above item 9 comprising flat particles of a lithium zinc titanate intercalation compound in which the R 1 element is zinc and the R 2 element is lithium.
(15) The powder according to the above item 9, comprising flat particles of a lithium titanate intercalation compound in which the R 1 element is lithium and the R 2 element is lithium.
(16) The powder of the above item 9 comprising flat particles of a zinc-magnesium titanate intercalation compound in which the R 1 element is magnesium and the R 2 element is zinc.
(17)(チタン酸化合物C)
MTinO2n+m/2[M、n及びmは前記と同義]で示されるチタン酸化合物の粒子からなる粉末であり、該粒子は平均大きさ:1〜30μm,平均厚さ:0.05〜3μmの扁平形状を有する。
(18)Mが亜鉛であるチタン酸亜鉛化合物の扁平状粒子からなる上記17項の粉末。
(19)Mがリチウムであるチタン酸リチウム化合物の扁平状粒子からなる上記17項の粉末。
(20)Mがマグネシウムであるチタン酸マグネシウム化合物の扁平状粒子からなる上記17項の粉末。
(21)Mがアルミニウムであるチタン酸アルミニウム化合物の扁平状粒子からなる上記17項の粉末。
(22)Mが鉄であるチタン酸鉄化合物の扁平状粒子からなる上記17項の粉末。
(23)Mが銅であるチタン酸銅化合物の扁平状粒子からなる上記17項の粉末。
(17) (Titanate Compound C)
MTi n O 2n + m / 2 [M, n and m are as defined above] is a powder consisting of particles of titanic acid compound represented by the particles average size: 1 to 30 [mu] m, average thickness: 0. It has a flat shape of 05 to 3 μm.
(18) The powder according to item 17 above, comprising flat particles of a zinc titanate compound in which M is zinc.
(19) The powder according to item 17 above, comprising flat particles of a lithium titanate compound in which M is lithium.
(20) The powder according to item 17 above, comprising flat particles of a magnesium titanate compound in which M is magnesium.
(21) The powder as described in 17 above, comprising flat particles of an aluminum titanate compound in which M is aluminum.
(22) The powder according to item 17 above, comprising flat particles of an iron titanate compound in which M is iron.
(23) The powder according to item 17 above, comprising flat particles of a copper titanate compound in which M is copper.
(24)(チタン酸化合物D)
MTinO2n+m/2[M、n及びmは前記と同義]で示されるチタン酸化合物の結晶相と、チタニア結晶相とが結合したチタニア複合チタン酸化合物の粒子からなる粉末であり、該粒子は平均大きさ:1〜30μm,平均厚さ:0.05〜3μmでの扁平形状を有する。
(25)Mが亜鉛であるチタニア複合チタン酸亜鉛化合物の扁平状粒子からなる上記24項の粉末。
(26)Mがリチウムであるチタニア複合チタン酸リチウム化合物の扁平状粒子からなる上記24項の粉末。
(27)Mがマグネシウムであるチタニア複合チタン酸マグネシウム化合物の扁平状粒子からなる上記24項の粉末。
(28)Mがアルミニウムであるチタニア複合チタン酸アルミニウム化合物の扁平状粒子からなる上記24項の粉末。
(29)Mが鉄であるチタニア複合チタン酸鉄化合物の扁平状粒子からなる上記24項の粉末。
(30)Mが銅であるチタニア複合チタン酸銅化合物の扁平状粒子からなる上記24項の粉末。
(24) (Titanate Compound D)
MTi n O 2n + m / 2 [M, n and m are as defined above] is a powder consisting of particles of titania composite titanic acid compound and the crystalline phase of the titanate compound represented by the titania crystalline phase bound, The particles have a flat shape with an average size of 1 to 30 μm and an average thickness of 0.05 to 3 μm.
(25) The powder as described in 24 above, comprising flat particles of a titania composite zinc titanate compound in which M is zinc.
(26) The powder as described in 24 above, comprising flat particles of a titania composite lithium titanate compound in which M is lithium.
(27) The powder according to item 24 above, comprising flat particles of a titania composite magnesium titanate compound in which M is magnesium.
(28) The powder as described in 24 above, comprising flat particles of a titania composite aluminum titanate compound in which M is aluminum.
(29) The powder as described in 24 above, comprising flat particles of a titania composite iron titanate compound in which M is iron.
(30) The powder as described in 24 above, comprising flat particles of a titania composite copper titanate compound in which M is copper.
(31)(チタン酸化合物E)
MTinO2n+m/2[M、n及びmは前記と同義]で示されるチタン酸化合物の2種以上の結晶相が結合した複合チタン酸化合物の粒子からなる粉末であり、該粒子は平均大きさ:1〜30μm,平均厚さ:0.05〜3μmでの扁平形状を有する。
(32)Mが亜鉛である2種のチタン酸亜鉛の結晶相(例:ZnTiO3とZn2TiO4)が結合した複合チタン酸亜鉛化合物の扁平状粒子からなる上記31項の粉末。
(33)Mが亜鉛であるチタン酸亜鉛結晶相と、Mがリチウムであるチタン酸リチウム結晶相とが結合した複合チタン酸化合物の扁平状粒子からなる上記31項の粉末。
(34)Mがマグネシウムであるチタン酸マグネシウムの結晶相と、Mがリチウムであるチタン酸リチウム結晶相とが結合した複合チタン酸化合物の扁平状粒子からなる上記31項の粉末。
(35)Mがマグネシウムであるチタン酸マグネシウムの結晶相と、Mが亜鉛であるチタン酸亜鉛の結晶相とが結合した複合チタン酸化合物の扁平状粒子からなる上記31項の粉末。
(31) (Titanate Compound E)
MTi n O 2n + m / 2 [M, n, and m are as defined above] is a powder composed of a composite titanic acid compound particle in which two or more crystal phases of the titanic acid compound are bonded. It has a flat shape with an average size of 1 to 30 μm and an average thickness of 0.05 to 3 μm.
(32) The powder according to item 31 above, comprising flat particles of a composite zinc titanate compound in which two kinds of zinc titanate crystal phases (for example, ZnTiO 3 and Zn 2 TiO 4 ) in which M is zinc are bonded.
(33) The powder according to item 31 above, comprising flat particles of a composite titanate compound in which a zinc titanate crystal phase in which M is zinc and a lithium titanate crystal phase in which M is lithium are combined.
(34) The powder according to item 31 above, comprising flat particles of a composite titanic acid compound in which a magnesium titanate crystal phase in which M is magnesium and a lithium titanate crystal phase in which M is lithium are bonded.
(35) The powder according to item 31 above, comprising flat particles of a composite titanate compound in which a crystal phase of magnesium titanate in which M is magnesium and a crystal phase of zinc titanate in which M is zinc are combined.
(36)(チタン酸化合物F)
MTinO2n+m/2[M、n及びmは前記と同義]で示されるチタン酸化合物の2種以上と、チタニア結晶とが結合したチタニア複合チタン酸化合物の粒子からなる粉末であり、該粒子は平均大きさ:1〜30μm,平均厚さ:0.05〜3μmの扁平形状を有している。
(37)Mが亜鉛であるチタン酸亜鉛の結晶相と、Mが銅であるチタン酸銅の結晶相と、チタニア結晶とが結合したチタニア複合チタン酸化合物の扁平状粒子からなる上記36項の粉末。
(38)Mが亜鉛である2種のチタン酸亜鉛の結晶相(例えばZnTiO3とZn2TiO4)とチタニア結晶相が結合したチタニア複合チタン酸化合物の扁平状粒子からなる上記36項の粉末。
(39)Mが亜鉛であるチタン酸亜鉛の結晶相と、Mがリチウムであるチタン酸リチウム結晶相とチタニア結晶とが結合したチタニア複合チタン酸の扁平状粒子からなる上記36項の粉末。
(40)Mがマグネシウムであるチタン酸マグネシウムの結晶相と、Mがリチウムであるチタン酸リチウムの結晶相と、チタニア結晶とが結合したチタニア複合チタン酸化合物の扁平状粒子からなる上記36項の粉末。
(41)Mがマグネシウムであるチタン酸マグネシウムの結晶相と、Mが亜鉛であるチタン酸亜鉛の結晶相と、チタニア結晶とが結合したチタニア複合チタン酸化合物の扁平状粒子からなる上記36項の粉末。
(42)上記1〜41項に記載のチタン酸化合物粉末のいずれか1種ないし2種以上の粉末を配合されてなる化粧料。
(36) (Titanate Compound F)
MTi n O 2n + m / 2 [M, n and m are the same as defined above] A powder composed of particles of titania composite titanate compound in which two or more kinds of titanate compounds and a titania crystal are combined, The particles have a flat shape with an average size of 1 to 30 μm and an average thickness of 0.05 to 3 μm.
(37) The crystal phase of zinc titanate in which M is zinc, the crystal phase of copper titanate in which M is copper, and flat particles of a titania composite titanate compound in which a titania crystal is bonded. Powder.
(38) The powder according to the above item 36, comprising flat particles of a titania composite titanate compound in which a crystal phase (for example, ZnTiO 3 and Zn 2 TiO 4 ) of two types of zinc titanate in which M is zinc and a titania crystal phase are combined. .
(39) The powder of the above item 36, comprising a titanic composite titanic acid flat particle in which a zinc titanate crystal phase in which M is zinc, and a lithium titanate crystal phase in which M is lithium and a titania crystal are bonded.
(40) The crystal phase of magnesium titanate in which M is magnesium, the crystal phase of lithium titanate in which M is lithium and the titania complex titanate flat particles of the titania composite titanate compound, Powder.
(41) The crystal phase of magnesium titanate in which M is magnesium, the crystal phase of zinc titanate in which M is zinc, and flat particles of a titania composite titanate compound in which a titania crystal is bonded. Powder.
(42) A cosmetic comprising any one or more of the titanic acid compound powders according to the above items 1 to 41.
(43)上記1〜41項に記載のチタン酸化合物粉末のいずれか1種ないし2種以上の粉末を配合されてなる塗料組成物。 (43) A coating composition obtained by blending any one or more of the titanate compound powders according to the above items 1 to 41.
本発明のチタン酸化合物の扁平状粒子からなる粉末は、化学組成・結晶構造及び扁平状の粒子形態により、塗料組成物,フィルム・コーティング組成物,化粧料等の顔料として有用であり、良好な分散性を有すると共に、展延性,隠蔽性,滑沢性,付着性等の改善効果に優れている。また、結晶層間に金属イオンを担持した層間化合物は、そのイオンの作用により塗料組成物や化粧料等に抗菌性や防錆性を帯有させ、チタン酸亜鉛化合物を配合された化粧料は敏感肌用として安全に使用することができる。 The powder composed of flat particles of the titanic acid compound of the present invention is useful as a pigment for paint compositions, film / coating compositions, cosmetics and the like due to its chemical composition, crystal structure, and flat particle shape, and is excellent. It has dispersibility and is excellent in improving effects such as spreadability, concealability, lubricity and adhesion. In addition, intercalation compounds carrying metal ions between crystal layers make the paint composition and cosmetics antibacterial and rust-proof by the action of the ions, and cosmetics containing zinc titanate compounds are sensitive. It can be used safely for skin.
Claims (4)
前記粉砕処理を、湿式粉砕処理で行うことにより、平均大きさ:1〜30μm,平均厚さ:0.05〜3μmの扁平状粒子からなるチタン酸化合物粉末を製造する方法。A method for producing titanic acid compound powder comprising flat particles having an average size of 1 to 30 μm and an average thickness of 0.05 to 3 μm by performing the pulverization process by a wet pulverization process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010016298A JP5535669B2 (en) | 2010-01-28 | 2010-01-28 | Titanate compound powder and cosmetics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010016298A JP5535669B2 (en) | 2010-01-28 | 2010-01-28 | Titanate compound powder and cosmetics |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002170417A Division JP4493260B2 (en) | 2002-06-11 | 2002-06-11 | Titanate compound powder and cosmetics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010100527A JP2010100527A (en) | 2010-05-06 |
JP5535669B2 true JP5535669B2 (en) | 2014-07-02 |
Family
ID=42291515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010016298A Expired - Fee Related JP5535669B2 (en) | 2010-01-28 | 2010-01-28 | Titanate compound powder and cosmetics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5535669B2 (en) |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6163529A (en) * | 1984-09-04 | 1986-04-01 | Kubota Ltd | Production of titanium compound fiber |
JPS62270409A (en) * | 1986-05-15 | 1987-11-24 | Sumitomo Chem Co Ltd | Colored flaky metallic oxide and production thereof |
JP2852825B2 (en) * | 1991-04-22 | 1999-02-03 | 株式会社クボタ | Method for producing flaky potassium hexatitanate polycrystalline particles |
JP2782132B2 (en) * | 1991-12-16 | 1998-07-30 | 株式会社クボタ | Cosmetics |
JPH05221795A (en) * | 1992-02-10 | 1993-08-31 | Natl Inst For Res In Inorg Mater | Production of monoclinic plate crystal having layer structure represented by axmyti2-yo4 |
JPH05229900A (en) * | 1992-02-20 | 1993-09-07 | Natl Inst For Res In Inorg Mater | Production of phombic layered titanic acid plate crystal represented by hxmyti2-yo4-nh2o |
JP3165875B2 (en) * | 1993-12-08 | 2001-05-14 | 株式会社クボタ | Method for producing flaky titanium dioxide |
JPH09278440A (en) * | 1996-04-09 | 1997-10-28 | Kubota Corp | Production of fibrous inorganic compound |
JPH1095617A (en) * | 1996-04-26 | 1998-04-14 | Ishihara Sangyo Kaisha Ltd | Plate-shaped titanium oxide, production thereof, and anti-sunburn cosmetic material, resin composition, coating material, adsorbent, ion exchanging resin, complex oxide precursor containing the same |
JPH10120420A (en) * | 1996-08-30 | 1998-05-12 | Kubota Corp | Antimicrobial titanate and its production |
JPH10273322A (en) * | 1997-01-30 | 1998-10-13 | Kubota Corp | Antifungal composite titanate and manufacture of the same |
JPH10287424A (en) * | 1997-04-09 | 1998-10-27 | Kubota Corp | Production of composite titanium compound |
JP3249776B2 (en) * | 1998-03-26 | 2002-01-21 | 大塚化学株式会社 | Interlayer crosslinked product of layered titanium oxide and photocatalyst |
JP3102789B1 (en) * | 1999-10-07 | 2000-10-23 | 大塚化学株式会社 | Plate-like potassium octitanate and method for producing the same |
JP3062497B1 (en) * | 1999-06-04 | 2000-07-10 | 大塚化学株式会社 | Method for producing flaky titanate |
DE60117599T2 (en) * | 2000-07-31 | 2006-11-09 | Otsuka Chemical Co., Ltd. | KALIUMMAGNESIUMTITANATES FROM LEPIDOCROSITTYP, METHOD FOR THE PRODUCTION THEREOF AND FRICTION MATERIAL |
BR0213698B1 (en) * | 2001-10-29 | 2010-11-30 | lithium potassium titanate of the lepidocrocyte type, method for its preparation, and friction material. |
-
2010
- 2010-01-28 JP JP2010016298A patent/JP5535669B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010100527A (en) | 2010-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4749007B2 (en) | Bright pigment aqueous medium dispersion and bright paint | |
JP4796320B2 (en) | Rust preventive coating composition using layered double hydroxide that peels off in water | |
JP5022038B2 (en) | Layered double hydroxide that peels off in water, production method and use thereof | |
EP0090259B1 (en) | Process for rendering nacreous pigments hydrophobic | |
EP1580166B1 (en) | Titanium oxide particles having useful properties | |
WO1995016637A1 (en) | Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same | |
JP6521262B2 (en) | Method of producing basic zinc cyanurate powder and method of producing antirust pigment composition | |
KR20130139830A (en) | Sheet-shaped cerium oxide and petal-shaped cerium oxide powder which is aggregate of the sheet-shaped cerium oxide, process for production of the sheet-shaped cerium oxide and the petal-shaped cerium oxide powder, coated sheet-shaped cerium oxide and petal-shaped cerium oxide powder which is aggregate of the coated sheet-shaped cerium oxide, and cosmetic | |
TW201441155A (en) | Synthetic zinc hectorite via hydrothermal preparation | |
EP3119840B1 (en) | Effect pigments | |
CN106458622B (en) | α-Al2O3Sheet | |
TW201441153A (en) | Synthetic megakalsilite via hydrothermal preparation | |
JP5178027B2 (en) | Layered double hydroxides that peel in water and process for producing the same | |
Sun et al. | Preparation of a microsphere SiO2/TiO2 composite pigment: The mechanism of improving pigment properties by SiO2 | |
JP4493260B2 (en) | Titanate compound powder and cosmetics | |
JP2889837B2 (en) | Pall gloss pigment and coating composition, cosmetic, ink and plastic containing the pigment | |
CN101913657A (en) | Preparation method of flake ferric oxide | |
JP5535669B2 (en) | Titanate compound powder and cosmetics | |
CN109762439A (en) | A kind of waterborne epoxy coatings and preparation method thereof | |
US3004857A (en) | Corrosion-inhibitive pigment | |
JP2013184883A (en) | Coating film containing flaky titanic acid and method for producing the same, and flaky titanic acid dispersion and method for producing the same | |
JP2008184343A (en) | Layered double hydroxide capable of being delaminated in water, its production method, and its use | |
JP2660766B2 (en) | Ultrafine yellow pigment and method for producing the same | |
CN102245158A (en) | Cosmetic composition | |
JP2931180B2 (en) | Method for producing iron-containing ultrafine titanium dioxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131015 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140415 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140423 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5535669 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |