JP5534464B2 - Optical transceiver and optical signal optimization method thereof - Google Patents

Optical transceiver and optical signal optimization method thereof Download PDF

Info

Publication number
JP5534464B2
JP5534464B2 JP2011034943A JP2011034943A JP5534464B2 JP 5534464 B2 JP5534464 B2 JP 5534464B2 JP 2011034943 A JP2011034943 A JP 2011034943A JP 2011034943 A JP2011034943 A JP 2011034943A JP 5534464 B2 JP5534464 B2 JP 5534464B2
Authority
JP
Japan
Prior art keywords
optical
transmitter
receiver
optical signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011034943A
Other languages
Japanese (ja)
Other versions
JP2012175367A (en
Inventor
薫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2011034943A priority Critical patent/JP5534464B2/en
Publication of JP2012175367A publication Critical patent/JP2012175367A/en
Application granted granted Critical
Publication of JP5534464B2 publication Critical patent/JP5534464B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、光送受信器、及びその光信号最適化方法に関し、特に、光送信信号の劣化を検出して該劣化を補正することができる光送受信器、及びその光信号最適化方法に関する。   The present invention relates to an optical transceiver and an optical signal optimization method thereof, and more particularly, to an optical transceiver capable of detecting degradation of an optical transmission signal and correcting the degradation, and an optical signal optimization method thereof.

光通信を行う機器として光信号送信器(光送信器)と光信号受信器(光受信器)とが一体となった光送受信器が知られている。   2. Description of the Related Art An optical transmitter / receiver in which an optical signal transmitter (optical transmitter) and an optical signal receiver (optical receiver) are integrated is known as a device that performs optical communication.

従来、光送受信器間で送受する光信号の劣化状態を監視し、送信器側で最適な光信号を送信するための方法として、例えば、1つの光送受信器(以下、「デバイスA」という)から送信された光信号を、他の光送受信器(以下、「デバイスB」という)で受信するシステムにおいて、デバイスBで受信した光信号の劣化状態(特性劣化)を監視し、その監視情報をもとにデバイスAで送信される光信号を制御する方法が知られている。   Conventionally, as a method for monitoring a deterioration state of an optical signal transmitted and received between optical transceivers and transmitting an optimum optical signal on the transmitter side, for example, one optical transceiver (hereinafter referred to as “device A”) In a system that receives an optical signal transmitted from the other optical transceiver (hereinafter referred to as “device B”), the optical signal received by device B is monitored for deterioration state (characteristic deterioration), and the monitoring information is A method for controlling an optical signal transmitted from device A is known.

特開2010−40969号公報JP 2010-40969 A

しかしながら、この従来方法で監視される光信号の劣化状態は、デバイスAの光送信器の特性と、デバイスAとデバイスBとの間の光信号を伝達する光伝送路の特性と、デバイスBの光受信器の特性とを全て総合した光信号の劣化状態であるため、光信号の特性劣化がデバイスAの光送信器のものか、光伝送路のものか、デバイスBの光受信器のものか、或いはそれら複合的なものなのか切り分けが出来ないという問題点があった。例えば、デバイスAの光送信器の特性が良好で、光伝送路又はデバイスBの光受信器に問題がある場合、或いは光伝送路とデバイスBの光受信器双方に問題がある場合、デバイスAの光送信器で送信する光信号を調整しても問題は解決しない。   However, the degradation state of the optical signal monitored by this conventional method includes the characteristics of the optical transmitter of device A, the characteristics of the optical transmission path for transmitting the optical signal between device A and device B, and the characteristics of device B. Since the optical signal is a deterioration state that combines all the characteristics of the optical receiver, whether the optical signal characteristic deterioration is that of the optical transmitter of the device A, the optical transmission line, or the optical receiver of the device B However, there was a problem that it was not possible to distinguish whether it was a combination of these. For example, when the characteristics of the optical transmitter of device A are good and there is a problem with the optical transmission path or the optical receiver of device B, or there is a problem with both the optical transmission path and the optical receiver of device B, device A Even if the optical signal transmitted by the optical transmitter is adjusted, the problem is not solved.

従来、デバイスAの光送信器で送信する光信号を最適化する手段や、デバイスBで受信する光信号を最適化する手段、又はその両方の手段を持っているシステムは存在するが、特性劣化の原因が光送信器、光伝送路、光受信器のどれなのか切り分けが出来ていない状態ではそれぞれを最適な状態にすることはできない。また、現在、光通信速度の高速化に伴い、受信される光信号のマージン確保がますます求められているが、この従来方式では、デバイスAの光送信器で送信する光信号、及びデバイスBの光受信器で受信する光信号をベストな状態に出来ないので、最大限の信号マージンを確保できず、高速化の対応にも限界が生じてしまう。   Conventionally, there exists a system having a means for optimizing an optical signal transmitted by the optical transmitter of device A, a means for optimizing an optical signal received by device B, or both. In the state where the cause of the optical transmitter, the optical transmission line, and the optical receiver cannot be separated, it is not possible to optimize each of them. In addition, as the optical communication speed increases, it is increasingly required to secure a margin for the received optical signal. In this conventional method, the optical signal transmitted by the optical transmitter of device A and the device B Since the optical signal received by the optical receiver cannot be in the best state, the maximum signal margin cannot be ensured, and there is a limit to the speeding up.

なお、別の従来の方法として、光送信器からの光信号の出射光を2つに分岐し、1つは通常の通信に使用し、他方は光信号の劣化状態の監視に使用する方法も知られている。しかし、この方法では、レーザダイオード出射光の一部を恒常的にモニタ用に使用するため、光通信に必要な光出力を確保するためには、レーザダイオードの出力を上げる必要があって、通常これはレーザダイオードの寿命に影響がでるために好ましくない。   As another conventional method, there is a method in which the outgoing light of the optical signal from the optical transmitter is branched into two, one is used for normal communication, and the other is used for monitoring the deterioration state of the optical signal. Are known. However, in this method, a part of the laser diode emission light is constantly used for monitoring, so in order to ensure the optical output necessary for optical communication, it is necessary to increase the output of the laser diode. This is not preferable because it affects the life of the laser diode.

したがって、本発明はかかる事情に鑑み、光送信器、光伝送路、光受信器を切り分けて光信号の劣化状態を監視し、送信器側で最適な光信号を送信することができる新しい光送受信器、及びその光通信最適化方法を提供することを目的とする。   Therefore, in view of such circumstances, the present invention is a new optical transmission / reception capable of monitoring an optical signal degradation state by separating an optical transmitter, an optical transmission line, and an optical receiver and transmitting an optimal optical signal on the transmitter side. And an optical communication optimizing method thereof.

本発明による光送受信器は、光信号を送信する光送信器及び光信号を受信する光受信器を備える光送受信器であって、前記光送信器により送信される光信号の光路を、他の光送受信器とで光通信する光通信時の第一の光路と、前記光受信器で前記光信号を受信して監視する監視時の第二の光路とで切替える光路切替え部を備え、前記光路切替え部は、前記監視時に前記光送信器が送信した光信号を反射させて前記光受信器に案内する少なくとも2つのミラー、該少なくとも2つのミラーを保持する筐体、及び前記筐体を駆動させ、前記少なくとも2つのミラーが前記光送信器により送信される光信号の光路上に位置するか否かで前記第一の光路と前記第二の光路とを切り換える駆動機構を備え、前記監視時において、前記光送信器から送信されて前記光受信器で受信した光信号のエラー率を測定する測定部と、該測定結果に基づいて、前記光送信器の最適な光通信のパラメータを算出して設定する設定部と、を含むコントローラを更に備える。
参考例による光送受信器は、光信号を送信する光送信器及び光信号を受信する光受信器を備える光送受信器であって、前記光送信器により送信される光信号の光路を、他の光送受信器とで光通信する光通信時の第一の光路と、前記光受信器で前記光信号を受信して監視する監視時の第二の光路とで切替える光路切替え部を備え、前記光路切替え部は、前記監視時に前記光送信器が送信した光信号を反射させて前記光受信器に案内する少なくとも2つのミラー、該少なくとも2つのミラーを保持する筐体、及び前記筐体を駆動させ、前記少なくとも2つのミラーが前記光送信器により送信される光信号の光路上に位置するか否かで前記第一の光路と前記第二の光路とを切り換える駆動機構を備える。
An optical transceiver according to the present invention is an optical transceiver comprising an optical transmitter for transmitting an optical signal and an optical receiver for receiving an optical signal, wherein the optical path of the optical signal transmitted by the optical transmitter is changed to another An optical path switching unit that switches between a first optical path during optical communication that performs optical communication with an optical transceiver and a second optical path during monitoring that receives and monitors the optical signal with the optical receiver; The switching unit reflects at least two mirrors that reflect an optical signal transmitted by the optical transmitter during the monitoring and guides the optical signal to the optical receiver, a casing that holds the at least two mirrors, and drives the casing A drive mechanism that switches between the first optical path and the second optical path depending on whether or not the at least two mirrors are positioned on an optical path of an optical signal transmitted by the optical transmitter; Transmitted from the optical transmitter A measurement unit that measures an error rate of an optical signal received by the optical receiver, and a setting unit that calculates and sets an optimal optical communication parameter of the optical transmitter based on the measurement result. A controller is further provided.
The optical transceiver according to the reference example is an optical transceiver including an optical transmitter that transmits an optical signal and an optical receiver that receives the optical signal, and the optical path of the optical signal transmitted by the optical transmitter An optical path switching unit that switches between a first optical path during optical communication that performs optical communication with an optical transceiver and a second optical path during monitoring that receives and monitors the optical signal with the optical receiver; The switching unit reflects at least two mirrors that reflect an optical signal transmitted by the optical transmitter during the monitoring and guides the optical signal to the optical receiver, a casing that holds the at least two mirrors, and drives the casing And a drive mechanism that switches between the first optical path and the second optical path depending on whether or not the at least two mirrors are positioned on an optical path of an optical signal transmitted by the optical transmitter.

本発明による光通信最適化方法は、光信号を送信する光送信器及び光信号を受信する光受信器を備える光送受信器の光通信最適化方法であって、前記光送信器により送信される光信号の光路を、他の光送受信器とで光通信する光通信時の第一の光路から、前記送信した光信号を前記光受信器で受信して該光信号を監視する監視時の第二の光路に切替える段階と、前記光送信器が送信する光信号の発光波形を可変する設定値としてパラメータを設定する段階と、前記光送信器から送信されて前記光受信器で受信した光信号のエラー率を測定する段階と、前記測定した結果に基づいて、前記光送信器の最適な光通信のパラメータを算出して設定する段階と、を備え、前記切替える段階は、監視時において、前記光送信器から送信されて前記光受信器で受信した光信号のエラー率を測定する段階と、該測定結果に基づいて、前記光送信器の最適な光通信のパラメータを算出して設定する段階と、を含む。
参考例による光通信最適化方法は、光信号を送信する光送信器及び光信号を受信する光受信器を備える光送受信器の光通信最適化方法であって、前記光送信器により送信される光信号の光路を、他の光送受信器とで光通信する光通信時の第一の光路から、前記送信した光信号を前記光受信器で受信して該光信号を監視する監視時の第二の光路に切替える段階と、前記光送信器が送信する光信号の発光波形を可変する設定値としてパラメータを設定する段階と、前記光送信器から送信されて前記光受信器で受信した光信号のエラー率を測定する段階と、前記測定した結果に基づいて、前記光送信器の最適な光通信のパラメータを算出して設定する段階と、を備える。


An optical communication optimizing method according to the present invention is an optical communication optimizing method for an optical transceiver including an optical transmitter that transmits an optical signal and an optical receiver that receives the optical signal, and is transmitted by the optical transmitter. The optical path of the optical signal is received from the first optical path at the time of optical communication in which optical communication is performed with another optical transceiver, and the transmitted optical signal is received by the optical receiver to monitor the optical signal. A step of switching to a second optical path, a step of setting a parameter as a set value for changing a light emission waveform of an optical signal transmitted by the optical transmitter, and an optical signal transmitted from the optical transmitter and received by the optical receiver Measuring the error rate of the optical transmitter, and calculating and setting an optimal optical communication parameter of the optical transmitter based on the measurement result, and the switching step includes the step of: The optical receiver transmitted from the optical transmitter In comprising a step of measuring the error rate of the received optical signal, based on the measurement result, and setting to calculate the optimal optical communication parameters of the optical transmitter, a.
An optical communication optimizing method according to a reference example is an optical communication optimizing method for an optical transceiver including an optical transmitter that transmits an optical signal and an optical receiver that receives the optical signal, and is transmitted by the optical transmitter. The optical path of the optical signal is received from the first optical path at the time of optical communication in which optical communication is performed with another optical transceiver, and the transmitted optical signal is received by the optical receiver to monitor the optical signal. A step of switching to a second optical path, a step of setting a parameter as a set value for changing a light emission waveform of an optical signal transmitted by the optical transmitter, and an optical signal transmitted from the optical transmitter and received by the optical receiver Measuring an error rate of the optical transmitter, and calculating and setting an optimum optical communication parameter of the optical transmitter based on the measurement result.


以上のように構成された本発明の光送受信器等によれば、光送信器、光伝送路、光受信器を切り分けて光信号の劣化状態を監視し、送信器側で最適な光信号を送信することができる。また、その結果、光送信器で送信する光信号を最適化できるので、信号マージンを確保でき、光通信の通信速度の更なる高速化に対応することが可能となる。   According to the optical transceiver and the like of the present invention configured as described above, the optical transmitter, the optical transmission line, and the optical receiver are separated to monitor the deterioration state of the optical signal, and the optimal optical signal is transmitted on the transmitter side. Can be sent. As a result, since the optical signal transmitted by the optical transmitter can be optimized, a signal margin can be ensured, and the communication speed of optical communication can be further increased.

本実施形態の光送受信器の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the optical transmitter / receiver of this embodiment. 本実施形態の光送受信器の光路切替え部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the optical path switching part of the optical transmitter-receiver of this embodiment. 本実施形態の光送受信器を用いて実施される光信号最適化方法の処理内容を示すフローチャートである。It is a flowchart which shows the processing content of the optical signal optimization method implemented using the optical transmitter-receiver of this embodiment. 本実施形態のコントローラで作成されるエラーレイトのグラフの一例を示す図である。It is a figure which shows an example of the graph of the error rate produced with the controller of this embodiment. 光通信時の光信号を測定器で観測した状態を示す模式図である。It is a schematic diagram which shows the state which observed the optical signal at the time of optical communication with the measuring device. レーザダイオードの特性を説明するための図である。It is a figure for demonstrating the characteristic of a laser diode.

以下、本発明を実施するための好適な実施形態を、図面を参照しながら説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described with reference to the drawings.

図1に本発明の一実施形態の光送受信器1の概略構成を示すブロック図である。   FIG. 1 is a block diagram showing a schematic configuration of an optical transceiver 1 according to an embodiment of the present invention.

光送受信器1は、図1に示すとおり、光路切替え部2、光送信器3、光受信器4、コントローラ5を含んで構成される。なお、図1に示す光ファイバ6a,6bは、2つの光送受信器1,1'間で光通信する際の伝送路となるものであり、光ファイバ6aは、光送受信器1の光送信器3から他方の光送受信器1'の光受信器4'に光信号を送信するために配置され、光ファイバ6bは、光送受信器1の光受信器4に他方の光送受信器1'の光送信器3'から送信された光信号を受信するために配置される。   As shown in FIG. 1, the optical transceiver 1 includes an optical path switching unit 2, an optical transmitter 3, an optical receiver 4, and a controller 5. The optical fibers 6a and 6b shown in FIG. 1 serve as a transmission path for optical communication between the two optical transceivers 1 and 1 ′. The optical fiber 6a is an optical transmitter of the optical transceiver 1. 3 is arranged to transmit an optical signal to the optical receiver 4 ′ of the other optical transceiver 1 ′, and the optical fiber 6 b is connected to the optical receiver 4 of the optical transceiver 1 with the light of the other optical transceiver 1 ′. Arranged to receive the optical signal transmitted from the transmitter 3 '.

光路切替え部2は、光送信器3から送出された光信号(送信信号)の光路(進行方向)を切り替える機能を有しており、送信信号を反射させて光路を変更するミラー2a,2bと、ミラー2a,2bを保持する筐体2cと、筐体2c自体を光送信器3からの送信信号の進行方向と直角方向又は略直角方向にスライド(位置変更)させる駆動機構2dとを含んで構成される。   The optical path switching unit 2 has a function of switching the optical path (traveling direction) of the optical signal (transmission signal) transmitted from the optical transmitter 3, and includes mirrors 2a and 2b that reflect the transmission signal and change the optical path. A housing 2c that holds the mirrors 2a and 2b, and a drive mechanism 2d that slides (position changes) the housing 2c itself in a direction perpendicular to or substantially perpendicular to the traveling direction of the transmission signal from the optical transmitter 3. Composed.

光路切替え部2の位置変更の一例について、図2を参照して説明する。光路切替え部2は、光送受信器1が他の光送受信器1'との間で通常の光通信を行う時、図2(a)に示すように、光路切替え部2のミラー2a,2bが光通信に使われる光路から退避した位置になるように、配置される(第一配置)。この状態では、光送信器3で送信される光信号は、光送信器3から光ファイバ6aまでの光路(第一の光路)を進行し、該光ファイバ6aに入射して伝達される。また、光ファイバ6bから受信した光信号は、光ファイバ6bから光受信器までの光路を進行し、光受信器4に入射する。   An example of the position change of the optical path switching unit 2 will be described with reference to FIG. When the optical transmitter / receiver 1 performs normal optical communication with another optical transmitter / receiver 1 ′, the optical path switching unit 2 includes mirrors 2a and 2b of the optical path switching unit 2 as shown in FIG. It arrange | positions so that it may become a position retracted | retracted from the optical path used for optical communication (1st arrangement | positioning). In this state, the optical signal transmitted by the optical transmitter 3 travels along the optical path (first optical path) from the optical transmitter 3 to the optical fiber 6a, and enters and is transmitted to the optical fiber 6a. The optical signal received from the optical fiber 6 b travels on the optical path from the optical fiber 6 b to the optical receiver and enters the optical receiver 4.

一方、光路切替え部2は、光送信器3が送信した光送信波形を監視する時、図2(b)に示すように、光路切替え部2のミラー2a,2bが光送信器3から送信された光信号の光路を切り換え可能な位置になるように、上記の第一配置からスライドして配置される(第二配置)。この状態では、光送信器3から送信された光信号は、この光送信器3からミラー2a,2bを介して光受信器4までの光路(第二の光路)を進行する、具体的には、ミラー2a、ミラー2bで順次反射し、光受信器4に入射する。よって、光路切替え部2は、筐体2cを駆動させ、2つのミラー2a,2bが光送信器3により送信される光信号の光路上に位置するか否かで第一の光路と第二の光路とを切り換えることができる。なお、光路切替え部2が備えるミラーの数は、光送信器3が送信した光信号を光受信器4で受信可能に反射させて案内できればよく、2つ以上有していてもよい。   On the other hand, when the optical path switching unit 2 monitors the optical transmission waveform transmitted by the optical transmitter 3, the mirrors 2a and 2b of the optical path switching unit 2 are transmitted from the optical transmitter 3 as shown in FIG. The second optical signal is slid from the first arrangement so that the optical path of the optical signal can be switched (second arrangement). In this state, the optical signal transmitted from the optical transmitter 3 travels the optical path (second optical path) from the optical transmitter 3 to the optical receiver 4 via the mirrors 2a and 2b. Then, the light is sequentially reflected by the mirror 2 a and the mirror 2 b and enters the optical receiver 4. Therefore, the optical path switching unit 2 drives the housing 2c and determines whether the two mirrors 2a and 2b are positioned on the optical path of the optical signal transmitted by the optical transmitter 3 or not. The optical path can be switched. The number of mirrors provided in the optical path switching unit 2 may be two or more as long as the optical signal transmitted by the optical transmitter 3 can be reflected and guided by the optical receiver 4.

光送信器3は、レーザダイオード3aと、レーザダイオードドライバ3bとを含んで構成される。レーザダイオードドライバ3bは、レーザダイオード3aの駆動波形を可変する機能を持ち、コントローラ5の命令で駆動波形の設定値を可変できるようになっている。   The optical transmitter 3 includes a laser diode 3a and a laser diode driver 3b. The laser diode driver 3b has a function of changing the drive waveform of the laser diode 3a, and the setting value of the drive waveform can be changed by a command from the controller 5.

光受信器4は、フォトダイオード4aと、アンプ4bとを含んで構成され、受信した光信号をフォトダイオード4aで受光し、アンプ4bで光信号を電気信号に変換する。この変換した電気信号は、コントローラ5に送られて処理される。   The optical receiver 4 includes a photodiode 4a and an amplifier 4b, and receives the received optical signal with the photodiode 4a, and converts the optical signal into an electrical signal with the amplifier 4b. The converted electrical signal is sent to the controller 5 for processing.

コントローラ5は、光路切替え部2の位置をスライド制御する機能(スライド制御部)、レーザダイオードドライバ3bの駆動波形を設定する機能(駆動波形設定部)、光受信器4が受信した光信号からエラーレイト(エラー率)を測定する機能(測定部)、メモリ機能(記憶部)、メモリに格納されたデータを処理し、光送信器3の最適な光通信のパラメータを算出して設定する機能(設定部)を少なくとも有する。コントローラ5は、たとえば、種々の演算および制御を行うためのプロセッサ、データを一時的に格納するとともに画像処理時のワーキングエリアとして機能するRAM、プログラムを格納するROM,および周辺回路から構成されている。なお、コントローラ5は、光送受信器1の構成の一部であってもよいし、光送受信器1とは別途独立した構成とすることもできる。   The controller 5 has a function to slide control the position of the optical path switching unit 2 (slide control unit), a function to set the drive waveform of the laser diode driver 3b (drive waveform setting unit), and an error from the optical signal received by the optical receiver 4 A function for measuring a rate (error rate) (measuring unit), a memory function (storage unit), a function for processing data stored in the memory, and calculating and setting optimum optical communication parameters of the optical transmitter 3 ( A setting unit). The controller 5 includes, for example, a processor for performing various operations and controls, a RAM that temporarily stores data and functions as a working area during image processing, a ROM that stores programs, and peripheral circuits. . The controller 5 may be a part of the configuration of the optical transceiver 1 or may be configured separately from the optical transceiver 1.

ここで、従来より、ファイバチャネル等、光ファイバを使う光送受信部分を着脱可能な形でモジュール化したものは、メーカによる標準化がなされ、且つ、広く製品化されており、例えば、SFP,GBIC,XNEPAK,XPAC,XFPなどのモジュールが知られている。本実施形態の光送受信器1を構成する構成要素(例えば、光路切替え器2、光送信器3、及び光受信器4)は、このモジュール内に組み込めるものとすることができる。このようにモジュール内に構成要素(例えば、光路切替え器2、光送信器3、及び光受信器4)を一セットとして含めることにより、モジュールの特徴を最大限に生かすことができる。すなわち、業界で標準化されているモジュールに適用できるほか、通常、あるシステム内にはモジュールが多数存在するが、モジュール単位でシステムから独立して判断でき、解析が容易となる。不具合のあるモジュールのみ、最小交換単位であるモジュールを交換して修理することですむ。   Here, conventionally, a module in which an optical transmission / reception portion using an optical fiber such as a fiber channel is detachable has been standardized by a manufacturer and has been widely commercialized, for example, SFP, GBIC, Modules such as XNEPAK, XPAC, and XFP are known. The components (for example, the optical path switch 2, the optical transmitter 3, and the optical receiver 4) that constitute the optical transceiver 1 of the present embodiment can be incorporated in this module. Thus, by including the components (for example, the optical path switch 2, the optical transmitter 3, and the optical receiver 4) as a set in the module, the features of the module can be utilized to the maximum. That is, it can be applied to modules standardized in the industry, and usually there are many modules in a certain system, but it can be determined independently from the system in units of modules, and analysis is easy. Only defective modules can be repaired by replacing the module that is the smallest replacement unit.

次に、図3のフローチャートを参照して、光送受信器1で行われる最適な光信号波形を得る光信号最適化方法について説明する。なお、各処理は、処理内容に矛盾を生じない範囲で任意に順番を変更して又は並列に実行することができる。   Next, an optical signal optimization method for obtaining an optimal optical signal waveform performed by the optical transceiver 1 will be described with reference to the flowchart of FIG. Note that the processes can be executed in any order or in parallel as long as the process contents do not contradict each other.

まず、コントローラ5は、駆動機構2dを駆動させ、ミラー2a,2bを保持した筐体2cを、通常通信側の配置(上述の第一配置)から発光波形確認側の配置(上述の第二配置)となるように移動させる(ステップS100)。第一配置から第二配置に筐体2cを移動させることで、光送信器から送信された光信号の光路は、他の光送受信器とで光通信する光通信時の第一の光路から、前記光受信器で前記光信号を受信して監視する監視時の第二の光路に切替わる。   First, the controller 5 drives the drive mechanism 2d to change the housing 2c holding the mirrors 2a and 2b from the normal communication side arrangement (the first arrangement described above) to the emission waveform confirmation side arrangement (the second arrangement described above). (Step S100). By moving the housing 2c from the first arrangement to the second arrangement, the optical path of the optical signal transmitted from the optical transmitter is changed from the first optical path at the time of optical communication to optically communicate with other optical transceivers. The optical receiver switches to the second optical path at the time of monitoring in which the optical signal is received and monitored.

コントローラ5は、レーザダイオードドライバ3bの発光波形を可変する設定値としてパラメータ(X)を設定する(ステップS101)。本実施形態におけるパラメータ(X)は、例えば、可変範囲内で5段階に可変させるものとし、Xは、デフォルト値=0として、−2,−1,0,1,2を用いる。なお、パラメータ(X)は、上述の5段階に限られず、3段階、10段階など適宜可変させることができる。   The controller 5 sets the parameter (X) as a set value for changing the light emission waveform of the laser diode driver 3b (step S101). For example, the parameter (X) in the present embodiment is variable in five steps within a variable range, and X is set to -2, -1, 0, 1, 2 with a default value = 0. Note that the parameter (X) is not limited to the above-described five stages, and can be appropriately varied such as three stages and ten stages.

コントローラ5は、光送信器3から発光され、光受信器4で受光した信号のエラーレイトを測定し(ステップS102)、該測定結果をメモリに格納する(ステップS103)。具体的には、例えば、発行条件として、まず、X=−2を設定してエラーレイトを測定し、該測定結果をメモリに格納する。次に、X=−1を設定してエラーレイトを測定し、該測定結果をメモリに格納する。以降、X=0,1,2を順次設定してエラーレイトを測定し、それぞれの測定結果をメモリに格納する。   The controller 5 measures the error rate of the signal emitted from the optical transmitter 3 and received by the optical receiver 4 (step S102), and stores the measurement result in the memory (step S103). Specifically, for example, as an issuance condition, first, X = -2 is set, the error rate is measured, and the measurement result is stored in the memory. Next, X = -1 is set, the error rate is measured, and the measurement result is stored in the memory. Thereafter, X = 0, 1, and 2 are sequentially set to measure the error rate, and each measurement result is stored in the memory.

コントローラ5は、エラーレイトが最適となるパラメータを算出する(ステップS104)。コントローラ5は、例えば、メモリに格納された、レーザダイオードの発行条件ごとのエラーレイトから、図4に示すようなグラフを作成し、この作成したグラフを用いて、エラーレイトが最適となるパラメータを算出する。   The controller 5 calculates a parameter that optimizes the error rate (step S104). For example, the controller 5 creates a graph as shown in FIG. 4 from the error rate for each laser diode issuance condition stored in the memory, and uses this created graph to determine a parameter for which the error rate is optimal. calculate.

コントローラ5は、ダイオードレーザドライバ3bの発光条件として算出した最適なパラメータを設定する(ステップS105)。図4に示すグラフが作成された場合であれば、コントローラ5は、エラーレイトが最も小さくなるパラメータ(X=1)をダイオードレーザドライバ3bの発光条件として設定することができる。   The controller 5 sets the optimum parameter calculated as the light emission condition of the diode laser driver 3b (step S105). If the graph shown in FIG. 4 is created, the controller 5 can set the parameter (X = 1) that minimizes the error rate as the light emission condition of the diode laser driver 3b.

コントローラ5は、光路切替え部2を、発光波形確認側の配置(上述の第二配置)から通常通信側の配置(上述の第一配置)となるように移動させる(ステップS106)。   The controller 5 moves the optical path switching unit 2 from the arrangement on the light emission waveform confirmation side (the second arrangement described above) to the normal communication side (the first arrangement described above) (step S106).

以上より、本実施形態の光信号最適化方法によれば、光伝送経路、或いは実際に信号を受信している光受信器4の性能から、光送信器3の特性を切り離した状態で光発光波形の最適化を図ることができる。また、その結果、光送信器で送信する光信号を最適化できるので、信号マージンを確保でき、光信号の通信速度の更なる高速化に対応することが可能となる。   As described above, according to the optical signal optimization method of the present embodiment, light emission is performed in a state where the characteristics of the optical transmitter 3 are separated from the performance of the optical transmission path or the optical receiver 4 that actually receives the signal. Waveform optimization can be achieved. As a result, since the optical signal transmitted by the optical transmitter can be optimized, a signal margin can be ensured and the communication speed of the optical signal can be further increased.

本実施形態の光送受信器1及び光信号最適化方法を適用した効果について、さらに、図5及び図6を用いて説明する。   The effects of applying the optical transceiver 1 and the optical signal optimization method of the present embodiment will be further described with reference to FIGS.

図5(a)は、本実施形態を適用して最適化された各光信号の模式図の一例を示し、図5(b)は、レーザダイオードが経時劣化した状態での各光信号の模式図の一例を示す。図5(a),(b)に示す各模式図は、上段から、2Gbps、4Gbps、8Gbps、10Gbpsの通信速度を有する各光信号を示している。なお、図5において、光信号は実線で示し、マスクは、1段目の2Gbpsの信号と4段目の10Gbpsの信号に黒塗りで示した。マスクは、信号を測定し、その品質が確保されているかを計る指標であり、信号品質が確保された状態とは、このマスクの領域と信号が干渉しない(マスクで示された領域を信号が横切らない)状態である。   FIG. 5A shows an example of a schematic diagram of each optical signal optimized by applying the present embodiment, and FIG. 5B shows a schematic diagram of each optical signal when the laser diode is deteriorated with time. An example of the figure is shown. Each schematic diagram shown in FIGS. 5A and 5B shows optical signals having communication speeds of 2 Gbps, 4 Gbps, 8 Gbps, and 10 Gbps from the top. In FIG. 5, the optical signal is indicated by a solid line, and the mask is indicated by black on the first-stage 2 Gbps signal and the fourth-stage 10 Gbps signal. The mask is an index for measuring the signal and measuring whether the quality is ensured. The state in which the signal quality is secured means that the signal does not interfere with the area of the mask (the area where the signal is indicated by the mask). It does not cross).

ここで、レーザダイオードは、電流に比例した光を出力する素子であるが、例えば、図6に示すように、使用環境の温度変化、経時劣化などその特性が変化することが知られている。このような特性変化が起こったにもかかわらず、変わらぬ駆動条件でレーザダイオードを発光させていると、発光波形の立ち上がり速度、立下り速度が遅くなる要因となってしまう。この場合、光信号は、上記図5(b)のように表されるが、本実施形態を適用することで、図5(a)に表すように、信号の立ち上り速度、立下り速度を改善し、特に、高速伝送の10Gbpsではマージンが確保できず良好な通信ができなかったのを改善することができる。   Here, the laser diode is an element that outputs light in proportion to the current. For example, as shown in FIG. 6, it is known that the characteristics of the laser diode change, such as temperature change and deterioration with time. If the laser diode is caused to emit light under the same driving conditions in spite of such a characteristic change, the rising speed and falling speed of the light emission waveform become a factor. In this case, the optical signal is represented as shown in FIG. 5B. By applying this embodiment, the rising speed and falling speed of the signal are improved as shown in FIG. 5A. In particular, it is possible to improve that a high-speed transmission of 10 Gbps cannot secure a margin and cannot perform good communication.

<変形例>
以上のように本発明の好適な実施形態について説明したが、本発明は、以上の実施形態に限定されるべきものではなく、特許請求の範囲に表現された思想および範囲を逸脱することなく、種々の変形、追加、および省略が当業者によって可能である。
<Modification>
The preferred embodiments of the present invention have been described above. However, the present invention should not be limited to the above embodiments, and does not depart from the spirit and scope expressed in the claims. Various modifications, additions, and omissions are possible by those skilled in the art.

例えば、光路切替え部2は、上述したものに限定されず、別の機械的手段によるものも適用可能であるし、また、光学的手段によるものも適用可能である。   For example, the optical path switching unit 2 is not limited to the one described above, and another mechanical means can be applied, and an optical means can also be applied.

また、発光波形最適化に用いるパラメータも1つである必要は無く、複数のパラメータの最適化にも適用することが可能である。   Also, it is not necessary to use one parameter for optimizing the light emission waveform, and it is possible to apply to optimization of a plurality of parameters.

さらに、上記方法で光送信器3の信号最適化を実施した後で、実際に光を受信する受信器の特性を最適化すれば、より効果的である。   Furthermore, it is more effective to optimize the characteristics of the receiver that actually receives the light after performing the signal optimization of the optical transmitter 3 by the above method.

またさらに、光送信器の最適化パラメータ(X)と光受信器の最適化パラメータ(Y)に依存関係がある場合は、これらパラメータを同時に可変して最適化する方法を用いることができる。   Furthermore, when there is a dependency relationship between the optimization parameter (X) of the optical transmitter and the optimization parameter (Y) of the optical receiver, a method of optimizing by changing these parameters simultaneously can be used.

上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。   A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.

(付記1)光信号を送信する光送信器及び光信号を受信する光受信器を備える光送受信器であって、前記光送信器により送信される光信号の光路を、他の光送受信器とで光通信する光通信時の第一の光路と、前記光受信器で前記光信号を受信して監視する監視時の第二の光路とで切替える光路切替え部を備え、前記光路切替え部は、前記監視時に前記光送信器が送信した光信号を反射させて前記光受信器に案内する少なくとも2つのミラー、該少なくとも2つのミラーを保持する筐体、及び前記筐体を駆動させ、前記少なくとも2つのミラーが前記光送信器により送信される光信号の光路上に位置するか否かで前記第一の光路と前記第二の光路とを切り換える駆動機構を備える、光送受信器。   (Supplementary note 1) An optical transceiver including an optical transmitter for transmitting an optical signal and an optical receiver for receiving an optical signal, wherein an optical path of the optical signal transmitted by the optical transmitter is different from that of another optical transceiver. An optical path switching unit that switches between a first optical path at the time of optical communication for optical communication and a second optical path at the time of monitoring to receive and monitor the optical signal by the optical receiver, the optical path switching unit, At least two mirrors that reflect the optical signal transmitted by the optical transmitter during the monitoring and guide the optical signal to the optical receiver, a casing that holds the at least two mirrors, and a drive of the casing to drive the at least two An optical transceiver comprising a drive mechanism for switching between the first optical path and the second optical path depending on whether or not two mirrors are positioned on an optical path of an optical signal transmitted by the optical transmitter.

(付記2)前記監視時において、前記光送信器から送信されて前記光受信器で受信した光信号のエラー率を測定する測定部と、該測定結果に基づいて、前記光送信器の最適な光通信のパラメータを算出して設定する設定部とを含むコントローラを更に備える、付記1に記載の光送受信器。   (Supplementary Note 2) At the time of the monitoring, a measurement unit that measures an error rate of an optical signal transmitted from the optical transmitter and received by the optical receiver, and an optimum of the optical transmitter based on the measurement result The optical transceiver according to appendix 1, further comprising a controller including a setting unit that calculates and sets a parameter for optical communication.

(付記3)前記光送信器、前記光受信器、及び前記光路切替え部が一つのモジュールとして構成される、付記1又は付記2に記載の光送受信器。   (Supplementary note 3) The optical transceiver according to supplementary note 1 or supplementary note 2, wherein the optical transmitter, the optical receiver, and the optical path switching unit are configured as one module.

(付記4)光信号を送信する光送信器及び光信号を受信する光受信器を備える光送受信器の光通信最適化方法であって、前記光送信器により送信される光信号の光路を、他の光送受信器とで光通信する光通信時の第一の光路から、前記送信した光信号を前記光受信器で受信して該光信号を監視する監視時の第二の光路に切替える段階と、前記光送信器が送信する光信号の発光波形を可変する設定値としてパラメータを設定する段階と、前記光送信器から送信されて前記光受信器で受信した光信号のエラー率を測定する段階と、前記測定した結果に基づいて、前記光送信器の最適な光通信のパラメータを算出して設定する段階と、を備える、光信号最適化方法。   (Appendix 4) An optical communication optimization method for an optical transmitter / receiver comprising an optical transmitter for transmitting an optical signal and an optical receiver for receiving the optical signal, wherein the optical path of the optical signal transmitted by the optical transmitter is: The step of switching from the first optical path at the time of optical communication for optical communication with another optical transceiver to the second optical path at the time of monitoring by receiving the transmitted optical signal by the optical receiver and monitoring the optical signal And setting a parameter as a set value for changing the light emission waveform of the optical signal transmitted by the optical transmitter; and measuring an error rate of the optical signal transmitted from the optical transmitter and received by the optical receiver And an optical signal optimization method comprising: calculating and setting an optimum optical communication parameter of the optical transmitter based on the measured result.

本発明は、光送受信器を用いる光通信システムにおいて利用することができる。   The present invention can be used in an optical communication system using an optical transceiver.

1…光送受信器、2…光路切替え部、3…光送信器、4…光受信器、5…コントローラ、6a,6b…光ファイバ。   DESCRIPTION OF SYMBOLS 1 ... Optical transmitter / receiver, 2 ... Optical path switching part, 3 ... Optical transmitter, 4 ... Optical receiver, 5 ... Controller, 6a, 6b ... Optical fiber.

Claims (3)

光信号を送信する光送信器及び光信号を受信する光受信器を備える光送受信器であって、
前記光送信器により送信される光信号の光路を、他の光送受信器とで光通信する光通信時の第一の光路と、前記光受信器で前記光信号を受信して監視する監視時の第二の光路とで切替える光路切替え部を備え、
前記光路切替え部は、前記監視時に前記光送信器が送信した光信号を反射させて前記光受信器に案内する少なくとも2つのミラー、該少なくとも2つのミラーを保持する筐体、及び前記筐体を駆動させ、前記少なくとも2つのミラーが前記光送信器により送信される光信号の光路上に位置するか否かで前記第一の光路と前記第二の光路とを切り換える駆動機構を備え
前記監視時において、前記光送信器から送信されて前記光受信器で受信した光信号のエラー率を測定する測定部と、該測定結果に基づいて、前記光送信器の最適な光通信のパラメータを算出して設定する設定部と、を含むコントローラを更に備える、
光送受信器。
An optical transceiver comprising an optical transmitter for transmitting an optical signal and an optical receiver for receiving an optical signal,
The optical path of the optical signal transmitted by the optical transmitter is a first optical path during optical communication in which optical communication is performed with another optical transceiver, and at the time of monitoring by receiving the optical signal with the optical receiver An optical path switching unit that switches between the second optical path and
The optical path switching unit includes: at least two mirrors that reflect an optical signal transmitted by the optical transmitter during the monitoring and guide the optical signal to the optical receiver; a housing that holds the at least two mirrors; and the housing A drive mechanism that drives and switches between the first optical path and the second optical path depending on whether or not the at least two mirrors are positioned on an optical path of an optical signal transmitted by the optical transmitter ;
At the time of monitoring, a measurement unit that measures an error rate of an optical signal transmitted from the optical transmitter and received by the optical receiver, and an optimal optical communication parameter of the optical transmitter based on the measurement result A controller including a setting unit for calculating and setting
Optical transceiver.
前記光送信器、前記光受信器、及び前記光路切替え部が一つのモジュールとして構成される、請求項に記載の光送受信器。 The optical transceiver according to claim 1 , wherein the optical transmitter, the optical receiver, and the optical path switching unit are configured as one module. 光信号を送信する光送信器及び光信号を受信する光受信器を備える光送受信器の光通信最適化方法であって、
前記光送信器により送信される光信号の光路を、他の光送受信器とで光通信する光通信時の第一の光路から、前記送信した光信号を前記光受信器で受信して該光信号を監視する監視時の第二の光路に切替える段階と、
前記光送信器が送信する光信号の発光波形を可変する設定値としてパラメータを設定する段階と、
前記光送信器から送信されて前記光受信器で受信した光信号のエラー率を測定する段階と、
前記測定した結果に基づいて、前記光送信器の最適な光通信のパラメータを算出して設定する段階と、
を備え
前記切替える段階は、監視時において、前記光送信器から送信されて前記光受信器で受信した光信号のエラー率を測定する段階と、該測定結果に基づいて、前記光送信器の最適な光通信のパラメータを算出して設定する段階と、を含む、
光信号最適化方法。
An optical communication optimization method for an optical transmitter / receiver comprising an optical transmitter for transmitting an optical signal and an optical receiver for receiving an optical signal,
An optical path of an optical signal transmitted by the optical transmitter is received by the optical receiver from the first optical path at the time of optical communication in which optical communication is performed with another optical transceiver. Switching to a second optical path during monitoring to monitor the signal;
Setting a parameter as a setting value for varying the light emission waveform of the optical signal transmitted by the optical transmitter;
Measuring an error rate of an optical signal transmitted from the optical transmitter and received by the optical receiver;
Calculating and setting optimum optical communication parameters of the optical transmitter based on the measured results; and
Equipped with a,
The step of switching comprises measuring an error rate of an optical signal transmitted from the optical transmitter and received by the optical receiver at the time of monitoring, and on the basis of the measurement result, an optimal light of the optical transmitter. Calculating and setting communication parameters, and
Optical signal optimization method.
JP2011034943A 2011-02-21 2011-02-21 Optical transceiver and optical signal optimization method thereof Expired - Fee Related JP5534464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011034943A JP5534464B2 (en) 2011-02-21 2011-02-21 Optical transceiver and optical signal optimization method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011034943A JP5534464B2 (en) 2011-02-21 2011-02-21 Optical transceiver and optical signal optimization method thereof

Publications (2)

Publication Number Publication Date
JP2012175367A JP2012175367A (en) 2012-09-10
JP5534464B2 true JP5534464B2 (en) 2014-07-02

Family

ID=46977844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011034943A Expired - Fee Related JP5534464B2 (en) 2011-02-21 2011-02-21 Optical transceiver and optical signal optimization method thereof

Country Status (1)

Country Link
JP (1) JP5534464B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226116A (en) * 1986-03-27 1987-10-05 Sumitomo Electric Ind Ltd Optical switch
JPS63302579A (en) * 1987-06-03 1988-12-09 Fujitsu Ltd Optical transmitter circuit
US5440655A (en) * 1993-12-29 1995-08-08 At&T Corp. Optical fiber connector bypass device and method using same

Also Published As

Publication number Publication date
JP2012175367A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
US8000607B2 (en) Optical transceivers with closed-loop digital diagnostics
EP2883093B1 (en) Method and system for performing testing of photonic devices
CN112764175B (en) Coupling assembly method and coupling assembly system of multi-channel laser transmitter
CN110692207B (en) Automatic optical reflectometer power adjustment
CN116195146A (en) Laser side mode suppression ratio control
US9383528B2 (en) Light-receiving module
JP5534464B2 (en) Optical transceiver and optical signal optimization method thereof
JP2003060585A (en) Optical communication device
JP4103287B2 (en) DFB laser driving apparatus, DFB laser driving method, and storage medium
JP4806559B2 (en) Method and apparatus for distortion control for an optical transmitter
JP5653850B2 (en) Semiconductor laser module and control method thereof
CN115021811B (en) Optical power reporting method and device of optical module
Murao et al. A 4× 25 Gbps hybrid integrated EML module for 100 GbE transmitters using lens positional control by laser irradiation
JP2007232833A (en) Optical communication module
US20120057878A1 (en) Communication device and control method of the same
CN113438028B (en) Optical fiber communication system and method for dynamic power optimization therein
JP6729169B2 (en) Underwater communication system and underwater communication device
US7460788B2 (en) Transmitting and receiving device
JP2013070204A (en) Optical transceiver, optical transmission level setting method, and setting program
JP2008218897A (en) Optical signal transmitter, output control circuit and output control method
US11536916B1 (en) Pathloss optimization for optical systems
JP2003232701A (en) Light receiver for lighting cable core and method for using the same
JP5549609B2 (en) Optical transmitter, network device, and axis deviation adjustment system for optical transmitter
JP2008263300A (en) Subscriber-side terminating device
WO2017168559A1 (en) Optical transmitter and optical transceiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140404

R150 Certificate of patent or registration of utility model

Ref document number: 5534464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140417

LAPS Cancellation because of no payment of annual fees