JP5526578B2 - Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles using the particle dispersion - Google Patents

Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles using the particle dispersion Download PDF

Info

Publication number
JP5526578B2
JP5526578B2 JP2009089331A JP2009089331A JP5526578B2 JP 5526578 B2 JP5526578 B2 JP 5526578B2 JP 2009089331 A JP2009089331 A JP 2009089331A JP 2009089331 A JP2009089331 A JP 2009089331A JP 5526578 B2 JP5526578 B2 JP 5526578B2
Authority
JP
Japan
Prior art keywords
acid
particle dispersion
oxide
particle
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009089331A
Other languages
Japanese (ja)
Other versions
JP2010244724A (en
Inventor
年治 林
和彦 山崎
将英 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009089331A priority Critical patent/JP5526578B2/en
Publication of JP2010244724A publication Critical patent/JP2010244724A/en
Application granted granted Critical
Publication of JP5526578B2 publication Critical patent/JP5526578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Colloid Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Description

本発明は、酸化物半導体粒子が分散した粒子分散体を製造する方法と、この粒子分散体を乾燥して得られた粉末状の酸化物半導体粒子、金属粒子及び半金属粒子を製造する方法に関するものである。 The present invention relates to a method for producing a method for producing particles dispersion oxide semiconductor particles are dispersed, obtained by drying a particle dispersion of this powder of the oxide semiconductor particles, metal particles and metalloid particles It is about.

従来、1,4-グルコシド結合を有する化合物と金属化合物とを溶媒に溶解し、得られた溶液中の金属イオンを還元し、金属ナノ粒子とする金属ナノ粒子の製造方法(例えば、特許文献1参照。)が開示されている。この金属ナノ粒子の製造方法では、上記溶液を加熱し、その後還元剤を添加することにより、金属イオンを還元する。このように極めて簡便な方法により単分散かつ微細な金属ナノ粒子を製造できるようになっている。   Conventionally, a method for producing metal nanoparticles by dissolving a compound having a 1,4-glucoside bond and a metal compound in a solvent and reducing metal ions in the resulting solution to form metal nanoparticles (for example, Patent Document 1) Reference). In this method for producing metal nanoparticles, the metal ions are reduced by heating the solution and then adding a reducing agent. Thus, monodispersed and fine metal nanoparticles can be produced by a very simple method.

特開2003−213311号公報(請求項1及び4、段落[0032])JP 2003-213111 A (claims 1 and 4, paragraph [0032])

しかし、上記従来の特許文献1に示された金属ナノ粒子の製造方法では、還元反応が有機金属の自己分解に頼っているため、不均一に反応して凝集物が発生し易く、分散体を得ることが難しく、歩留まりが悪いという不具合があった。
本発明の目的は、極めて簡便に、導電性、分散性、分散安定性、透明性、沈降防止性等を付与若しくは改善することができる、粒子分散体の製造方法並びにこの粒子分散体を用いた酸化物半導体粒子、金属粒子及び半金属粒子の製造方法を提供することにある。
However, in the method for producing metal nanoparticles shown in the above-mentioned conventional Patent Document 1, since the reduction reaction relies on the self-decomposition of the organic metal, the reaction tends to occur non-uniformly and aggregates are easily generated. There was a problem that it was difficult to obtain and the yield was poor.
An object of the present invention is to use a method for producing a particle dispersion, which can impart or improve conductivity, dispersibility, dispersion stability, transparency, anti-settling property, and the like, as well as the particle dispersion. The object is to provide a method for producing oxide semiconductor particles, metal particles, and metalloid particles .

本発明の第1の観点は、図1に示すように、有機金属化合物及び有機半金属化合物からなる群より選ばれた1種又は2種以上と還元剤とを混合して混合物を調製する工程と、この混合物を所定の雰囲気中で40〜360℃の温度に加熱した状態に10分〜5.0時間保持して粒子分散体を得る工程とを含む粒子分散体の製造方法であって、粒子分散体は、溶媒で希釈してコロイド液の状態した場合に、密栓したガラス瓶に入れて40℃に2週間保持した後の状態において沈殿せずにコロイド液の状態を保つ粒子分散体の製造方法である。
この第1の観点の粒子分散体の製造方法では、上記混合物を所定の雰囲気中で加熱すると、混合物が化学的に反応しながら有機金属化合物中の金属若しくは金属酸化物又は有機半金属化合物中の半金属又は半金属酸化物が中心となって有機金属化合物又は有機半金属化合物が分解する。この有機金属化合物又は有機半金属化合物の分解により、結合の外れた金属、半金属又はそれらの酸化物生成体からなる粒子の表面に、同様に結合の外れた有機物又はその分解生成物が付くため、導電性、分散性、分散安定性、透明性、沈降防止性等の特性を有する膜として用いられる粒子分散体が得られる。
As shown in FIG. 1, the first aspect of the present invention is a step of preparing a mixture by mixing one or more selected from the group consisting of an organic metal compound and an organic metalloid compound and a reducing agent. And a step of obtaining the particle dispersion by maintaining the mixture in a predetermined atmosphere at a temperature of 40 to 360 ° C. for 10 minutes to 5.0 hours , particle dispersions, when diluted with a solvent to a state of colloid solution, keeping the state of the colloidal solution without precipitation in the state after the holding for 2 weeks put 40 ° C. in stoppered glass bottle, the particle dispersion It is a manufacturing method.
In the method for producing a particle dispersion according to the first aspect, when the mixture is heated in a predetermined atmosphere, the metal or metal oxide in the organometallic compound or the organic semimetal compound in the organometallic compound is reacted while the mixture chemically reacts. The organometallic compound or the organometalloid compound is decomposed mainly by the semimetal or the semimetal oxide. The decomposition of the organometallic compound or the organometalloid compound causes the dissociated organic substance or its decomposition product to be similarly attached to the surface of the particles made of the unbonded metal, semimetal or oxide product thereof. Thus, a particle dispersion used as a film having properties such as conductivity, dispersibility, dispersion stability, transparency, and anti-settling property can be obtained.

本発明の第1の観点の粒子分散体の製造方法では、有機金属化合物及び有機半金属化合物からなる群より選ばれた1種又は2種以上と還元剤とを混合して混合物を調製した後に、この混合物を所定の雰囲気中で40〜360℃の温度に加熱した状態に10分〜5.0時間保持することにより2週間以上沈殿せずにコロイド液の状態を保つ粒子分散体を得たので、極めて簡便に、導電性、分散性、分散安定性、透明性、沈降防止性等を付与若しくは改善した粒子分散体を得ることができる。 In the method for producing a particle dispersion according to the first aspect of the present invention, after preparing a mixture by mixing one or more selected from the group consisting of an organic metal compound and an organic metalloid compound and a reducing agent. The mixture was kept at a temperature of 40 to 360 ° C. in a predetermined atmosphere for 10 minutes to 5.0 hours to obtain a particle dispersion that maintained a colloidal liquid state without precipitation for more than 2 weeks . Therefore, a particle dispersion imparted or improved with conductivity, dispersibility, dispersion stability, transparency, anti-settling property, etc. can be obtained very simply.

本発明実施形態の粒子分散体を実験的に製造する装置の断面構成図である。It is a section lineblock diagram of an apparatus which manufactures a particle dispersion of an embodiment of the present invention experimentally. ステンレス製のフォトマスクの斜視図である。It is a perspective view of a stainless steel photomask.

次に本発明を実施するための形態を図面に基づいて説明する。
<第1の実施の形態>
図1に示すように、粒子分散体を製造するには、先ず有機金属化合物及び有機半金属化合物からなる群より選ばれた1種又は2種以上と還元剤とを混合して混合物を調製する。上記有機金属化合物に含まれる金属は、Cu,Au,Ag,Pt,Pd,Ru,Rh,Re,Os,Ir,Sc,Y,Ti,Zr,V,Nb,Ta,Cr,Mo,W,Mn,Fe,Co,Ni,Zn,Cd,Al,Ga,In,Tl,Sn,Pb,La,Ce,Nd,Sm,Eu,Gd,Tb,Er,Tm及びYbからなる群より選ばれた1種又は2種以上の金属、好ましくはCu,Au,Ag,Pt,Pd,Ru,Rh,Re,Ti,Fe,Co,Ni,Zn,In及びSnからなる群より選ばれた1種又は2種以上の金属である。また上記有機半金属化合物に含まれる半金属は、Si,Ge,Sb及びBiからなる群より選ばれた1種又は2種以上の半金属である。
Next, an embodiment for carrying out the present invention will be described with reference to the drawings.
<First Embodiment>
As shown in FIG. 1, in order to produce a particle dispersion, first, one or more selected from the group consisting of an organic metal compound and an organic metalloid compound is mixed with a reducing agent to prepare a mixture. . The metal contained in the organometallic compound is Cu, Au, Ag, Pt, Pd, Ru, Rh, Re, Os, Ir, Sc, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Selected from the group consisting of Mn, Fe, Co, Ni, Zn, Cd, Al, Ga, In, Tl, Sn, Pb, La, Ce, Nd, Sm, Eu, Gd, Tb, Er, Tm and Yb One or more metals, preferably one selected from the group consisting of Cu, Au, Ag, Pt, Pd, Ru, Rh, Re, Ti, Fe, Co, Ni, Zn, In and Sn Two or more metals. The metalloid contained in the organic metalloid compound is one or more metalloids selected from the group consisting of Si, Ge, Sb and Bi.

上記有機金属化合物又は有機半金属化合物の有機成分は、有機酸及びアミンからなる群より選ばれた1種又は2種以上の化合物であり、上記有機酸は、炭素数2〜29、好ましくは炭素数3〜18の炭素を含む化合物からなる群より選ばれた1種又は2種以上の化合物であることが好ましい。具体的には、上記有機酸は、リンゴ酸、クエン酸、フマル酸、マレイン酸、酒石酸、酢酸、プロピオン酸、酪酸、イソ酪酸、ビバル酸、吉草酸、イソ吉草酸、カプロン酸、2−エチル酪酸、カプリル酸、ペラルゴン酸、2−エチルヘキサン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸、リシノール酸、12−ヒドロキシステアリン酸、ナフテン酸、アビエチン酸、デキストロピマル酸、パルミトレイン酸、オレイン酸、リノール酸及びリノレン酸からなる群より選ばれた1種又は2種以上の有機酸であることが好ましく、更にリンゴ酸、クエン酸、フマル酸、マレイン酸、2−エチルヘキサン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、12−ヒドロキシステアリン酸、オレイン酸、リノール酸及びリノレン酸からなる群より選ばれた1種又は2種以上の有機酸であることが好ましい。有機酸は、光重合性化合物であることが好ましい。具体的には、光重合性化合物は、アクリロイル基、メタクリロイル基及びビニル基からなる群より選ばれた1種又は2種以上を含むことが好ましい。ここで、炭素数を2〜29の範囲に限定したのは、炭素数が2未満は所望の有機酸を得ることができず、炭素数が29を越える有機酸は見当たらず実質的に使用しないからである。   The organic component of the organic metal compound or organic metalloid compound is one or more compounds selected from the group consisting of organic acids and amines, and the organic acid has 2 to 29 carbon atoms, preferably carbon. It is preferable that it is 1 type, or 2 or more types of compounds chosen from the group which consists of a compound containing several 3-18 carbons. Specifically, the organic acid is malic acid, citric acid, fumaric acid, maleic acid, tartaric acid, acetic acid, propionic acid, butyric acid, isobutyric acid, vibalic acid, valeric acid, isovaleric acid, caproic acid, 2-ethyl. Butyric acid, caprylic acid, pelargonic acid, 2-ethylhexanoic acid, capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, It is one or more organic acids selected from the group consisting of melissic acid, ricinoleic acid, 12-hydroxystearic acid, naphthenic acid, abietic acid, dextropimaric acid, palmitoleic acid, oleic acid, linoleic acid and linolenic acid. Preferably malic acid, citric acid, fumaric acid, maleic acid, 2-ethylhexane , Lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, 12-hydroxystearic acid, oleic acid, linoleic acid and linolenic acid may be one or more organic acids preferable. The organic acid is preferably a photopolymerizable compound. Specifically, the photopolymerizable compound preferably contains one or more selected from the group consisting of an acryloyl group, a methacryloyl group, and a vinyl group. Here, the reason why the number of carbon atoms is limited to the range of 2 to 29 is that when the number of carbon atoms is less than 2, a desired organic acid cannot be obtained, and an organic acid having more than 29 carbon atoms is not found and is not substantially used. Because.

一方、アミンは、ジブチルアミン、ジイソブチルアミン、トリペンチルアミン、アリルアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、プロピレンジアミン、ジエチレントリアミン、ドデシルアミン、1,3−ジメチル−n−ブチルアミン、1−アミノウンデカン、1−アミノトリデカン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、ジオレイルアミン、ドデシルジメチルアミン、テトラデシルジメチルアミン、ヘキサデシルジメチルアミン、オクタデシルジメチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン及び3−メトキシプロピルアミンからなる群より選ばれた1種又は2種以上であることが好ましく、更にジブチルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン及び3−メトキシプロピルアミンからなる群より選ばれた1種又は2種以上のアミンであることが好ましい。また還元剤は、ヒドラジン、水素化ホウ素塩、ジメチルアミンボラン、ギ酸、ギ酸塩及びジ亜燐酸塩からなる群より選ばれた1種又は2種以上であることが好ましい。   On the other hand, amines are dibutylamine, diisobutylamine, tripentylamine, allylamine, cyclohexylamine, dicyclohexylamine, propylenediamine, diethylenetriamine, dodecylamine, 1,3-dimethyl-n-butylamine, 1-aminoundecane, 1-aminotridecane. Decane, tetradecylamine, hexadecylamine, octadecylamine, oleylamine, dioleylamine, dodecyldimethylamine, tetradecyldimethylamine, hexadecyldimethylamine, octadecyldimethylamine, monoethanolamine, diethanolamine, triethanolamine and 3-methoxypropyl It is preferably one or more selected from the group consisting of amines, and further dibutylamine, dodecylamine, tetra Shiruamin, hexadecylamine, octadecylamine, oleylamine, monoethanolamine, diethanolamine, is preferably one or more amines selected from the group consisting of triethanolamine and 3-methoxypropylamine. The reducing agent is preferably one or more selected from the group consisting of hydrazine, borohydride, dimethylamine borane, formic acid, formate and diphosphite.

次に上記混合物を所定の雰囲気中で40〜360℃、好ましくは50〜350℃の温度に加熱した状態に10分〜5.0時間、好ましくは20分〜4.0時間保持する。混合物の加熱雰囲気は、不活性ガス雰囲気、還元性ガス雰囲気又は大気雰囲気であることが好ましい。ここで、混合物の加熱温度を40〜360℃の範囲に限定したのは、40℃未満では分散体の生成が不十分となり、360℃を越えると有機物の分解が著しくなり、安定した分散体が得られないからである。また混合物の加熱時間を10分〜5.0時間の範囲に限定したのは、10分間未満では分散体の生成が不十分となり、5.0時間を越えると粒子の成長に変化がなくなり、これ以上保持する必要がないからである。このような簡便な方法で粒子が分散した分散体を作製できる。   Next, the above mixture is maintained in a predetermined atmosphere at a temperature of 40 to 360 ° C., preferably 50 to 350 ° C., for 10 minutes to 5.0 hours, preferably 20 minutes to 4.0 hours. The heating atmosphere of the mixture is preferably an inert gas atmosphere, a reducing gas atmosphere or an air atmosphere. Here, the heating temperature of the mixture is limited to the range of 40 to 360 ° C. The reason is that the dispersion is insufficiently generated at less than 40 ° C., and the decomposition of the organic matter becomes remarkable when the temperature exceeds 360 ° C. It is because it cannot be obtained. Moreover, the heating time of the mixture was limited to the range of 10 minutes to 5.0 hours. If less than 10 minutes, the formation of the dispersion was insufficient, and if it exceeded 5.0 hours, there was no change in the particle growth. This is because it is not necessary to hold the above. A dispersion in which particles are dispersed can be produced by such a simple method.

上記方法により製造された粒子分散体としては、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmの酸化錫、酸化インジウム、酸化亜鉛、錫含有酸化インジウム(ITO)、亜鉛含有酸化インジウム(IZO)、アルミニウム含有酸化亜鉛(AZO)、ガリウム含有酸化亜鉛(GZO)、セリウム含有酸化亜鉛(CZO)、ホウ素含有酸化亜鉛(BZO)、アンチモン含有酸化錫(ATO)、或いはリン含有酸化錫(PTO)の酸化物半導体粒子を含む粒子分散体が挙げられる。また上記粒子分散体を乾燥して得られた酸化物半導体粒子としては、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmの酸化錫、酸化インジウム、酸化亜鉛、錫含有酸化インジウム(ITO)、亜鉛含有酸化インジウム(IZO)、アルミニウム含有酸化亜鉛(AZO)、ガリウム含有酸化亜鉛(GZO)、セリウム含有酸化亜鉛(CZO)、ホウ素含有酸化亜鉛(BZO)、アンチモン含有酸化錫(ATO)、或いはリン含有酸化錫(PTO)の酸化物半導体粒子が挙げられる。ここで、酸化物半導体粒子の平均粒径を0.005〜1.0μmの範囲に限定したのは、0.005μm未満の粒子や1.0μmを越える粒子がこの方法では得られないからである。なお、本発明で使用される酸化物半導体粒子などの平均粒径とは、レーザー回折/散乱式粒度分布測定装置(堀場製作所製 LA−950)にて測定し、粒子径基準を個数として演算した50%平均粒子径(D50)をいう。このレーザー回折/散乱式粒度分布測定装置による個数基準平均粒径の値は、走査型電子顕微鏡(日立ハイテクノロジーズ製 S−4300SE及びS−900)により観察した画像において、任意の50個の粒子について粒径を実測したときのその平均粒径とほぼ一致する。 As the particle dispersion produced by the above method, an average particle diameter of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm of tin oxide, indium oxide, zinc oxide, tin-containing indium oxide (ITO), Zinc-containing indium oxide (IZO), aluminum-containing zinc oxide (AZO), gallium-containing zinc oxide (GZO), cerium-containing zinc oxide (CZO), boron-containing zinc oxide (BZO), antimony-containing tin oxide (ATO), or phosphorus Examples thereof include a particle dispersion containing oxide semiconductor particles of tin oxide (PTO). The oxide semiconductor particles obtained by drying the particle dispersion are tin oxide, indium oxide, zinc oxide, tin having an average particle size of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm. Containing indium oxide (ITO), zinc containing indium oxide (IZO), aluminum containing zinc oxide (AZO), gallium containing zinc oxide (GZO), cerium containing zinc oxide (CZO), boron containing zinc oxide (BZO), antimony containing oxidation Examples thereof include oxide semiconductor particles of tin (ATO) or phosphorus-containing tin oxide (PTO). Here, the reason why the average particle size of the oxide semiconductor particles is limited to the range of 0.005 to 1.0 μm is that particles having a particle size of less than 0.005 μm or particles exceeding 1.0 μm cannot be obtained by this method. . The average particle size of the oxide semiconductor particles used in the present invention is measured with a laser diffraction / scattering particle size distribution measuring device (LA-950, manufactured by Horiba, Ltd.), and the particle size reference is calculated as the number. 50% average particle diameter (D 50 ). The number-based average particle diameter measured by the laser diffraction / scattering particle size distribution measuring apparatus is the value of any 50 particles in an image observed with a scanning electron microscope (S-4300SE and S-900 manufactured by Hitachi High-Technologies). It almost coincides with the average particle diameter when the particle diameter is actually measured.

<第2の実施の形態>
上記第1の実施の形態で調製された混合物に更にフッ化アンモニウムを添加することを除いて、第1の実施の形態と同様にして粒子が分散した分散体を作製する。この方法により製造された粒子分散体としては、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmのフッ素含有酸化錫(FTO)、フッ素含有酸化インジウム(FIO)、フッ素含有酸化亜鉛(FZO)、フッ素錫含有酸化インジウム(FITO)、フッ素亜鉛含有酸化インジウム(FIZO)、フッ素アルミニウム含有酸化亜鉛(FAZO)、フッ素ガリウム含有酸化亜鉛(FGZO)、フッ素セリウム含有酸化亜鉛(FCZO)、或いはフッ素アンチモン含有酸化錫(FATO)の酸化物半導体粒子を含む粒子分散体が挙げられる。また上記粒子分散体を乾燥して得られた酸化物半導体粒子としては、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmのフッ素含有酸化錫(FTO)、フッ素含有酸化インジウム(FIO)、フッ素含有酸化亜鉛(FZO)、フッ素錫含有酸化インジウム(FITO)、フッ素亜鉛含有酸化インジウム(FIZO)、フッ素アルミニウム含有酸化亜鉛(FAZO)、フッ素ガリウム含有酸化亜鉛(FGZO)、フッ素セリウム含有酸化亜鉛(FCZO)、或いはフッ素アンチモン含有酸化錫(FATO)の酸化物半導体粒子が挙げられる。ここで、酸化物半導体粒子の平均粒径を0.005〜1.0μmの範囲に限定したのは、0.005μm未満の粒子や1.0μmを越える粒子がこの方法では得られないからである。
<Second Embodiment>
A dispersion in which particles are dispersed is produced in the same manner as in the first embodiment except that ammonium fluoride is further added to the mixture prepared in the first embodiment. The particle dispersion produced by this method includes fluorine-containing tin oxide (FTO), fluorine-containing indium oxide (FIO), fluorine having an average particle diameter of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm. Containing zinc oxide (FZO), fluorine tin containing indium oxide (FITO), fluorine zinc containing indium oxide (FIZO), fluorine aluminum containing zinc oxide (FAZO), fluorine gallium containing zinc oxide (FGZO), fluorine cerium containing zinc oxide (FCZO) ), Or a particle dispersion including oxide semiconductor particles of fluorine antimony-containing tin oxide (FATO). The oxide semiconductor particles obtained by drying the particle dispersion are fluorine-containing tin oxide (FTO) having an average particle diameter of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm, fluorine-containing Indium oxide (FIO), fluorine-containing zinc oxide (FZO), fluorine tin-containing indium oxide (FITO), fluorine zinc-containing indium oxide (FIZO), fluorine aluminum-containing zinc oxide (FAZO), fluorine gallium-containing zinc oxide (FGZO), Examples thereof include oxide semiconductor particles of fluorine-cerium-containing zinc oxide (FCZO) or fluorine-antimony-containing tin oxide (FATO). Here, the reason why the average particle size of the oxide semiconductor particles is limited to the range of 0.005 to 1.0 μm is that particles having a particle size of less than 0.005 μm or particles exceeding 1.0 μm cannot be obtained by this method. .

なお、上記第1及び第2の実施の形態では、酸化物半導体粒子を含む粒子分散体を製造したが、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmのCu,Au,Ag,Pt,Pd,Ru,Rh,Re,Fe,Co,Ni,Zn,In及びSnからなる群より選ばれた1種又は2種以上の純金属粒子、混合金属粒子或いは合金粒子を含む粒子分散体であってもよい。また、上記第1及び第2の実施の形態では、粒子分散体を乾燥して酸化物半導体粒子を製造したが、上記純金属粒子、混合金属粒子或いは合金粒子を含む粒子分散体を乾燥して、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmのCu,Au,Ag,Pt,Pd,Ru,Rh,Re,Fe,Co,Ni,Zn,In及びSnからなる群より選ばれた1種又は2種以上の純金属、混合金属或いは合金からなる金属粒子であってもよい。ここで、金属粒子の平均粒径を0.005〜1.0μmの範囲に限定したのは、0.005μm未満の粒子や1.0μmを越える粒子がこの方法では得られないからである。
また、上記第1及び第2の実施の形態では、酸化物半導体粒子を含む粒子分散体を製造したが、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmのSbの半金属粒子を含む粒子分散体であってもよい。更に、上記第1及び第2の実施の形態では、粒子分散体を乾燥して酸化物半導体粒子を製造したが、上記Sbの半金属粒子を含む粒子分散体を乾燥して、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmのSbからなる半金属粒子であってもよい。ここで、半金属粒子の平均粒径を0.005〜1.0μmの範囲に限定したのは、0.005μm未満の粒子や1.0μmを越える粒子がこの方法では得られないからである。
In the first and second embodiments, a particle dispersion containing oxide semiconductor particles is manufactured. However, Cu having an average particle diameter of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm. , Au, Ag, Pt, Pd, Ru, Rh, Re, Fe, Co, Ni, Zn, In and Sn, one or more types of pure metal particles, mixed metal particles or alloy particles A particle dispersion containing In the first and second embodiments, the particle dispersion is dried to produce oxide semiconductor particles. However, the particle dispersion containing the pure metal particles, mixed metal particles, or alloy particles is dried. From Cu, Au, Ag, Pt, Pd, Ru, Rh, Re, Fe, Co, Ni, Zn, In and Sn having an average particle size of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm Metal particles made of one or more kinds of pure metals, mixed metals or alloys selected from the group may be used. Here, the reason why the average particle diameter of the metal particles is limited to the range of 0.005 to 1.0 μm is that particles having a particle size of less than 0.005 μm or particles exceeding 1.0 μm cannot be obtained by this method.
Moreover, in the said 1st and 2nd embodiment, although the particle dispersion containing an oxide semiconductor particle was manufactured, average particle diameter 0.005-1.0 micrometer, Preferably it is Sb of 0.01-0.8 micrometer. A particle dispersion containing the metalloid particles may be used. Further, in the first and second embodiments, the particle dispersion was dried to produce oxide semiconductor particles, but the particle dispersion containing the Sb semimetal particles was dried to obtain an average particle size of 0. It may be a semi-metal particle composed of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm of Sb. Here, the reason why the average particle size of the semi-metal particles is limited to the range of 0.005 to 1.0 μm is that particles having a particle size of less than 0.005 μm or particles exceeding 1.0 μm cannot be obtained by this method.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ずエチレンオキシド変性コハク酸メタクリレート(新中村化学社製のNKエステルSA)を水酸化ナトリウムでけん化して石鹸を調製した。この石鹸を2つに分け、一方の石鹸に塩化インジウム溶液(アジア物性社製)を混合して撹拌することによりインジウムの金属石鹸を調製した。このインジウムの金属石鹸を十分に水で洗浄して濾過することにより脱塩した後に、この脱塩したインジウムの金属石鹸を80℃の真空乾燥機に一晩入れて脱水することによりインジウム石鹸(炭素数:10)を得た。一方、上記石鹸の他方に塩化錫溶液(アジア物性社製)を混合して撹拌することにより錫の金属石鹸を調製した。この錫の金属石鹸を十分に水で洗浄して濾過することにより脱塩した後に、この脱塩した錫の金属石鹸を80℃の真空乾燥機に一晩入れて脱水することにより錫石鹸(炭素数:10)を得た。なお、上記エチレンオキシド変性コハク酸メタクリレートの化学式(1)をここに示す。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, a soap was prepared by saponifying ethylene oxide-modified succinic acid methacrylate (NK ester SA manufactured by Shin-Nakamura Chemical Co., Ltd.) with sodium hydroxide. This soap was divided into two, and an indium chloride solution (manufactured by Asian Physical Properties) was mixed with one soap and stirred to prepare an indium metal soap. The indium metal soap was sufficiently desalted by washing with water and filtered, and then the desalted indium metal soap was placed in a vacuum dryer at 80 ° C. overnight to dehydrate it, so that the indium soap (carbon Number: 10) was obtained. On the other hand, a tin metal soap was prepared by mixing and stirring a tin chloride solution (manufactured by Asia Physical Properties Co., Ltd.) with the other soap. The tin metal soap was sufficiently desalted by washing with water and filtered, and then the desalted tin metal soap was placed in a vacuum dryer at 80 ° C. overnight and dehydrated to obtain tin soap (carbon Number: 10) was obtained. The chemical formula (1) of the ethylene oxide-modified succinic acid methacrylate is shown here.

Figure 0005526578
次いで図1に示すように、上記インジウム石鹸7.5gと錫石鹸0.5gとを石英シリンダ11に入れ、還元剤としてヒドラジン・一水和物(関東化学社製:鹿特級)0.1gを添加した後に、これらを不均一な状態で混合して混合物12を得た。ここで「不均一な状態で混合する」とは、石英シリンダ11を5〜6回簡単に手で振って混合することをいう。次に上記混合物12の入った石英シリンダ11を250℃のオイルバス13(ビーカ13aに貯留した耐熱シリコーンオイル13bをオイルバスコントローラ13cで250℃に加熱・維持したもの)に入れるとともに、この石英シリンダ11内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持した後に、オイルバス13から取出して室温まで冷却し、分散体14を得た。この粒子分散体14を実施例1とした。なお、図1において、符号21は石英シリンダ11から排出された排ガスを一時的に貯留するための第1ガラス瓶であり、符号22は第1ガラス瓶21に一時的に貯留された排ガスを水23に通すための第2ガラス瓶22である。
Figure 0005526578
Next, as shown in FIG. 1, 7.5 g of the indium soap and 0.5 g of the tin soap are put in a quartz cylinder 11 and 0.1 g of hydrazine monohydrate (manufactured by Kanto Chemical Co., Ltd .: deer special grade) is used as a reducing agent. After the addition, they were mixed in a non-uniform state to obtain a mixture 12. Here, “mixing in a non-uniform state” means that the quartz cylinder 11 is simply shaken by hand 5-6 times to mix. Next, the quartz cylinder 11 containing the mixture 12 is placed in a 250 ° C. oil bath 13 (heat-resistant silicone oil 13b stored in the beaker 13a is heated and maintained at 250 ° C. by the oil bath controller 13c). 11, air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is held for 1 hour while being supplied at a rate of 0.2 cc / min, then taken out from the oil bath 13 and cooled to room temperature. Got. This particle dispersion 14 was designated as Example 1. In FIG. 1, reference numeral 21 denotes a first glass bottle for temporarily storing the exhaust gas discharged from the quartz cylinder 11, and reference numeral 22 denotes the exhaust gas temporarily stored in the first glass bottle 21 to the water 23. It is the 2nd glass bottle 22 for letting it pass.

<実施例2>
先ず12-ヒドロキシステアリン酸インジウム(炭素数:18)7.5gとステアリン酸錫(炭素数:18)0.5gとを石英シリンダに入れ、還元剤としてヒドラジン・一水和物0.1gを添加し、更にフッ化アンモニウムを0.3g添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを300℃のオイルバスに入れるとともに、この石英シリンダ内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例2とした。
<実施例3>
先ずステアリン酸錫(炭素数:18)7.5gを石英シリンダに入れ、還元剤としてジ亜燐酸アンモニウム0.1gを添加し、更にフッ化アンモニウムを0.3g添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを300℃のオイルバスに入れるとともに、この石英シリンダ内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例3とした。
<Example 2>
First, 7.5 g of indium 12-hydroxystearate (carbon number: 18) and 0.5 g of tin stearate (carbon number: 18) are put in a quartz cylinder, and 0.1 g of hydrazine monohydrate is added as a reducing agent. Further, 0.3 g of ammonium fluoride was added, and these were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the mixture is placed in an oil bath at 300 ° C., and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the quartz cylinder at a rate of 0.2 cc / min. Then, after holding for 1 hour, it was taken out from the oil bath and cooled to room temperature to obtain a dispersion. This particle dispersion was designated as Example 2.
<Example 3>
First, 7.5 g of tin stearate (carbon number: 18) was put in a quartz cylinder, 0.1 g of ammonium diphosphite was added as a reducing agent, and 0.3 g of ammonium fluoride was further added. Mixing was obtained in the state. Next, the quartz cylinder containing the mixture is placed in an oil bath at 300 ° C., and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the quartz cylinder at a rate of 0.2 cc / min. Then, after holding for 1 hour, it was taken out from the oil bath and cooled to room temperature to obtain a dispersion. This particle dispersion was designated as Example 3.

<実施例4>
先ずステアリン酸錫(炭素数:18)7.5gを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加し、更にフッ化アンモニウムを0.3g添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを275℃のオイルバスに入れるとともに、この石英シリンダ内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例4とした。
<実施例5>
先ずステアリン酸錫(炭素数:18)7.5gとモンタン酸/2-アミノエタノールアンチモン錯体(炭素数:29)0.8gとを石英シリンダに入れ、還元剤としてジ亜燐酸アンモニウム0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを250℃のオイルバスに入れるとともに、この石英シリンダ内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例5とした。
<実施例6>
先ずオレイン酸インジウム(炭素数:18)7.5gとパルミチン酸亜鉛(炭素数:16)0.7gとを石英シリンダに入れ、還元剤としてヒドラジン・一水和物0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを310℃のオイルバスに入れるとともに、この石英シリンダ内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例6とした。
<Example 4>
First, 7.5 g of tin stearate (carbon number: 18) was put in a quartz cylinder, 0.1 g of dimethylamine borane was added as a reducing agent, and 0.3 g of ammonium fluoride was further added. To obtain a mixture. Next, the quartz cylinder containing the mixture is put into an oil bath at 275 ° C., and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the quartz cylinder at a rate of 0.2 cc / min. Then, after holding for 1 hour, it was taken out from the oil bath and cooled to room temperature to obtain a dispersion. This particle dispersion was designated as Example 4.
<Example 5>
First, 7.5 g of tin stearate (carbon number: 18) and 0.8 g of montanic acid / 2-aminoethanol antimony complex (carbon number: 29) are put in a quartz cylinder, and 0.1 g of ammonium diphosphite is used as a reducing agent. After the addition, they were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the above mixture is put into a 250 ° C. oil bath, and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the quartz cylinder at a rate of 0.2 cc / min. Then, after holding for 1 hour, it was taken out from the oil bath and cooled to room temperature to obtain a dispersion. This particle dispersion was designated as Example 5.
<Example 6>
First, 7.5 g of indium oleate (carbon number: 18) and 0.7 g of zinc palmitate (carbon number: 16) were placed in a quartz cylinder, and 0.1 g of hydrazine monohydrate was added as a reducing agent. These were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the mixture is put into a 310 ° C. oil bath, and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the quartz cylinder at a rate of 0.2 cc / min. Then, after holding for 1 hour, it was taken out from the oil bath and cooled to room temperature to obtain a dispersion. This particle dispersion was designated as Example 6.

<実施例7>
先ずエチレンオキシド変性コハク酸メタクリレート(新中村化学社製のNKエステルSA)を水酸化ナトリウムでけん化して石鹸を調製した後に、この石鹸に塩化インジウム溶液(アジア物性社製)を混合して撹拌することによりインジウムの金属石鹸を調製した。このインジウムの金属石鹸を十分に水で洗浄して濾過することにより脱塩した後に、この脱塩したインジウムの金属石鹸を80℃の真空乾燥機に一晩入れて脱水することによりインジウム石鹸(炭素数:10)を得た。一方、ω−カルボキシ−ポリカプロラクトンモノアクリレート(東亞合成社製のアロニックスM−5300)を水酸化ナトリウムでけん化して石鹸を調製した後に、この石鹸に塩化亜鉛溶液を混合して撹拌することにより亜鉛の金属石鹸を調製した。この亜鉛の金属石鹸を十分に水で洗浄して濾過することにより脱塩した後に、この脱塩した亜鉛の金属石鹸を80℃の真空乾燥機に一晩入れて脱水することにより亜鉛石鹸(炭素数:15)を得た。なお、上記ω−カルボキシ−ポリカプロラクトンモノアクリレートの化学式(2)をここに示す。
<Example 7>
First, a soap is prepared by saponifying ethylene oxide-modified succinic acid methacrylate (NK ester SA manufactured by Shin-Nakamura Chemical Co., Ltd.) with sodium hydroxide, and then mixing and stirring the soap with an indium chloride solution (manufactured by Asian Physical Properties). Indium metal soap was prepared. The indium metal soap was sufficiently desalted by washing with water and filtered, and then the desalted indium metal soap was placed in a vacuum dryer at 80 ° C. overnight to dehydrate it, so that the indium soap (carbon Number: 10) was obtained. On the other hand, a soap was prepared by saponifying ω-carboxy-polycaprolactone monoacrylate (Aronix M-5300 manufactured by Toagosei Co., Ltd.) with sodium hydroxide, and then mixing the zinc chloride solution with this soap and stirring the zinc. A metal soap was prepared. The zinc metal soap was thoroughly washed with water and filtered for desalting, and then the desalted zinc metal soap was placed in a vacuum dryer at 80 ° C. overnight to dehydrate it to obtain zinc soap (carbon Number: 15) was obtained. The chemical formula (2) of the ω-carboxy-polycaprolactone monoacrylate is shown here.

Figure 0005526578
次いで上記インジウム石鹸7.5gと亜鉛石鹸0.7gとを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを250℃のオイルバスに入れるとともに、この石英シリンダ内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例7とした。
Figure 0005526578
Next, 7.5 g of the indium soap and 0.7 g of the zinc soap were put in a quartz cylinder, 0.1 g of dimethylamine borane was added as a reducing agent, and then mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the above mixture is put into a 250 ° C. oil bath, and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the quartz cylinder at a rate of 0.2 cc / min. Then, after holding for 1 hour, it was taken out from the oil bath and cooled to room temperature to obtain a dispersion. This particle dispersion was designated as Example 7.

<実施例8>
先ずβ−カルボキシルエチルアクリレート(ダイセル・ユーシービー社製のβ−CEA)を水酸化ナトリウムでけん化して石鹸を調製した後に、この石鹸に塩化チタン溶液を混合して撹拌することによりチタンの金属石鹸を調製した。このチタンの金属石鹸を十分に水で洗浄して濾過することにより脱塩した後に、この脱塩したチタンの金属石鹸を80℃の真空乾燥機に一晩入れて脱水することによりチタン石鹸を得た。なお、上記β−カルボキシルエチルアクリレートの化学式(3)をここに示す。
<Example 8>
First, β-carboxyethyl acrylate (β-CEA manufactured by Daicel UCB) was saponified with sodium hydroxide to prepare a soap, and then mixed with a titanium chloride solution and stirred to obtain a titanium metal soap. Was prepared. The titanium metal soap was sufficiently washed with water and filtered to desalinate, and the desalted titanium metal soap was placed in a vacuum dryer at 80 ° C. overnight to dehydrate it to obtain a titanium soap. It was. The chemical formula (3) of the β-carboxyethyl acrylate is shown here.

Figure 0005526578
次いで上記チタン石鹸7.5gを石英シリンダに入れ、還元剤としてジ亜燐酸アンモニウム0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを200℃のオイルバスに入れるとともに、この石英シリンダ内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例8とした。
Figure 0005526578
Next, 7.5 g of the titanium soap was put in a quartz cylinder, 0.1 g of ammonium diphosphite was added as a reducing agent, and these were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the mixture is placed in an oil bath at 200 ° C., and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the quartz cylinder at a rate of 0.2 cc / min. Then, after holding for 1 hour, it was taken out from the oil bath and cooled to room temperature to obtain a dispersion. This particle dispersion was defined as Example 8.

<実施例9>
先ずチタンカップリング剤(味の素社製のKR44、炭素数:3及び4)7.5gを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを300℃のオイルバスに入れるとともに、この石英シリンダ内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例9とした。なお、上記チタンカップリング剤(味の素社製のKR44)の化学式(4)をここに示す。
<Example 9>
First, 7.5 g of titanium coupling agent (KR44, carbon number: 3 and 4 by Ajinomoto Co., Inc.) is put in a quartz cylinder, 0.1 g of dimethylamine borane is added as a reducing agent, and these are mixed in a non-uniform state. To obtain a mixture. Next, the quartz cylinder containing the mixture is placed in an oil bath at 300 ° C., and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the quartz cylinder at a rate of 0.2 cc / min. Then, after holding for 1 hour, it was taken out from the oil bath and cooled to room temperature to obtain a dispersion. This particle dispersion was referred to as Example 9. The chemical formula (4) of the titanium coupling agent (KR44 manufactured by Ajinomoto Co., Inc.) is shown here.

Figure 0005526578
<実施例10>
先ずチタンカップリング剤(味の素社製の9SA、炭素数:3及び18)7.5gを石英シリンダに入れ、還元剤として水素化ホウ素ナトリウム0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを350℃のオイルバスに入れるとともに、この石英シリンダ内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例10とした。なお、上記チタンカップリング剤(味の素社製の9SA)の化学式(5)をここに示す。
Figure 0005526578
<Example 10>
First, 7.5 g of titanium coupling agent (9SA manufactured by Ajinomoto Co., Inc., carbon number: 3 and 18) was put in a quartz cylinder, and 0.1 g of sodium borohydride was added as a reducing agent. Mix to obtain a mixture. Next, the quartz cylinder containing the mixture is placed in an oil bath at 350 ° C., and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the quartz cylinder at a rate of 0.2 cc / min. Then, after holding for 1 hour, it was taken out from the oil bath and cooled to room temperature to obtain a dispersion. This particle dispersion was designated as Example 10. The chemical formula (5) of the titanium coupling agent (9SA manufactured by Ajinomoto Co., Inc.) is shown here.

Figure 0005526578
<実施例11>
先ずアクリル酸銀(炭素数:4)7.5gを石英シリンダに入れ、還元剤として水素化ホウ素ナトリウム0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを60℃のオイルバスに入れるとともに、この石英シリンダ内に硫化水素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例11とした。
Figure 0005526578
<Example 11>
First, 7.5 g of silver acrylate (carbon number: 4) was put in a quartz cylinder, 0.1 g of sodium borohydride was added as a reducing agent, and these were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 60 ° C., and hydrogen sulfide gas is supplied into the quartz cylinder at a rate of 0.2 cc / min for 1 hour, and then taken out from the oil bath to room temperature. Cooled to obtain a dispersion. This particle dispersion was designated as Example 11.

<比較例1>
先ずオレイン酸インジウム(炭素数:18)7.5gとステアリン酸錫(炭素数:18)0.5gとを石英シリンダに入れ、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを200℃のオイルバスに入れるとともに、この石英シリンダ内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を比較例1とした。
<比較例2>
先ずオレイン酸インジウム(炭素数:18)7.5gとステアリン酸錫(炭素数:18)0.5gとを石英シリンダに入れ、還元剤としてヒドラジン・一水和物0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを370℃のオイルバスに入れるとともに、この石英シリンダ内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を比較例2とした。
<Comparative Example 1>
First, 7.5 g of indium oleate (carbon number: 18) and 0.5 g of tin stearate (carbon number: 18) were put in a quartz cylinder and mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the mixture is placed in an oil bath at 200 ° C., and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the quartz cylinder at a rate of 0.2 cc / min. Then, after holding for 1 hour, it was taken out from the oil bath and cooled to room temperature to obtain a dispersion. This particle dispersion was designated as Comparative Example 1.
<Comparative example 2>
First, 7.5 g of indium oleate (carbon number: 18) and 0.5 g of tin stearate (carbon number: 18) were placed in a quartz cylinder, and 0.1 g of hydrazine monohydrate was added as a reducing agent. These were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 370 ° C., and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the quartz cylinder at a rate of 0.2 cc / min. Then, after holding for 1 hour, it was taken out from the oil bath and cooled to room temperature to obtain a dispersion. This particle dispersion was designated as Comparative Example 2.

<比較例3>
先ずオレイン酸インジウム(炭素数:18)7.5gとステアリン酸錫(炭素数:18)0.5gとを石英シリンダに入れ、還元剤としてヒドラジン・一水和物0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを35℃のオイルバスに入れるとともに、この石英シリンダ内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持して分散体を得た。この粒子分散体を比較例3とした。
<比較例4>
先ずオレイン酸インジウム(炭素数:18)7.5gとステアリン酸錫(炭素数:18)0.5gとを石英シリンダに入れ、溶媒としてメチルカルビトール7.5gを加えた後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを200℃のオイルバスに入れるとともに、この石英シリンダ内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を0.2cc/分ずつ供給しながら1時間保持して分散体を得た。この粒子分散体を比較例4とした。
<Comparative Example 3>
First, 7.5 g of indium oleate (carbon number: 18) and 0.5 g of tin stearate (carbon number: 18) were placed in a quartz cylinder, and 0.1 g of hydrazine monohydrate was added as a reducing agent. These were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the mixture is placed in a 35 ° C. oil bath, and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the quartz cylinder at a rate of 0.2 cc / min. The dispersion was obtained by holding for 1 hour. This particle dispersion was designated as Comparative Example 3.
<Comparative Example 4>
First, 7.5 g of indium oleate (carbon number: 18) and 0.5 g of tin stearate (carbon number: 18) are put in a quartz cylinder, and after adding 7.5 g of methyl carbitol as a solvent, they are heterogeneous. Was mixed to obtain a mixture. Next, the quartz cylinder containing the mixture is placed in an oil bath at 200 ° C., and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the quartz cylinder at a rate of 0.2 cc / min. The dispersion was obtained by holding for 1 hour. This particle dispersion was designated as Comparative Example 4.

<比較試験1及び評価>
実施例1〜11及び比較例1〜4の粒子分散体をアセトンで洗浄した後、真空雰囲気中に室温で2時間保持して金属又は半金属化合物粒子からなる乾燥粉末を作製し、X線回折法(XRD法)により乾燥粉末を構成する化合物の同定を行ってその化合物のパターン(結晶構造)及び名称を特定し、また蛍光X線分光分析法(XFS法)により上記乾燥粉末の元素分析を行い、更に透過電子顕微鏡(TEM)により乾燥粉末の一次粒子の平均粒径を求めた。その結果を表1に示す。表1において、「HD」はヒドラジンであり、「Na/BH」は水素化ホウ素ナトリウムであり、「DMAB」はジメチルアミンボランであり、「A/HPP」はジ亜燐酸アンモニウムである。
<Comparative test 1 and evaluation>
After the particle dispersions of Examples 1 to 11 and Comparative Examples 1 to 4 were washed with acetone, the powders were held in a vacuum atmosphere at room temperature for 2 hours to produce dry powders composed of metal or metalloid compound particles. X-ray diffraction The compound constituting the dry powder is identified by the XRD method (XRD method), the pattern (crystal structure) and name of the compound is specified, and the elemental analysis of the dry powder is performed by X-ray fluorescence spectrometry (XFS method) Then, the average particle diameter of the primary particles of the dry powder was determined by a transmission electron microscope (TEM). The results are shown in Table 1. In Table 1, “HD” is hydrazine, “Na / BH” is sodium borohydride, “DMAB” is dimethylamine borane, and “A / HPP” is ammonium diphosphite.

Figure 0005526578
表1から明らかなように、比較例1では乾燥粉末が黄色と白色の不均一な混合物であり、未反応部分が多く、比較例2では黒色、黄色及び深青色の不均一な混合物であり、比較例3及び4では原料粉末の有機金属化合物と変わっていなかった。これに対し、実施例1、2、4、6及び7では乾燥粉末の金属又は半金属化合物粒子のパターン(結晶構造)がビックスバイト(bixbite)型構造であり、実施例3及び5では乾燥粉末の金属又は半金属化合物粒子のパターン(結晶構造)がルチル(rutile)型構造であり、実施例8〜10では乾燥粉末の金属又は半金属化合物粒子のパターン(結晶構造)がアナターゼ(anataze)型構造であり、実施例11では乾燥粉末の金属又は半金属化合物粒子のパターン(結晶構造)がセン亜鉛鉱(zinc blende)型構造であった。また実施例1〜11では、乾燥粉末の金属又は半金属化合物粒子がIn、Sn、Sb等の金属又は半金属を含んでおり、金属又は半金属化合物粒子の一次粒子の平均粒径が5〜25nmと極めて微細であることが分かった。
Figure 0005526578
As is clear from Table 1, in Comparative Example 1, the dry powder is a yellow and white heterogeneous mixture, with many unreacted parts, and in Comparative Example 2, it is a black, yellow and deep blue heterogeneous mixture. In Comparative Examples 3 and 4, it was not different from the organometallic compound of the raw material powder. In contrast, in Examples 1, 2, 4, 6 and 7, the pattern (crystal structure) of the metal or metalloid compound particles of the dry powder is a bixbite type structure, and in Examples 3 and 5, the dry powder The pattern (crystal structure) of the metal or metalloid compound particles is a rutile structure, and in Examples 8 to 10, the pattern (crystal structure) of the metal or metalloid compound particles of the dry powder is an anatase type. In Example 11, the pattern (crystal structure) of the metal or metalloid compound particles of the dry powder was a zinc blende type structure. Moreover, in Examples 1-11, the metal or metalloid compound particle | grains of dry powder contain metals or metalloids, such as In, Sn, Sb, and the average particle diameter of the primary particle of metal or metalloid compound particles is 5-5. It was found to be very fine at 25 nm.

<実施例12>
実施例1の粒子分散体を2-イソプロポキシエタノール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例12とした。
<実施例13>
実施例2の粒子分散体をメチルカルビトール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例13とした。
<実施例14>
実施例3の粒子分散体をイソプロパノール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例14とした。
<実施例15>
実施例4の粒子分散体をイソプロパノール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例15とした。
<実施例16>
実施例5の粒子分散体をイソプロパノール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例16とした。
<Example 12>
After the particle dispersion of Example 1 was diluted with 2-isopropoxyethanol (solvent), it was washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. . This particle dispersion was designated as Example 12.
<Example 13>
After the particle dispersion of Example 2 was diluted with methyl carbitol (solvent), it was washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. This particle dispersion was designated as Example 13.
<Example 14>
The particle dispersion of Example 3 was diluted with isopropanol (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. This particle dispersion was designated as Example 14.
<Example 15>
The particle dispersion of Example 4 was diluted with isopropanol (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. This particle dispersion was designated as Example 15.
<Example 16>
The particle dispersion of Example 5 was diluted with isopropanol (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. This particle dispersion was designated as Example 16.

<実施例17>
実施例6の粒子分散体をN-メチルピロリドン(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例17とした。
<実施例18>
実施例の粒子分散体をヘキサン(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例18とした。
<実施例19>
実施例8の粒子分散体をプロピレングリコールモノメチルエーテルアセテート(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例19とした。
<実施例20>
実施例9の粒子分散体をプロピレングリコールモノメチルエーテル(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例20とした。
<実施例21>
実施例10の粒子分散体をプロピレングリコールモノメチルエーテルアセテート(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例21とした。
<実施例22>
実施例11の粒子分散体をN-メチルピロリドン(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例22とした。
<Example 17>
After the particle dispersion of Example 6 was diluted with N-methylpyrrolidone (solvent), it was washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. This particle dispersion was designated as Example 17.
<Example 18>
The particle dispersion of Example 8 was diluted with hexane (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. This particle dispersion was designated as Example 18.
<Example 19>
After the particle dispersion of Example 8 was diluted with propylene glycol monomethyl ether acetate (solvent), it was washed and concentrated by ultrafiltration to prepare a particle dispersion so that the particle content was about 30% by weight. . This particle dispersion was designated as Example 19.
<Example 20>
After the particle dispersion of Example 9 was diluted with propylene glycol monomethyl ether (solvent), it was washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. This particle dispersion was designated as Example 20.
<Example 21>
After the particle dispersion of Example 10 was diluted with propylene glycol monomethyl ether acetate (solvent), it was washed and concentrated by ultrafiltration to prepare a particle dispersion so that the particle content was about 30% by weight. . This particle dispersion was designated as Example 21.
<Example 22>
The particle dispersion of Example 11 was diluted with N-methylpyrrolidone (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. This particle dispersion was designated as Example 22.

<比較例5>
比較例1の粒子分散体をメチルカルビトール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を比較例5とした。
<比較例6>
比較例2の粒子分散体をメチルカルビトール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を比較例6とした。
<Comparative Example 5>
After the particle dispersion of Comparative Example 1 was diluted with methyl carbitol (solvent), it was washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. This particle dispersion was designated as Comparative Example 5.
<Comparative Example 6>
After the particle dispersion of Comparative Example 2 was diluted with methyl carbitol (solvent), it was washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. This particle dispersion was designated as Comparative Example 6.

<比較試験2及び評価>
実施例12〜22、比較例5及び6の約30重量%に洗浄・濃縮した直後の粒子分散体の状態と、密栓したガラス瓶に入れて40℃に2週間保持した後の状態を目視にて観察した。その結果を表2に示す。表2において、「HD」はヒドラジンであり、「Na/BH」は水素化ホウ素ナトリウムであり、「DMAB」はジメチルアミンボランであり、「A/HPP」はジ亜燐酸アンモニウムである。
<Comparative test 2 and evaluation>
The state of the particle dispersion immediately after washing and concentration to about 30% by weight of Examples 12 to 22 and Comparative Examples 5 and 6 and the state after being kept in a sealed glass bottle at 40 ° C. for 2 weeks are visually observed. Observed. The results are shown in Table 2. In Table 2, “HD” is hydrazine, “Na / BH” is sodium borohydride, “DMAB” is dimethylamine borane, and “A / HPP” is ammonium diphosphite.

Figure 0005526578
表2から明らかなように、比較例5及び6では2週間後いずれも沈殿していたのに対し、実施例12〜22では2週間後も沈殿せず良好な状態のままであった。この結果、上記実施例のような簡便な方法で、特別な分散装置を使用せずに、高濃度の金属又は半金属化合物粒子の分散した粒子分散体(コロイド液)が比較的容易に製造できることが判った。
Figure 0005526578
As is apparent from Table 2, in Comparative Examples 5 and 6, both were precipitated after 2 weeks, whereas in Examples 12 to 22, they were not precipitated after 2 weeks and remained in a good state. As a result, a particle dispersion (colloid liquid) in which high-concentration metal or metalloid compound particles are dispersed can be produced relatively easily by a simple method as in the above-described embodiment, without using a special dispersion apparatus. I understood.

<実施例23>
先ずイソステアリン酸銅(炭素数:18)0.7gを石英シリンダに入れ、還元剤としてヒドラジン・一水和物0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを150℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例23とした。
<実施例24>
先ずカプロン酸銀(炭素数:6)0.7gを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを45℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例24とした。
<Example 23>
First, 0.7 g of copper isostearate (carbon number: 18) was put in a quartz cylinder, 0.1 g of hydrazine monohydrate was added as a reducing agent, and these were mixed in a non-uniform state to obtain a mixture. . Next, the quartz cylinder containing the above mixture is placed in an oil bath at 150 ° C. and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, and then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 23.
<Example 24>
First, 0.7 g of silver caproate (carbon number: 6) was put in a quartz cylinder, 0.1 g of dimethylamine borane was added as a reducing agent, and these were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 45 ° C. and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, and then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 24.

<実施例25>
先ずオレイン酸銀(炭素数:18)0.35gと2-エチルヘキサン酸パラジウム(炭素数:8)0.35gとを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを200℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例25とした。
<実施例26>
先ず2-エチルヘキサン酸パラジウム(炭素数:8)0.7gを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを150℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例26とした。
<Example 25>
First, 0.35 g of silver oleate (carbon number: 18) and 0.35 g of palladium 2-ethylhexanoate (carbon number: 8) were placed in a quartz cylinder, and 0.1 g of dimethylamine borane was added as a reducing agent. These were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 200 ° C. and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, and then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 25.
<Example 26>
First, 0.7 g of palladium 2-ethylhexanoate (carbon number: 8) was put in a quartz cylinder, 0.1 g of dimethylamine borane was added as a reducing agent, and these were mixed in a non-uniform state to obtain a mixture. . Next, the quartz cylinder containing the above mixture is placed in an oil bath at 150 ° C. and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, and then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 26.

<実施例27>
先ずカプロン酸/2-エチルヘキシルアミン金錯体(炭素数:6,8)0.7gを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを150℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例27とした。
<実施例28>
先ずオレイン酸/プロピレンジアミン金錯体(炭素数:18,3)0.6gとイソステアリン酸銅(炭素数:18)0.1gとを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを150℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例28とした。
<Example 27>
First, 0.7 g of caproic acid / 2-ethylhexylamine gold complex (carbon number: 6, 8) was put in a quartz cylinder, 0.1 g of dimethylamine borane was added as a reducing agent, and these were mixed in a non-uniform state. To obtain a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 150 ° C. and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, and then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 27.
<Example 28>
First, 0.6 g of oleic acid / propylenediamine gold complex (carbon number: 18,3) and 0.1 g of copper isostearate (carbon number: 18) are placed in a quartz cylinder, and 0.1 g of dimethylamine borane is added as a reducing agent. Then, they were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 150 ° C. and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, and then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 28.

<実施例29>
先ずオレイルアミン白金錯体(炭素数:18)0.7を石英シリンダに入れ、還元剤としてジ亜燐酸アンモニウム0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを80℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例29とした。
<実施例30>
先ずビバル酸ルテニウム(炭素数:5)0.7gを石英シリンダに入れ、還元剤としてジ亜燐酸アンモニウム0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを45℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例30とした。
<Example 29>
First, 0.7 g of oleylamine platinum complex (carbon number: 18) was put in a quartz cylinder, 0.1 g of ammonium diphosphite was added as a reducing agent, and these were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 80 ° C., and nitrogen gas is supplied into the quartz cylinder at a rate of 0.2 cc / min for 1 hour, then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 29.
<Example 30>
First, 0.7 g of ruthenium vibalate (carbon number: 5) was put in a quartz cylinder, 0.1 g of ammonium diphosphite was added as a reducing agent, and these were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 45 ° C. and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, and then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 30.

<実施例31>
先ずステアリン酸鉄(炭素数:18)0.3gと酢酸コバルト(炭素数:2)0.1gとベヘン酸ニッケル(炭素数:22)0.3gとを石英シリンダに入れ、還元剤としてヒドラジン・一水和物0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを350℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例31とした。
<実施例32>
先ずリノール酸/テトラデシルアミンロジウム錯体(炭素数:18,14)0.7gを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを130℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例32とした。
<Example 31>
First, 0.3 g of iron stearate (carbon number: 18), 0.1 g of cobalt acetate (carbon number: 2) and 0.3 g of nickel behenate (carbon number: 22) were placed in a quartz cylinder, and hydrazine as a reducing agent. After adding 0.1 g of monohydrate, they were mixed in a heterogeneous state to obtain a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 350 ° C. and held for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 31.
<Example 32>
First, 0.7 g of linoleic acid / tetradecylamine rhodium complex (carbon number: 18, 14) was put in a quartz cylinder, 0.1 g of dimethylamine borane was added as a reducing agent, and these were mixed in a non-uniform state. A mixture was obtained. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 130 ° C., and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was defined as Example 32.

<実施例33>
先ずリノレン酸/ヘキサデシルアミンレニウム錯体(炭素数:18,16)0.7gを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを180℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例33とした。
<実施例34>
先ずオレイン酸インジウム(炭素数:18)0.65gとドデシルアミン錫錯体(炭素数:12)0.5gとを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを130℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例34とした。
<Example 33>
First, 0.7 g of linolenic acid / hexadecylamine rhenium complex (carbon number: 18, 16) is put in a quartz cylinder, 0.1 g of dimethylamine borane is added as a reducing agent, and these are mixed in a non-uniform state. A mixture was obtained. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 180 ° C. and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 33.
<Example 34>
First, 0.65 g of indium oleate (carbon number: 18) and 0.5 g of dodecylamine tin complex (carbon number: 12) are placed in a quartz cylinder, and 0.1 g of dimethylamine borane is added as a reducing agent. Mixing in a heterogeneous state gave a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 130 ° C., and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 34.

<実施例35>
先ず12-ヒドロキシステアリン酸インジウム(炭素数:18)0.6gとパルミチン酸亜鉛(炭素数:16)0.1gとを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを110℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例35とした。
<実施例36>
先ずアクリル酸銀(炭素数:4)0.7を石英シリンダに入れ、還元剤としてヒドラジン・一水和物0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを60℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例36とした。
<Example 35>
First, 0.6 g of indium 12-hydroxystearate (carbon number: 18) and 0.1 g of zinc palmitate (carbon number: 16) were placed in a quartz cylinder, and 0.1 g of dimethylamine borane was added as a reducing agent. These were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 110 ° C. and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 35.
<Example 36>
First, 0.7 g of silver acrylate (carbon number: 4) is put in a quartz cylinder, 0.1 g of hydrazine monohydrate is added as a reducing agent, and these are mixed in a non-uniform state to obtain a mixture. It was. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 60 ° C., and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 36.

<実施例37>
先ずモンタン酸/2-アミノエタノールアンチモン錯体(炭素数:29)0.35gとアクリル酸パラジウム(炭素数:4)0.35gとを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを60℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例37とした。
<実施例38>
実施例1のインジウム石鹸(炭素数:10)0.65gと実施例1の錫石鹸(炭素数:10)0.5gとを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを130℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例38とした。
<Example 37>
First montanic acid / 2-aminoethanol antimony complexes (carbon number: 29) 0.35g of acrylic acid palladium (carbon number: 4) and 0.35g placed in a quartz cylinder, added dimethylamine borane 0.1g as a reducing agent Then, they were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 60 ° C., and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 37.
<Example 38>
0.65 g of indium soap (carbon number: 10) of Example 1 and 0.5 g of tin soap (carbon number: 10) of Example 1 were put in a quartz cylinder, and 0.1 g of dimethylamine borane was added as a reducing agent. Later, they were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 130 ° C., and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 38.

<実施例39>
先ずエチレンオキシド変性コハク酸メタクリレート(新中村化学社製のNKエステルSA)を水酸化ナトリウムでけん化して石鹸を調製した後に、この石鹸に塩化金溶液を混合して撹拌することにより金の金属石鹸を調製した。次いでこの金の金属石鹸を十分に水で洗浄して濾過することにより脱塩した後に、この脱塩した金の金属石鹸を80℃の真空乾燥機に一晩入れて脱水することにより金石鹸(炭素数:10)を得た。次にこの金石鹸0.7gを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。更に上記混合物の入った石英シリンダを150℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例39とした。
<実施例40>
先ずメタクリル酸白金(炭素数:5)0.7gを石英シリンダに入れ、還元剤としてジ亜燐酸アンモニウム0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次に上記混合物の入った石英シリンダを150℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を実施例40とした。
<Example 39>
First, a soap was prepared by saponifying ethylene oxide-modified succinic acid methacrylate (NK ester SA, manufactured by Shin-Nakamura Chemical Co., Ltd.) with sodium hydroxide, and then mixing the gold chloride solution with the soap and stirring the gold metal soap. Prepared. Next, the gold metal soap was sufficiently washed with water and filtered for desalting, and then the desalted gold metal soap was placed in a vacuum dryer at 80 ° C. overnight to dehydrate it to dehydrate the gold soap ( Carbon number: 10) was obtained. Next, 0.7 g of this gold soap was placed in a quartz cylinder, 0.1 g of dimethylamine borane was added as a reducing agent, and these were mixed in a non-uniform state to obtain a mixture. Further, the quartz cylinder containing the above mixture is placed in an oil bath at 150 ° C. and kept for one hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, then taken out from the oil bath and cooled to room temperature. A dispersion was obtained. This particle dispersion was referred to as Example 39.
<Example 40>
First, 0.7 g of platinum methacrylate (carbon number: 5) was put in a quartz cylinder, 0.1 g of ammonium diphosphite was added as a reducing agent, and these were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder containing the above mixture is placed in an oil bath at 150 ° C. and kept for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, and then taken out from the oil bath and cooled to room temperature. To obtain a dispersion. This particle dispersion was designated as Example 40.

<比較例7>
先ずカプロン酸銀(炭素数:6)0.7gを石英シリンダに入れた。次にこの石英シリンダを45℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を比較例7とした。
<比較例8>
先ずカプロン酸銀(炭素数:6)0.7gを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次にこの石英シリンダを35℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を比較例8とした。
<Comparative Example 7>
First, 0.7 g of silver caproate (carbon number: 6) was put in a quartz cylinder. Next, the quartz cylinder is placed in an oil bath at 45 ° C. and held for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, and then taken out from the oil bath and cooled to room temperature. Got. This particle dispersion was designated as Comparative Example 7.
<Comparative Example 8>
First, 0.7 g of silver caproate (carbon number: 6) was put in a quartz cylinder, 0.1 g of dimethylamine borane was added as a reducing agent, and these were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder is placed in an oil bath at 35 ° C., and held for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, and then taken out from the oil bath and cooled to room temperature. Got. This particle dispersion was designated as Comparative Example 8.

<比較例9>
先ずカプロン酸銀(炭素数:6)0.7gを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加した後に、これらを不均一な状態で混合して混合物を得た。次にこの石英シリンダを370℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を比較例9とした。
<比較例10>
先ずカプロン酸銀(炭素数:6)0.7gを石英シリンダに入れ、還元剤としてジメチルアミンボラン0.1gを添加し、更に溶媒としてトルエン0.7gを添加した後に、これらを不均一な状態で混合して混合物を得た。次にこの石英シリンダを150℃のオイルバスに入れるとともに、この石英シリンダ内に窒素ガスを0.2cc/分ずつ供給しながら1時間保持した後に、オイルバスから取出して室温まで冷却し、分散体を得た。この粒子分散体を比較例10とした。
<Comparative Example 9>
First, 0.7 g of silver caproate (carbon number: 6) was put in a quartz cylinder, 0.1 g of dimethylamine borane was added as a reducing agent, and these were mixed in a non-uniform state to obtain a mixture. Next, the quartz cylinder is placed in an oil bath at 370 ° C. and held for 1 hour while supplying nitrogen gas into the quartz cylinder at a rate of 0.2 cc / min, and then taken out from the oil bath and cooled to room temperature. Got. This particle dispersion was designated as Comparative Example 9.
<Comparative Example 10>
First, 0.7 g of silver caproate (carbon number: 6) is put in a quartz cylinder, 0.1 g of dimethylamine borane is added as a reducing agent, and 0.7 g of toluene is further added as a solvent. To obtain a mixture. Next, the quartz cylinder is placed in a 150 ° C. oil bath, and nitrogen gas is supplied into the quartz cylinder at a rate of 0.2 cc / min for 1 hour, and then taken out from the oil bath and cooled to room temperature. Got. This particle dispersion was designated as Comparative Example 10.

<比較試験3及び評価>
実施例23〜40及び比較例7〜10の粒子分散体をアセトンで洗浄した後、真空雰囲気中に室温で2時間保持して金属粒子からなる乾燥粉末を作製し、X線光電子スペクトル法(XPS法)により乾燥粉末を構成する化合物の同定を行ってその化合物の酸化数を求め、またフィールドエミッション透過電子顕微鏡(FE−TEM)により上記乾燥粉末の元素分析を行うとともに、乾燥粉末の一次粒子の平均粒径を求めた。その結果を表3及び表4に示す。表3及び表4において、「HD」はヒドラジンであり、「Na/BH」は水素化ホウ素ナトリウムであり、「DMAB」はジメチルアミンボランであり、「A/HPP」はジ亜燐酸アンモニウムである。
<Comparative test 3 and evaluation>
After the particle dispersions of Examples 23 to 40 and Comparative Examples 7 to 10 were washed with acetone, they were kept in a vacuum atmosphere at room temperature for 2 hours to produce dry powders composed of metal particles, and X-ray photoelectron spectroscopy (XPS) The compound constituting the dry powder is identified by the method) to determine the oxidation number of the compound, and elemental analysis of the dry powder is performed by a field emission transmission electron microscope (FE-TEM). The average particle size was determined. The results are shown in Tables 3 and 4. In Tables 3 and 4, “HD” is hydrazine, “Na / BH” is sodium borohydride, “DMAB” is dimethylamine borane, and “A / HPP” is ammonium diphosphite. .

Figure 0005526578
Figure 0005526578

Figure 0005526578
表3及び表4から明らかなように、比較例8では乾燥粉末の一部が黒色化したものの原料粉末の有機金属化合物と殆ど変わっておらず、比較例9では銀メタルの凝集塊が発生し、比較例7及び10の乾燥粉末では原料粉末の有機金属化合物と変わっていなかった。これに対し、実施例23〜40では乾燥粉末の金属粒子の酸化数がゼロであり、また実施例23〜40では、乾燥粉末の金属粒子がIn、Sn等の金属を含み、更に金属粒子の一次粒子の平均粒径が3〜12nmと極めて微細であることが分かった。
Figure 0005526578
As is apparent from Tables 3 and 4, in Comparative Example 8, although the dried powder was partially blackened, it was hardly changed from the organometallic compound of the raw material powder, and in Comparative Example 9, silver metal aggregates were generated. The dry powders of Comparative Examples 7 and 10 were not different from the organometallic compound of the raw material powder. On the other hand, in Examples 23 to 40, the oxidation number of the metal particles of the dry powder was zero, and in Examples 23 to 40, the metal particles of the dry powder contained a metal such as In and Sn, and It turned out that the average particle diameter of a primary particle is very fine with 3-12 nm.

<実施例41>
実施例23の粒子分散体をトルエン(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例41とした。
<実施例42>
実施例24の粒子分散体をイソプロパノール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例42とした。
<実施例43>
実施例25の粒子分散体を2-イソプロポキシエタノール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例43とした。
<実施例44>
実施例26の粒子分散体をイソプロパノール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例44とした。
<実施例45>
実施例27の粒子分散体をイソプロパノール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例45とした。
<Example 41>
The particle dispersion of Example 23 was diluted with toluene (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was defined as Example 41.
<Example 42>
The particle dispersion of Example 24 was diluted with isopropanol (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was designated as Example 42.
<Example 43>
The particle dispersion of Example 25 was diluted with 2-isopropoxyethanol (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was designated as Example 43.
<Example 44>
The particle dispersion of Example 26 was diluted with isopropanol (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was designated as Example 44.
<Example 45>
The particle dispersion of Example 27 was diluted with isopropanol (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was defined as Example 45.

<実施例46>
実施例28の粒子分散体をα−テルピネオール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例46とした。
<実施例47>
実施例29の粒子分散体をα−テルピネオール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例47とした。
<実施例48>
実施例30の粒子分散体を水(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例48とした。
<実施例49>
実施例31の粒子分散体をプロピレングリコールモノメチルエーテル(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例49とした。
<実施例50>
実施例32の粒子分散体をヘキサン(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例50とした。
<Example 46>
The particle dispersion of Example 28 was diluted with α-terpineol (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was designated as Example 46.
<Example 47>
The particle dispersion of Example 29 was diluted with α-terpineol (solvent), and then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was designated as Example 47.
<Example 48>
The particle dispersion of Example 30 was diluted with water (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was designated as Example 48.
<Example 49>
The particle dispersion of Example 31 was diluted with propylene glycol monomethyl ether (solvent), and then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was designated as Example 49.
<Example 50>
After the particle dispersion of Example 32 was diluted with hexane (solvent), it was washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was designated as Example 50.

<実施例51>
実施例33の粒子分散体をメチルカルビトール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例51とした。
<実施例52>
実施例34の粒子分散体をデカリン(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例52とした。
<実施例53>
実施例35の粒子分散体をデカリン(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例53とした。
<実施例54>
実施例36の粒子分散体をイソプロパノール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例54とした。
<実施例55>
実施例37の粒子分散体をイソプロパノール(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例55とした。
<Example 51>
The particle dispersion of Example 33 was diluted with methyl carbitol (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was designated as Example 51.
<Example 52>
The particle dispersion of Example 34 was diluted with decalin (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was designated as Example 52.
<Example 53>
The particle dispersion of Example 35 was diluted with decalin (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was designated as Example 53.
<Example 54>
The particle dispersion of Example 36 was diluted with isopropanol (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was designated as Example 54.
<Example 55>
The particle dispersion of Example 37 was diluted with isopropanol (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was defined as Example 55.

<実施例56>
実施例38の粒子分散体をテトラデカン(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例56とした。
<実施例57>
実施例39の粒子分散体をヘキサン(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例57とした。
<実施例58>
実施例40の粒子分散体をプロピレングリコールモノメチルエーテルアセテート(溶媒)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例58とした。
<比較例11>
比較例9の粒子分散体をイソプロパノール等の溶媒と混合した。この混合物を比較例11とした。
<Example 56>
The particle dispersion of Example 38 was diluted with tetradecane (solvent), and then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was designated as Example 56.
<Example 57>
The particle dispersion of Example 39 was diluted with hexane (solvent), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. This particle dispersion was designated as Example 57.
<Example 58>
The particle dispersion of Example 40 was diluted with propylene glycol monomethyl ether acetate (solvent), then washed and concentrated by ultrafiltration to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was referred to as Example 58.
<Comparative Example 11>
The particle dispersion of Comparative Example 9 was mixed with a solvent such as isopropanol. This mixture was designated as Comparative Example 11.

<比較試験4及び評価>
実施例41〜58の粒子分散体と比較例11の混合物の、約30重量%に洗浄・濃縮した直後の粒子分散体の状態と、密栓したガラス瓶に入れて40℃に2週間保持した後の状態を目視にて観察した。その結果を表5及び表6に示す。表5及び表6において、「HD」はヒドラジンであり、「Na/BH」は水素化ホウ素ナトリウムであり、「DMAB」はジメチルアミンボランであり、「A/HPP」はジ亜燐酸アンモニウムである。
<Comparative test 4 and evaluation>
The state of the particle dispersion immediately after being washed and concentrated to about 30% by weight of the mixture of the particle dispersions of Examples 41 to 58 and Comparative Example 11, and after being kept in a sealed glass bottle at 40 ° C. for 2 weeks The state was observed visually. The results are shown in Tables 5 and 6. In Tables 5 and 6, “HD” is hydrazine, “Na / BH” is sodium borohydride, “DMAB” is dimethylamine borane, and “A / HPP” is ammonium diphosphite. .

Figure 0005526578
Figure 0005526578

Figure 0005526578
表5及び表6から明らかなように、比較例11では2週間後、凝集塊が完全に沈殿していたのに対し、実施例41〜58では2週間後も沈殿せず良好な状態のままであった。この結果、上記実施例のような簡便な方法で、特別な分散装置を使用せずに、高濃度の金属粒子の分散した粒子分散体が比較的容易に製造できることが判った。
Figure 0005526578
As is clear from Tables 5 and 6, in Comparative Example 11, the aggregate was completely precipitated after 2 weeks, whereas in Examples 41 to 58, it was not precipitated even after 2 weeks and remained in a good state. Met. As a result, it has been found that a particle dispersion in which high-concentration metal particles are dispersed can be produced relatively easily by a simple method as in the above-described example, without using a special dispersing apparatus.

<実施例59>
先ず実施例12の粒子分散体(濃度約30重量%のITO粒子を分散した分散液)をエタノールで、ITO粒子の含有量が4.0重量%となるように希釈し、この希釈した粒子分散体に光開始剤(チバ・スペシャリティー・ケミカルズ社製のイルガキュア500)を0.1重量%溶かして粒子分散体を調製した。次いで洗浄済みのソーダガラス板(縦100mm、横100mm、厚さ2.8mm)を40℃に保温し、このソーダガラス板をスピンコーターで150rpmの速度で回転させた状態で、上記希釈調製した粒子分散体を5cc滴下し、120秒間振り切って膜を作製した。
上記膜を上に向けたガラス板にステンレス製フォトマスク31(図2)を載せた。このフォトマスク31は、縦×横×厚さがそれぞれ100mm×100mm×1.0mmの正方形状に形成され、幅×長さがそれぞれ20mm×50mmの長方形の窓孔31aが10mm間隔で3個形成される。次いでガラス板の上方から紫外線照射装置(160Wメタルハライドランプ:距離10cm)により250mJ/cm2の紫外線エネルギを照射した後、フォトマスクを取除いたガラス板をホットプレートに載せて大気中で100℃に10分間保持した。次にN,N-ジメチルホルムアミド10重量%及びアセチルアセトン5重量%を相溶させたエタノール溶液で上記ガラス板をリンスすることにより、非光照射部の膜を溶かし、光照射の膜だけを残して、フォトマスクの長方形の窓孔と同一形状のパターニングされた膜を得た。更にこのガラス板を窒素ガス雰囲気中で220℃に30分間保持して膜を焼成した後に室温まで冷却した。このガラス板を実施例59とした。
<Example 59>
First, the particle dispersion of Example 12 (dispersion in which ITO particles having a concentration of about 30% by weight were dispersed) was diluted with ethanol so that the content of ITO particles became 4.0% by weight. A particle dispersion was prepared by dissolving 0.1% by weight of photoinitiator (Irgacure 500 manufactured by Ciba Specialty Chemicals) into the body. Next, the diluted soda glass plate (length 100 mm, width 100 mm, thickness 2.8 mm) is kept at 40 ° C., and this diluted and prepared particle is rotated with a spin coater at a speed of 150 rpm. 5 cc of the dispersion was dropped and shaken for 120 seconds to prepare a film.
A stainless steel photomask 31 (FIG. 2) was placed on a glass plate with the film facing upward. This photomask 31 is formed in a square shape with a length × width × thickness of 100 mm × 100 mm × 1.0 mm, respectively, and three rectangular window holes 31a each having a width × length of 20 mm × 50 mm are formed at intervals of 10 mm. Is done. Next, after irradiating UV energy of 250 mJ / cm 2 from above the glass plate with an ultraviolet irradiation device (160 W metal halide lamp: distance 10 cm), the glass plate from which the photomask has been removed is placed on a hot plate and brought to 100 ° C. in the atmosphere. Hold for 10 minutes. Next, the glass plate is rinsed with an ethanol solution in which 10% by weight of N, N-dimethylformamide and 5% by weight of acetylacetone are mixed to dissolve the film of the non-light-irradiated portion, leaving only the light-irradiated film. A patterned film having the same shape as the rectangular window hole of the photomask was obtained. Further, this glass plate was held at 220 ° C. for 30 minutes in a nitrogen gas atmosphere to fire the film, and then cooled to room temperature. This glass plate was referred to as Example 59.

<実施例60>
実施例18の粒子分散体(濃度約30重量%のIZO粒子を分散した分散液)を用いたことを除いて、実施例59と同様の方法でガラス板を作製した。このガラス板を実施例60とした。
<Example 60>
A glass plate was produced in the same manner as in Example 59, except that the particle dispersion of Example 18 (dispersion in which IZO particles having a concentration of about 30% by weight were dispersed) was used. This glass plate was referred to as Example 60.

<比較試験5及び評価>
実施例59及び60のガラス板の膜の厚さを走査型電子顕微鏡(SEM)にて測定した。その結果、実施例59の膜の厚さは260nmと見積もられ、実施例60の膜の厚さは320nmと見積もられた。またこれらの膜の表面抵抗値を四探針法にて測定したところ、実施例59の膜は4460Ω/□の導電性を示し、実施例60の膜は4900Ω/□の導電性を示した。更に実施例59及び60の膜の可視光透過率を分光光度計にて測定したところ、98%及び96%と高い透明性を示した。
<Comparative test 5 and evaluation>
The thickness of the glass plate of Examples 59 and 60 was measured with a scanning electron microscope (SEM). As a result, the film thickness of Example 59 was estimated to be 260 nm, and the film thickness of Example 60 was estimated to be 320 nm. Further, when the surface resistance values of these films were measured by a four-point probe method, the film of Example 59 showed a conductivity of 4460 Ω / □, and the film of Example 60 showed a conductivity of 4900 Ω / □. Further, when the visible light transmittance of the films of Examples 59 and 60 was measured with a spectrophotometer, it showed high transparency of 98% and 96%.

<実施例61>
先ず実施例54の粒子分散体(濃度約30重量%のAg粒子を分散した分散液)をイソプロパノールで、Ag粒子の含有量が20重量%となるように希釈し、この希釈した粒子分散体に光開始剤(チバ・スペシャリティー・ケミカルズ社製のイルガキュア500)を0.5重量%溶かして粒子分散体を調製した。次いで洗浄済みのソーダガラス板(縦100mm、横100mm、厚さ2.8mm)を40℃に保温し、このソーダガラス板をスピンコーターで150rpmの速度で回転させた状態で、上記希釈調製した粒子分散体を5cc滴下し、120秒間振り切って膜を作製した。
上記膜を上に向けたガラス板にステンレス製フォトマスクをそれぞれ載せた。このフォトマスクは、縦×横×厚さがそれぞれ100mm×100mm×1.0mmの正方形状に形成され、幅×長さがそれぞれ20mm×50mmの長方形の窓孔が10mm間隔で3個形成される。次いでガラス板の上方から紫外線照射装置(160Wメタルハライドランプ:距離10cm)により250mJ/cm2の紫外線エネルギを照射した後、フォトマスクを取除いたガラス板をホットプレートに載せて大気中で100℃に10分間保持した。次にN,N-ジメチルホルムアミド10重量%及びアセチルアセトン5重量%を相溶させたエタノール溶液で上記ガラス板をリンスすることにより、非光照射部の膜を溶かし、光照射の膜だけを残して、フォトマスクの長方形の窓孔と同一形状のパターニングされた膜を得た。更にこのガラス板を大気中で200℃に30分間保持して膜を焼成した後に室温まで冷却した。このガラス板を実施例61とした。
<実施例62>
実施例55の粒子分散体(濃度約30重量%のAg粒子及びPd粒子を分散した分散液)を用いたことを除いて実施例61と同様にしてガラス板を作製した。このガラス板を実施例62とした。
<Example 61>
First, the particle dispersion of Example 54 (dispersion in which Ag particles having a concentration of about 30% by weight were dispersed) was diluted with isopropanol so that the content of Ag particles was 20% by weight. A particle dispersion was prepared by dissolving 0.5% by weight of a photoinitiator (Irgacure 500 manufactured by Ciba Specialty Chemicals). Next, the diluted soda glass plate (length 100 mm, width 100 mm, thickness 2.8 mm) is kept at 40 ° C., and this diluted and prepared particle is rotated with a spin coater at a speed of 150 rpm. 5 cc of the dispersion was dropped and shaken for 120 seconds to prepare a film.
A stainless steel photomask was placed on each glass plate with the membrane facing upward. This photomask is formed in a square shape having a length × width × thickness of 100 mm × 100 mm × 1.0 mm, respectively, and three rectangular window holes each having a width × length of 20 mm × 50 mm are formed at intervals of 10 mm. . Next, after irradiating UV energy of 250 mJ / cm 2 from above the glass plate with an ultraviolet irradiation device (160 W metal halide lamp: distance 10 cm), the glass plate from which the photomask has been removed is placed on a hot plate and brought to 100 ° C. in the atmosphere. Hold for 10 minutes. Next, the glass plate is rinsed with an ethanol solution in which 10% by weight of N, N-dimethylformamide and 5% by weight of acetylacetone are mixed to dissolve the film of the non-light-irradiated portion, leaving only the light-irradiated film. A patterned film having the same shape as the rectangular window hole of the photomask was obtained. Further, this glass plate was kept at 200 ° C. for 30 minutes in the atmosphere to fire the film, and then cooled to room temperature. This glass plate was referred to as Example 61.
<Example 62>
A glass plate was produced in the same manner as in Example 61 except that the particle dispersion of Example 55 (dispersion in which Ag particles and Pd particles having a concentration of about 30% by weight were dispersed) was used. This glass plate was referred to as Example 62.

<実施例63>
先ず実施例56の粒子分散体(濃度約30重量%のIn粒子及びSn粒子を分散した分散液)をヘキサンで、In粒子及びSn粒子の含有量が1.0重量%となるように希釈し、この希釈した粒子分散体に光開始剤(チバ・スペシャリティー・ケミカルズ社製のイルガキュア500)を0.05重量%溶かして粒子分散体を調製した。次いで洗浄済みのアクリル板(縦100mm、横100mm、厚さ2.8mm)を40℃に保温し、このアクリル板をスピンコーターで150rpmの速度で回転させた状態で、上記希釈調製した粒子分散体を5cc滴下し、120秒間振り切って膜を作製した。
上記膜に向けたアクリル板にステンレス製フォトマスクをそれぞれ載せた。このフォトマスクは、縦×横×厚さがそれぞれ100mm×100mm×1.0mmの正方形状に形成され、幅×長さがそれぞれ20mm×50mmの長方形の窓孔が10mm間隔で3個形成される。次いでアクリル板の上方から紫外線照射装置(160Wメタルハライドランプ:距離10cm)により250mJ/cm2の紫外線エネルギを照射した後、フォトマスクを取除いたアクリル板をホットプレートに載せて大気中で100℃に10分間保持した。次にN,N-ジメチルホルムアミド10重量%及びアセチルアセトン5重量%を相溶させたエタノール溶液で上記アクリル板をリンスすることにより、非光照射部の膜を溶かし、光照射の膜だけを残して、フォトマスクの長方形の窓孔と同一形状のパターニングされた膜を得た。更にこのアクリル板を窒素ガス雰囲気中で200℃に30分間保持し、大気中で200℃に60分間保持して、膜を焼成した後に室温まで冷却した。このアクリル板を実施例63とした。
<Example 63>
First, the particle dispersion of Example 56 (dispersion in which In particles and Sn particles having a concentration of about 30 wt% were dispersed) was diluted with hexane so that the content of In particles and Sn particles was 1.0 wt%. Then, 0.05 wt% of a photoinitiator (Irgacure 500 manufactured by Ciba Specialty Chemicals) was dissolved in the diluted particle dispersion to prepare a particle dispersion. Next, the cleaned acrylic plate (100 mm long, 100 mm wide, 2.8 mm thick) is kept at 40 ° C. and the acrylic dispersion is rotated at a speed of 150 rpm with a spin coater, and the diluted particle dispersion prepared above. 5 cc was dropped and shaken for 120 seconds to prepare a film.
A stainless steel photomask was placed on each acrylic plate facing the film. This photomask is formed in a square shape having a length × width × thickness of 100 mm × 100 mm × 1.0 mm, respectively, and three rectangular window holes each having a width × length of 20 mm × 50 mm are formed at intervals of 10 mm. . Next, after irradiating ultraviolet energy of 250 mJ / cm 2 from above the acrylic plate with an ultraviolet irradiation device (160 W metal halide lamp: distance 10 cm), the acrylic plate with the photomask removed is placed on a hot plate and heated to 100 ° C. in the atmosphere. Hold for 10 minutes. Next, by rinsing the acrylic plate with an ethanol solution in which 10% by weight of N, N-dimethylformamide and 5% by weight of acetylacetone are mixed together, the non-light-irradiated part film is dissolved, leaving only the light-irradiated film. A patterned film having the same shape as the rectangular window hole of the photomask was obtained. Further, the acrylic plate was held at 200 ° C. for 30 minutes in a nitrogen gas atmosphere, and held at 200 ° C. for 60 minutes in the air, and the film was baked and then cooled to room temperature . The this acrylic plate were as in Example 63.

<実施例64>
先ず実施例57の粒子分散体(濃度約30重量%のAu粒子を分散した分散液)をヘキサンで、Au粒子の含有量が20重量%となるように希釈し、この希釈した粒子分散体に光開始剤(チバ・スペシャリティー・ケミカルズ社製のイルガキュア500)を0.5重量%溶かして粒子分散体を調製した。次いで洗浄済みのソーダガラス板(縦100mm、横100mm、厚さ2.8mm)を40℃に保温し、このソーダガラス板をスピンコーターで150rpmの速度で回転させた状態で、上記希釈調製した粒子分散体を5cc滴下し、120秒間振り切って膜を作製した。
上記膜を上に向けたガラス板にステンレス製フォトマスクをそれぞれ載せた。このフォトマスクは、縦×横×厚さがそれぞれ100mm×100mm×1.0mmの正方形状に形成され、幅×長さがそれぞれ20mm×50mmの長方形の窓孔が10mm間隔で3個形成される。次いでガラス板の上方から紫外線照射装置(160Wメタルハライドランプ:距離10cm)により250mJ/cm2の紫外線エネルギを照射した後、フォトマスクを取除いたガラス板をホットプレートに載せて大気中で100℃に10分間保持した。次にN,N-ジメチルホルムアミド10重量%及びアセチルアセトン5重量%を相溶させたエタノール溶液で上記ガラス板をリンスすることにより、非光照射部の膜を溶かし、光照射の膜だけを残して、フォトマスクの長方形の窓孔と同一形状のパターニングされた膜を得た。更にこのガラス板を大気中で150℃に30分間保持して膜を焼成した後に室温まで冷却した。このガラス板を実施例64とした。
<Example 64>
First, the particle dispersion of Example 57 (dispersion in which Au particles having a concentration of about 30% by weight were dispersed) was diluted with hexane so that the content of Au particles was 20% by weight. A particle dispersion was prepared by dissolving 0.5% by weight of a photoinitiator (Irgacure 500 manufactured by Ciba Specialty Chemicals). Next, the diluted soda glass plate (length 100 mm, width 100 mm, thickness 2.8 mm) is kept at 40 ° C., and this diluted and prepared particle is rotated with a spin coater at a speed of 150 rpm. 5 cc of the dispersion was dropped and shaken for 120 seconds to prepare a film.
A stainless steel photomask was placed on each glass plate with the membrane facing upward. This photomask is formed in a square shape having a length × width × thickness of 100 mm × 100 mm × 1.0 mm, respectively, and three rectangular window holes each having a width × length of 20 mm × 50 mm are formed at intervals of 10 mm. . Next, after irradiating UV energy of 250 mJ / cm 2 from above the glass plate with an ultraviolet irradiation device (160 W metal halide lamp: distance 10 cm), the glass plate from which the photomask has been removed is placed on a hot plate and brought to 100 ° C. in the atmosphere. Hold for 10 minutes. Next, the glass plate is rinsed with an ethanol solution in which 10% by weight of N, N-dimethylformamide and 5% by weight of acetylacetone are mixed to dissolve the film of the non-light-irradiated portion, leaving only the light-irradiated film. A patterned film having the same shape as the rectangular window hole of the photomask was obtained. Further, this glass plate was kept at 150 ° C. in the air for 30 minutes to fire the film, and then cooled to room temperature. This glass plate was referred to as Example 64.

<実施例65>
先ず実施例58の粒子分散体(濃度約30重量%のPt粒子を分散した分散液)をプロピレングリコールモノメチルエーテルアセテートで、Pt粒子の含有量が20重量%となるように希釈し、この希釈した粒子分散体に光開始剤(チバ・スペシャリティー・ケミカルズ社製のイルガキュア500)を0.5重量%溶かして粒子分散体を調製した。次いで洗浄済みのソーダガラス板(縦100mm、横100mm、厚さ2.8mm)を40℃に保温し、このソーダガラス板をスピンコーターで150rpmの速度で回転させた状態で、上記希釈調製した粒子分散体を5cc滴下し、120秒間振り切って膜を作製した。
上記膜を上に向けたガラス板にステンレス製フォトマスクをそれぞれ載せた。このフォトマスクは、縦×横×厚さがそれぞれ100mm×100mm×1.0mmの正方形状に形成され、幅×長さがそれぞれ20mm×50mmの長方形の窓孔が10mm間隔で3個形成される。次いでガラス板の上方から紫外線照射装置(160Wメタルハライドランプ:距離10cm)により250mJ/cm2の紫外線エネルギを照射した後、フォトマスクを取除いたガラス板をホットプレートに載せて大気中で100℃に10分間保持した。次にN,N-ジメチルホルムアミド10重量%及びアセチルアセトン5重量%を相溶させたエタノール溶液で上記ガラス板をリンスすることにより、非光照射部の膜を溶かし、光照射の膜だけを残して、フォトマスクの長方形の窓孔と同一形状のパターニングされた膜を得た。更にこのガラス板を大気中で150℃に30分間保持して膜を焼成した後に室温まで冷却した。このガラス板を実施例65とした。
<Example 65>
First, the particle dispersion of Example 58 (dispersion in which Pt particles having a concentration of about 30% by weight were dispersed) was diluted with propylene glycol monomethyl ether acetate so that the content of Pt particles was 20% by weight. A particle dispersion was prepared by dissolving 0.5 wt% of a photoinitiator (Irgacure 500 manufactured by Ciba Specialty Chemicals) into the particle dispersion. Next, the diluted soda glass plate (length 100 mm, width 100 mm, thickness 2.8 mm) is kept at 40 ° C., and this diluted and prepared particle is rotated with a spin coater at a speed of 150 rpm. 5 cc of the dispersion was dropped and shaken for 120 seconds to prepare a film.
A stainless steel photomask was placed on each glass plate with the membrane facing upward. This photomask is formed in a square shape having a length × width × thickness of 100 mm × 100 mm × 1.0 mm, respectively, and three rectangular window holes each having a width × length of 20 mm × 50 mm are formed at intervals of 10 mm. . Next, after irradiating UV energy of 250 mJ / cm 2 from above the glass plate with an ultraviolet irradiation device (160 W metal halide lamp: distance 10 cm), the glass plate from which the photomask has been removed is placed on a hot plate and brought to 100 ° C. in the atmosphere. Hold for 10 minutes. Next, the glass plate is rinsed with an ethanol solution in which 10% by weight of N, N-dimethylformamide and 5% by weight of acetylacetone are mixed to dissolve the film of the non-light-irradiated portion, leaving only the light-irradiated film. A patterned film having the same shape as the rectangular window hole of the photomask was obtained. Further, this glass plate was kept at 150 ° C. in the air for 30 minutes to fire the film, and then cooled to room temperature. This glass plate was referred to as Example 65.

<比較試験6及び評価>
実施例61、62、64及び65のガラス板の膜と実施例63のアクリル板の膜の厚さと可視光透過率と体積抵抗率をそれぞれ測定した。上記膜の厚さは走査型電子顕微鏡(SEM)にて測定し、透明膜の可視光透過率は分光光度計にて測定し、体積抵抗率は四探針法にて測定した。その結果を表7に示す。
<Comparative test 6 and evaluation>
The thickness, visible light transmittance, and volume resistivity of the glass plate films of Examples 61, 62, 64, and 65 and the acrylic plate film of Example 63 were measured. The thickness of the film was measured with a scanning electron microscope (SEM), the visible light transmittance of the transparent film was measured with a spectrophotometer, and the volume resistivity was measured with a four-probe method. The results are shown in Table 7.

Figure 0005526578
表7から明らかなように、実施例61、62、64及び65の膜では電極の配線として極めて有効な導電性が得られることが判った。また実施例63の膜では透明導電膜として極めて優れた可視光透過率と導電性を有することが判った。
Figure 0005526578
As is apparent from Table 7, it was found that the films of Examples 61, 62, 64 and 65 can obtain extremely effective conductivity as the wiring of the electrodes. Further, it was found that the film of Example 63 had extremely excellent visible light transmittance and conductivity as a transparent conductive film.

12 混合物
14 粒子分散体
12 Mixture 14 Particle dispersion

Claims (20)

有機金属化合物及び有機半金属化合物からなる群より選ばれた1種又は2種以上と還元剤とを混合して混合物を調製する工程と、
前記混合物を所定の雰囲気中で40〜360℃の温度に加熱した状態に10分〜5.0時間保持して粒子分散体を得る工程と
を含む粒子分散体の製造方法であって、
前記粒子分散体は、溶媒で希釈してコロイド液の状態した場合に、密栓したガラス瓶に入れて40℃に2週間保持した後の状態において沈殿せずにコロイド液の状態を保つ粒子分散体の製造方法。
A step of preparing a mixture by mixing one or more selected from the group consisting of an organic metal compound and an organic metalloid compound and a reducing agent;
Maintaining the mixture in a predetermined atmosphere at a temperature of 40 to 360 ° C. for 10 minutes to 5.0 hours to obtain a particle dispersion;
A method for producing a particle dispersion comprising:
When the particle dispersion is diluted with a solvent to form a colloidal solution , the particle dispersion is kept in the state of the colloidal solution without being precipitated in a state after being placed in a sealed glass bottle and kept at 40 ° C. for 2 weeks. Manufacturing method.
混合物の加熱雰囲気が、不活性ガス雰囲気、還元性ガス雰囲気又は大気雰囲気である請求項1記載の粒子分散体の製造方法。   The method for producing a particle dispersion according to claim 1, wherein the heating atmosphere of the mixture is an inert gas atmosphere, a reducing gas atmosphere or an air atmosphere. 前記混合物を調製する工程は、有機金属化合物を少なくとも含んで混合し、かつ、前記有機金属化合物に含まれる金属が、Cu,Au,Ag,Pt,Pd,Ru,Rh,Re,Os,Ir,Sc,Y,Ti,Zr,V,Nb,Ta,Cr,Mo,W,Mn,Fe,Co,Ni,Zn,Cd,Al,Ga,In,Tl,Sn,Pb,La,Ce,Nd,Sm,Eu,Gd,Tb,Er,Tm及びYbからなる群より選ばれた1種又は2種以上の金属である請求項1記載の粒子分散体の製造方法。 The step of preparing the mixture includes mixing at least an organometallic compound, and the metal contained in the organometallic compound is Cu, Au, Ag, Pt, Pd, Ru, Rh, Re, Os, Ir, Sc, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Zn, Cd, Al, Ga, In, Tl, Sn, Pb, La, Ce, Nd, The method for producing a particle dispersion according to claim 1, which is one or more metals selected from the group consisting of Sm, Eu, Gd, Tb, Er, Tm and Yb. 前記混合物を調製する工程は、有機半金属化合物を少なくとも含んで混合し、かつ、前記有機半金属化合物に含まれる半金属が、Si,Ge,Sb及びBiからなる群より選ばれた1種又は2種以上の半金属である請求項1記載の粒子分散体の製造方法。 The step of preparing the mixture includes mixing at least an organic metalloid compound, and the metalloid contained in the organic metalloid compound is selected from the group consisting of Si, Ge, Sb and Bi, or The method for producing a particle dispersion according to claim 1, wherein the two or more metalloids are used. 有機金属化合物又は有機半金属化合物の有機成分が、有機酸及びアミンからなる群より選ばれた1種又は2種以上の化合物である請求項1記載の粒子分散体の製造方法。   The method for producing a particle dispersion according to claim 1, wherein the organic component of the organic metal compound or organic metalloid compound is one or more compounds selected from the group consisting of organic acids and amines. 有機酸が、炭素数2〜29の炭素を含む化合物からなる群より選ばれた1種又は2種以上の化合物である請求項5記載の粒子分散体の製造方法。   The method for producing a particle dispersion according to claim 5, wherein the organic acid is one or more compounds selected from the group consisting of compounds containing 2 to 29 carbon atoms. 有機酸が、リンゴ酸、クエン酸、フマル酸、マレイン酸、酒石酸、酢酸、プロピオン酸、酪酸、イソ酪酸、ビバル酸、吉草酸、イソ吉草酸、カプロン酸、2−エチル酪酸、カプリル酸、ペラルゴン酸、2−エチルヘキサン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸、リシノール酸、12−ヒドロキシステアリン酸、ナフテン酸、アビエチン酸、デキストロピマル酸、パルミトレイン酸、オレイン酸、リノール酸及びリノレン酸からなる群より選ばれた1種又は2種以上の有機酸である請求項5記載の粒子分散体の製造方法。   Organic acids are malic acid, citric acid, fumaric acid, maleic acid, tartaric acid, acetic acid, propionic acid, butyric acid, isobutyric acid, vibalic acid, valeric acid, isovaleric acid, caproic acid, 2-ethylbutyric acid, caprylic acid, pelargon Acid, 2-ethylhexanoic acid, capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, melicic acid, ricinoleic acid, 6. Particles according to claim 5, wherein the particles are one or more organic acids selected from the group consisting of 12-hydroxystearic acid, naphthenic acid, abietic acid, dextropimaric acid, palmitoleic acid, oleic acid, linoleic acid and linolenic acid. A method for producing a dispersion. 有機酸が、光重合性化合物である請求項5記載の粒子分散体の製造方法。   The method for producing a particle dispersion according to claim 5, wherein the organic acid is a photopolymerizable compound. 光重合性化合物が、アクリロイル基、メタクリロイル基及びビニル基からなる群より選ばれた1種又は2種以上を含む請求項8記載の粒子分散体の製造方法。   The method for producing a particle dispersion according to claim 8, wherein the photopolymerizable compound contains one or more selected from the group consisting of an acryloyl group, a methacryloyl group, and a vinyl group. アミンが、ジブチルアミン、ジイソブチルアミン、トリペンチルアミン、アリルアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、プロピレンジアミン、ジエチレントリアミン、ドデシルアミン、1,3−ジメチル−n−ブチルアミン、1−アミノウンデカン、1−アミノトリデカン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、ジオレイルアミン、ドデシルジメチルアミン、テトラデシルジメチルアミン、ヘキサデシルジメチルアミン、オクタデシルジメチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン及び3−メトキシプロピルアミンからなる群より選ばれた1種又は2種以上である請求項5項記載の粒子分散体の製造方法。   The amine is dibutylamine, diisobutylamine, tripentylamine, allylamine, cyclohexylamine, dicyclohexylamine, propylenediamine, diethylenetriamine, dodecylamine, 1,3-dimethyl-n-butylamine, 1-aminoundecane, 1-aminotridecane, From tetradecylamine, hexadecylamine, octadecylamine, oleylamine, dioleylamine, dodecyldimethylamine, tetradecyldimethylamine, hexadecyldimethylamine, octadecyldimethylamine, monoethanolamine, diethanolamine, triethanolamine and 3-methoxypropylamine The method for producing a particle dispersion according to claim 5, wherein the particle dispersion is one or more selected from the group consisting of: 還元剤が、ヒドラジン、水素化ホウ素塩、ジメチルアミンボラン、ギ酸、ギ酸塩及びジ亜燐酸塩からなる群より選ばれた1種又は2種以上である請求項1記載の粒子分散体の製造方法。   The method for producing a particle dispersion according to claim 1, wherein the reducing agent is one or more selected from the group consisting of hydrazine, borohydride, dimethylamine borane, formic acid, formate and diphosphite. . 混合物に更にフッ化アンモニウムを添加した請求項1記載の粒子分散体の製造方法。   The method for producing a particle dispersion according to claim 1, wherein ammonium fluoride is further added to the mixture. 前記粒子分散体を溶媒で希釈してコロイド液の状態となるように調整する工程を更に含み、前記コロイド液の状態の粒子分散体中に平均粒径0.005〜1.0μmの酸化錫、酸化インジウム、酸化亜鉛、錫含有酸化インジウム(ITO)、亜鉛含有酸化インジウム(IZO)、アルミニウム含有酸化亜鉛(AZO)、ガリウム含有酸化亜鉛(GZO)、セリウム含有酸化亜鉛(CZO)、ホウ素含有酸化亜鉛(BZO)、アンチモン含有酸化錫(ATO)、或いはリン含有酸化錫(PTO)の酸化物半導体粒子を含む請求項1ないし11いずれか1項に記載の粒子分散体の製造方法。 Further comprising the step of diluting the particle dispersion with a solvent to prepare a colloidal liquid , wherein the colloidal liquid particle dispersion has a mean particle size of 0.005 to 1.0 μm of tin oxide, Indium oxide, zinc oxide, tin-containing indium oxide (ITO), zinc-containing indium oxide (IZO), aluminum-containing zinc oxide (AZO), gallium-containing zinc oxide (GZO), cerium-containing zinc oxide (CZO), boron-containing zinc oxide The method for producing a particle dispersion according to any one of claims 1 to 11, comprising oxide semiconductor particles of (BZO), antimony-containing tin oxide (ATO), or phosphorus-containing tin oxide (PTO). 請求項13に記載の方法で得られた粒子分散体を乾燥して、平均粒径0.005〜1.0μmの酸化錫、酸化インジウム、酸化亜鉛、錫含有酸化インジウム(ITO)、亜鉛含有酸化インジウム(IZO)、アルミニウム含有酸化亜鉛(AZO)、ガリウム含有酸化亜鉛(GZO)、セリウム含有酸化亜鉛(CZO)、ホウ素含有酸化亜鉛(BZO)、アンチモン含有酸化錫(ATO)、或いはリン含有酸化錫(PTO)の酸化物半導体粒子を製造する工程を含む酸化物半導体粒子の製造方法The particle dispersion obtained by the method according to claim 13 is dried, and tin oxide, indium oxide, zinc oxide, tin-containing indium oxide (ITO), zinc-containing oxide having an average particle size of 0.005 to 1.0 μm is dried. Indium (IZO), aluminum-containing zinc oxide (AZO), gallium-containing zinc oxide (GZO), cerium-containing zinc oxide (CZO), boron-containing zinc oxide (BZO), antimony-containing tin oxide (ATO), or phosphorus-containing tin oxide The manufacturing method of the oxide semiconductor particle including the process of manufacturing the oxide semiconductor particle of (PTO). 前記粒子分散体を溶媒で希釈してコロイド液の状態となるように調整する工程を更に含み、前記コロイド液の状態の粒子分散体中に平均粒径0.005〜1.0μmのフッ素含有酸化錫(FTO)、フッ素含有酸化インジウム(FIO)、フッ素含有酸化亜鉛(FZO)、フッ素錫含有酸化インジウム(FITO)、フッ素亜鉛含有酸化インジウム(FIZO)、フッ素アルミニウム含有酸化亜鉛(FAZO)、フッ素ガリウム含有酸化亜鉛(FGZO)、フッ素セリウム含有酸化亜鉛(FCZO)、或いはフッ素アンチモン含有酸化錫(FATO)の酸化物半導体粒子を含む請求項12に記載の粒子分散体の製造方法。 The method further includes the step of diluting the particle dispersion with a solvent to prepare a colloidal liquid, and the fluorine-containing oxidation having an average particle diameter of 0.005 to 1.0 μm in the colloidal liquid particle dispersion. Tin (FTO), fluorine-containing indium oxide (FIO), fluorine-containing zinc oxide (FZO), fluorine tin-containing indium oxide (FITO), fluorine zinc-containing indium oxide (FIZO), fluorine aluminum-containing zinc oxide (FAZO), fluorine gallium The method for producing a particle dispersion according to claim 12, comprising oxide semiconductor particles of zinc-containing zinc oxide (FGZO), fluorine-cerium-containing zinc oxide (FCZO), or fluorine-antimony-containing tin oxide (FATO). 請求項15に記載の方法で得られた粒子分散体を乾燥して、平均粒径0.005〜1.0μmのフッ素含有酸化錫(FTO)、フッ素含有酸化インジウム(FIO)、フッ素含有酸化亜鉛(FZO)、フッ素錫含有酸化インジウム(FITO)、フッ素亜鉛含有酸化インジウム(FIZO)、フッ素アルミニウム含有酸化亜鉛(FAZO)、フッ素ガリウム含有酸化亜鉛(FGZO)、フッ素セリウム含有酸化亜鉛(FCZO)、或いはフッ素アンチモン含有酸化錫(FATO)の酸化物半導体粒子を製造する工程を含む酸化物半導体粒子の製造方法The particle dispersion obtained by the method according to claim 15 is dried, and fluorine-containing tin oxide (FTO), fluorine-containing indium oxide (FIO), and fluorine-containing zinc oxide having an average particle size of 0.005 to 1.0 μm. (FZO), fluorine tin-containing indium oxide (FITO), fluorine zinc-containing indium oxide (FIZO), fluorine aluminum-containing zinc oxide (FAZO), fluorine gallium-containing zinc oxide (FGZO), fluorine cerium-containing zinc oxide (FCZO), or The manufacturing method of the oxide semiconductor particle including the process of manufacturing the oxide semiconductor particle of a fluorine antimony containing tin oxide (FATO). 前記粒子分散体を溶媒で希釈してコロイド液の状態となるように調整する工程を更に含み、前記コロイド液の状態の粒子分散体中に平均粒径0.005〜1.0μmの、Cu,Au,Ag,Pt,Pd,Ru,Rh,Re,Fe,Co,Ni,Zn,In,Sn及びSbからなる群より選ばれた1種又は2種以上の純金属粒子、混合金属粒子或いは合金粒子を含む請求項1、2、3、5又は11いずれか1項に記載の粒子分散体の製造方法。 The method further includes a step of diluting the particle dispersion with a solvent so as to be in a state of a colloidal liquid , wherein Cu, Au, Ag, Pt, Pd, Ru, Rh, Re, Fe, Co, Ni, Zn, In, Sn, and Sb, one or more types of pure metal particles, mixed metal particles, or alloys The manufacturing method of the particle dispersion of any one of Claims 1, 2, 3, 5 or 11 containing particle | grains. 請求項17に記載の方法で得られた粒子分散体を乾燥して、平均粒径0.005〜1.0μmの、Cu,Au,Ag,Pt,Pd,Ru,Rh,Re,Fe,Co,Ni,Zn,In,Sn及びSbからなる群より選ばれた1種又は2種以上の純金属、混合金属或いは合金からなる金属粒子を製造する工程を含む金属粒子の製造方法The particle dispersion obtained by the method according to claim 17 is dried to obtain Cu, Au, Ag, Pt, Pd, Ru, Rh, Re, Fe, Co having an average particle diameter of 0.005 to 1.0 μm. , Ni, Zn, In, Sn, and a method for producing metal particles, including a step of producing metal particles made of two or more kinds of pure metals, mixed metals or alloys selected from the group consisting of Sb and Sb. 前記粒子分散体を溶媒で希釈してコロイド液の状態となるように調整する工程を更に含み、前記コロイド液の状態の粒子分散体中に平均粒径0.005〜1.0μmのSbの半金属粒子を含む請求項1、2、4又は11いずれか1項に記載の粒子分散体の製造方法。 The method further includes a step of diluting the particle dispersion with a solvent so as to be in a colloidal liquid state. The manufacturing method of the particle dispersion of any one of Claims 1, 2, 4, or 11 containing a metal particle. 請求項19に記載の方法で得られた粒子分散体を乾燥して、平均粒径0.005〜1.0μmのSbの半金属粒子を製造する工程を含む半金属粒子の製造方法A method for producing semimetal particles , comprising drying the particle dispersion obtained by the method according to claim 19 to produce Sb semimetal particles having an average particle diameter of 0.005 to 1.0 µm.
JP2009089331A 2009-04-01 2009-04-01 Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles using the particle dispersion Active JP5526578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089331A JP5526578B2 (en) 2009-04-01 2009-04-01 Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles using the particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089331A JP5526578B2 (en) 2009-04-01 2009-04-01 Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles using the particle dispersion

Publications (2)

Publication Number Publication Date
JP2010244724A JP2010244724A (en) 2010-10-28
JP5526578B2 true JP5526578B2 (en) 2014-06-18

Family

ID=43097538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089331A Active JP5526578B2 (en) 2009-04-01 2009-04-01 Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles using the particle dispersion

Country Status (1)

Country Link
JP (1) JP5526578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111071991A (en) * 2020-01-03 2020-04-28 大连民族大学 Environment-friendly fluoride nano-material large-scale preparation method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691136B2 (en) * 2009-04-01 2015-04-01 三菱マテリアル株式会社 Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles
US8741036B2 (en) * 2012-02-02 2014-06-03 Xerox Corporation Composition of palladium unsaturated organoamine complex and palladium nanoparticles
CN103360854A (en) * 2012-03-28 2013-10-23 厦门纳诺泰克科技有限公司 High-transparency low-radiation energy-saving combined material for glass and preparation method thereof
CN108190940B (en) * 2018-01-25 2020-04-07 四川理工学院 Preparation method of zinc sulfide photocatalytic nano material
CN115485715A (en) 2020-10-13 2022-12-16 三菱电机株式会社 Model generation device, abnormality determination system, model generation method, and program

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342605A (en) * 2002-05-21 2003-12-03 Akio Komatsu Method for manufacturing superfine particle, superfine particle crystal film and superfine particle crystal
JP2004232012A (en) * 2003-01-29 2004-08-19 Fuji Photo Film Co Ltd Method for producing high-concentration metal microparticle dispersion
JP2005081501A (en) * 2003-09-09 2005-03-31 Ulvac Japan Ltd Metallic nano particle and its manufacturing method, metallic nano particle dispersion fluid and its manufacturing method, and metallic thin line, metallic membrane and their manufacturing method
JP2006097116A (en) * 2004-09-30 2006-04-13 Fuji Photo Film Co Ltd High concentration metal particulate-dispersed liquid and its production method
JP4848661B2 (en) * 2005-03-30 2011-12-28 大日本印刷株式会社 Method for producing dye-sensitized solar cell substrate and dye-sensitized solar cell substrate
JP4935175B2 (en) * 2006-04-28 2012-05-23 東洋インキScホールディングス株式会社 Metal fine particle dispersion and method for producing the same
JP5063003B2 (en) * 2006-01-25 2012-10-31 株式会社日本触媒 Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
JP2009024193A (en) * 2007-07-17 2009-02-05 Nippon Shokubai Co Ltd Method for producing metallic nanoparticle, metallic nanoparticle, dispersion of metallic nanoparticle, and metallic coating film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111071991A (en) * 2020-01-03 2020-04-28 大连民族大学 Environment-friendly fluoride nano-material large-scale preparation method
CN111071991B (en) * 2020-01-03 2021-07-20 大连民族大学 Environment-friendly fluoride nano-material large-scale preparation method

Also Published As

Publication number Publication date
JP2010244724A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5526578B2 (en) Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles using the particle dispersion
US9028724B2 (en) Method for preparing water-soluble nanoparticles and their dispersions
JP2021021146A (en) Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method
JP5691136B2 (en) Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles
US20130008690A1 (en) Compositions and methods for growing copper nanowires
JP4496216B2 (en) Conductive metal paste
KR100702595B1 (en) Metal nanoparticles and method for producing the same
JP5720693B2 (en) Method for producing conductive copper particles
JP5002478B2 (en) Metal nanoparticle paste and pattern forming method
WO2005023702A1 (en) Metal nanoparticle and method for producing same, liquid dispersion of metal nanoparticle and method for producing same, metal thin line, metal film and method for producing same
JP2013072091A (en) Metal microparticle and method for producing the same, metal paste containing the metal microparticle, and metal coat made of the metal paste
JP2011034750A (en) Composition for conductive film formation and conductive film formation method
JP6717289B2 (en) Copper-containing particles, conductor forming composition, conductor manufacturing method, conductor and device
JP2009097074A (en) Metal nanoparticle paste, and pattern forming method
JP6057379B2 (en) Copper nitride fine particles and method for producing the same
JP2008069374A (en) Metallic nanoparticle dispersion and metallic film
TWI575108B (en) Method for preparing nanowire having core-shell structure
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
TWI701683B (en) Nickel powder and nickel paste
JP2006089786A (en) Method for producing metallic nano-particle dispersed in polar solvent
TWI813559B (en) Nickel powder and nickel paste
JP2010275580A (en) Method for producing low-temperature-sinterable metal nanoparticle, metal nanoparticle and method for producing dispersion liquid using the same
JP5920312B2 (en) Method for producing particle dispersion and method for producing oxide semiconductor particles
TW570963B (en) Alcohol solution of noble metal or copper colloids, method of producing the same, and coating composition
JP2013043157A (en) Dispersant, and dispersible composition of metal nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5526578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150