JP5533756B2 - Geothermal hot water treatment equipment - Google Patents

Geothermal hot water treatment equipment Download PDF

Info

Publication number
JP5533756B2
JP5533756B2 JP2011070304A JP2011070304A JP5533756B2 JP 5533756 B2 JP5533756 B2 JP 5533756B2 JP 2011070304 A JP2011070304 A JP 2011070304A JP 2011070304 A JP2011070304 A JP 2011070304A JP 5533756 B2 JP5533756 B2 JP 5533756B2
Authority
JP
Japan
Prior art keywords
hot water
pipe
acid
geothermal
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011070304A
Other languages
Japanese (ja)
Other versions
JP2012202179A (en
Inventor
謙年 林
忠彦 松村
暢人 山下
隆介 漆間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2011070304A priority Critical patent/JP5533756B2/en
Publication of JP2012202179A publication Critical patent/JP2012202179A/en
Application granted granted Critical
Publication of JP5533756B2 publication Critical patent/JP5533756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地熱熱水処理装置に係り、特に地熱発電に使用される地熱蒸気生産井から蒸気と共に生産される熱水を適切に処理する際に適用して好適な地熱熱水処理装置に関する。   The present invention relates to a geothermal hot water treatment apparatus, and more particularly to a geothermal hot water treatment apparatus suitable for application when appropriately treating hot water produced together with steam from a geothermal steam production well used for geothermal power generation.

地熱発電所において、地熱生産井から流出する熱水の処理に当たり、熱水中に含まれるシリカ成分が析出し、配管内にスケールとして付着して閉塞させることが問題となっている。   In the geothermal power plant, when the hot water flowing out from the geothermal production well is treated, the silica component contained in the hot water is deposited, and adheres as a scale in the pipe and is blocked.

このようなシリカ成分の析出を抑制するために、例えば硫酸、硝酸等の無機酸を添加してpHを下げる調整が行われている。その調整に際しては、pHを下げすぎると機器の酸腐食が問題となるので、シリカ成分析出の抑制効果と機器材料の耐食性とを勘案して酸の添加量が決められることになる。   In order to suppress such precipitation of the silica component, for example, an inorganic acid such as sulfuric acid or nitric acid is added to lower the pH. When adjusting the pH, the acid corrosion of the equipment becomes a problem if the pH is lowered too much. Therefore, the addition amount of the acid is determined in consideration of the effect of suppressing the precipitation of the silica component and the corrosion resistance of the equipment material.

ところが、添加した酸が完全に混合した場合の酸濃度(もしくはpH)を想定して、その添加量が決められているため、添加した酸が十分に混合せずに高濃度のまま配管内壁面や機器表面に到達すると、結果的に酸腐食の問題が生じることになる。そのため、例えば配管に酸を注入する場合には管の中央部分に供給口を配設し、管の軸方向に流出させることが一般に行われている。   However, since the amount of addition is determined assuming the acid concentration (or pH) when the added acid is completely mixed, the inner wall surface of the pipe remains at a high concentration without sufficient mixing of the added acid. And reaching the surface of the equipment will result in acid corrosion problems. Therefore, for example, when an acid is injected into a pipe, a supply port is generally provided at the center of the pipe and is allowed to flow out in the axial direction of the pipe.

例えば、特許文献1や2では、図1に特許文献1の例を示すように、生産井1より生産される地熱蒸気及び熱水は、配管2を介して気水分離器3に供給されて地熱蒸気と熱水とに分離された後、地熱蒸気は配管4から取り出されて図示しないタービンへ供給されると共に、熱水はレベルヘッダーL・Hを経て熱交換器7に供給され、ここで暖房等の熱源として利用された後、還元井8から地下に還元されるようになっている地熱蒸気生産設備において、前記気水分離器3で分離された熱水の配管5中に、酸容器6から酸を直接注入しpHを調整する技術が開示されている。   For example, in Patent Documents 1 and 2, as shown in FIG. 1, the geothermal steam and hot water produced from the production well 1 are supplied to the steam separator 3 via the pipe 2. After being separated into geothermal steam and hot water, the geothermal steam is taken out from the pipe 4 and supplied to a turbine (not shown), and the hot water is supplied to the heat exchanger 7 through the level headers L and H. In a geothermal steam production facility that is used as a heat source for heating or the like and then returned to the underground from the reduction well 8, an acid container is provided in the hot water pipe 5 separated by the steam / water separator 3. 6 discloses a technique for adjusting pH by directly injecting acid.

特開昭57−51393号公報(図1)JP-A-57-51393 (FIG. 1) 特開平10−205266号公報(図1、図2)JP-A-10-205266 (FIGS. 1 and 2)

しかしながら、通常、酸を水中に添加すると希釈熱が発生する。又、地熱熱水には様々な成分が溶解していることから、酸がその成分と反応して反応熱を発生する場合もある。   However, usually, when acid is added to water, heat of dilution is generated. In addition, since various components are dissolved in the geothermal hot water, the acid may react with the components to generate reaction heat.

一般に、気水分離器3から分離した熱水は沸点より少し温度の低い程度のほとんど気液飽和条件に近い状態にあるため、酸を注入した際の希釈熱や反応熱により、特に発熱量の大きい酸液と熱水の混合界面付近では、熱水温度が沸点に達し、沸騰して水蒸気泡が発生しやすい。このように発生した水蒸気泡は、浮力により配管内を鉛直上方に力を受けるため、図2に水平配管の場合を示す如く、発生した水蒸気泡Bに同伴される形で酸供給管14の開口部14Aから注入された酸液Aが上方に移動し、配管5の天部内壁に高濃度の酸液Aが到達し、その表面を腐食するという問題が生じる。   In general, since the hot water separated from the steam separator 3 is almost in the state of gas-liquid saturation at a temperature slightly lower than the boiling point, the amount of heat generated is particularly high due to the heat of dilution and heat of reaction when the acid is injected. In the vicinity of the mixed interface between a large acid solution and hot water, the hot water temperature reaches the boiling point, and it is boiled and water vapor bubbles are easily generated. Since the generated water vapor bubbles are subjected to a force vertically upward in the pipe due to buoyancy, the opening of the acid supply pipe 14 is accompanied by the generated water vapor bubbles B as shown in FIG. The acid solution A injected from the portion 14A moves upward, the high concentration acid solution A reaches the inner wall of the top of the pipe 5, and the surface thereof is corroded.

この問題を避けるために、水平配管でなく鉛直配管に酸を供給することも考えられるが、この場合には設備上の高さの制約などから注入部前後の管長を長く確保することは困難であることが多いため、注入部近くの上流や下流にエルボ等の曲がり配管が配設されることになり易い。この場合には、図3に注入部下流側(図の上方)に曲がり配管11がある場合を示すように、曲がり部で、熱水の流れる方向が管中心からずれる偏流Cが発生することになるため、曲がり配管内壁に高濃度の酸液が到達しやすくなり、同様の懸念が生じる。これは、図4に示すように、注入部上流側(図の下方)に曲がり配管11がある場合でも、同様である。   In order to avoid this problem, it is conceivable to supply acid to the vertical pipe instead of the horizontal pipe, but in this case, it is difficult to secure a long pipe length before and after the injection part due to the height restriction on the equipment. Since there are many cases, bent pipes such as elbows are likely to be disposed upstream and downstream near the injection portion. In this case, as shown in FIG. 3 where there is a bent pipe 11 on the downstream side of the injection part (upward in the figure), a drift C in which the flowing direction of hot water deviates from the center of the pipe is generated at the bent part. Therefore, it becomes easy for a high concentration acid solution to reach the bent pipe inner wall, and the same concern arises. This is the same even when there is a bent pipe 11 on the upstream side of the injection part (downward in the figure) as shown in FIG.

本発明は、前記従来の問題点を解決するべくなされたもので、熱水を水平配管で供給する場合でも、該熱水中に酸を注入して均等に混合することができ、従って該酸により配管の内壁面が腐食されることを確実に防止することができる地熱熱水処理装置を提供することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems. Even when hot water is supplied through a horizontal pipe, it is possible to inject acid into the hot water and mix it evenly. It is an object of the present invention to provide a geothermal hot water treatment apparatus that can reliably prevent the inner wall surface of a pipe from being corroded.

本発明は、地熱生産井から蒸気と共に生産される熱水を、気水分離器により蒸気から分離した後、配管を通して下流側へ供給する地熱熱水処理装置において、前記配管の内側に、該配管より小径のガイド管を軸方向に沿って配設し、該ガイド管の上流端近傍の周縁部内側に、前記配管内を流れる熱水中に酸を注入する酸供給管の開口部を配設すると共に、前記ガイド管を、前記酸供給管の開口部から注入される酸により発熱して発生する水蒸気泡が前記熱水に伴って移動する間に消滅する長さに設定することにより、前記課題を解決したものである。 The present invention relates to a geothermal hot water treatment apparatus for supplying hot water produced together with steam from a geothermal production well from steam with a steam separator, and then supplying it downstream through the pipe. A guide pipe having a smaller diameter is provided along the axial direction, and an opening of an acid supply pipe for injecting acid into the hot water flowing in the pipe is provided inside the peripheral edge near the upstream end of the guide pipe. The guide tube is set to a length that disappears while the water vapor bubbles generated by the heat generated by the acid injected from the opening of the acid supply tube move with the hot water, It solves the problem.

ここで、前記ガイド管を、前記配管と同軸に配設することができる。 Here, the guide pipe can be arranged coaxially with the pipe.

又、前記ガイド管を、耐食性材料により形成することができる。   Further, the guide tube can be formed of a corrosion resistant material.

更に、前記酸供給管の開口部を、前記ガイド管内に位置するようにできる。   Furthermore, the opening of the acid supply pipe can be located in the guide pipe.

本発明によれば、熱水を流通させる配管内に、該配管より小径のガイド管を軸方向に沿って配設し、該ガイド管の上流端近傍の周縁部内側に配設した開口部から酸を注入できるようにしたので、注入された酸は熱水と共に該ガイド管内を案内されて流れることになり、その結果、酸混合による発熱に起因して熱水が沸騰し、水蒸気泡が発生したとしても、該水蒸気泡の上昇に伴って高濃度の酸が前記主配管の天部内壁に到達することを阻止できることから、該天部内壁が酸により腐食されることを確実に防止することができる。   According to the present invention, a guide pipe having a smaller diameter than the pipe is disposed in the pipe through which the hot water is circulated along the axial direction, and from the opening disposed inside the peripheral edge near the upstream end of the guide pipe. Since the acid can be injected, the injected acid flows along with the hot water in the guide tube. As a result, the hot water boils due to heat generated by the acid mixing, and water vapor bubbles are generated. Even so, since the high-concentration acid can be prevented from reaching the inner wall of the main pipe as the water vapor bubbles rise, the inner wall of the ceiling is reliably prevented from being corroded by the acid. Can do.

従来の地熱蒸気生産井の概要を示す模式図Schematic diagram showing the outline of a conventional geothermal steam production well 従来の問題点を示す断面図Cross-sectional view showing conventional problems 従来の他の問題点を示す断面図Sectional view showing other conventional problems 従来の更に他の問題点を示す断面図Sectional view showing still another problem of the prior art 本発明に係る地熱熱水処理装置の第一実施形態の要部を示す断面図Sectional drawing which shows the principal part of 1st embodiment of the geothermal hot water processing apparatus which concerns on this invention. 第一実施形態の作用を示す線図Diagram showing the operation of the first embodiment 本発明に係る地熱熱水処理装置の第二実施形態の要部を示す断面図Sectional drawing which shows the principal part of 2nd embodiment of the geothermal hot water processing apparatus which concerns on this invention. 本発明に係る地熱熱水処理装置の第三実施形態の要部を示す断面図Sectional drawing which shows the principal part of 3rd embodiment of the geothermal hot water processing apparatus which concerns on this invention.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図5は、本発明に係る地熱熱水処理装置の第一実施形態の要部を、作用と共に示す概略説明図である。   FIG. 5 is a schematic explanatory view showing the main part of the first embodiment of the geothermal hot water treatment apparatus according to the present invention together with the action.

本実施形態の地熱熱水処理装置は、地熱生産井から蒸気と共に生産される熱水を、気水分離器により蒸気から分離した後、配管を通して下流側へ供給するものである。   The geothermal hot water treatment apparatus of the present embodiment is for supplying hot water produced together with steam from a geothermal production well from steam using a steam separator and then supplying it downstream through a pipe.

前記図1の生産設備の場合であれば、気水分離器3より下流の配管5内を流れる熱水と、酸容器6に連結された酸供給管から注入される酸との合流位置に適用される。   In the case of the production facility of FIG. 1, it is applied to a joining position of hot water flowing in the pipe 5 downstream from the steam separator 3 and an acid injected from an acid supply pipe connected to the acid container 6. Is done.

本実施形態においては、前記配管5に相当する主配管10の内側に該主配管10より小径のガイド管12が軸方向に沿って配設され、該ガイド管12の上流端12A近傍の周縁部内側かつ上流端12Aより少し下流側に、前記主配管10を流通する熱水H中に酸を注入する酸供給管14の開口部14Aが配設されている。   In the present embodiment, a guide pipe 12 having a smaller diameter than the main pipe 10 is disposed along the axial direction inside the main pipe 10 corresponding to the pipe 5, and the peripheral edge portion in the vicinity of the upstream end 12 </ b> A of the guide pipe 12. An opening 14A of an acid supply pipe 14 for injecting acid into the hot water H flowing through the main pipe 10 is disposed on the inner side and slightly downstream of the upstream end 12A.

この開口部14Aは、ガイド管12の内側まで延ばした構造になっているため、水蒸気泡Bが真上に上昇してしまう場合でもその上昇を確実に防止できる。   Since the opening 14A has a structure extending to the inside of the guide tube 12, even when the water vapor bubble B rises directly above, the rise can be reliably prevented.

前記ガイド管12は、ステンレス管やフッ素樹脂管、フッ素樹脂コーティング管等の耐食性材料で形成された円筒状の直管からなり、その軸が前記主配管10と概略同軸に配設されている。   The guide tube 12 is a cylindrical straight tube made of a corrosion-resistant material such as a stainless steel tube, a fluororesin tube, or a fluororesin coating tube, and its axis is arranged substantially coaxially with the main pipe 10.

また、前記ガイド管12は、前記酸供給管14の開口部14Aから注入される酸により発熱して発生する水蒸気泡Bが前記熱水Hに伴って移動する間に消滅する長さ、例えばガイド管の直径をDとした場合、2D〜5D程度に設定されている。   The guide tube 12 has a length that disappears while the water vapor bubbles B generated by the heat generated by the acid injected from the opening 14A of the acid supply tube 14 move with the hot water H, for example, a guide. When the diameter of the tube is D, it is set to about 2D to 5D.

次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.

前述したように、ガイド管12は主配管10と概略同軸に配設されており、該主配管10中を流れる熱水Hの一部がガイド管12の上流端12Aから該ガイド管内を常に流れるようになっている。   As described above, the guide pipe 12 is disposed substantially coaxially with the main pipe 10, and a part of the hot water H flowing through the main pipe 10 always flows in the guide pipe from the upstream end 12 </ b> A of the guide pipe 12. It is like that.

前記酸供給管14から供給された酸液Aは、熱水Hの流れに伴ってガイド管12内に流入し、ガイド管12内を流れる熱水Hと接触し、混合される。この混合の際に、希釈熱や反応熱が発生し、熱水Hが沸騰して水蒸気泡Bが生じる。   The acid solution A supplied from the acid supply pipe 14 flows into the guide pipe 12 along with the flow of the hot water H, and comes into contact with and mixes with the hot water H flowing through the guide pipe 12. During this mixing, heat of dilution and heat of reaction are generated, and hot water H is boiled to produce water vapor bubbles B.

この水蒸気泡Bは、浮力により鉛直上向き流速成分を持っているため、高濃度の酸液を同伴して上昇することになるが、ガイド管12によりその上昇が制限されることから、ガイド管12内を流れることになる。   Since this steam bubble B has a vertically upward flow velocity component due to buoyancy, it rises with a high concentration of acid solution. However, since the rise is restricted by the guide tube 12, the guide tube 12 Will flow inside.

その際に、ガイド管12は酸耐食性を有する材料で構成されていることから、腐食の問題が生じることはない。   At this time, since the guide tube 12 is made of a material having acid corrosion resistance, the problem of corrosion does not occur.

また、発生した水蒸気泡Bは、ガイド管12内を流れるにしたがって、沸点より少し温度が低い熱水と接触することにより凝縮するため、気泡径は次第に小さくなっていき、最終的には消滅する。従って、ガイド管12の下流端12Bからは、少なくとも大きな水蒸気泡Bが確実に消滅した状態で熱水と酸液の混合液が流出することになる。より好ましくは、ガイド管12の下流端12Bから流出する熱水において、水蒸気泡Bがすべて消滅していることが望ましい。一般的な地熱熱水条件では、ガイド管12の長さをその直径の2倍から5倍程度にすることで上記状態が達成される。   Moreover, since the generated water vapor bubbles B are condensed by contacting with hot water having a temperature slightly lower than the boiling point as it flows through the guide tube 12, the bubble diameter gradually decreases and eventually disappears. . Therefore, the mixed solution of hot water and acid solution flows out from the downstream end 12B of the guide tube 12 in a state where at least the large water vapor bubbles B are surely disappeared. More preferably, in the hot water flowing out from the downstream end 12B of the guide tube 12, it is desirable that all the steam bubbles B have disappeared. Under general geothermal hot water conditions, the above condition is achieved by setting the length of the guide tube 12 to about 2 to 5 times its diameter.

なお、このガイド管12から流出する混合液は、完全に均一に混合している必要はなく、ある程度の濃度分布を有していても構わない。ガイド管12から流出する混合液は、ガイド管12の外側を流れる熱水(酸濃度ゼロ)と混合しつつ流れていくことになるが、水蒸気泡Bは消滅しているので、ガイド管がなくても鉛直上向きの浮力が生じることはない。ガイド管12の下流端12Bを主配管10の概略中心軸近傍に配置することにより、ガイド管12より下流の主配管10内では、図6中に示したように、主配管10の中心軸近傍から周辺部に向けて酸液濃度が低減していくような濃度分布が保たれる。従って、中央部が高濃度、周辺部が低濃度の状態を維持したまま、概略同心円状にガイド管12の外側を流れてきた熱水Hと混合しつつ流れていくことになる。図6において、Rは主配管10の半径である。ガイド管12より下流の主配管10の内壁は、図6中に示したように、常にその管軸法線断面における最低濃度の酸液と接しつつ、完全混合に至ることになる。従って、高濃度の酸液により、主配管10の天部壁面が腐食することを確実に防止することが可能となる。   The liquid mixture flowing out from the guide tube 12 does not have to be completely uniformly mixed, and may have a certain concentration distribution. The mixed solution flowing out from the guide tube 12 flows while mixing with hot water (acid concentration zero) flowing outside the guide tube 12, but since the water vapor bubbles B have disappeared, there is no guide tube. However, there will be no vertical upward buoyancy. By disposing the downstream end 12B of the guide pipe 12 in the vicinity of the approximate central axis of the main pipe 10, in the main pipe 10 downstream of the guide pipe 12, as shown in FIG. Thus, the concentration distribution is maintained such that the concentration of the acid solution decreases toward the periphery. Therefore, it flows while mixing with the hot water H that has flowed outside the guide tube 12 in a substantially concentric manner while maintaining a high concentration in the central portion and a low concentration in the peripheral portion. In FIG. 6, R is the radius of the main pipe 10. As shown in FIG. 6, the inner wall of the main pipe 10 downstream from the guide pipe 12 is always in contact with the acid solution having the lowest concentration in the normal section of the pipe axis, and complete mixing is achieved. Therefore, it is possible to reliably prevent the top wall of the main pipe 10 from being corroded by the high concentration acid solution.

本実施形態においては、ガイド管12を円筒状の直管で構成したので、製造が容易で安価である。ただし、ガイド管の形状は円筒状の直管に限定されない。例えば矩形管であっても構わない。   In the present embodiment, since the guide tube 12 is constituted by a cylindrical straight tube, it is easy to manufacture and inexpensive. However, the shape of the guide tube is not limited to a cylindrical straight tube. For example, a rectangular tube may be used.

図7には、本発明に係る第二実施形態の要部を示す。   In FIG. 7, the principal part of 2nd embodiment which concerns on this invention is shown.

本実施形態は、ガイド管12を、下流ほど拡径された拡大テーパ管にしたものであり、それ以外の構成は前記第一実施形態と同様である。   In this embodiment, the guide tube 12 is an enlarged taper tube whose diameter is increased toward the downstream, and other configurations are the same as those in the first embodiment.

このように、ガイド管12として拡大テーパ管を採用することにより、拡散混合促進効果が得られるため、特に該ガイド管の下流側で酸と熱水の混合を効率よく促進することが可能となる。   As described above, by adopting an enlarged taper tube as the guide tube 12, an effect of promoting diffusion mixing can be obtained, and therefore, mixing of acid and hot water can be efficiently promoted particularly on the downstream side of the guide tube. .

図8には、本発明に係る第三実施形態の要部を示す。   In FIG. 8, the principal part of 3rd embodiment which concerns on this invention is shown.

本実施形態は、ガイド管12を、下流ほど小径となる縮小テーパ管にしたものであり、それ以外の構成は前記第一実施形態と同様である。   In the present embodiment, the guide tube 12 is a reduced taper tube having a smaller diameter toward the downstream, and the other configuration is the same as that of the first embodiment.

このようにガイド管として縮小テーパ管を採用することにより、混合促進効果が同様に得られる上に、ガイド管12内の流れの方向と水蒸気泡Bに働く浮力の方向が逆向きとなるため、ガイド管12内に水蒸気泡Bが留まりやすくなり、直管の場合より消泡を促進する効果が得られる。   In this way, by adopting a reduced taper tube as the guide tube, the mixing promotion effect can be obtained in the same manner, and the direction of the flow in the guide tube 12 and the direction of the buoyancy acting on the water vapor bubbles B are reversed. The water vapor bubbles B easily stay in the guide tube 12, and an effect of promoting defoaming can be obtained compared to the case of a straight tube.

なお、前記実施形態では、酸供給管14がレベルヘッダーL・Hの下流側に連結されている例を示したが、酸供給管14を連結する位置は、これに限定されず、例えば、特許文献2の図1に示されるように、主配管におけるレベルヘッダーL・Hの上流側であったり、特許文献2の図2に示されるように、気水分離器3の上流側の主配管へ熱水を戻す配管であってもよい。   In the above embodiment, the acid supply pipe 14 is connected to the downstream side of the level headers L and H. However, the position where the acid supply pipe 14 is connected is not limited thereto. As shown in FIG. 1 of Document 2, upstream of the level headers L and H in the main pipe, or as shown in FIG. 2 of Patent Document 2, to the main pipe upstream of the steam / water separator 3. A pipe for returning hot water may be used.

また、水平配置の主配管10とガイド管12が同軸に配設されている例を示したが、これに限定されず、例えば下流に向かって上に傾斜させても、逆に上流に向かって下に傾斜させてもよい。   Moreover, although the example in which the horizontally arranged main pipe 10 and the guide pipe 12 are coaxially arranged has been shown, the present invention is not limited to this, and for example, even if inclined upward toward the downstream, It may be inclined downward.

更に、主配管10は水平配置に限らず、鉛直配置であってもよく、この場合にも、図4に示したような上流側(図4の下側)のエルボ等の曲がり配管11により生じる酸注入部における偏流Cの影響をガイド管により抑制することができる。   Further, the main pipe 10 is not limited to the horizontal arrangement, but may be a vertical arrangement. In this case as well, the main pipe 10 is generated by the bent pipe 11 such as the elbow on the upstream side (lower side in FIG. 4) as shown in FIG. The influence of the drift C in the acid injection part can be suppressed by the guide tube.

10…主配管
12…ガイド管
12A…上流端
12B…下流端
14…酸供給管
14A…開口部
DESCRIPTION OF SYMBOLS 10 ... Main piping 12 ... Guide pipe 12A ... Upstream end 12B ... Downstream end 14 ... Acid supply pipe 14A ... Opening

Claims (4)

地熱生産井から蒸気と共に生産される熱水を、気水分離器により蒸気から分離した後、配管を通して下流側へ供給する地熱熱水処理装置において、
前記配管の内側に、該配管より小径のガイド管が軸方向に沿って配設され、
該ガイド管の上流端近傍の周縁部内側に、前記配管内を流れる熱水中に酸を注入する酸供給管の開口部が配設されると共に、
前記ガイド管が、前記酸供給管の開口部から注入される酸により発熱して発生する水蒸気泡が前記熱水に伴って移動する間に消滅する長さに設定されていることを特徴とする地熱熱水処理装置。
In the geothermal hot water treatment device that supplies hot water produced together with steam from the geothermal production well from the steam by the steam separator, and supplies it downstream through the piping,
Inside the pipe, a guide pipe having a smaller diameter than the pipe is disposed along the axial direction,
The on the periphery inside the upstream end near the guide tube, the opening of the acid supply tube for injecting an acid into hot water flowing in the pipe is arranged Rutotomoni,
The guide tube is set to a length that disappears while water vapor bubbles generated by heat generated by the acid injected from the opening of the acid supply tube move with the hot water. Geothermal hot water treatment equipment.
前記ガイド管が、前記配管と同軸に配設されていることを特徴とする請求項1に記載の地熱熱水処理装置。 The geothermal hot water treatment apparatus according to claim 1, wherein the guide pipe is disposed coaxially with the pipe. 前記ガイド管が、耐食性材料により形成されていることを特徴とする請求項又はに記載の地熱熱水処理装置。 The geothermal hot water treatment apparatus according to claim 1 or 2 , wherein the guide tube is made of a corrosion-resistant material. 前記酸供給管の開口部が、前記ガイド管内に位置していることを特徴とする請求項1乃至のいずれかに記載の地熱熱水処理装置。 The geothermal hot water treatment apparatus according to any one of claims 1 to 3 , wherein an opening of the acid supply pipe is located in the guide pipe.
JP2011070304A 2011-03-28 2011-03-28 Geothermal hot water treatment equipment Active JP5533756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070304A JP5533756B2 (en) 2011-03-28 2011-03-28 Geothermal hot water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070304A JP5533756B2 (en) 2011-03-28 2011-03-28 Geothermal hot water treatment equipment

Publications (2)

Publication Number Publication Date
JP2012202179A JP2012202179A (en) 2012-10-22
JP5533756B2 true JP5533756B2 (en) 2014-06-25

Family

ID=47183463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070304A Active JP5533756B2 (en) 2011-03-28 2011-03-28 Geothermal hot water treatment equipment

Country Status (1)

Country Link
JP (1) JP5533756B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6171397B2 (en) * 2013-02-27 2017-08-02 三菱ケミカル株式会社 How to add acidic solution

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135869U (en) * 1977-04-02 1978-10-27
JPS5751393A (en) * 1980-09-09 1982-03-26 Japan Metals & Chem Co Ltd Treatment of thermal water flowing out of geothermal steam extracting well
JP2000140881A (en) * 1998-11-16 2000-05-23 Nippon Sanso Corp Oxygen dissolution device
JP2005052769A (en) * 2003-08-06 2005-03-03 Jfe Engineering Kk Discharge equipment for waste water

Also Published As

Publication number Publication date
JP2012202179A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
CN106219725A (en) A kind of overcritical water oxidization reactor
Li et al. Gas‐Liquid Mass Transfer Characteristics with Microbubble Aeration–I. Standard Stirred Tank
JP5533756B2 (en) Geothermal hot water treatment equipment
JP5351393B2 (en) Fluid mixing channel structure and mixing method
TWI537513B (en) System for dampening vibration
JP2009257929A (en) Molten corium holding device, and reactor containment vessel
CN104235549A (en) Flow adjusting type water filling structure for reaction effluent pipeline
KR20120001413A (en) A flow mixing device to mitigate thermal stratification in pipe
JP2009082844A (en) Removal apparatus of impurities in liquid and method
JP5607883B2 (en) Primary circuit of nuclear reactor
JP2016164396A (en) Medium transfer pipe, geothermal power generator and geothermal power generation method using medium transfer pipe
CN108502999B (en) Secondary dilution multi-point dosing system and using method
KR101271542B1 (en) Heat-exchange type vaporizer header for fuel cell system
CN103755022A (en) Reducing IC (Internal Circulation) anaerobic reactor
CN108349763B (en) Method and device for treating wastewater by using ozone
JP2010094566A (en) Aerator and waste water treatment equipment
JP2013119717A (en) Pipe with agitating blade
WO2020022170A1 (en) Treatment apparatus for energy-gas purification wastewater and treatment method for energy-gas purification wastewater
CN209530570U (en) A kind of simple concentrated sulfuric acid industry dilution device
RU2481140C1 (en) Mass exchanger with continuous feed of gas
JP5651418B2 (en) Radioactive decontamination method
US11981561B2 (en) Systems and methods for producing sulfurous acid
CN209782596U (en) Deoxygenation water tank bubbling generation device
CN205527823U (en) Built -in deaerization plant
JP2006003232A (en) Pressurized reactor and cooling method of pressurized reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5533756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350