JP5530210B2 - Structure of fireproof partition wall and its construction method - Google Patents

Structure of fireproof partition wall and its construction method Download PDF

Info

Publication number
JP5530210B2
JP5530210B2 JP2010025896A JP2010025896A JP5530210B2 JP 5530210 B2 JP5530210 B2 JP 5530210B2 JP 2010025896 A JP2010025896 A JP 2010025896A JP 2010025896 A JP2010025896 A JP 2010025896A JP 5530210 B2 JP5530210 B2 JP 5530210B2
Authority
JP
Japan
Prior art keywords
plate
deck plate
partition
end surface
fire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010025896A
Other languages
Japanese (ja)
Other versions
JP2011162983A (en
Inventor
明良 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010025896A priority Critical patent/JP5530210B2/en
Publication of JP2011162983A publication Critical patent/JP2011162983A/en
Application granted granted Critical
Publication of JP5530210B2 publication Critical patent/JP5530210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Building Environments (AREA)

Description

本発明は、建物内の空間を仕切る耐火間仕切り壁の構造とこの耐火間仕切り壁の施工方法に関する。   The present invention relates to a structure of a fireproof partition wall that partitions a space in a building and a construction method of the fireproof partition wall.

従来から、建物内を複数の空間に仕切るには、建物内の所望部分における天井面と床面との対向面間に間仕切り板を配設することにより行われ、また、耐火構造とするには耐火性を有する間仕切り板を使用しているが、建物の天井下面が凹凸形状のデッキプレートによって形成されている場合には、間仕切り板をデッキプレートの凹凸面方向に向けた状態にしてその上端面を天井下面に当接させると、間仕切り板の上端面がデッキプレートの凸部の下面に密接するが、凹部に対してはこの凹部の下向き開口端を該間仕切りの上端面で閉止するだけで、閉止された凹部内の空間部によって間仕切り板の厚み方向に貫通した開口部が形成される。   Conventionally, in order to partition a building into a plurality of spaces, a partition plate is disposed between the facing surfaces of the ceiling surface and the floor surface in a desired portion of the building. If a partition plate with fire resistance is used, but the bottom of the ceiling of the building is formed by an uneven deck plate, the partition plate should be oriented in the direction of the uneven surface of the deck plate. Is brought into contact with the lower surface of the ceiling, the upper end surface of the partition plate is in close contact with the lower surface of the convex portion of the deck plate, but for the concave portion, the downward opening end of the concave portion is simply closed by the upper end surface of the partition. An opening that penetrates in the thickness direction of the partition plate is formed by the space in the closed recess.

このように、間仕切り板の上端側にデッキプレートの凹部による開口部を形成しておくと、間仕切り板によって仕切られた室内間の換気をこの開口部を通じて行うことができるが、火災が発生した時に、この開口部を通じて火炎や煙が一方の室内から他方に室内に侵入して短時間で類焼するといった問題点がある。   In this way, if an opening is formed by the recess of the deck plate on the upper end side of the partition plate, ventilation between the rooms partitioned by the partition plate can be performed through this opening, but when a fire occurs There is a problem in that flames and smoke enter the room from one room to the other through the opening and burn down in a short time.

このため、例えば、特許文献1に記載されているように、間仕切り板の上端面と天井下面のデッキプレートにおける凹部とによって囲まれた上記開口部に、鋼製のカバー板と、このカバー板に一体的に取り付けられ、且つ、上記開口部の断面形状に略等しい断面形状を有するグラスウール、ロックウール等を主材とした柔軟性に富んだ耐火ブロックとからなるブロック部材における該耐火ブロックを密嵌させることによって開口部をこの耐火ブロックによって閉塞すると共に、鋼製カバーの外周面と開口部の内周面との間の隙間に耐火性を有する接着剤を充填することによって耐火ブロックを開口部に密封状態で固定してなる耐火間仕切り壁が開発されている。   For this reason, for example, as described in Patent Document 1, a steel cover plate and a cover plate are formed in the opening surrounded by the upper end surface of the partition plate and the recesses in the deck plate on the lower surface of the ceiling. Closely fitting the fireproof block in a block member comprising a flexible fireproof block mainly made of glass wool, rock wool, etc., which is integrally attached and has a cross-sectional shape substantially equal to the cross-sectional shape of the opening. The opening is closed with this fireproof block, and the fireproof block is filled into the opening by filling the gap between the outer peripheral surface of the steel cover and the inner peripheral surface of the opening with a fireproof adhesive. Fire-resistant partition walls that are fixed in a sealed state have been developed.

さらに、特許文献2には、上記天井下面を形成しているデッキプレートの下面に、角棒形状の壁体用上部ランナーを固設し、この壁体用上部ランナーと上記デッキプレートの凹部とによって形成された上記開口部内に、セラミック繊維やロックウール或いはアスベスト等の無機質繊維を集束または積層して弾性を持たせた芯材を外被材によって被覆してなり、且つ上記開口部よりも大きな形状に形成してなる弾性を持たせた耐火部材を圧縮状態で挿入配置し、しかるのち、この壁体用上部ランナーの下面と床面との間に耐火性を有する間仕切り板を施工する間仕切り方法が記載されている。   Further, in Patent Document 2, a square bar-shaped upper body runner is fixed to the lower surface of the deck plate forming the ceiling lower surface, and the wall body upper runner and the recessed portion of the deck plate are used. In the formed opening, a core material made by converging or laminating inorganic fibers such as ceramic fiber, rock wool, or asbestos and having elasticity is covered with a jacket material, and the shape is larger than the opening. A partitioning method in which a fireproof member having elasticity formed by inserting and placing in a compressed state is inserted, and then a partition plate having fire resistance is constructed between the lower surface of the upper runner for wall and the floor surface. Have been described.

特許第3306008号公報Japanese Patent No. 3306008 特開2002−332707号公報JP 2002-332707 A

しかしながら、上記特許文献1、2に記載されたいずれの耐火間仕切り壁においても、天井下面のデッキプレートの凹部と間仕切り板の上端面又は壁体用上部ランナーとの間に形成される開口部を耐火ブロックや耐火部材(以下、耐火部材とする)によって閉塞するものであるから、開口部を閉塞する耐火ブロック等の形状、大きさを開口部の形状、大きさに適合するように形成するには費用が高くつくばかりでなく、開口部に施工するには手間を要して作業が煩雑化する虞れがあり、また、開口部に耐火部材を挿入してその弾性力により開口部の内面に密着させても、開口部の隅角部にまで充填させることが困難であって、接着剤等によりその隙間を完全に閉塞しておく作業も必要となるといった問題点があった。   However, in any of the fireproof partition walls described in Patent Documents 1 and 2, the opening formed between the concave portion of the deck plate on the lower surface of the ceiling and the upper end surface of the partition plate or the upper runner for the wall body is fireproof. Since it is blocked by a block or a fireproof member (hereinafter referred to as a fireproof member), the shape and size of the fireproof block or the like that closes the opening is formed to match the shape and size of the opening. Not only is the cost high, but there is a risk that it will take time and labor to construct the opening, and the work may be complicated. Even if they are in close contact with each other, it is difficult to fill the corners of the openings, and there is a problem that an operation of completely closing the gap with an adhesive or the like is required.

本発明はこのような問題点に鑑みてなされたもので、その目的とするところは、簡単な構造によって、火災発生時に建物の天井下面を形成しているデッキプレートと、建物内を仕切る耐火性を有する間仕切り板の上端面との間の空間部によって形成された開口部を通じて火炎や煙等が隣接する室内空間に侵入して類焼するのを防止することができる耐火間仕切り壁の構造と、この耐火間仕切り壁を容易に施工することができる耐火間仕切り壁の施工方法を提供するにある。   The present invention has been made in view of such problems, and the object of the present invention is to have a simple structure, a deck plate that forms the lower surface of the ceiling of the building in the event of a fire, and fire resistance that partitions the building. A fireproof partition wall structure capable of preventing flames, smoke, etc. from entering the adjacent indoor space through the opening formed by the space between the upper end surface of the partition plate having It is in providing the construction method of the fireproof partition wall which can construct a fireproof partition wall easily.

上記目的を達成するために、本発明の耐火間仕切り壁の構造は、請求項1に記載したように、下面をデッキプレートによる凹凸面に形成したコンクリート製の天井を有する建物内を、耐火性を有する間仕切り板によって区画してなる耐火間仕切り壁において、上記デッキプレートの下面とこの下面に対向している間仕切り板の上端面との少なくとも一方に、火災発生時に熱膨脹して、上記デッキプレートの下面と間仕切り板の上端面との間の空間部によって形成された開口部を閉塞する熱膨脹性耐火シート材を取り付けてなる構造を有している。   In order to achieve the above object, the structure of the fire-resistant partition wall according to the present invention provides fire resistance in a building having a concrete ceiling with a bottom surface formed as an uneven surface by a deck plate as described in claim 1. A fire-resistant partition wall partitioned by a partition plate having at least one of a lower surface of the deck plate and an upper end surface of the partition plate facing the lower surface; It has a structure in which a heat-expandable refractory sheet material that closes an opening formed by a space between the upper end surface of the partition plate is attached.

このように構成した耐火間仕切り壁の構造において、請求項2に係る発明は、耐火性を有する間仕切り板を、その横幅方向をコンクリート製の天井下面に一体に設けているデッキプレートの凹部と凸部との連続形成方向に向け、且つ、その上端面をデッキプレートにおける下方に突出した上記凸部の突出下面に密接させた状態に配設してあり、この間仕切り板によって区画された室内空間同士を、デッキプレートの凹部と該間仕切り板の上端面とで囲まれた空間部によって形成される開口部を通じて連通させていると共にこの開口部を形成している上記デッキプレートの凹部の内面とデッキプレートの上端面との少なくとも一方に熱膨脹性耐火シート材を取り付けていることを特徴とする。   In the structure of the fire-resistant partition wall configured as described above, the invention according to claim 2 is directed to the concave and convex portions of the deck plate in which the partition plate having fire resistance is integrally provided on the lower surface of the concrete ceiling. Are arranged in a state in which the upper end surfaces thereof are in close contact with the projecting lower surfaces of the convex portions projecting downward in the deck plate, and the indoor spaces partitioned by the partition plates are The deck plate is formed in a space surrounded by the recess of the deck plate and the upper end face of the partition plate, and communicates through an opening formed between the inner surface of the recess of the deck plate and the deck plate forming the opening. A heat-expandable fireproof sheet material is attached to at least one of the upper end surface.

また、請求項3に係る発明は、耐火性を有する間仕切り板を、その横幅方向をコンクリート製天井板の下面に一体に設けているデッキプレートの凹部と凸部との連続形成方向に向け、且つ、その上端面をデッキプレートにおける下方に突出した上記凸部の突出下面に密接させてなる耐火間仕切り壁において、デッキプレートの凹部と該間仕切り板の上端面とで囲まれた空間部によって形成された開口部を熱膨脹性耐火シートによって密閉していることを特徴とする。   Further, the invention according to claim 3 is directed to a partition plate having fire resistance, in which the lateral width direction is directed to the continuous formation direction of the concave and convex portions of the deck plate integrally provided on the lower surface of the concrete ceiling plate, and In the fire-resistant partition wall, the upper end surface of which is in close contact with the projecting lower surface of the convex portion projecting downward in the deck plate, is formed by a space portion surrounded by the concave portion of the deck plate and the upper end surface of the partition plate. The opening is sealed with a heat-expandable fireproof sheet.

請求項に係る発明は、耐火間仕切り壁の施工方法であって、下面をデッキプレートにより凹凸面に形成したコンクリート製の天井を有する建物内におけるこの天井下面と床面との間に耐火性を有する間仕切り板を配設して耐火間仕切り壁を形成したのち、天井下面と間仕切り板の上端面との少なくとも一方に、火災発生時に熱膨脹して上記天井下面と間仕切り板の上端面との間の空間部によって形成された開口部を閉塞する熱膨脹性耐火シート材を取り付けることを特徴とする。 The invention according to claim 4 is a method for constructing a fireproof partition wall, wherein fire resistance is provided between the lower surface of the ceiling and the floor surface in a building having a concrete ceiling with the lower surface formed into an uneven surface by a deck plate. A space between the ceiling lower surface and the upper end surface of the partition plate is formed by the thermal expansion of at least one of the lower surface of the ceiling and the upper end surface of the partition plate at the time of the fire A heat-expandable refractory sheet material that closes an opening formed by the portion is attached.

このように構成した耐火間仕切り壁の施工方法において、請求項に係る発明は、耐火性を有する間仕切り板を、その横幅方向をコンクリート製天井板の下面に一体に設けているデッキプレートの凹部と凸部との連続形成方向に向けた状態にしてその上端面をデッキプレートにおける下方に突出した上記凸部の突出下面に隙間なく密接させることにより、デッキプレートの凹部と該間仕切り板の上端面とで囲まれた空間部によってこの間仕切り板によって区画された室内空間同士を連通させる開口部を形成し、この開口部を形成した上記デッキプレートの凹部の内面とデッキプレートの上端面とのいずれか一方に熱膨脹性耐火シート材を取り付けることを特徴とする。 In the construction method of the fireproof partition wall configured as described above, the invention according to claim 5 includes a deck plate concave portion in which the partition plate having fire resistance is integrally provided on the lower surface of the concrete ceiling board in the lateral width direction. By placing the upper end surface in a state in which it is directed in the direction of continuous formation with the convex portion and closely contacting the projecting lower surface of the convex portion projecting downward on the deck plate, there is no gap between the concave portion of the deck plate and the upper end surface of the partition plate. An opening for communicating the indoor spaces partitioned by the partition plate with the space surrounded by the partition plate is formed, and either one of the inner surface of the concave portion of the deck plate and the upper end surface of the deck plate forming the opening It is characterized by attaching a heat-expandable fireproof sheet material.

請求項1に係る発明によれば、下面をデッキプレートによる凹凸面に形成したコンクリート製の天井を有する建物内を、耐火性を有する間仕切り板によって区画してなる耐火間仕切り壁において、上記デッキプレートの下面とこの下面に対向している間仕切り板の上端面との少なくとも一方に、火災発生時に熱膨脹して、上記デッキプレートの下面と間仕切り板の上端面との間の空間部によって形成された開口部を閉塞する熱膨脹性耐火シート材を取り付けているので、耐火間仕切り壁の構造が簡単で安価に施工できるのは勿論、常態においては天井下面と間仕切り板上端面との間によって形成されている開口部は、熱膨脹性耐火シートによって閉塞されることなく、間仕切り板によって区画された室内空間同士をこの開口部を通じて連通させているので、この開口部によって換気作用を奏することができるものであり、また、火災発生時には、室内の高温度による加熱によって熱膨脹性耐火シートが膨脹して上記開口部を隙間なく閉塞する発泡耐火層を形成し、この発泡耐火層によって火炎や煙等が開口部を通じて隣接する室内側に回り込むのを防止することができ、建築物の延焼を防ぐことができる。   According to the first aspect of the present invention, in the fireproof partition wall formed by partitioning the inside of the building having the concrete ceiling having the bottom surface formed into the uneven surface by the deck plate by the partition plate having fire resistance, the deck plate An opening formed by a space between the lower surface of the deck plate and the upper end surface of the partition plate, which is thermally expanded in the event of a fire, on at least one of the lower surface and the upper end surface of the partition plate facing the lower surface Since the heat-expandable fireproof sheet material is attached, the structure of the fireproof partition wall is simple and inexpensive, and of course, the opening formed between the bottom surface of the ceiling and the top surface of the partition plate is normal. The interior space defined by the partition plate is communicated with each other through this opening without being blocked by the heat-expandable fireproof sheet. Therefore, this opening can provide a ventilating action, and in the event of a fire, the heat-expandable fireproof sheet expands by heating at a high temperature in the room and closes the opening without any gaps. A layer is formed, and this foamed refractory layer can prevent a flame, smoke, or the like from entering the adjacent indoor side through the opening, and can prevent the building from spreading.

さらに、請求項2に係る発明によれば、上記請求項1に記載の耐火間仕切り板において、耐火性を有する間仕切り板を、その横幅方向をコンクリート製の天井下面に一体に設けているデッキプレートの凹部と凸部との連続形成方向に向け、且つ、その上端面をデッキプレートにおける下方に突出した上記凸部の突出下面に密接させた状態に配設しているので、デッキプレートにおける複数の凹部の開口下端を間仕切り板の上端面によって閉止してこれらの凹部と間仕切り板の上端面とによって凹部と同一断面形状の筒状の開口部を複数箇所に形成することができ、これらの各開口部における凹部の内面やこの凹部の開口下端を閉止している間仕切り板の上端面部分、或いは、開口部の内周面に熱膨脹性耐火シートを取り付けた簡単な構造によって、火災発生時における該熱膨脹性耐火シートの膨脹により開口部を確実に閉塞することができる一方、常態においてはこれらの開口部によって上述したように、隣接する室内空間の換気作用を行うことができる。   Furthermore, according to the invention which concerns on Claim 2, in the fireproof partition plate of the said Claim 1, the partition plate which has fire resistance, the width direction of the deck plate which is integrally provided in the concrete ceiling lower surface A plurality of concave portions in the deck plate are arranged in a state in which the concave portions and the convex portions are continuously formed and the upper end surfaces thereof are in close contact with the projecting lower surfaces of the convex portions projecting downward in the deck plate. The opening lower end of the partition plate is closed by the upper end surface of the partition plate, and these recesses and the upper end surface of the partition plate can form a plurality of cylindrical openings having the same cross-sectional shape as the recesses. With a simple structure in which a heat-expandable fireproof sheet is attached to the inner surface of the recess, the upper end surface portion of the partition plate closing the lower end of the opening of the recess, or the inner peripheral surface of the opening. In addition, the expansion of the thermally expandable refractory sheet at the time of the occurrence of a fire can surely close the opening, while in the normal state, as described above, the ventilation of the adjacent indoor space can be performed by these openings. it can.

請求項3に係る発明によれば、上記デッキプレートの凹部と該間仕切り板の上端面とで囲まれた空間部によって形成された開口部を熱膨脹性耐火シートによって密閉しているので、開口部による換気作用を行わせることができないが、火災発生時には、室内の高温度による加熱によって上記熱膨脹性耐火シートが膨脹して開口部内を隙間なく閉塞する発泡耐火層を形成し、この発泡耐火層によって火炎や煙等が開口部を通じて隣接する室内側に回り込むのを防止することができ、建築物の延焼を防ぐことができる。   According to the invention of claim 3, since the opening formed by the space surrounded by the concave portion of the deck plate and the upper end surface of the partition plate is sealed by the heat-expandable fireproof sheet, the opening Ventilation cannot be performed, but in the event of a fire, the thermally expansive refractory sheet expands by heating at a high temperature in the room to form a foam refractory layer that closes the inside of the opening without any gaps. It is possible to prevent smoke and the like from entering the adjacent indoor side through the opening, and to prevent the building from spreading fire.

請求項に係る発明は、上記耐火性間仕切り壁の施工方法であって、下面をデッキプレートにより凹凸面に形成したコンクリート製の天井を有する建物内におけるこの天井下面と床面との間に耐火性を有する間仕切り板を配設して耐火間仕切り壁を形成したのち、天井下面と間仕切り板の上端面との少なくとも一方に、火災発生時に熱膨脹して上記天井下面と間仕切り板の上端面との間の空間部によって形成された開口部を閉塞する熱膨脹性耐火シート材を取り付けるので、常態においては天井下面と間仕切り板上端面との間によって形成されている開口部によって間仕切り板で仕切られた室内空間同士の換気が可能であり、火災発生時には、熱膨脹性耐火シートの膨脹によって開口部を閉塞して類焼を防止することができる耐火性間仕切り壁を容易に施工することができる。 The invention according to claim 4 is the construction method of the fire-resistant partition wall, wherein the fire-resistant partition wall is fire-resistant between the lower surface of the ceiling and the floor surface in a building having a concrete ceiling whose lower surface is formed into an uneven surface by a deck plate. After forming a fire-resistant partition wall by arranging a partition plate having the property, at least one of the lower surface of the ceiling and the upper end surface of the partition plate is thermally expanded in the event of a fire and between the lower surface of the ceiling and the upper end surface of the partition plate. Since a heat-expandable refractory sheet material that closes the opening formed by the space portion is attached, the indoor space is normally partitioned by the partition plate by the opening formed between the lower surface of the ceiling and the upper end surface of the partition plate A fire-resistant partition that can ventilate each other, and in the event of a fire, can prevent similar firing by closing the opening by expanding the heat-expandable fire-resistant sheet It can be easily construction.

さらに、請求項に係る発明によれば、耐火性を有する間仕切り板を、その横幅方向をコンクリート製の天井下面に一体に設けているデッキプレートの凹部と凸部との連続形成方向に向けた状態にしてその上端面をデッキプレートにおける下方に突出した上記凸部の突出下面に隙間なく密接させることにより、デッキプレートの凹部と該間仕切り板の上端面とで囲まれた空間部によってこの間仕切り板によって区画された室内空間同士を連通させる開口部を形成するので、デッキプレートの凸部の下方に隙間や空間部を形成することなく、凹部とこの凹部に対向する間仕切り板の上端面とによって間仕切り板で仕切られた隣接する室内空間同士を連通させる該凹部と同一断面形状の筒状の開口部を複数箇所に形成することができるのは勿論、この凹部の内面や該凹部に対向する間仕切り板の上端面部分、或いは、開口部の内周面に対する熱膨脹性耐火シートの取り付け作業が確実且つ簡単に行え、火災発生時には、熱膨脹性耐火シートの膨脹によって開口部を全面的に隙間なく閉塞して類焼を防止することができる耐火性間仕切り壁を安価に且つ能率よく施工することができる。 Furthermore, according to the invention which concerns on Claim 5 , the partition direction which has fire resistance was orient | assigned to the continuous formation direction of the recessed part and convex part of the deck plate which are provided in the width direction of the deck integrally on the concrete ceiling lower surface. This partition plate is formed by a space surrounded by the concave portion of the deck plate and the upper end surface of the partition plate by closely contacting the upper end surface thereof with the projecting lower surface of the convex portion projecting downward on the deck plate without gaps. Since the opening that communicates the indoor spaces partitioned by is formed, the partition is formed by the recess and the upper end surface of the partition plate facing the recess without forming a gap or space below the protrusion of the deck plate. Of course, it is possible to form a plurality of cylindrical openings having the same cross-sectional shape as the recesses that allow adjacent indoor spaces partitioned by a plate to communicate with each other. The heat-expandable fireproof sheet can be securely and easily attached to the inner surface of the recess, the upper end surface portion of the partition plate facing the recess, or the inner peripheral surface of the opening. As a result, it is possible to efficiently and efficiently construct a fire-resistant partition wall that can completely close the opening without any gaps and prevent similar burning.

本発明耐火間仕切り壁の正面図。The front view of this invention fireproof partition wall. その要部の拡大縦断側面図。The enlarged vertical side view of the principal part. 熱膨脹性耐火シートの熱膨脹により開口部が閉塞した状態の正面図。The front view of the state which the opening part obstruct | occluded by the thermal expansion of the heat-expandable fireproof sheet. その要部の拡大縦断側面図。The enlarged vertical side view of the principal part. 間仕切り板を配設した状態の正面図。The front view of the state which has arrange | positioned the partition plate. 本発明の別な実施形態を示す要部の縦断側面図。The longitudinal side view of the principal part which shows another embodiment of this invention.

次に、本発明の具体的な実施の形態を図面について説明すると、図1、図2において、建物の天井1は耐火コンクリート製であって、その下面に金属製のデッキプレート1aを一体に設けてあり、この天井下面を形成しているデッキプレート1aと床2との対向面間に耐火性を有する間仕切り板3を配設してこの間仕切り板3により建物内を複数(図においては2つ)の室内空間B、Cに区画してなる耐火間仕切り壁Aを構成している。   Next, a specific embodiment of the present invention will be described with reference to the drawings. In FIGS. 1 and 2, the building ceiling 1 is made of refractory concrete, and a metal deck plate 1a is integrally provided on the lower surface thereof. A partition plate 3 having fire resistance is disposed between the opposing surfaces of the deck plate 1a and the floor 2 forming the lower surface of the ceiling, and a plurality of (in the figure, two in the figure) are formed by the partition plate 3. ) Of the fire-resistant partition wall A divided into the indoor spaces B and C.

上記デッキプレート1aは、断面等脚台形状に屈曲形成された凹部1a1 と凸部1a2 とを幅方向に波形状に連続させてなり、これらの凹凸部1a1 、1a2 は全長に亘って真っ直ぐな凹凸条に形成されている。このデッキプレート1a上に鉄筋(図示せず)を配したのち、コンクリートを打設することによって上面が平坦な上記天井1を形成している。また、床2も耐火コンクリート製であって、その床面は平坦面に形成されている。なお、デッキプレート1aの凹凸部1a1 、1a2 の断面形状は、等脚台形状に限定されることなく、全ての凹部1a1 と凸部1a2 とを同一大きさ、同一形状に形成しておけばよく、要するに、下方に突出している全ての凸部1a2 の突出高さを同一にしてその突出下面、即ち、頂面を水平方向に平坦な面に形成しておけばよい。   The deck plate 1a has a concave portion 1a1 and a convex portion 1a2 that are bent in an isosceles trapezoidal shape in a cross-sectional shape, and the concave and convex portions 1a1 and 1a2 are straight concave and convex over the entire length. It is formed into a strip. After a reinforcing bar (not shown) is arranged on the deck plate 1a, the ceiling 1 having a flat upper surface is formed by placing concrete. The floor 2 is also made of refractory concrete, and the floor surface is formed as a flat surface. The cross-sectional shape of the uneven portions 1a1 and 1a2 of the deck plate 1a is not limited to the isosceles trapezoidal shape, and all the concave portions 1a1 and the convex portions 1a2 may be formed in the same size and shape. In short, all the protruding portions 1a2 protruding downward may have the same protruding height, and the protruding lower surface, that is, the top surface may be formed as a flat surface in the horizontal direction.

建物内を仕切る上記耐火性を有する間仕切り板3(以下、単に間仕切り板とする)は、石膏ボードや珪酸カルシウム板等の耐火性を有する一定厚みの板材からなり、この間仕切り板3を建物内における仕切りたい床面上に、その横幅方向を天井下面を形成しているデッキプレート1aの凹凸部形成方向に向けた状態にして設置し、その下端面を床2の平滑な面上に隙間なく固定すると共に、上端面を上記天井1の下面を形成しているデッキプレート1aにおける下方に突出した凸部1a2 の下面に隙間なく密接させた状態にして固定している。なお、間仕切り板3の縦幅(高さ)が天井下面と床面との対向面間の高さよりも短い場合には、その上端面を直接、デッキプレート1aの凸部下面に密接させることなく、該上端面に耐火性を有するスペーサ部材(図示せず)を固着しておき、このスペーサ部材の上端面を該上端面に対向するデッキプレート1aにおける凸部下面に密接させた状態にして固定すればよい。また、一定の横幅を有する間仕切り板3を複数枚(図示せず)、横幅方向に隙間なく接続させることによって耐火間仕切り壁Aを構成している。   The partition plate 3 having fire resistance that partitions the inside of the building (hereinafter simply referred to as a partition plate) is made of a fixed-thickness plate material having fire resistance, such as a gypsum board or a calcium silicate plate, and the partition plate 3 is formed in the building. Installed on the floor you want to partition with the width direction facing the concave and convex part formation direction of the deck plate 1a that forms the bottom surface of the ceiling, and fixed the bottom end of the floor 2 on the smooth surface of the floor 2 without any gaps. At the same time, the upper end surface is fixed in close contact with the lower surface of the projecting portion 1a2 protruding downward in the deck plate 1a forming the lower surface of the ceiling 1 without any gap. In addition, when the vertical width (height) of the partition plate 3 is shorter than the height between the facing surfaces of the ceiling lower surface and the floor surface, the upper end surface thereof is not directly brought into close contact with the lower surface of the convex portion of the deck plate 1a. A spacer member (not shown) having fire resistance is fixed to the upper end surface, and the upper end surface of the spacer member is fixed in close contact with the lower surface of the convex portion of the deck plate 1a facing the upper end surface. do it. Moreover, the fireproof partition wall A is comprised by connecting the partition plate 3 which has fixed width | variety several sheets (not shown), and without a gap | interval in a width direction.

このように、天井1の下面を形成しているデッキプレート1aの凸部下面に間仕切り板3の上端面を隙間なく密接させると、この間仕切り板3の上端面に対向するデッキプレート1aにおける全ての凹部1a1 の開口下端が間仕切り板3の上端面によって閉止されて各凹部1a1 の内面と間仕切り板3の上端面とによって囲まれた空間部を凹部1a1 と同一断面形状の筒状の開口部4に形成してあり、これらの開口部4によってこの間仕切り板3で仕切られた室内空間B、C間を連通させている。   In this way, when the upper end surface of the partition plate 3 is brought into close contact with the lower surface of the convex portion of the deck plate 1 a forming the lower surface of the ceiling 1 without any gap, all the deck plates 1 a facing the upper end surface of the partition plate 3 The opening lower end of the recess 1a1 is closed by the upper end surface of the partition plate 3, and the space surrounded by the inner surface of each recess 1a1 and the upper end surface of the partition plate 3 is formed into a cylindrical opening 4 having the same cross-sectional shape as the recess 1a1. The indoor spaces B and C partitioned by the partition plate 3 are communicated with each other through the openings 4.

さらに、全ての開口部4内に、火災が発生した時に熱膨脹して開口部4を閉塞する熱膨脹性耐火シート5を取り付けている。各開口部4におけるこの熱膨脹性耐火シート5の取付位置は、凹部1a1 の内面であってもこの内面に対向する間仕切り板3の上端面であっても、或いはこれらの凹部1a1 の内面から間仕切り板3の上端面とに亘って、即ち、開口部4の内周面であってもよいが、いずれにしても熱膨脹性耐火シート5が熱膨脹した際に、開口部4が全面的に閉塞されるように、熱膨脹性耐火シート5の取付長さや積層厚み、幅等による取付量を設定しておく。   Furthermore, a thermally expandable refractory sheet 5 that is thermally expanded when a fire occurs and closes the openings 4 is attached to all the openings 4. The mounting position of the heat-expandable fireproof sheet 5 in each opening 4 may be the inner surface of the recess 1a1, the upper end surface of the partition plate 3 facing the inner surface, or the partition plate from the inner surface of these recesses 1a1. 3, that is, the inner peripheral surface of the opening 4, but in any case, when the heat-expandable fireproof sheet 5 is thermally expanded, the opening 4 is totally blocked. As described above, the amount of attachment of the thermally expandable fireproof sheet 5 depending on the attachment length, the laminated thickness, the width, and the like is set.

熱膨脹性耐火シート5としては、加熱によって膨脹して難燃性を有し、且つ、火炎等によって破壊し難い発泡耐火層5'を生成する発泡性耐火形成材が使用される。このような発泡性耐火形成材としては、特に限定されず、例えば、エポキシ樹脂、リン化合物、中和処理された熱膨張性黒鉛、及び無機充填材を含有する樹脂組成物(A)、熱可塑性樹脂及び/又はゴム物質、リン化合物、中和処理された熱膨張性黒鉛、及び無機充填材を含有する樹脂組成物(B)が挙げられる。   As the heat-expandable fireproof sheet 5, a foamable fireproof forming material is used that generates a foamed fireproof layer 5 ′ that expands by heating, has flame retardancy, and is not easily destroyed by flame or the like. Such a foamable refractory forming material is not particularly limited, for example, an epoxy resin, a phosphorus compound, neutralized thermally expandable graphite, and a resin composition (A) containing an inorganic filler, thermoplasticity Examples thereof include a resin composition (B) containing a resin and / or rubber substance, a phosphorus compound, neutralized thermally expandable graphite, and an inorganic filler.

先ず、樹脂組成物(A)について説明する。エポキシ樹脂としては、特に限定されないが、基本的にはエポキシ基をもつモノマーと硬化剤とを反応させることにより得られる。エポキシ樹脂の硬化方法は、特に限定されず、公知の方法によって行うことができる。エポキシ基をもつモノマーとしては、例えば、2官能のグリシジルエーテル型、グリシジルエステル型、多官能のグリシジルエーテル型等のモノマーが用いられる。   First, the resin composition (A) will be described. Although it does not specifically limit as an epoxy resin, Basically, it can obtain by making the monomer and epoxy resin which have an epoxy group react. The curing method of the epoxy resin is not particularly limited, and can be performed by a known method. As the monomer having an epoxy group, for example, a bifunctional glycidyl ether type, glycidyl ester type, or polyfunctional glycidyl ether type monomer is used.

2官能のグリシジルエーテル型のモノマーとしては、例えば、ポリエチレングリコール型、ポリプロピレングリコール型、ネオペンチルグリコール型、1,6−ヘキサンジオール型、トリメチロールプロパン型、プロピレンオキサイド−ビスフェノールA型、水添ビスフェノールA型等のモノマーが用いられる。グリシジルエーテル型のモノマーとしては、例えば、ヘキサヒドロ無水フタル酸型、テトラヒドロ無水フタル酸型、ダイマー酸型、p−オキシ安息香酸型等のモノマーが用いられる。多官能のグリシジルエーテル型のモノマーとしては、例えば、フェノールノボラック型、オルソクレゾールノボラック型、DPPノボラック型、ジシクロペンタジエン・フェノール型等のモノマーが用いられる。これらのエポキシ基をもつモノマーは単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the bifunctional glycidyl ether type monomer include polyethylene glycol type, polypropylene glycol type, neopentyl glycol type, 1,6-hexanediol type, trimethylolpropane type, propylene oxide-bisphenol A type, and hydrogenated bisphenol A. Monomers such as molds are used. Examples of the glycidyl ether type monomer include hexahydrophthalic anhydride type, tetrahydrophthalic anhydride type, dimer acid type, and p-oxybenzoic acid type monomer. As the polyfunctional glycidyl ether type monomer, for example, a phenol novolak type, an orthocresol novolak type, a DPP novolak type, a dicyclopentadiene / phenol type monomer or the like is used. These monomers having an epoxy group may be used alone or in combination of two or more.

上記硬化剤としては、重付加型又は触媒型のものが用いられる。重付加型の硬化剤としては、例えば、ポリアミン、酸無水物、ポリフェノール、ポリメルカプタン等が用いられる。触媒型の硬化剤としては、例えば、三級アミン、イミダゾール類、ルイス酸、ルイス塩基等が用いられる。エポキシ樹脂は、加熱時に形成された炭化層(燃焼残渣)が発泡耐火層として機能する上に、架橋構造をとるため熱膨張後の形状保全性に優れている。   As the curing agent, a polyaddition type or a catalyst type is used. As the polyaddition type curing agent, for example, polyamine, acid anhydride, polyphenol, polymercaptan and the like are used. As the catalyst type curing agent, for example, tertiary amines, imidazoles, Lewis acids, Lewis bases and the like are used. The epoxy resin is excellent in shape maintenance after thermal expansion because the carbonized layer (combustion residue) formed during heating functions as a foamed refractory layer and has a crosslinked structure.

リン化合物としては特に限定されず、例えば、赤リンや;トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート等の各種リン酸エステル;リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム等のリン酸金属塩;ポリリン酸アンモニウム類;以下に示す化学式(化1)で示される化合物等が用いられる。これらのうち、耐火性の観点から、赤リン、ポリリン酸アンモニウム類、及び、化学式(化1)で示される化合物が好ましく、性能、安全性、費用等の点においてポリリン酸アンモニウム類がより好ましい。   The phosphorus compound is not particularly limited. For example, red phosphorus; various phosphate esters such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate; sodium phosphate, Metal phosphates such as potassium phosphate and magnesium phosphate; ammonium polyphosphates; compounds represented by the following chemical formula (Formula 1) are used. Among these, from the viewpoint of fire resistance, red phosphorus, ammonium polyphosphates, and compounds represented by the chemical formula (Chemical Formula 1) are preferable, and ammonium polyphosphates are more preferable in terms of performance, safety, cost, and the like.

式中、R1及びR3は、水素、炭素数1〜16の直鎖状もしくは分岐状のアルキル基、又は炭素数6〜16のアリール基を示す。R2は、水酸基、炭素数1〜16の直鎖状若しくは分岐状のアルキル基、炭素数1〜16の直鎖状若しくは分岐状のアルコキシル基、炭素数6〜16のアリール基、又は、炭素数6〜16のアリールオキシ基を示す。 In the formula, R 1 and R 3 represent hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms. R 2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or carbon. The aryloxy group of Formula 6-16 is shown.

赤リンは少量の添加で難燃効果を向上する。赤リンとしては、市販の赤リンを用いることもできるが、耐湿性、混錬時に自然発火しない等の安全性の点から、赤リン粒子の表面を樹脂でコーティングしたもの等が好適に用いられる。   Red phosphorus improves the flame retardant effect by adding a small amount. As red phosphorus, commercially available red phosphorus can also be used, but from the viewpoint of safety such as moisture resistance and not spontaneously igniting during kneading, a material in which the surface of red phosphorus particles is coated with a resin is preferably used. .

ポリリン酸アンモニウム類としては、特に限定されず、例えば、ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウム等が挙げられるが、取扱性等の点からポリリン酸アンモニウムが好適に用いられる。市販品としては、例えば、クラリアント社製「EXOLIT AP422」、「EXOLIT AP462」、住友化学工業社製「スミセーフP」、チッソ社製「テラージュC60」、「テラージュC70」、「テラージュC80」等が挙げられる。   Examples of the ammonium polyphosphates include, but are not limited to, ammonium polyphosphate, melamine-modified ammonium polyphosphate, and the like, and ammonium polyphosphate is preferably used from the viewpoint of handleability. Examples of commercially available products include “EXOLIT AP422” and “EXOLIT AP462” manufactured by Clariant, “Sumisafe P” manufactured by Sumitomo Chemical Co., Ltd., “Terrage C60”, “Terrage C70” and “Terrage C80” manufactured by Chisso. It is done.

上記化学式(1)で表される化合物としては、特に限定されず、例えば、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、2−メチルプロピルホスホン酸、t−ブチルホスホン酸、2,3−ジメチル−ブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジオクチルフェニルホスホネート、ジメチルホスフィン酸、メチルニチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィジ酸、ジフェニルホスフィン酸、ビス(4−メトキシフェニル)ホスフィン酸等が挙げられる。なかでも、t−ブチルホスホン酸は、高価ではあるが、高難燃性の点において好ましい。上記リン化合物は、単独で用いても、2種以上を併用してもよい。   The compound represented by the chemical formula (1) is not particularly limited. For example, methylphosphonic acid, dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, 2-methylpropylphosphonic acid, t-butylphosphonic acid, 2,3-dimethyl-butylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphinic acid, methylnitylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid, Examples include phenylphosphinic acid, diethylphenylphosphidic acid, diphenylphosphinic acid, and bis (4-methoxyphenyl) phosphinic acid. Of these, t-butylphosphonic acid is preferable in terms of high flame retardancy although it is expensive. The said phosphorus compound may be used independently or may use 2 or more types together.

上記熱膨張性黒鉛は、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の粉末を、濃硫酸、硝酸、セレン酸等の無機酸と、濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、過酸化水素等の強酸化剤とで処理することにより生成するグラファイト層間化合物であり、炭素の層状構造を維持したままの結晶化合物である。上記のように酸処理された熱膨張性黒鉛は、更に、アンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物等で中和することによって、中和処理された熱膨張性黒鉛とする。   The above heat-expandable graphite is composed of natural scale-like graphite, pyrolytic graphite, quiche graphite and other inorganic acids such as concentrated sulfuric acid, nitric acid and selenic acid, concentrated nitric acid, perchloric acid, perchlorate and permanganic acid. It is a graphite intercalation compound produced by treatment with a strong oxidizing agent such as salt, dichromate, hydrogen peroxide, etc., and is a crystalline compound that maintains the layered structure of carbon. The heat-expandable graphite acid-treated as described above is further neutralized with ammonia, an aliphatic lower amine, an alkali metal compound, an alkaline earth metal compound, etc. To do.

上記脂肪族低級アミンとしては、特に限定されず、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、プロピルアミン、ブチルアミン等が挙げられる。上記アルカリ金属化合物及びアルカリ土類金属化合物としては、特に限定されず、例えば、カリウム、ナトリウム、カルシウム、バリウム、マグネシウム等の水酸化物、酸化物、炭酸塩、硫酸塩、有機酸塩等が挙げられる。   The aliphatic lower amine is not particularly limited, and examples thereof include monomethylamine, dimethylamine, trimethylamine, ethylamine, propylamine, and butylamine. The alkali metal compound and alkaline earth metal compound are not particularly limited, and examples thereof include hydroxides such as potassium, sodium, calcium, barium, and magnesium, oxides, carbonates, sulfates, and organic acid salts. It is done.

上記中和処理された熱膨張性黒鉛の粒度は、20〜200メッシュが好ましい。粒度が200メッシュより小さくなると、黒鉛の膨張度が小さく、所定の発泡耐火層が得られず、粒度が20メッシュより大きくなると、黒鉛の膨張度が大きいという利点はあるが、後述の樹脂分と混練する際に分散性が悪くなり、物性の低下が避けられない。中和処理された熱膨張性黒鉛の市販品としては、例えば、東ソー社製「フレームカットGREP−EG」、UCAR Carbon社製「GRAFGUARD」等が挙げられる。   The particle size of the neutralized heat-expandable graphite is preferably 20 to 200 mesh. When the particle size is smaller than 200 mesh, the degree of expansion of graphite is small, and a predetermined foamed refractory layer cannot be obtained. When the particle size is larger than 20 mesh, there is an advantage that the degree of expansion of graphite is large. When kneading, the dispersibility deteriorates, and the deterioration of physical properties is inevitable. As a commercial item of the heat-expandable graphite neutralized, for example, “Frame Cut GREP-EG” manufactured by Tosoh Corporation, “GRAFGUARD” manufactured by UCAR Carbon Corporation, and the like can be given.

上記無機充填剤としては特に限定されず、例えば、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類等の金属酸化物;水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、ハイドロタルサイト等の含水無機物;塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸ストロンチウム、炭酸バリウム等の金属炭酸塩;硫酸カルシウム、石膏繊維、ケイ酸カルシウム等のカルシウム塩;シリカ、珪藻土、ドーソナイト、硫酸バリウム、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム「MOS」(商品名)、チタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、フライアッシュ等が挙げられる。   The inorganic filler is not particularly limited, and examples thereof include metal oxides such as alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, and ferrites; calcium hydroxide, hydroxide Hydrous minerals such as magnesium, aluminum hydroxide, hydrotalcite; metal carbonates such as basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, strontium carbonate, barium carbonate; calcium sulfate, gypsum fiber, calcium silicate, etc. Calcium salt; silica, diatomaceous earth, dosonite, barium sulfate, talc, clay, mica, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, silica-based balun, aluminum nitride, boron nitride, nitriding Ion, carbon black, graphite, carbon fiber, carbon balun, charcoal powder, various metal powders, potassium titanate, magnesium sulfate “MOS” (trade name), lead zirconate titanate, aluminum borate, molybdenum sulfide, silicon carbide, Examples include stainless steel fibers, zinc borate, various magnetic powders, slag fibers, fly ash and the like.

上記無機充填剤は、単独で用いても、2種以上を併用してもよい。上記無機充填剤のうち、特に含水無機物と金属炭酸塩の併用が好ましい。含水無機物と金属炭酸塩は、骨材的な働きをするところから、燃焼残渣の強度向上や熱容量の増大に寄与するものと考えられる。   The said inorganic filler may be used independently or may use 2 or more types together. Of the inorganic fillers, the combined use of a hydrous inorganic substance and a metal carbonate is particularly preferable. The hydrous inorganic substance and the metal carbonate are considered to contribute to the improvement of the strength of the combustion residue and the increase of the heat capacity because they function as aggregates.

上記水酸化マグネシウム、水酸化アルミニウム等の含水無機物は、加熱時の脱水反応によって生成した水のために吸熱が起こり、温度上昇が低減されて高い耐熱性が得られる点、及び、加熱残渣として酸化物が残存し、これが骨材となって働くことで残渣強度が向上する点で特に好ましい。水酸化マグネシウムと水酸化アルミニウムは、脱水効果を発揮する温度領域が異なるため、併用すると脱水効果を発揮する温度領域が広がり、より効果的な温度上昇抑制効果が得られることから、併用することが好ましい。   The above-mentioned water-containing inorganic substances such as magnesium hydroxide and aluminum hydroxide are endothermic due to the water produced by the dehydration reaction during heating, the temperature rise is reduced, and high heat resistance is obtained, and oxidation as a heating residue It is particularly preferable in that the residual strength is improved by the fact that an object remains and acts as an aggregate. Magnesium hydroxide and aluminum hydroxide differ in the temperature range where the dehydration effect is exerted. Therefore, when used together, the temperature range where the dehydration effect is exhibited widens, and a more effective temperature rise suppressing effect can be obtained. preferable.

上記炭酸カルシウム、炭酸亜鉛等の金属炭酸塩は、上記リン化合物との反応で膨張を促すと考えられ、特に、リン化合物として、ポリリン酸アンモニウムを使用した場合に、高い膨張効果が得られる。また、有効な骨材として働き、燃焼後に形状保持性の高い残渣を形成する。   The metal carbonates such as calcium carbonate and zinc carbonate are considered to promote expansion by the reaction with the phosphorus compound, and in particular, when ammonium polyphosphate is used as the phosphorus compound, a high expansion effect is obtained. It also acts as an effective aggregate and forms a highly shape-retaining residue after combustion.

上記無機充填剤の粒径としては、0.5〜100μmが好ましく、より好ましくは1〜50μmである。そして、この無機充填剤は、添加量が少ないときは、分散性が性能を大きく左右するため粒径の小さいものが好ましいが、0.5μm未満になると二次凝集が起こり、分散性が悪くなる。上記無機充填剤の添加量が多いときは、高充填が進むにつれて、樹脂組成物の粘度が高くなり成形性が低下するが、粒径を大きくすることで樹脂組成物の粘度を低下させることができる点から、粒径の大きいものが好ましい。また、粒径が100μmを超えると、樹脂組成物の力学的物性が低下する。   As a particle size of the said inorganic filler, 0.5-100 micrometers is preferable, More preferably, it is 1-50 micrometers. And when this inorganic filler is added in a small amount, it is preferable that the particle size is small because the dispersibility greatly affects the performance. However, when the amount is less than 0.5 μm, secondary aggregation occurs and the dispersibility deteriorates. . When the amount of the inorganic filler added is large, the viscosity of the resin composition increases and moldability decreases as the high filling progresses, but the viscosity of the resin composition can be decreased by increasing the particle size. From the point of view, those having a large particle size are preferred. Moreover, when a particle size exceeds 100 micrometers, the mechanical physical property of a resin composition will fall.

また、上記無機充填剤は、粒径の大きいものと粒径の小さいものを組み合わせて使用することがより好ましく、組み合わせて用いることによって、発泡性耐火形成材7の力学的性能を維持したまま、高充填化することが可能となる。無機充填剤としては、例えば、水酸化アルミニウムである粒径1μmの「ハイジライトH−42M」(昭和電工社製)、粒径18μmの「ハイジライトH−31」(昭和電工社製)、及び、炭酸カルシウムである粒径1.8μmの「ホワイトンSB赤」(白石カルシウム社製)、粒径8μmの「BF300」(備北粉化工社製)等が挙げられる。   In addition, the inorganic filler is more preferably used in combination of a large particle size and a small particle size, by using in combination, while maintaining the mechanical performance of the foamable fireproof forming material 7, High filling is possible. As the inorganic filler, for example, “Hijilite H-42M” (made by Showa Denko) having a particle diameter of 1 μm, which is aluminum hydroxide, “Heidilite H-31” (made by Showa Denko) having a particle diameter of 18 μm, and “Whiteon SB red” (made by Shiraishi Calcium Co., Ltd.) having a particle size of 1.8 μm, which is calcium carbonate, “BF300” (made by Bihoku Flour Chemical Co., Ltd.) having a particle size of 8 μm, and the like.

上記樹脂組成物(A)において、リン化合物の配合量は、エポキシ樹脂100重量部に対して50〜150重量部が好ましい。配合量が、50重量部未満になると燃焼残渣に十分な形状保持性が得られず、多くなると機械的物性の低下が大きくなり、使用に耐えられなくなる。   In the resin composition (A), the compounding amount of the phosphorus compound is preferably 50 to 150 parts by weight with respect to 100 parts by weight of the epoxy resin. When the blending amount is less than 50 parts by weight, sufficient shape retention cannot be obtained for the combustion residue, and when the blending amount is large, the mechanical properties are greatly deteriorated and cannot be used.

上記樹脂組成物(A)において、中和処理された熱膨張性黒鉛の配合量は、エポキシ樹脂100重量部に対して15〜100重量部が好ましい。配合量が、15重量部未満では、十分な厚さの発泡耐火層が形成されないため耐火性能が低下し、100重量部を超えると、機械的強度の低下が大きく、使用に耐えられなくなる。   In the resin composition (A), the blending amount of the heat-expandable graphite subjected to neutralization treatment is preferably 15 to 100 parts by weight with respect to 100 parts by weight of the epoxy resin. When the blending amount is less than 15 parts by weight, a fire-resistant layer having a sufficient thickness is not formed, and thus the fire resistance performance is lowered. When the blending amount is more than 100 parts by weight, the mechanical strength is greatly lowered and cannot be used.

上記樹脂組成物(A)において、無機充填剤の配合量は、エポキシ樹脂100重量部に対して30〜500重量部が好ましい。配合量が、30重量部未満では、熱容量の低下に伴い十分な耐火性が得られず、500重量部を超えると、機械的強度の低下が大きく、使用に耐えられなくなる。   In the resin composition (A), the blending amount of the inorganic filler is preferably 30 to 500 parts by weight with respect to 100 parts by weight of the epoxy resin. When the blending amount is less than 30 parts by weight, sufficient fire resistance cannot be obtained with a decrease in heat capacity. When the blending amount exceeds 500 parts by weight, the mechanical strength is greatly decreased and cannot be used.

上記樹脂組成物(B)としては、熱可塑性樹脂及び/又はゴム物質、リン化合物、中和処理された熱膨張性黒鉛並びに無機充填剤を含有するものが用いられる。熱可塑性樹脂及び/又はゴム物質としては特に限定されず、例えば、ポリプロピレン系樹脂、ポリエチレン系樹脂、ポリ(1−)ブテン系樹脂、ポリペンテン系樹脂等のポリオレフィン系樹脂;ポリスチレン系樹脂、アクリロニトリル−ブタジエン−スチレン系樹脂、ポリカーボネート系樹脂、ポリフェニレンエーテル系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリ塩化ビニル系樹脂、フェノール系樹脂、ポリウレタン系樹脂、ポリブテン、ポリクロロプレン、ポリブタジエン、ポリイソブチレン、ブチルゴム、ニトリルゴム、水添石油樹脂等が挙げられる。   As the resin composition (B), those containing a thermoplastic resin and / or a rubber substance, a phosphorus compound, neutralized thermally expandable graphite, and an inorganic filler are used. The thermoplastic resin and / or rubber substance is not particularly limited. For example, polyolefin resin such as polypropylene resin, polyethylene resin, poly (1-) butene resin, polypentene resin; polystyrene resin, acrylonitrile-butadiene -Styrene resin, polycarbonate resin, polyphenylene ether resin, acrylic resin, polyamide resin, polyvinyl chloride resin, phenol resin, polyurethane resin, polybutene, polychloroprene, polybutadiene, polyisobutylene, butyl rubber, nitrile rubber And hydrogenated petroleum resin.

上記熱可塑性樹脂及び/又はゴム物質は、単独で用いられてもよく、2種以上が併用されてもよい。また、熱可塑性樹脂及び/又はゴム物質の溶融粘度、柔軟性、粘着性等を調整するため、2種以上をブレンドしたものをベース樹脂として使用してもよい。   The said thermoplastic resin and / or rubber substance may be used independently, and 2 or more types may be used together. Further, in order to adjust the melt viscosity, flexibility, adhesiveness, etc. of the thermoplastic resin and / or rubber substance, a blend of two or more kinds may be used as the base resin.

上記熱可塑性樹脂及び/又はゴム物質には、性能を阻害しない範囲で、架橋や変性が施されてもよい。熱可塑性樹脂及び/又はゴム物質の架橋や変性を行う時期については特に限定されず、予め架橋、変性した熱可塑性樹脂及び/又はゴム物質を用いてもよく、後述のリン化合物や無機充填剤等の他の成分を配合する際に同時に架橋や変性してもよい。また、熱可塑性樹脂及び/又はゴム物質に他の成分を配合した後に架橋や変性してもよく、この架橋や変性は、いずれの段階で行ってもよい。   The thermoplastic resin and / or rubber substance may be subjected to crosslinking or modification within a range not impairing performance. There is no particular limitation on the timing of crosslinking and modification of the thermoplastic resin and / or rubber substance, and a thermoplastic resin and / or rubber substance that has been previously crosslinked and modified may be used. When other components are blended, they may be crosslinked or modified at the same time. Moreover, after mix | blending another component with a thermoplastic resin and / or a rubber substance, you may bridge | crosslink and modify | denature, and this bridge | crosslinking and modification | denaturation may be performed in any step.

上記熱可塑性樹脂及び/又はゴム物質の架橋方法については特に限定されず、通常行われる架橋方法、例えば、各種架橋剤、過酸化物等を使用する架橋方法、電子線照射による架橋方法等が挙げられる。上記樹脂組成物(B)で用いられるリン化合物、中和処理された熱膨張性黒鉛及び無機充填剤は、上記樹脂組成物(A)で用いられるものと同様である。   The method for crosslinking the thermoplastic resin and / or rubber substance is not particularly limited, and examples include a conventional crosslinking method such as a crosslinking method using various crosslinking agents and peroxides, a crosslinking method by electron beam irradiation, and the like. It is done. The phosphorus compound, neutralized thermally expandable graphite and inorganic filler used in the resin composition (B) are the same as those used in the resin composition (A).

上記樹脂組成物(B)において、リン化合物と中和処理された熱膨張性黒鉛の配合量(両者の合計量)は、熱可塑性樹脂及び/又はゴム物質100重量部に対して20〜500重量部が好ましい。両者の合計量が、20重量部未満になると十分な熱膨張性が得られず、500重量部を超えると均一な分散が困難となるため、均一な厚さに成形することが困難となる。   In the resin composition (B), the compounding amount of the phosphorus compound and neutralized thermally expandable graphite (the total amount of both) is 20 to 500 weights per 100 parts by weight of the thermoplastic resin and / or rubber substance. Part is preferred. When the total amount of both is less than 20 parts by weight, sufficient thermal expansion cannot be obtained, and when it exceeds 500 parts by weight, uniform dispersion becomes difficult, and it becomes difficult to form a uniform thickness.

また、リン化合物と中和処理された熱膨張性黒鉛との重量比(熱膨張性黒鉛/リン化合物)は、0.01〜9が好ましい。熱膨張性黒鉛の比率が多くなると、燃焼時に膨張した黒鉛が飛散して十分な発泡耐火層が形成され難くなり、リン化合物の比率が多くなると十分な発泡耐火層が形成されなくなるため、十分な断熱性が得られなくなる。   The weight ratio of the phosphorus compound to the neutralized thermally expandable graphite (thermally expandable graphite / phosphorus compound) is preferably 0.01 to 9. If the ratio of thermally expandable graphite increases, graphite expanded during combustion will scatter and it will become difficult to form a sufficient foamed refractory layer, and if the ratio of phosphorus compound increases, a sufficient foamed refractory layer will not be formed. Heat insulation cannot be obtained.

上記樹脂組成物(B)において、無機充填剤の配合量は、熱可塑性樹脂及び/又はゴム物質100重量部に対して50〜500重量部が好ましい。配合量が、50重量部未満になると十分な耐火性が得られず、500重量部を超えると機械的強度が低下する。この樹脂組成物(B)に粘着性が不足する場合は、例えば、上記熱可塑性樹脂及び/又はゴム物質に粘着付与剤を添加することにより、粘着性を付与することができる。粘着付与剤としては特に限定されず、例えば、粘着付与樹脂、可塑剤、油脂類、高分子低重合物等が挙げられる。   In the resin composition (B), the amount of the inorganic filler is preferably 50 to 500 parts by weight with respect to 100 parts by weight of the thermoplastic resin and / or rubber substance. When the blending amount is less than 50 parts by weight, sufficient fire resistance cannot be obtained, and when it exceeds 500 parts by weight, the mechanical strength is lowered. When the resin composition (B) is insufficient in tackiness, the tackiness can be imparted, for example, by adding a tackifier to the thermoplastic resin and / or rubber substance. It does not specifically limit as a tackifier, For example, tackifying resin, a plasticizer, fats and oils, a polymer low polymer, etc. are mentioned.

上記樹脂組成物(A)及び(B)には、その物性を損なわない範囲で、難燃剤、酸化防止剤、金属害防止剤、帯電防止剤、安定剤、架橋剤、滑剤、軟化剤、顔料、粘着付与樹脂等が添加されてもよい。また、樹脂組成物(A)及び(B)は、上記各成分を、例えば、押出機、ニーダーミキサー、二本ロール、バンバリーミキサー等、公知の混練装置を用いて溶融混練することにより得ることができる。これらの樹脂組成物は、公知の方法で成形することにより、熱膨脹性耐火シート5とすることができる。   In the resin compositions (A) and (B), flame retardants, antioxidants, metal damage inhibitors, antistatic agents, stabilizers, crosslinking agents, lubricants, softeners, pigments are used as long as the physical properties are not impaired. A tackifying resin or the like may be added. The resin compositions (A) and (B) can be obtained by melt-kneading the above components using a known kneading apparatus such as an extruder, a kneader mixer, a two-roller, a Banbury mixer, and the like. it can. These resin compositions can be made into the heat-expandable fireproof sheet 5 by molding by a known method.

この熱膨脹性耐火シート5の加熱発泡による体積膨脹率は2〜50倍であって、厚みは0.2mm 〜10mmに形成されていることが好ましく、間仕切り板3の厚みに略等しい幅でもって所定長さに切断されたシート片を複数枚、上記各凹部1a1 の内面、或いは、この凹部1a1
の開口下端を閉止している間仕切り板3の上端面、又は、これらの凹部1a1 と間仕切り板3の上端面とによって形成された開口部4の内周面に、積層状態にして取り付けて、この積層した熱膨脹性耐火シート5が熱膨脹した際に、開口部4を隙間なく閉止できるようにその取り付けた熱膨脹性耐火シート5の体積を設定している。なお、開口部4等に対する熱膨脹性耐火シート5を取り付けは接着することによって行われる。熱膨脹性耐火シート5の加熱発泡による体積膨張率とは、熱膨脹性耐火シート5が膨脹して形成される発泡耐火層5'の体積を、膨脹前の熱膨脹性耐火シート5の体積で除した値をいう。
The volume expansion coefficient of the heat-expandable refractory sheet 5 by heating and foaming is preferably 2 to 50 times, and the thickness is preferably 0.2 mm to 10 mm, and has a predetermined length with a width substantially equal to the thickness of the partition plate 3. A plurality of sheet pieces that have been cut to the right, the inner surface of each of the recesses 1a1, or
The upper end surface of the partition plate 3 that closes the lower end of the opening, or the inner peripheral surface of the opening portion 4 formed by these recesses 1a1 and the upper end surface of the partition plate 3 are attached in a laminated state. The volume of the heat-expandable fireproof sheet 5 attached is set so that the opening 4 can be closed without a gap when the laminated heat-expandable fireproof sheet 5 is thermally expanded. Note that the heat-expandable fireproof sheet 5 is attached to the opening 4 or the like by bonding. The volume expansion coefficient by thermal foaming of the heat-expandable fireproof sheet 5 is a value obtained by dividing the volume of the foamed fireproof layer 5 'formed by the expansion of the heat-expandable fireproof sheet 5 by the volume of the heat-expandable fireproof sheet 5 before expansion. Say.

建物内に上記耐火間仕切り壁Aを施工するには、上述したように、この耐火間仕切り壁Aにより建物内を仕切りたい位置における床面上に、間仕切り板3を図5に示すように、その横幅方向を天井下面のデッキプレート1aにおける凹凸部1a1 、1a2 の連続形成方向に向けた状態にして設置し、その下端面を床面上に隙間なく固定すると共にその上端面を、天井1の下面を形成しているデッキプレート1aにおける下方に突出した凸部1a2 の下面に隙間なく密接させ状態にして固定し、この間仕切り板3を複数枚、互いにその対向側端面同士を隙間なく接続させることによって耐火間仕切り壁Aを形成する。   In order to construct the fireproof partition wall A in the building, as described above, the partition plate 3 is arranged on the floor surface at the position where the fireproof partition wall A is desired to partition the building, as shown in FIG. Installed with the direction facing the concavo-convex portions 1a1 and 1a2 of the deck plate 1a on the bottom surface of the ceiling, with its lower end surface fixed on the floor surface without any gaps, and its upper end surface on the bottom surface of the ceiling 1 Fixing the bottom surface of the projecting portion 1a2 projecting downward in the formed deck plate 1a in close contact with no gap, and connecting a plurality of partition plates 3 to each other on the opposite end surfaces without any gap. A partition wall A is formed.

さらに、間仕切り板3の上端面と上記天井下面を形成しているデッキプレート1aにおける凹部1a1 との対向面間の空間部によって形成された開口部4の内周面に、火災発生時に熱膨脹してこの開口部4を閉塞する上記熱膨脹性耐火シート5を取り付けることによって施工を完了するものである。   Further, when the fire breaks out, the inner peripheral surface of the opening 4 formed by the space portion between the upper surface of the partition plate 3 and the concave surface 1a1 of the deck plate 1a forming the lower surface of the ceiling is thermally expanded. The installation is completed by attaching the thermally expandable fireproof sheet 5 that closes the opening 4.

この際、熱膨脹性耐火シート5は開口部4の内周面全面に取り付けてもよく、或いは、開口部4を形成している凹部1a1 の内面とこの凹部1a1 に臨ませているデッキプレート1aの上端面とのいずれか一方に熱膨脹性耐火シート5を層状に取り付けてもよい。さらに、熱膨脹性耐火シート5の取付作業は、建物内の耐火間仕切り壁施工位置に、一枚の間仕切り板3が配設される毎に、この間仕切り板3の上端面と天井下面を形成しているデッキプレート1aの凹部1a1 とで形成した開口部4に行ってもよく、或いは、耐火間仕切り壁Aの施工完了後に、全ての開口部4に行ってもよい。   At this time, the heat-expandable fireproof sheet 5 may be attached to the entire inner peripheral surface of the opening 4, or the inner surface of the recess 1a1 forming the opening 4 and the deck plate 1a facing the recess 1a1. The heat-expandable refractory sheet 5 may be attached in layers to either one of the upper end surface. Furthermore, the installation work of the heat-expandable fireproof sheet 5 is performed by forming the upper end surface of the partition plate 3 and the lower surface of the ceiling every time one partition plate 3 is disposed at the construction position of the fireproof partition wall in the building. You may go to the opening part 4 formed with the recessed part 1a1 of the deck plate 1a which exists, or you may go to all the opening parts 4 after completion of construction of the fireproof partition wall A.

このように構成した耐火間仕切り壁Aによれば、常態においては、この耐火間仕切り壁Aによって仕切っている室内空間B、C間が、天井下面のデッキプレート1aにおける凹部1a1 とこの凹部1a1 の開口下端を閉止している間仕切り板3の上端面とで形成した開口部4によって連通してあり、この開口部4が換気口の機能を果して隣接する室内空間B、C間の換気を行っている。   According to the fireproof partition wall A configured as described above, in the normal state, the space between the indoor spaces B and C partitioned by the fireproof partition wall A is the recess 1a1 in the deck plate 1a on the lower surface of the ceiling and the lower end of the opening of the recess 1a1. Are communicated by an opening 4 formed with the upper end surface of the partition plate 3, and this opening 4 functions as a ventilation opening to ventilate the adjacent indoor spaces B and C.

また、一方の室内空間B側に火災が発生すると、天井下面と間仕切り板3の上端面間に設けている上記全ての開口部4内の熱膨脹性耐火シート5が加熱されて発泡、膨脹し、図3、図4に示すように、開口部4内に隙間なく充満して開口部4を全面的に閉塞した発泡耐火層5'を形成し、この発泡耐火層5'によって火炎や煙が隣接する他方の室内空間Aに侵入するのを阻止して類焼を防止する。   Further, when a fire occurs in one of the indoor spaces B, the heat-expandable refractory sheets 5 in all the openings 4 provided between the lower surface of the ceiling and the upper end surface of the partition plate 3 are heated to foam and expand, As shown in FIG. 3 and FIG. 4, a foamed fireproof layer 5 ′ is formed in which the opening 4 is filled without any gaps, and the opening 4 is completely closed, and flame or smoke is adjacent to the foamed fireproof layer 5 ′. Intrusion is prevented by preventing entry into the other indoor space A.

なお、以上の実施の形態においては、天井1の下面を形成しているデッキプレート1aの凹部1a1 と、間仕切り板3の上端面とで囲まれた空間部によって形成された開口部4の内周面における凹部1a1 の内面、或いは、この凹部1a1 に臨ませている間仕切り板3の上端面に熱膨脹性耐火シート5を取り付けているが、図6に示すように、デッキプレート1aの凹部1a1 と同大、同形に形成した熱膨脹性耐火シート5Aをデッキプレート1aの凹部1a1 と間仕切り板3の上端面とで囲まれた空間部によって形成されている開口部4内に挿入してその外周端を開口部4の内周面に貼着しておいてもよい。   In the above embodiment, the inner periphery of the opening 4 formed by the space surrounded by the recess 1a1 of the deck plate 1a forming the lower surface of the ceiling 1 and the upper end surface of the partition plate 3 is provided. A heat-expandable fireproof sheet 5 is attached to the inner surface of the concave portion 1a1 on the surface or the upper end surface of the partition plate 3 facing the concave portion 1a1, but as shown in FIG. 6, the same as the concave portion 1a1 of the deck plate 1a. The heat expansion sheet 5A formed in the same shape is inserted into the opening 4 formed by the space surrounded by the recess 1a1 of the deck plate 1a and the upper end surface of the partition plate 3, and the outer peripheral end is opened. You may stick to the inner peripheral surface of the part 4.

このように構成した耐火間仕切り壁Aによれば、熱膨脹性耐火シート5Aによって開口部4が閉止された状態となって換気作用を奏することができないが、火災が発生すると、この熱膨脹性耐火シート5Aが加熱されて発泡、膨脹し、開口部4内に隙間なく充満して開口部4を全面的に閉塞した発泡耐火層を形成することができる。   According to the fireproof partition wall A configured as described above, the opening 4 is closed by the heat-expandable fireproof sheet 5A, and the ventilation function cannot be performed. However, when a fire occurs, the heat-expandable fireproof sheet 5A Can be heated to foam and expand, and the opening 4 can be filled without any gaps to form a foamed refractory layer that completely closes the opening 4.

A 耐火間仕切り壁
1 天井
1a デッキプレート
1a1 デッキプレートの凹部
1a2 デッキプレートの凸部
2 床
3 間仕切り板
4 開口部
5 熱膨脹性耐火シート
5' 発泡耐火層
A Fireproof partition wall 1 Ceiling
1a Deck plate
1a1 Recessed deck plate
1a2 Convex part of deck plate 2 Floor 3 Partition board 4 Opening 5 Heat-expandable fireproof sheet
5 'foam fireproof layer

Claims (5)

下面をデッキプレートによる凹凸面に形成したコンクリート製天井部を有する建物内を、耐火性を有する間仕切り板によって区画してなる耐火間仕切り壁において、上記デッキプレートの下面とこの下面に対向している間仕切り板の上端面との少なくとも一方に、火災発生時に熱膨脹して、上記デッキプレートの下面と間仕切り板の上端面との間の空間部によって形成された開口部を閉塞する熱膨脹性耐火シート材を取り付けてなることを特徴とする耐火間仕切り壁の構造。   In a fire-resistant partition wall in which the inside of a building having a concrete ceiling part formed with an uneven surface by a deck plate is partitioned by a fire-resistant partition plate, the partition facing the bottom surface of the deck plate and the bottom surface A heat-expandable refractory sheet material is attached to at least one of the upper end surface of the plate and thermally expands in the event of a fire to close the opening formed by the space between the lower surface of the deck plate and the upper end surface of the partition plate. A fireproof partition wall structure characterized by comprising 耐火性を有する間仕切り板を、その横幅方向をコンクリート製の天井下面に一体に設けているデッキプレートの凹部と凸部との連続形成方向に向け、且つ、その上端面をデッキプレートにおける下方に突出した上記凸部の突出下面に密接させた状態に配設してあり、この間仕切り板によって区画された室内空間同士を、デッキプレートの凹部と該間仕切り板の上端面とで囲まれた空間部によって形成される開口部を通じて連通させていると共にこの開口部を形成している上記デッキプレートの凹部の内面とデッキプレートの上端面との少なくとも一方に熱膨脹性耐火シート材を取り付けていることを特徴とする請求項1に記載の耐火間仕切り壁の構造。   The partition plate having fire resistance is directed in the direction in which the concave and convex portions of the deck plate that are integrally provided on the bottom surface of the concrete are integrally formed on the bottom surface of the concrete, and the upper end surface projects downward on the deck plate. Are arranged in close contact with the projecting lower surface of the convex portion, and the indoor spaces partitioned by the partition plate are surrounded by a space portion surrounded by the concave portion of the deck plate and the upper end surface of the partition plate. A heat-expandable refractory sheet material is attached to at least one of the inner surface of the concave portion of the deck plate and the upper end surface of the deck plate that communicate with each other through the formed opening and forms the opening. The structure of the fireproof partition wall according to claim 1. 耐火性を有する間仕切り板を、その横幅方向をコンクリート製天井板の下面に一体に設けているデッキプレートの凹部と凸部との連続形成方向に向け、且つ、その上端面をデッキプレートにおける下方に突出した上記凸部の突出下面に密接させてなる耐火間仕切り壁において、デッキプレートの凹部と該間仕切り板の上端面とで囲まれた空間部によって形成された開口部を熱膨脹性耐火シートによって密閉していることを特徴とする耐火間仕切り壁の構造。   The partition plate having fire resistance is directed in the direction of continuous formation of the concave and convex portions of the deck plate integrally provided on the lower surface of the concrete ceiling plate, and the upper end surface thereof is below the deck plate. In the fireproof partition wall, which is in close contact with the projecting lower surface of the projecting projection, the opening formed by the space surrounded by the recess of the deck plate and the upper end surface of the partition plate is sealed with a heat-expandable fireproof sheet. A fireproof partition wall structure characterized by 下面をデッキプレートにより凹凸面に形成したコンクリート製の天井を有する建物内におけるこの天井下面と床面との間に耐火性を有する間仕切り板を配設して耐火間仕切り壁を形成したのち、天井下面と間仕切り板の上端面との少なくとも一方に、火災発生時に熱膨脹して上記天井下面と間仕切り板の上端面との間の空間部によって形成された開口部を閉塞する熱膨張性耐火シート材を取り付けることを特徴とする耐火間仕切り壁の施工方法。   In a building with a concrete ceiling whose bottom surface is formed into an uneven surface by a deck plate, a fire-resistant partition wall is formed between the ceiling bottom surface and the floor surface to form a fire-resistant partition wall. At least one of the upper end surface of the partition plate is attached with a heat-expandable fireproof sheet material that thermally expands in the event of a fire and closes the opening formed by the space between the lower surface of the ceiling and the upper end surface of the partition plate The construction method of the fireproof partition wall characterized by the above-mentioned. 耐火性を有する間仕切り板を、その横幅方向をコンクリート製天井板の下面に一体に設けているデッキプレートの凹部と凸部との連続形成方向に向けた状態にしてその上端面をデッキプレートにおける下方に突出した上記凸部の突出下面に隙間なく密接させることにより、デッキプレートの凹部と該間仕切り板の上端面とで囲まれた空間部によってこの間仕切り板によって区画された室内空間同士を連通させる開口部を形成し、この開口部を形成した上記デッキプレートの凹部の内面とデッキプレートの上端面とのいずれか一方に熱膨脹性耐火シート材を取り付けることを特徴とする請求項6に記載の耐火間仕切り壁の施工方法。   With the partition plate having fire resistance, the width direction of the partition plate is integrally provided on the lower surface of the concrete ceiling board, and the upper end surface of the deck plate is below the deck plate. An opening that allows the indoor space defined by the partition plate to communicate with each other by a space surrounded by the concave portion of the deck plate and the upper end surface of the partition plate by closely contacting the projecting lower surface of the projection protruding to 7. A fire-resistant partition according to claim 6, wherein a heat-expandable fire-resistant sheet material is attached to any one of the inner surface of the concave portion of the deck plate and the upper end surface of the deck plate. Wall construction method.
JP2010025896A 2010-02-08 2010-02-08 Structure of fireproof partition wall and its construction method Active JP5530210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010025896A JP5530210B2 (en) 2010-02-08 2010-02-08 Structure of fireproof partition wall and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010025896A JP5530210B2 (en) 2010-02-08 2010-02-08 Structure of fireproof partition wall and its construction method

Publications (2)

Publication Number Publication Date
JP2011162983A JP2011162983A (en) 2011-08-25
JP5530210B2 true JP5530210B2 (en) 2014-06-25

Family

ID=44594004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010025896A Active JP5530210B2 (en) 2010-02-08 2010-02-08 Structure of fireproof partition wall and its construction method

Country Status (1)

Country Link
JP (1) JP5530210B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6902412B2 (en) * 2017-06-30 2021-07-14 株式会社ロンビックジャパン Fire smoke blocking material, fire smoke blocking method, fire resistant partition structure, and its formation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306008B2 (en) * 1998-07-02 2002-07-24 株式会社サワタ建材社 Fire-resistant partitions and gap-filling blocks for fire-resistant partitions
JP4427099B2 (en) * 2001-08-21 2010-03-03 吉野石膏株式会社 Dry partition structure

Also Published As

Publication number Publication date
JP2011162983A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5364003B2 (en) Method for producing laminated sheet, joint material and extruded product
JP3148209U (en) Penetration through structure of compartment
JP2007312599A (en) Penetrating structure of compartment piece
JP2002071082A (en) Sound absorptive fireproof tube
JP6588722B2 (en) Fireproof structure
JP2016189954A (en) Fire protection construction for architectural structure
JP2016195475A (en) Protective tube for cable, and fire resistant structure
JP2016151001A (en) Thermally expandable fire-resistant sheet and method for producing the same
JP5530210B2 (en) Structure of fireproof partition wall and its construction method
JP2017180508A (en) Fire prevention cover and fire protection construction for block penetration part
JP2017207155A (en) Fire protection material and fire protection structure for partition penetration part
JP4320108B2 (en) Wall structure
JP2009249976A (en) Fireproof duct
JP6357437B2 (en) Covering material, piping, and fireproof structure
JP4320110B2 (en) Fireproof wall structure
JP5001635B2 (en) Fireproof joint material
JP2017131561A (en) Fire-protection material and method for molding fire-protection material
JP4527911B2 (en) Synthetic fireproof coating method
JP2001303692A (en) Fireproof compartment passing-through member
JP6616693B2 (en) Fireproofing material, molding method of fireproofing material
JP4137285B2 (en) Fireproof / firewall construction
JP5547981B2 (en) Structure of fireproof compartment penetration and its construction method
JP6713744B2 (en) Fireproof structure, construction method of fireproof structure
JP2011058346A (en) Fire protection device for expansion joint
JP2002174367A (en) Piping structure provided with refractory expansible packing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140418

R151 Written notification of patent or utility model registration

Ref document number: 5530210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250