JP5525912B2 - Method for identifying deformation cause part of resin molded product and method for suppressing deformation defect - Google Patents

Method for identifying deformation cause part of resin molded product and method for suppressing deformation defect Download PDF

Info

Publication number
JP5525912B2
JP5525912B2 JP2010117273A JP2010117273A JP5525912B2 JP 5525912 B2 JP5525912 B2 JP 5525912B2 JP 2010117273 A JP2010117273 A JP 2010117273A JP 2010117273 A JP2010117273 A JP 2010117273A JP 5525912 B2 JP5525912 B2 JP 5525912B2
Authority
JP
Japan
Prior art keywords
molded product
resin molded
deformation
region
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010117273A
Other languages
Japanese (ja)
Other versions
JP2011242369A (en
Inventor
容史 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2010117273A priority Critical patent/JP5525912B2/en
Priority to CN201110129646.6A priority patent/CN102248648B/en
Publication of JP2011242369A publication Critical patent/JP2011242369A/en
Application granted granted Critical
Publication of JP5525912B2 publication Critical patent/JP5525912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、樹脂成形品を金型から取り出した後に発生する変形不良の原因となる収縮を生じる、樹脂成形品表面上の領域を特定する方法、及び金型から取り出した後の樹脂成形品の変形不良を抑えるための変形不良抑制方法に関する。   The present invention relates to a method for identifying a region on the surface of a resin molded product that causes shrinkage that causes a deformation defect that occurs after the resin molded product is removed from the mold, and the resin molded product after being removed from the mold. The present invention relates to a deformation defect suppressing method for suppressing deformation defects.

樹脂成形品は、金属や木材のような腐食がなく、安価で軽量である特徴を有するために、様々な分野で用いられている。また、リサイクルによって地球資源を節約するために、樹脂成形品の大部分は熱可塑性樹脂から形成されている。そして、圧縮成形、トランスファー成形、射出成形、押出成形、ブロー成形など種々の成形方法が用いられ、成形機及び金型構造の進歩により、複雑な形状の樹脂成形品も容易に成形できるようになっている。   Resin-molded products are used in various fields because they have the characteristics of being inexpensive and lightweight without corrosion like metals and wood. Moreover, in order to save earth resources by recycling, most of the resin molded products are formed from thermoplastic resins. Various molding methods such as compression molding, transfer molding, injection molding, extrusion molding, and blow molding are used. Due to advances in molding machines and mold structures, it is possible to easily mold resin molded products with complex shapes. ing.

特に射出成形による樹脂成形品の製造は、生産性が良好であったり、複雑な形状のものが容易に成形できたりすること等の利点があるため、工業製品から日用雑貨品にまで広い範囲で行われている。   In particular, the production of resin molded products by injection molding has advantages such as good productivity and the ability to easily mold complex shapes, so it covers a wide range from industrial products to daily goods. It is done in

射出成形用の金型から取り出した直後の樹脂成形品は高温である。樹脂成形品は取り出し後冷却されるが、この高温状態から低温状態への温度変化により樹脂成形品は変形する。この樹脂成形品の変形は、成形品全体を一様に変形させるものではない。このため、樹脂成形品に反り変形等の問題(以下、変形不良の問題という場合がある)が発生する。   The resin molded product immediately after being taken out from the injection mold is hot. The resin molded product is cooled after being taken out, but the resin molded product is deformed by the temperature change from the high temperature state to the low temperature state. The deformation of the resin molded product does not uniformly deform the entire molded product. For this reason, problems such as warp deformation (hereinafter sometimes referred to as deformation problems) occur in the resin molded product.

このような変形不良を小さくするために樹脂成形品の変形解析が行われる。具体的には、樹脂成形部品の設計形状モデルから、成形条件、成形機、使用する樹脂材料の特性(物性)等に基づいて、解析ソフトを利用して解析が行なわれる(特許文献1)。   In order to reduce such deformation defects, deformation analysis of a resin molded product is performed. Specifically, analysis is performed using analysis software from a design shape model of a resin molded part based on molding conditions, a molding machine, characteristics (physical properties) of a resin material to be used, and the like (Patent Document 1).

特開2007−71674号公報JP 2007-71674 A

特許文献1に記載されるような従来の変形解析を行っても、変形不良の原因となる位置の特定ができず、好適な成形条件の決定には、時間と手間がかかる。   Even if the conventional deformation analysis as described in Patent Document 1 is performed, the position causing the deformation failure cannot be identified, and it takes time and labor to determine suitable molding conditions.

本発明は、上記課題を解決するためになされたものであり、その目的は、樹脂成形品を金型から取り出した後の変形不良の原因となる収縮を生じる樹脂成形品表面上の領域を容易に特定する方法を提供し、特定された領域の収縮挙動に基づいて好適な成形条件を決定し、変形不良を抑制する方法を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its purpose is to facilitate the region on the surface of the resin molded product that causes shrinkage that causes deformation failure after the resin molded product is taken out of the mold. Is to provide a method for determining a suitable molding condition based on the shrinkage behavior of the specified region and suppressing deformation defects.

本発明者らは、以上の課題を解決するために鋭意研究を重ねた。その結果、金型から取り出した後の樹脂成形品表面の変位量の分布に基づいて収縮率の分布を導出する工程と、上記収縮率の分布に基づいて、周囲より収縮率の大きい領域を変形不良の原因となる収縮を生じる領域として特定する工程と、を備える方法であれば、上記課題が解決されることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。   The inventors of the present invention have made extensive studies in order to solve the above problems. As a result, the step of deriving the distribution of shrinkage rate based on the distribution of the amount of displacement on the surface of the resin molded product after taking out from the mold, and the region having a larger shrinkage rate than the surroundings is deformed based on the distribution of shrinkage rate. If it is a method provided with the process of specifying as an area | region which produces the shrinkage | contraction which causes a defect, it discovered that the said subject was solved and came to complete this invention. More specifically, the present invention provides the following.

(1) 金型から取り出した後の樹脂成形品表面の変位量の分布に基づいて収縮率の分布を導出する工程と、前記収縮率の分布に基づいて、周囲より収縮率の大きい領域を変形不良の原因となる収縮を生じる領域として特定する工程と、を備える変形不良の原因特定方法。   (1) A step of deriving a shrinkage rate distribution based on the displacement distribution on the surface of the resin molded product after taking out from the mold, and a region having a larger shrinkage rate than the surroundings is deformed based on the shrinkage rate distribution. A method of identifying a cause of deformation failure comprising: a step of identifying as a region causing shrinkage that causes failure.

(2) 前記収縮率の大きい領域は、収縮率が最も大きい領域である(1)の変形不良の原因特定方法。   (2) The method for identifying the cause of deformation failure according to (1), wherein the region having a large shrinkage rate is a region having the largest shrinkage rate.

(3) 金型から取り出した後の樹脂成形品の変形不良を抑える変形不良抑制方法であって、金型から取り出した後の樹脂成形品表面の収縮率の分布を導出する工程と、前記収縮率の分布に基づいて、周囲より収縮率の大きい領域を変形不良の原因となる収縮を生じる領域として特定する工程と、前記収縮率の大きい領域の収縮率を抑える成形条件を決定する工程と、を備える変形不良抑制方法。   (3) A deformation defect suppressing method for suppressing a deformation defect of a resin molded product after being taken out from the mold, the step of deriving a distribution of shrinkage rate on the surface of the resin molded product after being taken out from the mold, and the shrinkage Identifying a region having a larger shrinkage rate than the surroundings as a region causing shrinkage that causes deformation failure, and determining molding conditions for suppressing the shrinkage rate of the region having a larger shrinkage rate based on the distribution of the rate, A deformation defect suppressing method comprising:

(4) 前記収縮率の大きい領域は、収縮率が最も大きい領域である(3)に記載の変形不良抑制方法。   (4) The deformation failure suppression method according to (3), wherein the region having a large shrinkage rate is a region having the largest shrinkage rate.

本発明によれば、樹脂成形品を金型から取り出した後に発生する変形不良の原因となる収縮を生じる樹脂成形品表面上の領域を容易に特定することができる。このように、変形不良の原因となる収縮を生じる位置が容易に決まるため、変形不良の原因となる領域の収縮量の変化を抑えるような成形条件も容易に決定することができ、変形不良を容易に抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the area | region on the resin molded product surface which produces the shrinkage | contraction which becomes the cause of the deformation | transformation defect which generate | occur | produces after taking out a resin molded product from a metal mold | die can be specified easily. In this way, since the position where the shrinkage causing the deformation failure is easily determined, the molding conditions that suppress the change in the shrinkage amount of the region causing the deformation failure can be easily determined. It can be easily suppressed.

(a)は不規則な斑点模様を備えた板状の樹脂成形品を示す図であり、(b)は不規則な斑点模様を備える樹脂成形品の表面を複数の領域に分割した状態を示す図であり、(c)は(b)に示す複数の領域の一部の拡大図を示す図である。(A) is a figure which shows the plate-shaped resin molded product provided with the irregular spotted pattern, (b) shows the state which divided | segmented the surface of the resin molded product provided with the irregular spotted pattern into several area | regions. It is a figure, (c) is a figure which shows the one part enlarged view of the some area | region shown in (b). (a)は撮影手段により樹脂成形品の変形を測定する様子を示す図であり、(b)は変形後の樹脂成形品を示す図であり、(c)は変形前の樹脂成形品の拡大図を示す図であり、(d)は変形後の樹脂成形品の拡大図を示す図である。(A) is a figure which shows a mode that a deformation | transformation of a resin molded product is measured by an imaging | photography means, (b) is a figure which shows the resin molded product after a deformation | transformation, (c) is an expansion of the resin molded product before a deformation | transformation. It is a figure which shows a figure, (d) is a figure which shows the enlarged view of the resin molded product after a deformation | transformation. 実施例1で用いた樹脂成形品を示す図である。It is a figure which shows the resin molded product used in Example 1. FIG. 実施例1の樹脂成形品の収縮率分布の結果を示す図である。It is a figure which shows the result of the shrinkage | contraction rate distribution of the resin molded product of Example 1. FIG. 実施例1の樹脂成形品の変形状態を示す図である。It is a figure which shows the deformation | transformation state of the resin molded product of Example 1. FIG.

以下、本発明の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の要旨を限定するものではない。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention. . In addition, although description may be abbreviate | omitted suitably about the location where description overlaps, the summary of invention is not limited.

<変形不良の原因特定方法>
本発明の変形不良の原因特定方法は、金型から取り出した後の樹脂成形品表面の変位量の分布に基づいて収縮率の分布を導出する工程(以下、「第一工程」という場合がある)と、前記収縮率の分布に基づいて、周囲より収縮率の大きい領域を変形不良の原因となる収縮を生じる領域として特定する工程(以下、「第二工程」という場合がある)と、を備える。以下、各工程について説明する。
<Method for identifying the cause of deformation defects>
The method for identifying the cause of deformation failure according to the present invention is a step of deriving the distribution of shrinkage based on the distribution of the amount of displacement of the surface of the resin molded product after being taken out from the mold (hereinafter referred to as “first step”). And a step of identifying a region having a larger shrinkage rate than the surroundings as a region causing shrinkage that causes a deformation failure (hereinafter sometimes referred to as a “second step”) based on the distribution of the shrinkage rate. Prepare. Hereinafter, each step will be described.

[第一工程]
第一工程は、樹脂成形品の表面を複数の領域に分け、樹脂成形品を金型から取り出した後の各領域の変位量に基づいて収縮率の分布を測定する工程である。
[First step]
The first step is a step of measuring the distribution of shrinkage rate based on the amount of displacement in each region after the surface of the resin molded product is divided into a plurality of regions and the resin molded product is taken out of the mold.

樹脂成形品を成形するための樹脂材料は、特に限定されず従来公知の樹脂材料を用いることができる。また、複数の樹脂材料をブレンドした樹脂混合物も上記樹脂材料に含まれる。さらに、樹脂に対して核剤、カーボンブラック、無機焼成顔料等の顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤及び難燃剤等の添加剤を添加して、所望の特性を付与した樹脂材料も含まれる。   The resin material for molding the resin molded product is not particularly limited, and a conventionally known resin material can be used. A resin mixture obtained by blending a plurality of resin materials is also included in the resin material. In addition, additives such as nucleating agent, carbon black, pigments such as inorganic fired pigments, antioxidants, stabilizers, plasticizers, lubricants, mold release agents, and flame retardants are added to the resin to achieve desired characteristics. The provided resin material is also included.

樹脂成形品の形状も特に限定されず、どのような形状の樹脂成形品に対しても本発明を適用することができる。本発明で改善を目的とする反り変形等の変形不良は、偏肉成形品の場合に問題となりやすい。偏肉成形品は、一成形品内に厚肉部と薄肉部を備えるが、厚肉部と薄肉部とでは異なる変形挙動になりやすいからである。本発明はこのような偏肉成形品の変形不良の改善に最適である。   The shape of the resin molded product is not particularly limited, and the present invention can be applied to any shape of the resin molded product. Deformation defects such as warp deformation for the purpose of improvement in the present invention tend to be a problem in the case of unevenly formed products. This is because an uneven molded product includes a thick portion and a thin portion in one molded product, and the thick portion and the thin portion tend to have different deformation behaviors. The present invention is most suitable for improving the deformation failure of such uneven thickness molded products.

以下、収縮率分布の導出の一例について説明する。例えば、収縮率分布の測定は以下の方法で行うことができる。
不規則な模様を備える樹脂成形品の表面を複数の領域に分割し、一領域を一図柄として各領域の図柄の変形から各領域間の変位量を測定し、この変位量に基づいて収縮率分布を導出することができる。
Hereinafter, an example of derivation of the shrinkage rate distribution will be described. For example, the shrinkage distribution can be measured by the following method.
The surface of a resin molded product with an irregular pattern is divided into multiple regions, and the amount of deformation between each region is measured from one region as a pattern, and the shrinkage rate is based on this displacement. A distribution can be derived.

「不規則な模様」とは、不規則な斑点模様、筋状模様、マーブル模様、皮革状模様等が挙げられる。また、模様は平面的な模様、立体的な模様のいずれであってもよい。また、模様を付す方法は特に限定されず、スプレーで模様を付す方法等が挙げられる。   Examples of the “irregular pattern” include an irregular spotted pattern, a streaky pattern, a marble pattern, and a leather pattern. The pattern may be a planar pattern or a three-dimensional pattern. Moreover, the method to attach a pattern is not specifically limited, The method etc. which attach a pattern with a spray are mentioned.

「複数の領域に分割」について、図を用いて説明する。図1(a)には、板状の樹脂成形品1が示され、この樹脂成形品1は斑点模様11を有する。図1(b)には、板状の樹脂成形品1の表面が複数の領域12に分割された様子が示されている。   “Division into a plurality of regions” will be described with reference to the drawings. FIG. 1A shows a plate-shaped resin molded product 1, which has a spotted pattern 11. FIG. 1B shows a state in which the surface of the plate-shaped resin molded product 1 is divided into a plurality of regions 12.

「一領域を一図柄」とは、図1(c)に示すように、各領域12内の斑点模様11をそれぞれ全体として一つの図柄とした場合に、分割された各領域12が実質的に全て異なる図柄として認識されることを意味する。つまり、図1(c)に示すように領域Aの図柄と領域B、C、Dの図柄が全て異なることを意味する。   As shown in FIG. 1 (c), “one area is one pattern” means that each divided area 12 is substantially divided when the spot pattern 11 in each area 12 is made into one pattern as a whole. It means that they are all recognized as different symbols. That is, as shown in FIG. 1C, it means that the design of the area A is different from the designs of the areas B, C, and D.

次いで、変位量の測定について説明する。以下のようにして、複数領域で変位量を求めることで変位量の分布を導出することができる。そして、導出された変位量分布から収縮率分布を導出することができる。変位量の測定は、上記領域の図柄間の変位量、図柄の変位量等から導出することができる。変位量の測定方法は特に限定されないが、樹脂成形品に測定器具等を接触させずに測定することが好ましい。樹脂成形品に測定器具を接触させると、接触のための接着剤等の影響で変形量が正確に測定できない場合があるからである。   Next, measurement of the displacement amount will be described. The distribution of the displacement amount can be derived by obtaining the displacement amount in a plurality of areas as follows. Then, the contraction rate distribution can be derived from the derived displacement amount distribution. The measurement of the amount of displacement can be derived from the amount of displacement between symbols in the region, the amount of displacement of symbols, and the like. Although the measuring method of a displacement amount is not specifically limited, It is preferable to measure without making a measuring instrument etc. contact a resin molded product. This is because when the measuring instrument is brought into contact with the resin molded product, the amount of deformation may not be measured accurately due to the influence of an adhesive for contact.

非接触で変位量を測定する方法は特に限定されないが、非接触で変位量を測定する方法の一例を、図2(a)、(b)に示す。   A method for measuring the displacement amount without contact is not particularly limited, but an example of a method for measuring the displacement amount without contact is shown in FIGS.

図2(a)には不規則な斑点模様を有する樹脂成形品2が撮影手段3に撮影される様子を示している。図2(a)に示す樹脂成形品2は、金型から取り出した直後で、ほとんど収縮していない状態にある。撮影手段3は変位量を測定するためのものであるが、このようにCCDカメラ等の撮影手段を用いて変位量を測定する方法が好ましい。CCDカメラ等の撮影手段を用いる方法であれば、変位量を正確に測定しやすいからであり、さらに、カメラの撮影領域を広げることで大きな変位量を容易に測定することができ、また、カメラの撮影範囲を所定の倍率で拡大することで、小さな変位量も容易に測定することができる。つまり、変位量が小さい場合にも撮影範囲を拡大して、何度かに分けて変位量を測定することで、容易且つ正確に全体の変位量分布を導出できる。その結果、容易且つ正確に収縮率分布も得ることができる。   FIG. 2A shows a state in which the resin molded product 2 having an irregular spot pattern is photographed by the photographing means 3. The resin molded product 2 shown in FIG. 2 (a) is in a state of being hardly contracted immediately after being taken out from the mold. The photographing means 3 is for measuring the amount of displacement, but a method of measuring the amount of displacement using the photographing means such as a CCD camera as described above is preferable. This is because it is easy to accurately measure the amount of displacement if it is a method using a photographing means such as a CCD camera. Furthermore, a large amount of displacement can be easily measured by expanding the photographing region of the camera. By enlarging the imaging range at a predetermined magnification, a small amount of displacement can be easily measured. That is, even when the amount of displacement is small, the entire displacement amount distribution can be derived easily and accurately by expanding the photographing range and measuring the amount of displacement in several steps. As a result, a shrinkage ratio distribution can be obtained easily and accurately.

図2(b)には、金型から取り出した後の冷却による収縮後の樹脂成形品2を示す。全体としてX方向にΔX、Y方向にΔY収縮する。樹脂成形品2が全体的にほとんど一様に収縮する場合には、このように大きな領域の変位量を求めればよいが、実際には、樹脂成形品内で変位量、変形方向は様々である場合が非常に多い。   FIG. 2B shows the resin molded product 2 after being contracted by cooling after being taken out from the mold. As a whole, ΔX contracts in the X direction and ΔY contracts in the Y direction. When the resin molded product 2 contracts almost uniformly as a whole, the amount of displacement in such a large region may be obtained, but in reality, the amount of displacement and the deformation direction vary within the resin molded product. Very often.

図2(c)には、図1(c)と同様の図であり、変形前の樹脂成形品の拡大図を示す。即ち、金型から取り出した直後で、ほとんど収縮していない状態が図2(c)に示されている。図2(d)には、金型から取り出した後の冷却による収縮後の図2(c)と同じ位置の樹脂成形品の拡大図が示されている。   FIG. 2C is a view similar to FIG. 1C and shows an enlarged view of the resin molded product before deformation. That is, FIG. 2 (c) shows a state in which the sheet is hardly contracted immediately after being taken out from the mold. FIG. 2 (d) shows an enlarged view of the resin molded product at the same position as FIG. 2 (c) after shrinkage by cooling after taking out from the mold.

図2(c)に示すように、収縮前の隣り合う領域間(領域Bと領域Cとの間)の距離がXであるとする。図2(d)に示すように、収縮後に上記領域間の距離がX’になったとする。このとき変位量は(X−X’)であり、収縮率は{(X−X’)/X}×100(%)である。各領域間の収縮率も同様に測定することで、収縮率分布を導出することができる。 As shown in FIG. 2 (c), the distance between adjacent regions before shrinkage (between the region B and the region C) is assumed to be X A. As shown in FIG. 2D, it is assumed that the distance between the regions becomes X A ′ after contraction. At this time, the displacement amount is (X A −X A ′), and the contraction rate is {(X A −X A ′) / X A } × 100 (%). The contraction rate distribution can be derived by measuring the contraction rate between the regions in the same manner.

なお、収縮率分布を導出する際には、上記のような領域間の距離を用いる方法に限定されない。また、上記のような細かい領域に分割するのは、局所的な変位量を測定するためであり、局所的な樹脂成形品表面の変位量を測定する方法であれば、どのような方法でも好ましく採用することができる。   In addition, when deriving the shrinkage rate distribution, the method is not limited to the method using the distance between the regions as described above. Further, the division into the fine regions as described above is for measuring the local displacement amount, and any method is preferable as long as it is a method for measuring the local displacement amount of the resin molded product surface. Can be adopted.

なお、模様を有さない樹脂成形品に対しても、本発明を適用することができる。模様を有さない樹脂成形品の場合には、成形後に模様を付す必要がある。金型から取り出した直後から収縮が始まるため、模様は金型内で成形と同時に付する方法や、金型から取り出し直後に樹脂成形品に模様を付すことが好ましい。   In addition, this invention is applicable also to the resin molded product which does not have a pattern. In the case of a resin molded product having no pattern, it is necessary to add a pattern after molding. Since the shrinkage starts immediately after taking out from the mold, it is preferable to apply the pattern to the resin molded product immediately after taking out from the mold.

なお、模様のパターンが認識できる様に領域を設定すれば解析は行える。このため、斑点が大きくても、その分領域を大きく設定すれば問題はない。したがって、最適な模様の大きさは領域の大きさによって変わる。即ち、斑点の大きさに合わせて領域を設定することになる。また、領域間の距離が短くなるように樹脂成形品の表面を分割し複数の領域に分けることで、より精度の高い測定が可能になる。CCDカメラ等の撮影手段を用いて測定を行う場合、撮影領域を拡大して撮影する、画素の高いカメラに変更する等して領域間の距離を短くすることができ、精度の高い測定が可能になる。   The analysis can be performed if the area is set so that the pattern can be recognized. For this reason, even if the spots are large, there is no problem if the area is set large accordingly. Therefore, the optimum pattern size varies depending on the size of the region. That is, the area is set according to the size of the spots. Further, by dividing the surface of the resin molded product into a plurality of regions so that the distance between the regions is short, more accurate measurement can be performed. When taking measurements using a CCD camera or other photographic means, the distance between the areas can be shortened by enlarging the photographic area or changing to a camera with higher pixels, enabling high-precision measurements. become.

上記のような、CCDカメラを用い、斑点模様を付した変形量の測定は、例えば、デジタル3D−コリレーションシステムVIC−3D(Correlated Solutions社製)を用いて行うことができる。   Measurement of the amount of deformation with a speckled pattern using a CCD camera as described above can be performed using, for example, a digital 3D-correlation system VIC-3D (manufactured by Correlated Solutions).

[第二工程]
第二工程では、上記第一工程で導出した収縮率分布に基づいて、周囲より収縮率の大きい領域を変形不良の原因となる収縮を生じる領域として特定する。局所的に収縮率が大きい箇所があると、この箇所が変形不良の原因になる。収縮率の大きい箇所が必ずしも変形が大きいとは限らないが、本発明の第一工程によれば、変形不良の原因となる局所的に収縮率の大きい箇所を容易に特定することができる。
[Second step]
In the second step, based on the shrinkage rate distribution derived in the first step, a region having a higher shrinkage rate than the surroundings is specified as a region causing shrinkage that causes deformation failure. If there is a part where the shrinkage rate is locally large, this part causes a deformation failure. Although a portion having a large shrinkage rate is not necessarily greatly deformed, according to the first step of the present invention, a portion having a large shrinkage rate that causes a deformation failure can be easily identified.

また、最も収縮率が大きくなる領域は、変形不良の大きな原因となりやすいが、本発明によれば、最も収縮率が大きくなる位置も容易に特定することができる。   In addition, the region where the shrinkage rate is the largest is likely to cause a large deformation failure, but according to the present invention, the position where the shrinkage rate is the largest can be easily identified.

<変形不良抑制方法>
本発明の変形不良抑制方法は、上記収縮率分布より確認した局所的に収縮率が大きくなる箇所の収縮を抑える成形条件を導出する。局所的に収縮率が大きくなる箇所の位置、変位量に基づいて、成形条件を決定する。ここで、成形条件には、成形装置の設定条件等の一般的な成形条件に加え、樹脂成形品の形状の条件も含む。
<Deformation defect suppression method>
The deformation defect suppressing method of the present invention derives a molding condition for suppressing the shrinkage of the portion where the shrinkage rate is locally confirmed from the shrinkage rate distribution. The molding conditions are determined based on the position of the portion where the shrinkage rate locally increases and the amount of displacement. Here, the molding conditions include not only general molding conditions such as setting conditions of the molding apparatus but also the conditions of the shape of the resin molded product.

例えば、無充填樹脂材料を成形してなる樹脂成形品の場合には、樹脂成形品の形状(肉厚部、薄肉部の位置、薄肉部の割合)、金型内での温度分布、圧力分布が樹脂成形品の反り等の変形に大きく影響する。したがって、特に、無充填樹脂材料の場合には、樹脂成形品の形状を検討することにより、樹脂成形品の変形を抑えることができる。なお、無充填樹脂材量とは、ガラス繊維等の強化用無機充填剤を含まない樹脂材料を指す。   For example, in the case of a resin molded product formed by molding an unfilled resin material, the shape of the resin molded product (thick part, position of thin part, ratio of thin part), temperature distribution in the mold, pressure distribution Greatly affects deformation such as warpage of the resin molded product. Therefore, particularly in the case of an unfilled resin material, the deformation of the resin molded product can be suppressed by examining the shape of the resin molded product. The unfilled resin material amount refers to a resin material that does not contain a reinforcing inorganic filler such as glass fiber.

上記無充填樹脂材量を成形してなる樹脂成形品に発生する反り等の変形を解消するために樹脂成形品の形状を検討する場合には、収縮率が大きい箇所をより薄肉にする変更、収縮率が大きい箇所の周囲を厚肉にする変更、収縮率が大きい箇所のみ金型の冷却を強化する変更等の成形条件の変更を行えば、変形不良が解消する傾向にある。   When considering the shape of the resin molded product in order to eliminate deformation such as warpage that occurs in the resin molded product formed by molding the amount of the unfilled resin material, a change to make the portion where the shrinkage rate is large thinner. Deformation defects tend to be eliminated by changing the molding conditions, such as changing the surrounding area of the portion with a large shrinkage ratio to be thick, or changing the mold to enhance the cooling of the mold only at the portion with a large shrinkage rate.

また、一度の成形条件の変更では、変形不良が解消しない場合がある。一つの変形不良の原因の解消が全体に反映されない場合も多いからである。このため、成形条件の変更を何度か行い、各成形品での局所的に収縮率が大きくなる箇所、変位量から好適な成形条件を考察することで、容易に変形不良の生じない成形条件を決定することができる。   In addition, the deformation failure may not be resolved by changing the molding conditions once. This is because the solution of the cause of one deformation defect is often not reflected in the whole. For this reason, by changing the molding conditions several times, considering the suitable molding conditions from the location where the shrinkage rate locally increases in each molded product, the amount of displacement, molding conditions that do not easily cause deformation defects Can be determined.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

<樹脂材料>
無充填ポリアセタール樹脂:ジュラコンM90−44(ポリプラスチックス社製)
<Resin material>
Unfilled polyacetal resin: Duracon M90-44 (manufactured by Polyplastics)

<実施例1>
図3に示すような形状、寸法の樹脂成形品を射出成形法により作製した。上記樹脂成形品を金型から取り出し後5秒以内に、樹脂成形品に対して顔料インクを噴霧し、樹脂成形品の表面に不規則な斑点模様を付した。
<Example 1>
A resin molded product having a shape and dimensions as shown in FIG. 3 was produced by an injection molding method. Within 5 seconds after the resin molded product was removed from the mold, pigment ink was sprayed onto the resin molded product to give an irregular spot pattern on the surface of the resin molded product.

デジタル3D−コリレーションシステムVIC−3D(Correlated Solutions社製)を用い、樹脂成形品表面を複数の領域に分割し、この複数の領域を用い、局所的な変位量を測定し、収縮率分布を導出した。測定時間は樹脂成形品を金型から取り出した後5分間である。なお、瞬時に樹脂成形品の表面を複数の領域に分割することができ、複数の領域に分割すると同時に変形量の測定を開始できるため、実質的な測定時間は模様を付した後5分間である。   Using a digital 3D-correlation system VIC-3D (manufactured by Correlated Solutions), the surface of the resin molded product is divided into a plurality of regions, and using these regions, the amount of local displacement is measured, and the shrinkage distribution is obtained. Derived. The measurement time is 5 minutes after the resin molded product is taken out of the mold. In addition, since the surface of the resin molded product can be instantaneously divided into a plurality of regions, and the measurement of the deformation amount can be started at the same time as the division into a plurality of regions, the substantial measurement time is 5 minutes after applying the pattern. is there.

上記のようにして得られた収縮率分布を図4(a)に示した。さらに実際の変形状態を示す図を図5(a)に示した。図4(a)に記載の結果から明らかなようにリブ部分では平均で1.5%の収縮率であり、ベース部分では平均で0.77%の収縮率になり、リブ部分の収縮率とベース部分の収縮率との間に大きな差があることが確認された。この結果からリブ部分の厚みが分厚いことが変形不良の原因として推測された。   The shrinkage ratio distribution obtained as described above is shown in FIG. Furthermore, the figure which shows an actual deformation | transformation state was shown to Fig.5 (a). As is clear from the results shown in FIG. 4A, the rib portion has an average shrinkage of 1.5%, and the base portion has an average shrinkage of 0.77%. It was confirmed that there was a large difference between the shrinkage rate of the base portion. From this result, it was inferred that the thickness of the rib portion was thick as the cause of the deformation failure.

[成形条件の変更1]
リブ部分の厚みが原因となり、変形不良が生じていると推測されたため、以下の形状に変更した。
リブの厚みを2mmt、ベースの厚みを4mmtに変更した以外は上記樹脂成形品と同様の方法で、収縮率分布を得た。得られた収縮率分布を図4(b)に示した。また、実際の変形状態を示す図を図5(b)に示した。図4(b)に記載の結果から明らかなように、リブ部分では平均で0.48%の収縮率であり、ベース部分では平均で1.03%の収縮率になり、リブ部分の収縮率とベース部分の収縮率との間に大きな差があることが確認された。この結果からベース部分の厚みが分厚いことが変形不良の原因として推測された。
[Change of molding conditions 1]
Since it was presumed that deformation defects were caused due to the thickness of the rib portion, the shape was changed to the following.
Shrinkage distribution was obtained in the same manner as the resin molded product except that the rib thickness was changed to 2 mm and the base thickness was changed to 4 mm. The resulting shrinkage distribution is shown in FIG. Moreover, the figure which shows an actual deformation | transformation state was shown in FIG.5 (b). As is apparent from the results shown in FIG. 4B, the rib portion has an average shrinkage of 0.48%, the base portion has an average shrinkage of 1.03%, and the rib portion has a shrinkage rate. It was confirmed that there is a large difference between the shrinkage rate of the base portion and the base portion. From this result, it was estimated that the thickness of the base portion was thick as a cause of the deformation failure.

[成形条件の変更2]
ベース部分が均一に分厚い場合に変形不良が生じると推測されたため、以下の形状に変更した。リブの厚みを2mmt、ベースの厚みを連続的に変化する厚みに変更した以外は上記樹脂成形品と同様の方法で、収縮率分布を得た。連続的に変化とは、Y方向に厚みが2mmtから6mmtまで変化する(Y=0が2mmt)。得られた収縮率分布を図4(c)に示した。また、実際の変形状態を示す図を図5(c)に示した。図4(c)に記載の結果から明らかなように、ベース部分の厚みが2mmtの付近では平均で0.52%の収縮率であり、厚みが6mmt付近のベース部分では平均で1.32%の収縮率になり、ベース部分の薄肉部の収縮率とベース部分の厚肉部の収縮率との間に大きな差があることが確認された。この結果からベース部分の肉厚が連続的に変化することが変形不良の原因と推測された。
[Change of molding conditions 2]
Since it was estimated that a deformation defect would occur when the base portion was uniformly thick, the shape was changed to the following. Shrinkage distribution was obtained in the same manner as the resin molded product, except that the rib thickness was changed to 2 mm and the base thickness was changed to a continuously changing thickness. Continuously changing means that the thickness changes in the Y direction from 2 mmt to 6 mmt (Y = 0 is 2 mmt). The obtained shrinkage ratio distribution is shown in FIG. Moreover, the figure which shows an actual deformation | transformation state was shown in FIG.5 (c). As is clear from the results shown in FIG. 4C, the shrinkage rate is 0.52% on average when the thickness of the base portion is 2 mmt, and 1.32% on the average when the thickness is 6 mmt. It was confirmed that there was a large difference between the shrinkage rate of the thin portion of the base portion and the shrinkage rate of the thick portion of the base portion. From this result, it was speculated that the thickness of the base portion continuously changed was the cause of the deformation failure.

[成形条件の変更3]
以上の結果と判断し、リブの厚みを2mmt、ベースの厚みを2mmtに変更した。樹脂成形品の作製以降は上記のものと同様にして、収縮率分布を求めた。得られた収縮率分布を図4(d)に示した。また、実際の変形状態を示す図を図5(d)に示した。図4(d)に記載の結果から明らかなように、リブ部分では平均で0.62%の収縮率であり、ベース部分では平均で0.56%の収縮率になり、リブ部分の収縮率とベース部分の収縮率との間にほとんど差が無いことが確認された。図5(d)に示す通り樹脂成形品はほとんど変形しなかった。
[Change of molding conditions 3]
Judging from the above results, the rib thickness was changed to 2 mmt, and the base thickness was changed to 2 mmt. After the production of the resin molded product, the shrinkage distribution was obtained in the same manner as described above. The resulting shrinkage distribution is shown in FIG. Moreover, the figure which shows an actual deformation | transformation state was shown in FIG.5 (d). As apparent from the results shown in FIG. 4D, the rib portion has an average shrinkage of 0.62%, and the base portion has an average shrinkage of 0.56%. It was confirmed that there was almost no difference between the shrinkage rate of the base part and the base part. As shown in FIG. 5D, the resin molded product hardly deformed.

1、2 樹脂成形品
11 斑点模様
12 領域
3 撮影手段
DESCRIPTION OF SYMBOLS 1, 2 Resin molded product 11 Spot pattern 12 Area | region 3 Imaging | photography means

Claims (4)

金型から取り出した後の樹脂成形品表面に不規則な模様を付し、前記不規則な模様を備える樹脂成形品の表面を複数の領域に分割し、一領域を一図柄として各領域の図柄の変形から各領域間の変位量を測定し、この変位量の分布に基づいて収縮率の分布を導出する工程と、
前記収縮率の分布に基づいて、周囲より収縮率の大きい領域を、変形不良の原因となる収縮を生じる領域として特定する工程と、を備える変形不良の原因特定方法。
An irregular pattern is attached to the surface of the resin molded product after being taken out from the mold, the surface of the resin molded product having the irregular pattern is divided into a plurality of areas, and each area is represented as a pattern. Measuring the amount of displacement between each region from the deformation of, and deriving the distribution of shrinkage based on the distribution of the amount of displacement,
A method for identifying a cause of deformation failure, comprising: specifying a region having a shrinkage rate larger than that of the surrounding region as a region causing shrinkage that causes deformation failure based on the distribution of the shrinkage rate.
前記収縮率の大きい領域は、収縮率が最も大きい領域である請求項1の変形不良の原因特定方法。   The method for identifying a cause of deformation failure according to claim 1, wherein the region having a large shrinkage rate is a region having the largest shrinkage rate. 金型から取り出した後の樹脂成形品の変形不良を抑える変形不良抑制方法であって、
金型から取り出した後の樹脂成形品表面に不規則な模様を付し、前記不規則な模様を備える樹脂成形品の表面を複数の領域に分割し、一領域を一図柄として各領域の図柄の変形から各領域間の変位量を測定し、この変位量の分布に基づいて収縮率の分布を導出する工程と、
前記収縮率の分布に基づいて、周囲より収縮率の大きい領域を変形不良の原因となる収縮を生じる領域として特定する工程と、
前記収縮率の大きい領域の収縮率を抑える成形条件を決定する工程と、を備える変形不良抑制方法。
A deformation defect suppressing method for suppressing deformation defects of a resin molded product after being taken out from a mold,
An irregular pattern is attached to the surface of the resin molded product after being taken out from the mold, the surface of the resin molded product having the irregular pattern is divided into a plurality of areas, and each area is represented as a pattern. Measuring the amount of displacement between each region from the deformation of, and deriving the distribution of shrinkage based on the distribution of the amount of displacement ,
Identifying a region having a larger shrinkage rate than the surroundings as a region causing shrinkage that causes deformation failure based on the distribution of shrinkage rate, and
Determining a molding condition for suppressing the shrinkage rate of the region having a large shrinkage rate.
前記収縮率の大きい領域は、収縮率が最も大きい領域である請求項3に記載の変形不良抑制方法。   The deformation failure suppression method according to claim 3, wherein the region having a large shrinkage rate is a region having the largest shrinkage rate.
JP2010117273A 2010-05-21 2010-05-21 Method for identifying deformation cause part of resin molded product and method for suppressing deformation defect Active JP5525912B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010117273A JP5525912B2 (en) 2010-05-21 2010-05-21 Method for identifying deformation cause part of resin molded product and method for suppressing deformation defect
CN201110129646.6A CN102248648B (en) 2010-05-21 2011-05-18 Determination method for deformation part of resin molded product and bad deformation suppression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010117273A JP5525912B2 (en) 2010-05-21 2010-05-21 Method for identifying deformation cause part of resin molded product and method for suppressing deformation defect

Publications (2)

Publication Number Publication Date
JP2011242369A JP2011242369A (en) 2011-12-01
JP5525912B2 true JP5525912B2 (en) 2014-06-18

Family

ID=44976392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010117273A Active JP5525912B2 (en) 2010-05-21 2010-05-21 Method for identifying deformation cause part of resin molded product and method for suppressing deformation defect

Country Status (2)

Country Link
JP (1) JP5525912B2 (en)
CN (1) CN102248648B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4144685B2 (en) * 2000-11-14 2008-09-03 関東自動車工業株式会社 Thermal deformation analysis method for injection molded products
JP4281091B2 (en) * 2005-09-06 2009-06-17 関東自動車工業株式会社 Deformation analysis method for resin molded parts
JP4781068B2 (en) * 2005-09-27 2011-09-28 株式会社ブリヂストン Inspection method of resin sheet and evaluation method of resin sheet for solar cell encapsulant

Also Published As

Publication number Publication date
JP2011242369A (en) 2011-12-01
CN102248648B (en) 2015-04-22
CN102248648A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
CN106273446A (en) A kind of section path generating method printed for 3D and system
CN110544238B (en) Flexible circuit board line defect identification method based on geometric positioning
KR101784371B1 (en) Method of mold core production using 3d printer
JP5525912B2 (en) Method for identifying deformation cause part of resin molded product and method for suppressing deformation defect
CN107283724A (en) Housing, electronic equipment and Shell Manufacture
JP2011183577A (en) Method for injection-molding metallic resin injection-molded article, and method for evaluating quality of the injection-molded article
KR20190055035A (en) Manufacturing method of mold core for aluminum injection using 3d printer
CN107244037A (en) Housing, electronic equipment and Shell Manufacture
JP2005199625A (en) Method for manufacturing in-mold decoration film
JP2016200446A (en) Method for measuring distortion of mold inside
JP5688253B2 (en) Mold correction method
US20170225364A1 (en) Resin molding mold
NL2013861B1 (en) Apparatus for producing an object by means of additive manufacturing.
JP6618069B2 (en) Composite molded product design support device, composite molded product manufacturing method, computer software, storage medium
KR102050628B1 (en) On-product derivation and adjustment of exposure parameters in a directed self-assembly process
CA3017296C (en) Injection mold, injection molding method, and molded article
JP2017136632A (en) Method for manufacturing high dimensional accuracy die casting
JP2023064507A (en) Core formation method
CN110871567A (en) Three-dimensional printing method and three-dimensional printing device
CN107222992A (en) Housing, electronic equipment and Shell Manufacture
JP7327072B2 (en) Method for estimating internal structure of tire during running
EP3912790A1 (en) Marble-color molded product and marble color effect evaluation system
JP2011140148A (en) Plastics molded object, method for molding plastics molded object and optical scanner with plastics molded object
KR100461591B1 (en) Method of molding optical lens
JP2011131538A (en) Resin-made integrated paint masking tool and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R150 Certificate of patent or registration of utility model

Ref document number: 5525912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250