JP5535000B2 - Storage device control method - Google Patents

Storage device control method Download PDF

Info

Publication number
JP5535000B2
JP5535000B2 JP2010178296A JP2010178296A JP5535000B2 JP 5535000 B2 JP5535000 B2 JP 5535000B2 JP 2010178296 A JP2010178296 A JP 2010178296A JP 2010178296 A JP2010178296 A JP 2010178296A JP 5535000 B2 JP5535000 B2 JP 5535000B2
Authority
JP
Japan
Prior art keywords
power
storage device
power storage
distribution line
voltage distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010178296A
Other languages
Japanese (ja)
Other versions
JP2012039774A (en
Inventor
顕一 田能村
淳之 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba System Technology Corp
Original Assignee
Toshiba Corp
Toshiba System Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba System Technology Corp filed Critical Toshiba Corp
Priority to JP2010178296A priority Critical patent/JP5535000B2/en
Publication of JP2012039774A publication Critical patent/JP2012039774A/en
Application granted granted Critical
Publication of JP5535000B2 publication Critical patent/JP5535000B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明の実施形態は、配電系統の柱上変圧器以降にある需要家端に接続される蓄電装置の制御方法に関する。   Embodiments described herein relate generally to a method for controlling a power storage device connected to a customer end after a pole transformer in a power distribution system.

近年、配電系統の柱上変圧器以降にある需要家端に太陽光発電のような分散型電源が多数接続されることが予測される。太陽光発電のような分散型電源は、気象条件により発電出力が変動し、その影響で柱上変圧器高圧側への逆潮流や電圧の上昇が発生する。分散型電源の導入以前においては、需要家端に蓄電装置を設置し、配電系統の潮流状態や電圧に応じて制御することで、配電系統の電力ロスや電圧低下を防止するようにしている。   In recent years, it is predicted that a large number of distributed power sources such as photovoltaic power generation are connected to the customer end after the pole transformer of the distribution system. In distributed power sources such as solar power generation, the power generation output fluctuates depending on weather conditions, which causes reverse power flow to the high voltage side of the pole transformer and voltage rise. Prior to the introduction of the distributed power supply, a power storage device is installed at the consumer end and controlled according to the power flow state and voltage of the distribution system to prevent power loss and voltage drop of the distribution system.

このような系統制御システムとしては、系統の電力潮流を監視し、系統の電力潮流の大きさによって需要家端に設置された蓄電装置の出力を遠隔制御し、負荷平滑化を行うものがある。(例えば特許文献1、2参照)。また、高圧配電線の潮流と低圧負荷の潮流を検出し、蓄電装置の制御を行い電圧上昇を防ぐようにしたものもある。   As such a system control system, there is a system that monitors the power flow of the system, remotely controls the output of the power storage device installed at the consumer end according to the magnitude of the power flow of the system, and performs load smoothing. (For example, refer to Patent Documents 1 and 2). In addition, there is also one that detects the power flow of the high-voltage distribution line and the power flow of the low-voltage load and controls the power storage device to prevent a voltage rise.

さらに、気象条件など変化による分散型電源の発電出力変動の平滑化をについては、分散型電源の近傍に蓄電装置を設置し、分散型電源の出力に応じて充放電を行うシステムがある。分散型電源の出力に応じて充放電を行う場合、蓄電装置の蓄電容量によっては、蓄電量が長期的に上限値、下限値となり、充放電を行うことができない状態となるので、それに対処するものとして、蓄電量が上限値、下限値に近づいた場合に充放電量を変更するようにしたものがある(例えば特許文献3参照)。   Furthermore, with regard to smoothing fluctuations in the power generation output of the distributed power source due to changes in weather conditions, there is a system in which a power storage device is installed in the vicinity of the distributed power source and charging / discharging is performed according to the output of the distributed power source. When charging / discharging according to the output of the distributed power source, depending on the storage capacity of the power storage device, the storage amount becomes the upper limit value and the lower limit value in the long term, and charging / discharging cannot be performed. As an example, there is one in which the charge / discharge amount is changed when the storage amount approaches the upper limit value and the lower limit value (see, for example, Patent Document 3).

特開2008−67469号公報JP 2008-67469 A 特開2008−48500号公報JP 2008-48500 A 特開2007−306670号公報JP 2007-306670 A

しかし、配電系統の柱上変圧器より低圧側の配電線に接続された分散型電源が多くなると、分散型電源の運転状況によっては高圧側の配電線に逆潮流が発生する。高圧側への逆潮流は、高圧側の電圧上昇を発生させる。需要家端の電圧管理目標値は所定範囲に定められているが、柱上変圧器高圧側の電圧上昇が大きくなると、需要家端電圧が電圧管理目標値から外れる場合がある。蓄電装置を用いる負荷平準化は、需要家の負荷が少ない夜間に蓄電装置を充電し、負荷が大きくなる昼間に放電を行うことで、最大の受電電力を減らし、あわせて送電損失を抑えるものである。   However, when the number of distributed power sources connected to the distribution line on the low voltage side from the pole transformer in the distribution system increases, a reverse power flow occurs in the distribution line on the high voltage side depending on the operation status of the distributed power source. The reverse power flow to the high voltage side causes a voltage increase on the high voltage side. The voltage management target value at the consumer end is set within a predetermined range, but if the voltage rise on the pole transformer high voltage side increases, the consumer end voltage may deviate from the voltage management target value. Load leveling using power storage devices reduces the maximum received power and suppresses power transmission loss by charging the power storage devices at night when the customer's load is low and discharging during the day when the load increases. is there.

そのような蓄電装置の制御方式においては、分散型電源の導入を考慮していないため、分散型電源による逆潮流を押さえる効果が無いことが課題であった。また、蓄電装置の設置場所は特定の需要家端を想定しており、配電系統全体の電圧や低圧配電線全体の負荷に対しては効果が少ない。   In such a power storage device control method, since introduction of a distributed power source is not considered, there is a problem that there is no effect of suppressing a reverse power flow caused by the distributed power source. Moreover, the installation location of the power storage device is assumed to be a specific consumer end, and is less effective for the voltage of the entire distribution system and the load of the entire low-voltage distribution line.

本発明の目的は、上述した課題を解決するためになされたものであり、配電系統の高圧配電線から低圧配電線への接続を行う柱上変圧器の低圧側に蓄電装置を設置し、柱上変圧器低圧側の潮流変動に対して充放電を行うことで、低圧配電線から高圧配電線の逆潮流を防止し、高圧配電線の電圧上昇を低減する蓄電装置の制御方法を提供することである。   An object of the present invention is to solve the above-described problem, and a power storage device is installed on a low-voltage side of a pole transformer that connects a high-voltage distribution line to a low-voltage distribution line in a distribution system. To provide a method for controlling a power storage device that prevents reverse power flow from a low-voltage distribution line to a high-voltage distribution line and reduces voltage increase of the high-voltage distribution line by charging and discharging the power flow fluctuation on the upper transformer low-voltage side It is.

本発明の実施の形態によれば、高圧配電線と低圧配電線の間に設置される柱上変圧器の高圧配電線の電源側の電力を検出する高圧側電力検出器と、前記柱上変圧器の低圧配電線側の電力を検出する低圧側電力検出器と、前記低圧配電線側に設置された蓄電装置の出力を検出する蓄電装置電力検出器と、前記高圧側電力検出器、前記低圧側電力検出器及び前記蓄電装置電力検出器の電力検出値から蓄電装置の出力を決定する蓄電装置出力制御装置とを有し、前記蓄電装置出力制御装置により、前記低圧配電線の電力検出値が負荷方向であれば放電し、前記低圧配電線の電力検出値が高圧配電線方向かつ高圧配電線の電力検出値が電源側方向ならば充電し、前記低圧配電線の電力検出値が零となるよう蓄電装置の出力を制御し、前記低圧配電線の電力検出値が高圧配電線方向かつ高圧配電線の電力検出値が負荷側方向ならば蓄電装置の出力が放電であった場合にはその出力を保持し、前記蓄電装置の出力が充電であった場合には低圧配電線の電力検出値が零となるよう蓄電装置の出力を制御し、高圧配電線の電源側への逆潮流を防止するよう制御することを特徴とする。   According to the embodiment of the present invention, the high voltage side power detector for detecting the power on the power source side of the high voltage distribution line of the pole transformer installed between the high voltage distribution line and the low voltage distribution line, and the pole transformation A low voltage side power detector for detecting power on the low voltage distribution line side of the storage device, a power storage device power detector for detecting an output of the power storage device installed on the low voltage distribution line side, the high voltage side power detector, and the low voltage A power storage device output control device that determines an output of the power storage device from a power detection value of the side power detector and the power storage device power detector, and the power detection value of the low-voltage distribution line is determined by the power storage device output control device. If it is in the load direction, the battery is discharged. If the detected power value of the low-voltage distribution line is in the high-voltage distribution line direction and the detected power value of the high-voltage distribution line is in the direction of the power supply side, the battery is charged. Control the output of the storage device so that the low-voltage distribution line If the force detection value is in the direction of the high-voltage distribution line and the power detection value of the high-voltage distribution line is in the load side, the output of the power storage device is retained when the output is discharged, and the output of the power storage device is charging In this case, the output of the power storage device is controlled so that the detected power value of the low-voltage distribution line becomes zero, and control is performed to prevent reverse power flow to the power source side of the high-voltage distribution line.

本発明の実施の形態の対象となる配電系統の構成図。The lineblock diagram of the power distribution system used as the object of an embodiment of the invention. 本発明の実施形態の実施例1の蓄電装置の制御方法を実現するための装置構成の一例を示す構成図。The block diagram which shows an example of the apparatus structure for implement | achieving the control method of the electrical storage apparatus of Example 1 of embodiment of this invention. 本発明の実施形態の実施例1にかかる蓄電装置と低圧配電線の電力の流れ(a−1)の説明図。Explanatory drawing of the flow (a-1) of the electric power of the electrical storage apparatus and low voltage distribution line concerning Example 1 of embodiment of this invention. 本発明の実施形態の実施例1にかかる蓄電装置と低圧配電線の電力の流れ(a−2)の説明図。Explanatory drawing of the flow (a-2) of the electric power of the electrical storage apparatus and low voltage distribution line concerning Example 1 of embodiment of this invention. 本発明の実施形態の実施例1にかかる蓄電装置と低圧配電線の電力の流れ(a−3)の説明図。Explanatory drawing of the flow (a-3) of the electric power of the electrical storage apparatus and low voltage distribution line concerning Example 1 of embodiment of this invention. 本発明の実施形態の実施例1にかかる蓄電装置と低圧配電線の電力の流れ(a−4)の説明図。Explanatory drawing of the flow (a-4) of the electric power of the electrical storage apparatus and low voltage distribution line concerning Example 1 of embodiment of this invention. 本発明の実施形態の実施例1の蓄電装置の制御方法を実現するための装置構成の他の一例を示す構成図。The block diagram which shows another example of the apparatus structure for implement | achieving the control method of the electrical storage apparatus of Example 1 of embodiment of this invention. 本発明の実施形態の実施例2の蓄電装置の制御方法を実現するための装置構成図。The apparatus block diagram for implement | achieving the control method of the electrical storage apparatus of Example 2 of embodiment of this invention. 本発明の実施形態の実施例3の蓄電装置の制御方法での低圧配電線電力、蓄電装置の出力及び蓄電量の一例を示すグラフ。The graph which shows an example of the low voltage distribution line electric power, the output of an electrical storage apparatus, and the electrical storage amount with the control method of the electrical storage apparatus of Example 3 of embodiment of this invention. 本発明の実施形態の実施例3の蓄電装置の制御方法での低圧配電線電力、蓄電装置の出力及び蓄電量の他の一例を示すグラフ。The graph which shows another example of the low voltage distribution line electric power, the output of an electrical storage apparatus, and the electrical storage amount with the control method of the electrical storage apparatus of Example 3 of embodiment of this invention. 本発明の実施形態の実施例4の蓄電装置の制御方法での低圧配電線電力、蓄電装置の出力及び蓄電量の一例を示すグラフ。The graph which shows an example of the low voltage distribution line electric power, the output of an electrical storage apparatus, and the electrical storage amount with the control method of the electrical storage apparatus of Example 4 of embodiment of this invention. 本発明の実施形態の実施例4の蓄電装置と低圧配電線の電力の流れ(d−1)の説明図。Explanatory drawing of the electric power flow (d-1) of the electrical storage apparatus of Example 4 of embodiment of this invention, and a low voltage distribution line. 本発明の実施形態の実施例4の蓄電装置と低圧配電線の電力の流れ(d−2)の説明図。Explanatory drawing of the electric power flow (d-2) of the electrical storage apparatus and low voltage distribution line of Example 4 of embodiment of this invention.

以下、本発明の実施の形態に係る蓄電装置の制御方法の実施例について、図面を参照して説明する。   Hereinafter, examples of a method for controlling a power storage device according to an embodiment of the present invention will be described with reference to the drawings.

まず、本発明の実施の形態の対象となる配電系統について図1を用いて説明する。配電系統は、配電用変電所1に設置される配電用変圧器1aから、遮断器2a〜2dを介して接続された高圧配電線3に送電を行う構成となる。高圧配電線には、区分開閉器4が複数配置され、区分開閉器4に囲まれた高圧配電線3の区間内に、柱上変圧器5が複数接続される。柱上変圧器5により、高圧から低圧に電圧の降圧が行われ、低圧配電線6が接続される。低圧配電線6には、複数の低圧需要家7が接続される。   First, a power distribution system as an object of an embodiment of the present invention will be described with reference to FIG. The distribution system is configured to transmit power from the distribution transformer 1a installed in the distribution substation 1 to the high-voltage distribution line 3 connected via the circuit breakers 2a to 2d. A plurality of section switches 4 are arranged in the high-voltage distribution line, and a plurality of pole transformers 5 are connected in a section of the high-voltage distribution line 3 surrounded by the section switches 4. The pole transformer 5 reduces the voltage from high voltage to low voltage, and the low voltage distribution line 6 is connected. A plurality of low voltage consumers 7 are connected to the low voltage distribution line 6.

高圧配電線3のうち配電用変電所1が電源側となり、配電用変電所1の逆側(複数の低圧需要家7が接続される側)が負荷側となる。低圧需要家7には、太陽光発電のような分散型電源が設置される。   Among the high-voltage distribution lines 3, the distribution substation 1 is the power supply side, and the opposite side of the distribution substation 1 (the side to which the plurality of low-voltage consumers 7 are connected) is the load side. The low-voltage consumer 7 is provided with a distributed power source such as solar power generation.

(実施例1)
図2は本発明の実施形態の実施例1の蓄電装置の制御方法を実現するための装置構成の一例を示す構成図である。図2では、図1の配電系統において、高圧配電線3と低圧配電線6との間に設置される柱上変圧器5の周辺を対象としている。
Example 1
FIG. 2 is a configuration diagram illustrating an example of a device configuration for realizing the power storage device control method according to the first embodiment of the present invention. In FIG. 2, the periphery of the pole transformer 5 installed between the high voltage distribution line 3 and the low voltage distribution line 6 is targeted in the distribution system of FIG.

この実施例1は、柱上変圧器5が接続される高圧配電線3の電源側の電力を検出する高圧側電力検出器9と、柱上変圧器5の低圧配電線6側の電力を検出する低圧側電力検出器10と、蓄電装置12の出力を検出する蓄電装置電力検出器11と、これら電力検出器9、10、11の電力検出値から蓄電装置12の出力を決定する蓄電装置出力制御装置8とから構成されている。   This Example 1 detects the electric power by the side of the low voltage distribution line 6 of the high voltage side electric power detector 9 which detects the electric power of the power source side of the high voltage distribution line 3 to which the pole transformer 5 is connected, and the pole type transformer 5 The low-voltage power detector 10 that performs power storage, the power storage device power detector 11 that detects the output of the power storage device 12, and the power storage device output that determines the output of the power storage device 12 from the power detection values of these power detectors 9, 10, and 11. And a control device 8.

蓄電装置出力制御装置8は、高圧側電力検出器9で検出された高圧側電力と、低圧側電力検出器10から検出された低圧側電力と、蓄電装置電力検出器11で検出された蓄電装置出力電力とから、後述する制御モードに沿って蓄電装置12の出力量の決定を行う。   The power storage device output control device 8 includes a high voltage side power detected by the high voltage side power detector 9, a low voltage side power detected by the low voltage side power detector 10, and a power storage device detected by the power storage device power detector 11. From the output power, the output amount of the power storage device 12 is determined in accordance with a control mode described later.

高圧側電力検出器9で検出された高圧側電力をPf、低圧側電力検出器10から検出された低圧側電力をPt2とすると、制御モードは以下となる。   When the high voltage side power detected by the high voltage side power detector 9 is Pf and the low voltage side power detected by the low voltage side power detector 10 is Pt2, the control mode is as follows.

(1)制御モード(a−1)
図3に示すように、電源側から負荷側に流れる状態(Pf>0)で、低圧配電線6の低圧負荷13の合計が分散型電源14の発電量合計より大きい(Pt2>0)ときは、蓄電装置12の蓄電残量があれば放電し、蓄電装置出力電力Pbを低圧配電線6に出力する。つまり、低圧側電力Pt2が零になるように出力を制御する。
(1) Control mode (a-1)
As shown in FIG. 3, when the total of the low-voltage loads 13 of the low-voltage distribution lines 6 is larger than the total power generation amount of the distributed power source 14 (Pt2> 0) in the state of flowing from the power supply side to the load side (Pf> 0). If there is a remaining amount of electricity stored in the electricity storage device 12, the electricity is discharged and the electricity output power Pb of the electricity storage device is output to the low voltage distribution line 6. That is, the output is controlled so that the low voltage side power Pt2 becomes zero.

(2)制御モード(a−2)
図4に示すように、高圧配電線3の電源側方向に逆潮流が発生する状態(Pf<0)で、低圧配電線6の分散型電源14の発電量合計が低圧負荷13の合計より大きい(Pt2<0)ときは、蓄電装置12が蓄電可能なら充電し、低圧側電力Pt2が零になるように出力を制御する。
(2) Control mode (a-2)
As shown in FIG. 4, the total power generation amount of the distributed power source 14 of the low-voltage distribution line 6 is larger than the total of the low-voltage loads 13 in a state where a reverse power flow is generated in the power supply side direction of the high-voltage distribution line 3 (Pf <0). When (Pt2 <0), the power storage device 12 is charged if it can be stored, and the output is controlled so that the low-voltage side power Pt2 becomes zero.

(3)制御モード(a−3)
図5に示すように、電源側から負荷側に流れる状態(Pf>0)で、低圧配電線6の分散型電源14の発電量合計が低圧負荷13の合計より大きい(Pt2<0)とき、これまで蓄電装置12が放電状態であった場合には、低圧配電線6の発電量を高圧配電線3の負荷側に送るように、蓄電装置12の出力値を保持する。
(3) Control mode (a-3)
As shown in FIG. 5, when the total power generation amount of the distributed power source 14 of the low-voltage distribution line 6 is larger than the total of the low-voltage loads 13 (Pt2 <0) in a state of flowing from the power source side to the load side (Pf> 0). When the power storage device 12 has been in a discharged state so far, the output value of the power storage device 12 is held so that the power generation amount of the low-voltage distribution line 6 is sent to the load side of the high-voltage distribution line 3.

(4)制御モード(a−4)
図6に示すように、電源側から負荷側に流れる状態(Pf>0)で、低圧配電線6の分散型電源14の発電量合計が低圧負荷13の合計より大きい(Pt2<0)とき、これまで蓄電装置12が充電状態であった場合には、高圧配電線3から蓄電装置12への充電を防止し、低圧側電力Pt2が零になるように出力を制御する。
(4) Control mode (a-4)
As shown in FIG. 6, when the total power generation amount of the distributed power source 14 of the low-voltage distribution line 6 is larger than the total of the low-voltage loads 13 (Pt2 <0) in the state of flowing from the power source side to the load side (Pf> 0). When the power storage device 12 has been charged so far, charging from the high-voltage distribution line 3 to the power storage device 12 is prevented, and the output is controlled so that the low-voltage side power Pt2 becomes zero.

実施例1によれば、高圧配電線3の電力Pfの逆潮流を防止するとともに、柱上変圧器5の高圧側の電圧上昇を抑えることができる。また、高圧配電線3からみた低圧配電線6の負荷変動を緩和することができる。   According to Example 1, while preventing the reverse power flow of the electric power Pf of the high voltage distribution line 3, the voltage rise on the high voltage side of the pole transformer 5 can be suppressed. Moreover, the load fluctuation of the low voltage distribution line 6 seen from the high voltage distribution line 3 can be reduced.

また、低圧側電力検出器10は、図2に示すように、蓄電装置12の出力と低圧配電線6の低圧負荷13の出力合計と分散型電源14の出力合計とを合計した電力を検出しているが、図7のように、蓄電装置12の出力を含まない低圧配電線6の電力を検出し、蓄電装置電力検出器11から得られる蓄電装置12の電力を加算して低圧側電力Pt2を算出し、制御するようにしても良い。   Further, as shown in FIG. 2, the low-voltage side power detector 10 detects electric power obtained by summing the output of the power storage device 12, the total output of the low-voltage load 13 of the low-voltage distribution line 6, and the total output of the distributed power source 14. However, as shown in FIG. 7, the power of the low-voltage distribution line 6 not including the output of the power storage device 12 is detected, and the power of the power storage device 12 obtained from the power storage device power detector 11 is added to obtain the low-voltage side power Pt2. May be calculated and controlled.

また、実施例1では、制御モード(a−3)、(a−4)のように、蓄電装置12のそれまでの充放電状態の出力により充放電量を決定しているので、蓄電装置12の急激な出力変化を防止し、電圧の変動を抑制することができる。   Further, in the first embodiment, as in the control modes (a-3) and (a-4), the charge / discharge amount is determined based on the output of the charge / discharge state of the power storage device 12 so far. Can be prevented, and fluctuations in voltage can be suppressed.

(実施例2)
次に、図8は、本発明の実施形態の実施例2の蓄電装置の制御方法を実現するための装置構成図である。この実施例2は、図2に示した実施例1に対し、低圧配電線6と需要家との間に検電のための需要家電気量検出器15a〜15cを設置したものである。図2と同一の構成には同一の符号を付し、重複する説明は省略する。
(Example 2)
Next, FIG. 8 is an apparatus configuration diagram for realizing the power storage device control method according to Example 2 of the embodiment of the present invention. In the second embodiment, consumer electric quantity detectors 15a to 15c for voltage detection are installed between the low-voltage distribution line 6 and the customer in the first embodiment shown in FIG. The same components as those in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted.

図8に示すように、低圧配電線6と需要家との間に、検電のための需要家電気量検出器15a〜15cが設置されている場合、需要家電気量検出器15a〜15cから検出される電気量(電圧、電流、力率)から、電力合計検出装置16により低圧配電線6の電力を算出し、蓄電装置電力検出器11から得られる蓄電装置の電力を加算してPt2を算出する。そして、実施例1と同一の制御方式により、蓄電装置12の出力量の決定を行ってもよい。   As shown in FIG. 8, when consumer electricity quantity detectors 15 a to 15 c for voltage detection are installed between the low voltage distribution line 6 and the consumer, from the consumer electricity quantity detectors 15 a to 15 c. From the detected amount of electricity (voltage, current, power factor), the power total detector 16 calculates the power of the low-voltage distribution line 6 and adds the power of the power storage device obtained from the power storage device power detector 11 to obtain Pt2. calculate. Then, the output amount of the power storage device 12 may be determined by the same control method as in the first embodiment.

(実施例3)
実施例1、2で説明した蓄電装置の制御方法は、低圧配電線の電力Pt2の変化に対して、蓄電装置12の蓄電容量が十分大きく定格出力にも余裕がある場合に最大の効果が発揮できる。逆に、蓄電装置12の蓄電容量が低圧配電線6の電力に対して十分な値を確保できない場合には、蓄電装置12の蓄電量が上限値あるいは下限値に達し、蓄電装置出力制御装置8の制御効果を十分に発揮できない場合がある。そこで、蓄電装置出力制御装置8が制御する蓄電装置12の出力値を以下のように変更する。
(Example 3)
The power storage device control method described in the first and second embodiments is most effective when the power storage capacity of the power storage device 12 is sufficiently large and the rated output has a margin with respect to the change in the power Pt2 of the low-voltage distribution line. it can. On the contrary, when the power storage capacity of the power storage device 12 cannot secure a sufficient value for the power of the low-voltage distribution line 6, the power storage amount of the power storage device 12 reaches the upper limit value or the lower limit value, and the power storage device output control device 8 In some cases, the control effect cannot be fully exhibited. Therefore, the output value of the power storage device 12 controlled by the power storage device output control device 8 is changed as follows.

図9に、低圧配線線6の電力、蓄電装置12の出力、蓄電量Cbの時間変化を示す。蓄電装置12の最大蓄電量をm[kWh]、蓄電量マージンをa[%]とし、出力特性変更点をb[%]、出力係数をc[%]とした場合、以下の方式で蓄電量と蓄電装置出力の決定を行う。   FIG. 9 shows changes over time in the power of the low-voltage wiring 6, the output of the power storage device 12, and the storage amount Cb. When the maximum power storage amount of the power storage device 12 is m [kWh], the power storage amount margin is a [%], the output characteristic change point is b [%], and the output coefficient is c [%], the power storage amount is as follows. And determine the output of the power storage device.

(1)制御モード(b−1)
蓄電装置12の蓄電量が最大蓄電量×(100−a)を超えており、蓄電装置出力制御装置8からの出力が充電方向の場合、蓄電装置12の出力指令値を0.0とする。
(1) Control mode (b-1)
When the power storage amount of the power storage device 12 exceeds the maximum power storage amount × (100−a) and the output from the power storage device output control device 8 is in the charging direction, the output command value of the power storage device 12 is set to 0.0.

(2)制御モード(b−2)
蓄電装置12の蓄電量が最大蓄電量×(100−b)を超えており、蓄電装置出力制御装置8からの出力が充電方向の場合、本来の充電出力に係数cを掛けた値を蓄電装置12の出力指令値とする。
(2) Control mode (b-2)
When the power storage amount of the power storage device 12 exceeds the maximum power storage amount × (100−b) and the output from the power storage device output control device 8 is in the charging direction, a value obtained by multiplying the original charge output by the coefficient c is stored in the power storage device. 12 output command values.

(3)制御モード(b−3)
蓄電装置12の蓄電量が最大蓄電量×bを下回り、蓄電装置出力制御装置8からの出力が放電方向の場合、本来の放電出力に係数cを掛けた値を蓄電装置12の出力指令値とする。
(3) Control mode (b-3)
When the amount of power stored in the power storage device 12 is less than the maximum power storage amount × b and the output from the power storage device output control device 8 is in the discharge direction, a value obtained by multiplying the original discharge output by the coefficient c is used as the output command value of the power storage device 12. To do.

(4)制御モード(b−4)
蓄電装置12の蓄電量が最大蓄電量×aを下回り、蓄電装置出力制御装置8からの出力が放電方向の場合、蓄電装置12の出力指令値を0.0とする。
(4) Control mode (b-4)
When the power storage amount of the power storage device 12 is less than the maximum power storage amount × a and the output from the power storage device output control device 8 is in the discharging direction, the output command value of the power storage device 12 is set to 0.0.

この制御モード(b−1)〜(b−4)の制御だけでは、蓄電装置12の蓄電量が上限値あるいは下限値に近づくまでの時間は長くできるが、完全には課題の解決にはならず、出力を行うことができない出力不能時間が発生する。   Only the control in the control modes (b-1) to (b-4) can increase the time until the amount of power stored in the power storage device 12 approaches the upper limit value or the lower limit value. However, the problem cannot be solved completely. Therefore, a non-output time during which output cannot be performed occurs.

蓄電装置12の出力不能時間を減少させるため、蓄電装置出力制御装置8に制御モード(b−1)〜(b−4)の制御に加え、蓄電装置12の蓄電量が上限値あるいは下限値に至ったところで強制的に充放電を行う強制充放電モードを持たせる。   In order to reduce the output impossible time of the power storage device 12, in addition to the control of the control modes (b-1) to (b-4), the power storage amount of the power storage device 12 is set to the upper limit value or the lower limit value. A forced charge / discharge mode in which charge / discharge is forcibly performed when it arrives is provided.

図10に、低圧配線線6の電力、蓄電装置12の出力、蓄電装置12の蓄電量Cbの時間変化を示す。蓄電装置12の最大蓄電量をm[kWh]、現在の蓄電量をCb[kWh]、目標蓄電量をCref[kWh]、強制充電を開始する蓄電量をCmin[kWh]、強制放電を開始する蓄電量をCmaxとし、強制充放電時の出力係数をαとした場合、以下の考え方で蓄電装置12の強制充放電を行う。   FIG. 10 shows changes over time in the power of the low-voltage wiring 6, the output of the power storage device 12, and the power storage amount Cb of the power storage device 12. The maximum power storage amount of the power storage device 12 is m [kWh], the current power storage amount is Cb [kWh], the target power storage amount is Cref [kWh], the power storage amount for starting the forced charge is Cmin [kWh], and the forced discharge is started. When the storage amount is Cmax and the output coefficient at the time of forced charge / discharge is α, the power storage device 12 is forcibly charged / discharged according to the following concept.

(1)強制充電モード(c−1)
蓄電量Cb<Cminとなった場合、蓄電装置12は強制充電モードとし、蓄電装置出力制御装置8は定格出力×αの充電方向の出力指令値を蓄電装置12に与える。ただし、低圧配電線6の分散型電源14の出力が低圧負荷13よりも大きく、蓄電装置12が定格出力×αの充電を行っても柱上変圧器5に逆潮流が発生する場合には、Pt2=0.0になるように出力を行う。その後、蓄電装置12の蓄電量Cb>Crefとなった時点で、通常の制御モードに戻る。
(1) Forced charging mode (c-1)
When the charged amount Cb <Cmin, the power storage device 12 is set to the forced charge mode, and the power storage device output control device 8 gives the output command value in the charging direction of rated output × α to the power storage device 12. However, when the output of the distributed power source 14 of the low-voltage distribution line 6 is larger than that of the low-voltage load 13 and the power storage device 12 performs charging of the rated output × α, a reverse power flow occurs in the pole transformer 5. Output is performed so that Pt2 = 0.0. Thereafter, when the storage amount Cb> Cref of the power storage device 12 is satisfied, the normal control mode is restored.

(2)強制放電モード(c−2)
蓄電量Cb>Cmaxとなった場合、蓄電装置12は強制放電モードとし、蓄電装置出力制御装置8は定格出力×αの放電方向の出力指令値を蓄電装置12に与える。ただし、低圧配電線6の低圧負荷13が分散型電源14の出力がよりも大きく、低圧潮流が定格出力×αよりも大きくなった場合は、Pt2=0.0になるように出力を行う。その後、蓄電装置12の蓄電量Cb>Crefとなった時点で、通常の制御モードに戻る。
(2) Forced discharge mode (c-2)
When power storage amount Cb> Cmax, power storage device 12 is set to the forced discharge mode, and power storage device output control device 8 provides power storage device 12 with an output command value in the discharge direction of rated output × α. However, when the low-voltage load 13 of the low-voltage distribution line 6 has a larger output of the distributed power source 14 and the low-pressure power flow becomes larger than the rated output × α, the output is performed so that Pt2 = 0.0. Thereafter, when the storage amount Cb> Cref of the power storage device 12 is satisfied, the normal control mode is restored.

実施例3によれば、蓄電装置12の蓄電容量が低圧配電線6の電力に対して十分な値を確保できない場合でも、蓄電装置12の蓄電量が上限値あるいは下限値に達し、蓄電装置出力制御装置8の制御効果を十分に発揮できない時間を短縮することができ、高圧配電線3の電力Pfの逆潮流を防止するとともに、柱上変圧器5の高圧側の電圧上昇を抑えることができる。また、高圧配電線3からみた低圧配電線6の負荷変動を緩和することができる。   According to the third embodiment, even when the power storage capacity of the power storage device 12 cannot ensure a sufficient value for the power of the low-voltage distribution line 6, the power storage amount of the power storage device 12 reaches the upper limit value or the lower limit value, and the power storage device output The time during which the control effect of the control device 8 cannot be sufficiently exhibited can be shortened, the reverse power flow of the power Pf of the high-voltage distribution line 3 can be prevented, and the voltage increase on the high-voltage side of the pole transformer 5 can be suppressed. . Moreover, the load fluctuation of the low voltage distribution line 6 seen from the high voltage distribution line 3 can be reduced.

(実施例4)
実施例3で説明した、蓄電装置の制御方法では、蓄電装置12の蓄電容量が低圧配電線6の電力に対して十分な値を確保できない場合でも、蓄電装置12の蓄電量が上限値あるいは下限値に達し、蓄電装置出力制御装置8の制御効果を十分に発揮できない時間を短縮することができるが、低圧配電線6の負荷が大きい時間帯に強制充電を行ったり、あるいは低圧配電線6に逆潮流の発生する時間帯に強制放電を行ったりすると、柱上変圧器高圧側の電圧変動を大きくする場合がある。そこで、蓄電装置12の強制充放電モードの動作に、低圧配電線6の電力による強制充放電モードに制限を持たせる。
Example 4
In the power storage device control method described in the third embodiment, even when the power storage capacity of the power storage device 12 cannot ensure a sufficient value for the power of the low-voltage distribution line 6, the power storage amount of the power storage device 12 is the upper limit value or the lower limit. The time during which the control effect of the power storage device output control device 8 is reached can be shortened, but forced charging is performed during a time when the load of the low-voltage distribution line 6 is large, or the low-voltage distribution line 6 If forced discharge is performed during the time when reverse power flow occurs, voltage fluctuation on the high-voltage side of the pole transformer may be increased. Therefore, the operation of the power storage device 12 in the forced charge / discharge mode is restricted in the forced charge / discharge mode using the power of the low-voltage distribution line 6.

図11に、低圧配線線6の電力、蓄電装置12の出力、蓄電装置12の蓄電量Cbの時間変化を示す。(d−1)は強制充電を中止する条件であり、(d−2)は強制放電を中止する条件である。   FIG. 11 shows changes over time in the power of the low-voltage wiring 6, the output of the power storage device 12, and the amount Cb of power stored in the power storage device 12. (D-1) is a condition for stopping forced charging, and (d-2) is a condition for stopping forced discharging.

(1)強制充電中止条件(d−1)
図12(a)に示すように、蓄電装置12が強制充電モード中、低圧配電線6の電力が定格出力×β(負荷リミット)よりも大きな負荷になった場合、図12(b)に示すように、強制充電を中止し蓄電装置12の出力を0.0とする。そして、低圧配電線6の電力が定格出力×βよりも小さくなった場合には、蓄電装置12は強制充電を再開する。
(1) Forced charging stop condition (d-1)
As shown in FIG. 12A, when the power storage device 12 is in the forced charging mode and the power of the low-voltage distribution line 6 becomes a load larger than the rated output × β (load limit), it is shown in FIG. Thus, forced charging is stopped and the output of the power storage device 12 is set to 0.0. When the power of the low-voltage distribution line 6 becomes smaller than the rated output × β, the power storage device 12 resumes forced charging.

(2)強制放電中止条件(d−2)
図13(a)に示すように、蓄電装置12が強制放電モード中、低圧配電線6の逆潮流分が定格出力×β’(発電リミット)よりも大きくなった場合、図13(b)に示すように、強制放電を中止し蓄電装置12の出力を0.0とする。そして、低圧配電線6の逆潮流分が定格出力×β’よりも小さくなった場合には、蓄電装置12は強制放電を再開する。
(2) Forced discharge stop condition (d-2)
As shown in FIG. 13 (a), when the power storage device 12 is in the forced discharge mode and the reverse power flow of the low-voltage distribution line 6 becomes larger than the rated output × β ′ (power generation limit), As shown, the forced discharge is stopped and the output of the power storage device 12 is set to 0.0. When the reverse power flow of the low-voltage distribution line 6 becomes smaller than the rated output × β ′, the power storage device 12 resumes forced discharge.

以上の制御を行うことで、蓄電装置12の蓄電量が上限値・下限値に至ることによる出力不能時間を少なくすることができ、柱上変圧器高圧側の電圧変動を抑えることができる。   By performing the above control, it is possible to reduce the output impossible time due to the amount of power stored in the power storage device 12 reaching the upper limit value and the lower limit value, and it is possible to suppress voltage fluctuation on the high voltage side of the pole transformer.

実施例4によれば、低圧配電線6の負荷の大きさと蓄電装置12の強制充放電制御による柱上変圧器高圧側の電圧変動の発生を防止することができ、高圧配電線3の電力Pfの逆潮流を防止するとともに、柱上変圧器5の高圧側の電圧上昇を抑えることができる。また、高圧配電線3からみた低圧配電線6の負荷変動を緩和することができる。   According to the fourth embodiment, it is possible to prevent the voltage variation on the high voltage side of the pole transformer due to the load size of the low voltage distribution line 6 and the forced charge / discharge control of the power storage device 12, and the power Pf of the high voltage distribution line 3 can be prevented. The reverse power flow can be prevented, and the voltage increase on the high voltage side of the pole transformer 5 can be suppressed. Moreover, the load fluctuation of the low voltage distribution line 6 seen from the high voltage distribution line 3 can be reduced.

1…配電用変電所、1a…配電用変圧器、2a〜2d…遮断器、3…高圧配電線、4…区分開閉器、5…柱上変圧器、6…低圧配電線、7…低圧需要家、8…蓄電装置出力制御装置、9…高圧側電力検出器、10…低圧側電力検出器、11…蓄電装置電力検出器、12…蓄電装置、13、13a〜13c…低圧負荷、14、14a〜14c…分散型電源、15a〜15c…需要家電気量検出器、16…需要家電力合計算出装置 DESCRIPTION OF SYMBOLS 1 ... Distribution substation, 1a ... Distribution transformer, 2a-2d ... Circuit breaker, 3 ... High voltage distribution line, 4 ... Section switch, 5 ... Pole transformer, 6 ... Low voltage distribution line, 7 ... Low voltage demand House, 8 ... Power storage device output control device, 9 ... High voltage side power detector, 10 ... Low voltage side power detector, 11 ... Power storage device power detector, 12 ... Power storage device, 13, 13a-13c ... Low voltage load, 14, 14a-14c ... distributed power source, 15a-15c ... consumer electricity detector, 16 ... consumer power total calculation device

Claims (3)

高圧配電線と低圧配電線の間に設置される柱上変圧器の高圧配電線の電源側の電力を検出する高圧側電力検出器と、前記柱上変圧器の低圧配電線側の電力を検出する低圧側電力検出器と、前記低圧配電線側に設置された蓄電装置の出力を検出する蓄電装置電力検出器と、前記高圧側電力検出器、前記低圧側電力検出器及び前記蓄電装置電力検出器の電力検出値から蓄電装置の出力を決定する蓄電装置出力制御装置とを有し、前記蓄電装置出力制御装置により、前記低圧配電線の電力検出値が負荷方向であれば放電し、前記低圧配電線の電力検出値が高圧配電線方向かつ高圧配電線の電力検出値が電源側方向ならば充電し、前記低圧配電線の電力検出値が零となるよう蓄電装置の出力を制御し、前記低圧配電線の電力検出値が高圧配電線方向かつ高圧配電線の電力検出値が負荷側方向ならば蓄電装置の出力が放電であった場合にはその出力を保持し、前記蓄電装置の出力が充電であった場合には低圧配電線の電力検出値が零となるよう蓄電装置の出力を制御し、高圧配電線の電源側への逆潮流を防止するよう制御することを特徴とする蓄電装置の制御方法。   High-voltage side power detector that detects the power on the power supply side of the high-voltage distribution line of the pole transformer installed between the high-voltage distribution line and the low-voltage distribution line, and the power on the low-voltage distribution line side of the pole transformer A low voltage side power detector, a power storage device power detector for detecting an output of a power storage device installed on the low voltage distribution line side, the high voltage side power detector, the low voltage side power detector, and the power storage device power detection A power storage device output control device that determines an output of the power storage device from a power detection value of the storage device, and the power storage device output control device discharges the power detection value of the low-voltage distribution line if it is in a load direction. If the power detection value of the distribution line is in the direction of the high-voltage distribution line and the power detection value of the high-voltage distribution line is in the direction of the power supply side, charging is performed, and the output of the power storage device is controlled so that the power detection value of the low-voltage distribution line becomes zero, Is the power detection value of the low-voltage distribution line in the direction of the high-voltage distribution line? If the power detection value of the high-voltage distribution line is in the load side direction, the output is retained if the output of the power storage device is discharging, and if the output of the power storage device is charging, the power detection of the low-voltage distribution line is detected. A method of controlling a power storage device, wherein the output of the power storage device is controlled so that the value becomes zero, and control is performed to prevent reverse power flow to the power supply side of the high-voltage distribution line. 請求項1に係る配電系統に設置される蓄電装置の制御方法おいて、蓄電装置の蓄電量が上限値あるいは下限値に至ったところで蓄電装置を強制的に充放電を行う強制充放電モードを持たせ、強制充放電モードの強制充放電により蓄電装置の蓄電量が設定値となった場合には、通常の制御モードとすることを特徴とする蓄電装置の制御方法。   The method for controlling a power storage device installed in a power distribution system according to claim 1 has a forced charge / discharge mode for forcibly charging / discharging the power storage device when the amount of power stored in the power storage device reaches an upper limit value or a lower limit value. A control method for a power storage device, wherein a normal control mode is set when a power storage amount of the power storage device reaches a set value by forced charge / discharge in the forced charge / discharge mode. 請求項2に係る配電系統に設置される蓄電装置の制御方法において、前記強制充電モードの場合に、低圧配電線の電力検出値が負荷方向で設定値を上回る場合には、強制充電を中止して蓄電装置の出力を零とし、強制放電モードの場合に、低圧配電線の電力検出値が発電方向で設定値を上回る場合には、強制放電を中止して蓄電装置の出力を零とすることを特徴とする蓄電装置の制御方法。 In the control method of the power storage device installed in the distribution system according to claim 2, in the forced charging mode, if the detected power value of the low voltage distribution line exceeds the set value in the load direction, the forced charging is stopped. If the power detection value of the low-voltage distribution line exceeds the set value in the power generation direction in the forced discharge mode, stop the forced discharge and set the output of the power storage device to zero. A method for controlling a power storage device.
JP2010178296A 2010-08-09 2010-08-09 Storage device control method Expired - Fee Related JP5535000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010178296A JP5535000B2 (en) 2010-08-09 2010-08-09 Storage device control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010178296A JP5535000B2 (en) 2010-08-09 2010-08-09 Storage device control method

Publications (2)

Publication Number Publication Date
JP2012039774A JP2012039774A (en) 2012-02-23
JP5535000B2 true JP5535000B2 (en) 2014-07-02

Family

ID=45851135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010178296A Expired - Fee Related JP5535000B2 (en) 2010-08-09 2010-08-09 Storage device control method

Country Status (1)

Country Link
JP (1) JP5535000B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106300404A (en) * 2016-08-29 2017-01-04 南京亚派科技股份有限公司 A kind of prevent subway regenerative feedback electric energy from falling the device of pushing electric network

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946113B (en) * 2012-07-26 2014-12-10 南方电网科学研究院有限责任公司 Super-capacitor terminal voltage control method based on battery and super capacitor
JP2015061331A (en) 2013-09-17 2015-03-30 株式会社東芝 Voltage fluctuation suppression device
CN103475028B (en) * 2013-09-24 2016-10-05 许继电气股份有限公司 Brake feedback device is to the counterflow-preventing control system of electric power system and control method
JP6257453B2 (en) * 2014-06-10 2018-01-10 大阪瓦斯株式会社 Electricity supply and demand system
CN105990850A (en) * 2015-02-07 2016-10-05 上海质卫环保科技有限公司 Online solar power station PID recovery system
CN104682431B (en) * 2015-02-16 2017-04-19 江苏中天科技股份有限公司 Self-starting method and self-starting system of energy storage converter
JP6069738B2 (en) * 2015-03-11 2017-02-01 株式会社エプコ Charge / discharge control system, charge / discharge control method, and charge / discharge control program
CN105262131A (en) * 2015-10-22 2016-01-20 华南理工大学 Black-start system and black-start method applicable to light storage micro grid
JP2021526786A (en) * 2018-06-13 2021-10-07 南京南瑞▲継▼保▲電気▼有限公司Nr Electric Co., Ltd Energy storage unit Separate current transformer and its application system, control method
CN111416386A (en) * 2020-04-01 2020-07-14 广东安朴电力技术有限公司 Power transmission system and power supply device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106300404A (en) * 2016-08-29 2017-01-04 南京亚派科技股份有限公司 A kind of prevent subway regenerative feedback electric energy from falling the device of pushing electric network

Also Published As

Publication number Publication date
JP2012039774A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5535000B2 (en) Storage device control method
Nour et al. Review on voltage‐violation mitigation techniques of distribution networks with distributed rooftop PV systems
JP5506915B2 (en) Power plant using batteries
CA2771760C (en) Transfer switch for automatically switching between alternative energy source and utility grid
US20160372925A1 (en) Load isolation consumption management systems and methods
US9912184B2 (en) Delayed reactive electrical consumption mitigation
US20150092311A1 (en) Methods, systems, and computer readable media for protection of direct current building electrical systems
US20170214250A1 (en) Energization control for establishing microgrids
JP2008148505A (en) Power compensator to prevent overload
JP2009197587A (en) Wind turbine generator system
JP2011067078A (en) Method and device for controlling power supply system
US20130258718A1 (en) System, method, and apparatus for powering equipment during a low voltage event
JP5296966B2 (en) Power supply equipment
JP2017121171A (en) Storage battery charge-discharge system, and interconnection system
JP2007166860A (en) Tie-line power flow control device
JP2007288932A (en) Charge control device of photovoltaic power generation facility
JP6021312B2 (en) Distributed power supply system and circuit switching device
JP5953185B2 (en) Power supply system
JP2015050897A (en) Power conditioner
JP5496246B2 (en) Power storage control system and power storage control method
EP3654480B1 (en) Power conditioner, power system, and reactive power supressing method for power system
JP6009893B2 (en) Control device, storage battery power conversion device, and power system
CN102244460A (en) Power supply changeover system capable of being started at zero voltage and zero-voltage starting device thereof
KR20160080719A (en) Apparatus for controlling power configured to be connected to power system operating temporarily and method for controlling power
CN204376423U (en) A kind of switch combination for quick deciliter of micro-grid connection point

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5535000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees