JP5525192B2 - Shroud device for space environment equipment - Google Patents

Shroud device for space environment equipment Download PDF

Info

Publication number
JP5525192B2
JP5525192B2 JP2009147927A JP2009147927A JP5525192B2 JP 5525192 B2 JP5525192 B2 JP 5525192B2 JP 2009147927 A JP2009147927 A JP 2009147927A JP 2009147927 A JP2009147927 A JP 2009147927A JP 5525192 B2 JP5525192 B2 JP 5525192B2
Authority
JP
Japan
Prior art keywords
frame
shroud
cooling fluid
cooling
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009147927A
Other languages
Japanese (ja)
Other versions
JP2011001039A (en
Inventor
大輔 市瀬
俊之 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2009147927A priority Critical patent/JP5525192B2/en
Publication of JP2011001039A publication Critical patent/JP2011001039A/en
Application granted granted Critical
Publication of JP5525192B2 publication Critical patent/JP5525192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、宇宙環境装置用シュラウド装置に関し、詳しくは、宇宙環境を模擬した冷暗黒環境で人工衛星などの供試体の試験を行う宇宙環境試験装置(スペースチャンバー)内に設置されるシュラウドに関する。   The present invention relates to a shroud device for a space environment device, and more particularly to a shroud installed in a space environment test device (space chamber) that tests a specimen such as an artificial satellite in a cool and dark environment simulating the space environment.

宇宙環境装置は、真空容器の内部にシュラウドと呼ばれる熱吸収壁を設置し、該シュラウドを液体窒素により冷却するとともに、真空容器の内部を真空ポンプで排気することにより、真空容器内に宇宙の冷暗黒及び高真空を模擬し、宇宙区間で使用する人工衛星などの供試体の試験を行うものである。前記シュラウドとして、直方体状に枠組みしたフレーム内にシュラウドを構成する複数の冷却管を配置したものが知られている(例えば、特許文献1参照。)。   A space environment device has a heat absorption wall called a shroud installed inside a vacuum vessel, the shroud is cooled with liquid nitrogen, and the inside of the vacuum vessel is evacuated with a vacuum pump to cool the space inside the vacuum vessel. This test simulates dark and high vacuum, and tests specimens such as artificial satellites used in the space section. As the shroud, one in which a plurality of cooling pipes constituting the shroud are arranged in a frame framed in a rectangular parallelepiped shape is known (see, for example, Patent Document 1).

特開2005−257452号公報Japanese Patent Laying-Open No. 2005-257452

しかし、フレーム内にシュラウドを配置した構造では、フレームからの伝熱、輻射の影響を避けて供試体を十分に冷却するためには、大量の液体窒素をシュラウドに供給する必要があった。このため、液体窒素の消費量が多くなり、試験コストの上昇を招くという問題があった。   However, in the structure in which the shroud is arranged in the frame, it is necessary to supply a large amount of liquid nitrogen to the shroud in order to sufficiently cool the specimen while avoiding the effects of heat transfer and radiation from the frame. For this reason, there was a problem that the consumption of liquid nitrogen increased and the test cost increased.

そこで本発明は、シュラウドを配置したフレームを効率よく冷却することができ、フレームからの伝熱、輻射の影響を防止するとともに、液体窒素の消費量も低減することができる宇宙環境装置用シュラウド装置を提供することを目的としている。   Therefore, the present invention can efficiently cool the frame on which the shroud is arranged, prevents the influence of heat transfer and radiation from the frame, and can reduce the consumption of liquid nitrogen, and can also reduce the consumption of liquid nitrogen. The purpose is to provide.

上記目的を達成するため、本発明の宇宙環境装置用シュラウド装置は、上部フレームと下部フレームと上部フレーム及び下部フレームの四隅部を相互に連結する連結部材とにより枠組みしたフレーム内にシュラウドを構成する複数の冷却管を配置した宇宙環境装置用シュラウド装置において、前記フレームを内部を冷却流体が流通可能な金属パイプで形成し、前記シュラウドの冷却流体入口部から前記フレームの冷却流体出口に至る一つの連続した一筆書き状態の冷却流体流路を形成し、前記複数の冷却管、前記上部フレーム及び前記下部フレームを前記冷却流体の流れ方向に対して下りこう配のない水平方向に配置したことを特徴としている。 In order to achieve the above object, a shroud device for a space environment apparatus according to the present invention forms a shroud in a frame formed by an upper frame, a lower frame, and a connecting member that interconnects the four corners of the upper frame and the lower frame. In a shroud device for a space environment apparatus in which a plurality of cooling pipes are arranged, the frame is formed of a metal pipe through which a cooling fluid can flow, and is provided from a cooling fluid inlet portion of the shroud to a cooling fluid outlet of the frame. A cooling fluid flow path in a continuous single-stroke state is formed, and the plurality of cooling pipes, the upper frame, and the lower frame are arranged in a horizontal direction with no downward gradient with respect to the flow direction of the cooling fluid. Yes.

さらに、本発明の宇宙環境装置用シュラウド装置は、前記一つの連続した一筆書き状態の冷却流体流路が、前記複数の冷却管を連結した冷却管内流路と、前記フレームの金属パイプ内流路と、前記冷却管内流路と前記金属パイプ内流路とを接続する接続管とにより形成されていることを特徴としている。
Further, in the shroud device for space environment apparatus of the present invention, the cooling fluid flow path in the one continuous one-stroke state includes a flow path in the cooling pipe connecting the plurality of cooling pipes, and a flow path in the metal pipe of the frame. And a connection pipe connecting the flow path in the cooling pipe and the flow path in the metal pipe .

本発明の宇宙環境装置用シュラウド装置によれば、フレームを冷却流体によって直接冷却することができるので、フレームと冷却管とを同程度の温度にすることができ、フレームからの伝熱、輻射の影響を防止することができる。また、冷却管で間接的にフレームを冷却する場合に比べて熱効率を高めることができるので、冷却流体の消費量を低減することができ、シュラウドの小型化も図れる。   According to the shroud device for space environment device of the present invention, the frame can be directly cooled by the cooling fluid, so that the temperature of the frame and the cooling pipe can be set to the same level, and heat transfer and radiation from the frame can be performed. The influence can be prevented. Further, since the thermal efficiency can be increased as compared with the case where the frame is indirectly cooled by the cooling pipe, the consumption amount of the cooling fluid can be reduced, and the shroud can be downsized.

特に、フレームに導入する冷却流体を冷却管から導出した冷却流体とすることにより、冷却流体の利用効率を向上させることができ、冷却流体の消費量を更に低減できる。さらに、複数の冷却管及びフレーム内の冷却流体の流路を、それぞれ一つの連続した流路で形成することにより、シュラウド全体の冷却を確実に行えるとともに、構造の簡略化が図れる。   In particular, by using the cooling fluid introduced into the frame as the cooling fluid derived from the cooling pipe, the utilization efficiency of the cooling fluid can be improved, and the consumption of the cooling fluid can be further reduced. Furthermore, by forming the plurality of cooling pipes and the flow paths of the cooling fluid in the frame as one continuous flow path, the entire shroud can be reliably cooled and the structure can be simplified.

本発明の宇宙環境装置用シュラウド装置の一形態例を示す斜視図である。It is a perspective view which shows one example of the shroud apparatus for space environment apparatuses of this invention. 冷却流体の流れを示す説明図である。It is explanatory drawing which shows the flow of a cooling fluid.

本形態例に示す宇宙環境装置用のシュラウド装置11は、直方体状に枠組みしたフレーム21内にシュラウド12を構成する複数の冷却管12aを配置したものであって、宇宙環境装置を構成する真空容器の内部には、このように形成した複数のシュラウド装置11が所定位置にそれぞれ設けられている。   A shroud device 11 for a space environment apparatus shown in the present embodiment is an example in which a plurality of cooling pipes 12a constituting a shroud 12 are arranged in a frame 21 framed in a rectangular parallelepiped shape, and a vacuum container constituting a space environment apparatus. A plurality of shroud devices 11 formed in this way are respectively provided in predetermined positions.

シュラウド12の各冷却管12aは、軸線を水平方向に向けて設けられており、冷却流体入口部13となる一つの冷却管の端部と、冷却流体出口部14となる他の一つの冷却管の端部とを除いて、各冷却管12aの端部同士はU字状の連結管12bによって連結されており、複数の冷却管12aの内部及び連結管12bの内部には、冷却流体入口部13から冷却流体出口部14に至る一つの冷却管内流路が形成されている。   Each cooling pipe 12 a of the shroud 12 is provided with its axis line oriented in the horizontal direction, and ends of one cooling pipe that becomes the cooling fluid inlet portion 13 and another cooling pipe that becomes the cooling fluid outlet portion 14. The ends of the cooling pipes 12a are connected to each other by a U-shaped connecting pipe 12b, and a cooling fluid inlet part is provided inside the plurality of cooling pipes 12a and the connecting pipe 12b. One flow path in the cooling pipe from 13 to the cooling fluid outlet 14 is formed.

また、前記フレーム21は、金属パイプ、例えば鋼製角パイプを溶接接合して形成したものであって、シュラウド12の下部側に水平方向に設けられる長方形状の下部フレーム21aと、シュラウド12の上部側に水平方向に設けられる長方形状の上部フレーム21bと、下部フレーム21a及び上部フレーム21bの四隅部を相互に連結する鉛直方向の連結部材21cとで形成されている。   The frame 21 is formed by welding and joining a metal pipe, for example, a steel square pipe. The frame 21 has a rectangular lower frame 21a provided horizontally on the lower side of the shroud 12, and an upper portion of the shroud 12. It is formed of a rectangular upper frame 21b provided in the horizontal direction on the side, and vertical connecting members 21c that connect the four corners of the lower frame 21a and the upper frame 21b to each other.

下部フレーム21a及び上部フレーム21bは、四隅部を留め切りあるいは適宜な継手を用いて鋼製角パイプの内部が連通するように接合したものであって、下部フレーム21a内には、下部冷却流体入口部22から下部冷却流体出口部23に至る一つの連続した金属パイプ内下部流路24が形成され、上部フレーム21b内には、上部冷却流体入口部25から上部冷却流体出口部26に至る一つの連続した金属パイプ内上部流路27が形成されている。また、下部フレーム21aの下部冷却流体出口部23と上部フレーム21bの上部冷却流体入口部25とは、連結パイプ28により連結されている。   The lower frame 21a and the upper frame 21b are joined so that the four corners are cut off or the inside of the steel square pipe is communicated using an appropriate joint, and the lower frame 21a has a lower cooling fluid inlet. One continuous metal pipe lower passage 24 extending from the portion 22 to the lower cooling fluid outlet 23 is formed, and one upper pipe 21b from the upper cooling fluid inlet 25 to the upper cooling fluid outlet 26 is formed in the upper frame 21b. A continuous upper flow path 27 in the metal pipe is formed. The lower cooling fluid outlet 23 of the lower frame 21a and the upper cooling fluid inlet 25 of the upper frame 21b are connected by a connecting pipe 28.

これにより、フレーム21には、下部フレーム21aの下部冷却流体入口部22から金属パイプ内下部流路24、下部冷却流体出口部23、連結パイプ28、上部フレーム21bの上部冷却流体入口部25、金属パイプ内上部流路27、上部冷却流体出口部26に至る一つの連続した金属パイプ内流路が形成される。   Thereby, the frame 21 has a metal pipe lower flow path 24, a lower cooling fluid outlet 23, a connecting pipe 28, an upper cooling fluid inlet 25 of the upper frame 21b, a metal from the lower cooling fluid inlet 22 of the lower frame 21a. One continuous metal pipe flow path that reaches the pipe upper flow path 27 and the upper cooling fluid outlet 26 is formed.

そして、シュラウド12の冷却流体出口部14と、下部フレーム21aの下部冷却流体入口部22とを接続管15にて接続することにより、シュラウド装置11には、シュラウド12の冷却流体入口部13からフレーム21の上部冷却流体出口部26に至る一つの連続した一筆書き状態の冷却流体流路を形成している。   Then, the cooling fluid outlet portion 14 of the shroud 12 and the lower cooling fluid inlet portion 22 of the lower frame 21 a are connected by the connecting pipe 15, whereby the shroud device 11 has a frame extending from the cooling fluid inlet portion 13 of the shroud 12. Thus, one continuous one-stroke cooling fluid flow path that reaches the upper cooling fluid outlet portion 26 is formed.

すなわち、冷却流体供給部から供給された冷却流体、例えば液体窒素は、入口ヘッダー管31から各入口分岐管32を介して冷却流体入口部13から各シュラウド12に導入され、シュラウド12の冷却管内流路を流れた後、接続管15を経てフレーム21の金属パイプ内流路に流入する。シュラウド12及びフレーム21を冷却することによって気化した窒素ガスは、上部冷却流体出口部26から導出され、各出口分岐管33から出口ヘッダー管34に合流して導出される。したがって、フレーム21は、シュラウド12を冷却後にシュラウド12から導出された冷却流体である液体窒素あるいは液体窒素が気化した低温窒素ガスによって直接冷却されるため、フレーム21をシュラウド12と同程度の低温に冷却することができる。   That is, the cooling fluid supplied from the cooling fluid supply section, for example, liquid nitrogen, is introduced from the inlet header pipe 31 to each shroud 12 through the inlet branch pipe 32 from the cooling fluid inlet section 13 and flows in the cooling pipe of the shroud 12. After flowing through the path, it flows into the metal pipe flow path of the frame 21 through the connecting pipe 15. Nitrogen gas vaporized by cooling the shroud 12 and the frame 21 is led out from the upper cooling fluid outlet 26 and joined to the outlet header pipe 34 from each outlet branch pipe 33. Therefore, since the frame 21 is directly cooled by the liquid nitrogen that is the cooling fluid derived from the shroud 12 after cooling the shroud 12 or the low-temperature nitrogen gas in which the liquid nitrogen is vaporized, the frame 21 is set to a temperature as low as that of the shroud 12. Can be cooled.

これにより、供試体に対するフレーム21からの伝熱や輻射の影響を大幅に軽減することができるとともに、液体窒素等の冷却流体の消費量を少なくすることができ、シュラウド12の小型化を図ることができる。さらに、試験終了後などにシュラウド12を加温するために使用する加温流体、例えば加温窒素ガスの消費量も低減することができ、シュラウドや供試体の冷却、加温に要するコストを大幅に削減することができる。   Thereby, while being able to reduce the influence of the heat transfer and radiation from the flame | frame 21 with respect to a test body significantly, the consumption of cooling fluids, such as liquid nitrogen, can be decreased, and size reduction of the shroud 12 is achieved. Can do. Furthermore, the consumption of the heating fluid used for heating the shroud 12 after the test is completed, for example, heated nitrogen gas, can be reduced, greatly increasing the cost required for cooling and heating the shroud and the specimen. Can be reduced.

また、前述のように、シュラウド装置11の冷却流体流路を一筆書き状態に形成することにより、シュラウド装置11に温度分布が生じることはなく、シュラウド装置11の唯一の流体出口である上部冷却流体出口部26から導出される流体の温度を測定することにより、シュラウド全体が所定の温度に、確実に冷却又は加温されたことを知ることができる。   Further, as described above, by forming the cooling fluid flow path of the shroud device 11 in a single stroke state, the temperature distribution does not occur in the shroud device 11, and the upper cooling fluid that is the only fluid outlet of the shroud device 11. By measuring the temperature of the fluid led out from the outlet 26, it can be known that the entire shroud has been reliably cooled or heated to a predetermined temperature.

さらに、シュラウド12の各冷却管12aや下部フレーム21a及び上部フレーム21bを、流体の流れ方向に対して下り勾配のない水平方向とし、また、連結パイプ28を上向きの流れになるように設置することにより、冷却流体流路内で液体窒素が気化して発生した窒素ガスの気泡が液体窒素の流れを阻害することがないので、液体窒素のような冷却流体を冷却流体流路内に確実に流通させることができる。   Further, the cooling pipes 12a, the lower frame 21a, and the upper frame 21b of the shroud 12 are set in a horizontal direction with no downward gradient with respect to the fluid flow direction, and the connecting pipe 28 is installed so as to have an upward flow. As a result, the nitrogen gas bubbles generated by the vaporization of liquid nitrogen in the cooling fluid channel do not hinder the flow of liquid nitrogen, so that a cooling fluid such as liquid nitrogen is reliably circulated in the cooling fluid channel. Can be made.

11…シュラウド装置、12…シュラウド、12a…冷却管、12b…連結管、13…冷却流体入口部、14…冷却流体出口部、15…接続管、21…フレーム、21a…下部フレーム、21b…上部フレーム、21c…連結部材、22…下部冷却流体入口部、23…下部冷却流体出口部、24…金属パイプ内下部流路、25…上部冷却流体入口部、26…上部冷却流体出口部、27…金属パイプ内上部流路、28…連結パイプ、31…入口ヘッダー管、32…入口分岐管、33…出口分岐管、34…出口ヘッダー管   DESCRIPTION OF SYMBOLS 11 ... Shroud apparatus, 12 ... Shroud, 12a ... Cooling pipe, 12b ... Connection pipe, 13 ... Cooling fluid inlet part, 14 ... Cooling fluid outlet part, 15 ... Connection pipe, 21 ... Frame, 21a ... Lower frame, 21b ... Upper part Frame, 21c ... Connecting member, 22 ... Lower cooling fluid inlet, 23 ... Lower cooling fluid outlet, 24 ... Lower flow path in metal pipe, 25 ... Upper cooling fluid inlet, 26 ... Upper cooling fluid outlet, 27 ... Metal pipe upper flow path, 28 ... connection pipe, 31 ... inlet header pipe, 32 ... inlet branch pipe, 33 ... outlet branch pipe, 34 ... outlet header pipe

Claims (2)

上部フレームと下部フレームと上部フレーム及び下部フレームの四隅部を相互に連結する連結部材とにより枠組みしたフレーム内にシュラウドを構成する複数の冷却管を配置した宇宙環境装置用シュラウド装置において、
前記フレームを内部を冷却流体が流通可能な金属パイプで形成し
前記シュラウドの冷却流体入口部から前記フレームの冷却流体出口に至る一つの連続した一筆書き状態の冷却流体流路を形成し、
前記複数の冷却管、前記上部フレーム及び前記下部フレームを前記冷却流体の流れ方向に対して下り勾配のない水平方向に配置した
ことを特徴とする宇宙環境装置用シュラウド装置。
In a shroud device for a space environment device in which a plurality of cooling pipes constituting a shroud are arranged in a frame formed by a connecting member that interconnects four corners of an upper frame, a lower frame, and an upper frame and a lower frame .
The frame is formed with a metal pipe through which a cooling fluid can flow ,
Forming one continuous one-stroke cooling fluid flow path from the cooling fluid inlet of the shroud to the cooling fluid outlet of the frame;
The shroud device for a space environment device , wherein the plurality of cooling pipes, the upper frame, and the lower frame are arranged in a horizontal direction without a downward gradient with respect to a flow direction of the cooling fluid .
前記一つの連続した一筆書き状態の冷却流体流路は、前記複数の冷却管を連結した冷却管内流路と、前記フレームの金属パイプ内流路と、前記冷却管内流路と前記金属パイプ内流路とを接続する接続管とにより形成されていることを特徴とする請求項1記載の宇宙環境装置用シュラウド装置。 The one continuous single-stroke cooling fluid flow path includes a flow path in the cooling pipe connecting the plurality of cooling pipes, a flow path in the metal pipe of the frame, a flow path in the cooling pipe, and a flow in the metal pipe. The shroud device for a space environment device according to claim 1 , wherein the shroud device is formed by a connection pipe connecting the road .
JP2009147927A 2009-06-22 2009-06-22 Shroud device for space environment equipment Active JP5525192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009147927A JP5525192B2 (en) 2009-06-22 2009-06-22 Shroud device for space environment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147927A JP5525192B2 (en) 2009-06-22 2009-06-22 Shroud device for space environment equipment

Publications (2)

Publication Number Publication Date
JP2011001039A JP2011001039A (en) 2011-01-06
JP5525192B2 true JP5525192B2 (en) 2014-06-18

Family

ID=43559372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147927A Active JP5525192B2 (en) 2009-06-22 2009-06-22 Shroud device for space environment equipment

Country Status (1)

Country Link
JP (1) JP5525192B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359298B (en) * 2013-06-26 2015-08-05 上海卫星装备研究所 A kind of infrared heating cage density of heat flow rate caliberating device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155841A (en) * 1984-12-28 1986-07-15 Toshiba Corp Vacuum heating device
JP2000211600A (en) * 1999-01-27 2000-08-02 Nippon Sanso Corp Shroud for outer space environment test apparatus
JP4093975B2 (en) * 2004-03-11 2008-06-04 三菱電機株式会社 Thermal vacuum test equipment
JP3833671B2 (en) * 2004-04-16 2006-10-18 大陽日酸株式会社 Space environment test equipment

Also Published As

Publication number Publication date
JP2011001039A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
Jeon et al. Thermal performance of heterogeneous PCHE for supercritical CO2 energy cycle
KR101660349B1 (en) Heat exchanger structure
Wan et al. Numerical study on thermal stress and cold startup induced thermal fatigue of a water/steam cavity receiver in concentrated solar power (CSP) plants
CN203550643U (en) Passive condenser of nuclear reactor
Papa et al. Engineering design of a Permeator Against Vacuum mock-up with niobium membrane
JP2012007761A (en) Heat exchanger and nozzle of heat exchanger
Han et al. Design of heat transfer in submerged combustion vaporizer
JP5525192B2 (en) Shroud device for space environment equipment
Tian et al. Experimental investigations on pool boiling on a vertical tube in the confined and unconfined spaces
US9289760B2 (en) Apparatus for providing coolant fluid
CN203366908U (en) Heat pipe array oil cooler
JP3217608U (en) Liquid cooling heat transfer device
JP2006275412A (en) Heat recovery device for cogeneration system and its manufacturing method
CN102717903B (en) Honeycomb type stainless steel expansion plate heat sink
CN207922904U (en) A kind of cooling circulating water unit
CN108266640A (en) Gas-liquid pipeline mixed control apparatus
Ge et al. Bubble dissolution in horizontal turbulent bubbly flow in domestic central heating system
Rasouli et al. On-sun characterization of microchannel supercritical carbon dioxide solar thermal receivers: Preliminary findings
Heung et al. Next-generation TCAP hydrogen isotope separation process
JP6083514B2 (en) Heat exchanger
CN202522505U (en) Experiment system for simulating two-loop pure liquid phase flowing acceleration corrosion of nuclear power station
CN209582528U (en) A kind of storage tank multilayer heating device for coil
KR20160084859A (en) Piping structure, cooling device using same, and refrigerant vapor transport method
KR20120138550A (en) Oil heating device for drum type of vessel
JP2005147480A (en) Multi-fluid heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140411

R150 Certificate of patent or registration of utility model

Ref document number: 5525192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250