JP5519121B2 - Novel RGD-containing peptide and dentin regenerating agent, bone regenerating agent, periodontal tissue regenerating agent - Google Patents

Novel RGD-containing peptide and dentin regenerating agent, bone regenerating agent, periodontal tissue regenerating agent Download PDF

Info

Publication number
JP5519121B2
JP5519121B2 JP2008144109A JP2008144109A JP5519121B2 JP 5519121 B2 JP5519121 B2 JP 5519121B2 JP 2008144109 A JP2008144109 A JP 2008144109A JP 2008144109 A JP2008144109 A JP 2008144109A JP 5519121 B2 JP5519121 B2 JP 5519121B2
Authority
JP
Japan
Prior art keywords
rgd
regenerating agent
peptide
bone
dentin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008144109A
Other languages
Japanese (ja)
Other versions
JP2009286767A (en
Inventor
善之 安田
隆史 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SCHOOL JURIDICAL PERSON HIGASHI NIPPON GAKUEN
Original Assignee
SCHOOL JURIDICAL PERSON HIGASHI NIPPON GAKUEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SCHOOL JURIDICAL PERSON HIGASHI NIPPON GAKUEN filed Critical SCHOOL JURIDICAL PERSON HIGASHI NIPPON GAKUEN
Priority to JP2008144109A priority Critical patent/JP5519121B2/en
Publication of JP2009286767A publication Critical patent/JP2009286767A/en
Application granted granted Critical
Publication of JP5519121B2 publication Critical patent/JP5519121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、新規RGD含有ペプチドおよび象牙質再生剤、骨再生剤、歯周組織再生剤に関する。本発明は、さらに詳しくは、象牙質フォスフォフォリン由来する新規なRGD含有ペプチドと、それを利用した象牙質再生剤、骨再生剤、歯周組織再生剤に関する。   The present invention relates to a novel RGD-containing peptide, a dentin regenerating agent, a bone regenerating agent, and a periodontal tissue regenerating agent. More specifically, the present invention relates to a novel RGD-containing peptide derived from dentin phosphophorin, a dentin regenerating agent, a bone regenerating agent, and a periodontal tissue regenerating agent using the same.

これまでの歯科治療は、ただ単に虫歯や神経を取りこぼすことなく完璧なまでに除去し、その部分にレジンや金属等の材料を詰めるという作業が中心であった。しかし近年、高齢化社会を迎えて国民の健康に対する関心は益々高くなり、それと同時に歯科においても、患者の痛みを除きさらに切削部分を材料に置換するという治療から、インプラントや審美歯科のような高度なQuality of Lifeを求める医療へと変化しつつある。さらには患者自身の細胞を操作して、歯や歯周組織を自在に再生させる技術は、これまで治療が不可能とされてきた多くの諸問題を解決に導くことができると考えられる。このような背景のもと、本発明者らは、生体親和性を示し短期間で強力に骨再生を誘導する組織誘導材料および技術を開発することを目標としている。   So far, dental treatment has been centered on simply removing the teeth and nerves completely without losing them, and filling them with materials such as resin and metal. However, in recent years, with the aging of society, people's interest in health has been increasing. It is changing to medical care that seeks a quality of life. Furthermore, the technique of manipulating the patient's own cells to freely regenerate the teeth and periodontal tissue is considered to be able to solve many problems that have been impossible to treat until now. Under these circumstances, the present inventors have aimed to develop a tissue-inducing material and technique that show biocompatibility and strongly induce bone regeneration in a short period of time.

象牙質フォスフォフォリンは、象牙質の非コラーゲン性タンパク質の50%を占める酸性タンパク質である。象牙質フォスフォフォリンに関しては、ウシ象牙質フォスフォフォリン・コラーゲン複合体の高い石灰化誘導活性および骨および歯周組織誘導活性についての報告がある。まず第一に、フォスフォフォリン・コラーゲン複合体の石灰化誘導活性を石灰化誘導時の基質・結晶間の界面張力を用いて定量化して、その高さを実証したこと(T.Saito et al., Bone 21(4),305-311,1997.(非特許文献1))、脱リン酸化により石灰化誘導能を失うことからリン酸基がフォスフォフォリンによる石灰化に必須であること(T.Saito et al., J Bone Miner. Res.,13(2),265-270,1998. (非特許文献2)、T.Saito et al. J. Bone Miner. Res., 15, 1615-1619, 2000. (非特許文献3))、次に、フォスフォフォリン・コラーゲン複合体を動物の大腿骨欠損部(D.Iejima, T.Saito, T.Uemura, J.Biomater. Sci. Polymer Ed., 14, 1097-1103, 2003. (非特許文献4))、歯周病モデルとしての歯槽骨欠損部(T.Fujii, Y.Terada, F.Kobayashi, T.Koike, T.Saito, T.Uemura, Bone 36, S103, 2005. (非特許文献5))に移植してそれらの組織再生に対する高い誘導活性を示したことが報告されている。特に、歯槽骨再生実験においては、歯槽骨のみならずセメント質再生、さらに再生された歯槽骨とセメント質の間には、歯周病治療のキーポイントとなる歯根膜再生が認められたことが報告されている。   Dentin phosphophorin is an acidic protein that accounts for 50% of the non-collagenous protein of dentin. Regarding dentin phosphophorin, there are reports on the high calcification-inducing activity and bone and periodontal tissue-inducing activity of bovine dentin phosphophorin-collagen complex. First of all, the calcification-inducing activity of the phosphophorin-collagen complex was quantified using the interfacial tension between the substrate and crystal during calcification induction, and its height was demonstrated (T. Saito et al. ., Bone 21 (4), 305-311, 1997. (Non-patent document 1)) Since the calcification-inducing ability is lost by dephosphorylation, the phosphate group is essential for calcification by phosphophorin ( T. Saito et al., J Bone Miner. Res., 13 (2), 265-270, 1998. (Non-Patent Document 2), T. Saito et al. J. Bone Miner. Res., 15, 1615- 1619, 2000. (Non-Patent Document 3)) Next, the phosphorophore / collagen complex was transferred to the femoral defect of an animal (D. Iejima, T. Saito, T. Uemura, J. Biomater. Sci. Polymer Ed). , 14, 1097-1103, 2003. (Non-patent document 4)), alveolar bone defect as a periodontal disease model (T. Fujii, Y. Terada, F. Kobayashi, T. Koike, T. Saito, T . Uemura, Bone 36, S103, 2005. (Non-Patent Document 5)) and their high induction activity for tissue regeneration It has been reported that showed. In particular, in the alveolar bone regeneration experiment, not only the alveolar bone but also cementum regeneration, and between the regenerated alveolar bone and cementum, periodontal ligament regeneration, which is a key point for periodontal disease treatment, was observed. It has been reported.

さらに、ブタフォスフォフォリン・コラーゲン複合体をラット、イヌの人工露髄面に移植した覆髄実験においては、早期に細管構造を有する緻密な修復象牙質の形成誘導が認められ、歯髄に炎症がほとんど認められず、強力な修復象牙質形成誘導活性と生体親和性を兼ね備えた覆髄材料であることが明らかになった(特開2003−235953号公報(特許文献1)、WO2005/079728(特許文献2))。   Furthermore, in a pulp capping experiment in which a porcine phosphophorin / collagen complex was transplanted onto the artificial demyelinating surface of rats and dogs, the formation of dense repaired dentin with a tubule structure was observed at an early stage, and inflammation of the dental pulp was observed. Almost no recognition was found, and it was revealed that the material was a pulp-capping material having both a powerful repairing dentin formation-inducing activity and biocompatibility (Japanese Patent Application Laid-Open No. 2003-235953 (Patent Document 1), WO2005 / 079728 (Patents) Reference 2)).

フォスフォフォリンそのものの細胞分化促進作用を使って骨及び象牙質に応用することも提案されている(WO2005/016368(特許文献3))。   It has also been proposed to apply phosphophorin itself to bone and dentin using the cell differentiation promoting action (WO2005 / 016368 (Patent Document 3)).

ペプチドを用いた歯科用を含む骨疾患の治療に関する報告もある。例えば、基質細胞外リン糖タンパク質のRGD配列、グリコサミノグリカン結合モチーフおよびカルシウム結合モチーフを有するペプチドを歯磨き粉や洗口液に加え、良好な骨や歯の成長を促進させることが提案されている(特表2004−506654号公報(特許文献4))。さらに、この骨成長促進ペプチドを含む練り歯磨き、口内洗浄剤、およびデンタルフロスなどの歯科用製品(特表2004−506002号公報(特許文献5)、特開2006−83176号公報(特許文献6))も提案されている。
T.Saito et al., Bone 21(4),305-311,1997. T.Saito et al., J Bone Miner. Res.,13(2),265-270,1998. T.Saito et al. J. Bone Miner. Res., 15, 1615-1619, 2000. D.Iejima, T.Saito, T.Uemura, J.Biomater. Sci. Polymer Ed., 14, 1097-1103, 2003. T.Fujii, Y.Terada, F.Kobayashi, T.Koike, T.Saito, T.Uemura, Bone 36, S103, 2005. 特開2003−235953号公報 WO2005/079728 WO2005/016368 特表2004−506654号公報 特表2004−506002号公報 特開2006−83176号公報
There are also reports on the treatment of bone disorders including dental use with peptides. For example, it has been proposed to promote good bone and tooth growth by adding peptides with RGD sequence of matrix extracellular phosphoglycoprotein, glycosaminoglycan binding motif and calcium binding motif to toothpaste and mouthwash. (Japanese translations of PCT publication No. 2004-506654 (patent document 4)). Furthermore, dental products such as toothpastes, mouth washes and dental floss containing this bone growth promoting peptide (Japanese translations of PCT publication No. 2004-506002 (Patent Document 5), JP-A-2006-83176 (Patent Document 6)) ) Has also been proposed.
T. Saito et al., Bone 21 (4), 305-311, 1997. T. Saito et al., J Bone Miner. Res., 13 (2), 265-270, 1998. T. Saito et al. J. Bone Miner. Res., 15, 1615-1619, 2000. D. Iejima, T. Saito, T. Uemura, J. Biomater. Sci. Polymer Ed., 14, 1097-1103, 2003. T. Fujii, Y. Terada, F. Kobayashi, T. Koike, T. Saito, T. Uemura, Bone 36, S103, 2005. Japanese Patent Laid-Open No. 2003-235953 WO2005 / 079728 WO2005 / 016368 JP-T-2004-506654 JP-T-2004-506002 JP 2006-83176 A

しかし数年前からのBSE問題の浮上により、非特許文献1〜5、特許文献1、2に記載の生体由来のタンパク質の使用は、安全性についての懸念があり、より安全な組織再生材料の開発が重要課題となっている。特許文献3に記載のフォスフォフォリンそのものを用いる場合も同様の安全性についての懸念がある。   However, due to the emergence of the BSE problem from several years ago, the use of biologically-derived proteins described in Non-Patent Documents 1 to 5 and Patent Documents 1 and 2 has a concern about safety, and is a safer tissue regeneration material. Development has become an important issue. There is a similar safety concern when using phosphorophorin itself described in Patent Document 3.

また、特許文献3〜5に記載の骨成長促進ペプチドは、骨格成長や象牙芽細胞の数を増加させる作用があり、われわれのペプチドは骨芽細胞や象牙芽細胞への分化を促進させ得るものと考えられる。しかし、その骨成長促進効果は、十分満足できるものではなく、骨再生効果を有する新たな材料の提供が望まれていた。   In addition, the bone growth promoting peptides described in Patent Documents 3 to 5 have the effect of increasing the number of skeletal growth and odontoblasts, and our peptides can promote differentiation into osteoblasts and odontoblasts. it is conceivable that. However, the bone growth promoting effect is not sufficiently satisfactory, and it has been desired to provide a new material having a bone regeneration effect.

そこで、本発明の目的は、BSE等の生体由来の材料に内在する安全性についての懸念がない、人工的に合成が可能なペプチドであって、骨再生効果を有する新たなペプチドを提供することにある。さらに本発明は、この新たなペプチドを用いた骨再生剤、象牙質再生剤、歯周組織再生剤を提供することにある。   Accordingly, an object of the present invention is to provide a peptide that can be artificially synthesized and that has no bone regeneration effect, without concern about safety inherent in biologically derived materials such as BSE. It is in. Furthermore, this invention is providing the bone regeneration agent, dentin regeneration agent, and periodontal tissue regeneration agent using this new peptide.

本発明は以下のとおりである。
[1]
以下のいずれかのアミノ酸配列を有するペプチド。
SESDNNSSSRGDASYNSDES (1-1)
ESDNNSSSRGDASYNSDES (1-2)
SDNNSSSRGDASYNSDES (1-3)
SESDNNSSSRGDASYNSDE (1-4)
SESDNNSSSRGDASYNSD (1-5)
SESDNNSSSRGDASYNS (1-6)
SESDNNSSSRGDASYN (1-7)
ANSESDNNSSSRGDA (2-1)
NSESDNNSSSRGDA (2-2)
SRGDASYNSDESKD (3-1)
SRGDASYNSDESK (3-2)
DNNSSSRGDASYNSD (4)
[2]
[1]に記載のペプチドの少なくとも1種を含有する象牙質再生剤。
[3]
多孔質ハイドロキシアパタイトまたはI型コラーゲンのリコンビナント体をさらに含む[2]の象牙質再生剤。
[4]
[1]に記載のペプチドの少なくとも1種を含有する骨再生剤。
[5]
多孔質ハイドロキシアパタイトまたはI型コラーゲンのリコンビナント体をさらに含む[4]に記載の骨再生剤。
[6]
[1]に記載のペプチドの少なくとも1種を含有する歯周組織再生剤。
[7]
多孔質ハイドロキシアパタイトまたはI型コラーゲンのリコンビナント体をさらに含む[6]に記載の歯周組織再生剤。
The present invention is as follows.
[1]
A peptide having any one of the following amino acid sequences.
SESDNNSSSRGDASYNSDES (1-1)
ESDNNSSSRGDASYNSDES (1-2)
SDNNSSSRGDASYNSDES (1-3)
SESDNNSSSRGDASYNSDE (1-4)
SESDNNSSSRGDASYNSD (1-5)
SESDNNSSSRGDASYNS (1-6)
SESDNNSSSRGDASYN (1-7)
ANSESDNNSSSRGDA (2-1)
NSESDNNSSSRGDA (2-2)
SRGDASYNSDESKD (3-1)
SRGDASYNSDESK (3-2)
DNNSSSRGDASYNSD (4)
[2]
A dentin regenerating agent containing at least one peptide according to [1].
[3]
The dentin regenerating agent according to [2], further comprising a recombinant body of porous hydroxyapatite or type I collagen.
[Four]
A bone regeneration agent containing at least one peptide according to [1].
[Five]
The bone regeneration agent according to [4], further comprising a recombinant body of porous hydroxyapatite or type I collagen.
[6]
A periodontal tissue regeneration agent containing at least one peptide according to [1].
[7]
The periodontal tissue regenerating agent according to [6], further comprising a recombinant body of porous hydroxyapatite or type I collagen.

本発明によれば、硬組織誘導活性を保持したフォスフォフォリンのRGD配列を含む合成ペプチドが提供され、このペプチドは、高品質で安全性の高い新しい骨再生材料として利用できる。さらに、担体として生体親和性を有するI型コラーゲンのリコンビナント体を使用することにより、より骨再生能力がより改善された骨再生剤、象牙質再生剤、歯周組織再生剤が提供できる。   According to the present invention, a synthetic peptide comprising a phosphorin RGD sequence retaining hard tissue inducing activity is provided, and this peptide can be used as a new bone regeneration material with high quality and high safety. Furthermore, by using a recombinant body of type I collagen having biocompatibility as a carrier, it is possible to provide a bone regeneration agent, dentin regeneration agent, and periodontal tissue regeneration agent with improved bone regeneration ability.

本発明は、以下のいずれかのアミノ酸配列を有するペプチドに関する。
SESDNNSSSRGDASYNSDES (1-1)(配列番号1)
ESDNNSSSRGDASYNSDES (1-2) (配列番号2)
SDNNSSSRGDASYNSDES (1-3) (配列番号3)
SESDNNSSSRGDASYNSDE (1-4) (配列番号4)
SESDNNSSSRGDASYNSD (1-5) (配列番号5)
SESDNNSSSRGDASYNS (1-6) (配列番号6)
SESDNNSSSRGDASYN (1-7) (配列番号7)
ANSESDNNSSSRGDA (2-1) (配列番号8)
NSESDNNSSSRGDA (2-2) (配列番号9)
SRGDASYNSDESKD (3-1) (配列番号10)
SRGDASYNSDESK (3-2) (配列番号11)
DNNSSSRGDASYNSD (4) (配列番号12)
The present invention relates to a peptide having any of the following amino acid sequences.
SESDNNSSSRGDASYNSDES (1-1) (SEQ ID NO: 1)
ESDNNSSSRGDASYNSDES (1-2) (SEQ ID NO: 2)
SDNNSSSRGDASYNSDES (1-3) (SEQ ID NO: 3)
SESDNNSSSRGDASYNSDE (1-4) (SEQ ID NO: 4)
SESDNNSSSRGDASYNSD (1-5) (SEQ ID NO: 5)
SESDNNSSSRGDASYNS (1-6) (SEQ ID NO: 6)
SESDNNSSSRGDASYN (1-7) (SEQ ID NO: 7)
ANSESDNNSSSRGDA (2-1) (SEQ ID NO: 8)
NSESDNNSSSRGDA (2-2) (SEQ ID NO: 9)
SRGDASYNSDESKD (3-1) (SEQ ID NO: 10)
SRGDASYNSDESK (3-2) (SEQ ID NO: 11)
DNNSSSRGDASYNSD (4) (SEQ ID NO: 12)

本発明のペプチドは象牙質フォスフォフォリンのRGD配列とその前後のアミノ酸を含むものである。RGDのみのペプチド配列では骨芽細胞への分化促進作用や石灰化促進作用は全く認められない。(1-1)のアミノ酸配列を有するペプチドがもっとも活性が高く、RGDとそのN末端側およびC末端側の両方に少なくとも1つ以上のアミノ酸を有するものが、高い活性を有する。RGDとそのN末端側のみのペプチドやRGDとそのC末端側のみのペプチドでは同様の作用を認めるもののその活性はかなり減少する。本発明のペプチドにおいては、RGD以外にその前後のアミノ酸も重要な役割を果たしていると考えられる。これらのペプチドは常法によるペプチド合成により容易に得ることができる。   The peptide of the present invention comprises the RGD sequence of dentin phosphophorin and the amino acids before and after it. The peptide sequence of only RGD shows no differentiation promoting action or mineralization promoting action into osteoblasts. The peptide having the amino acid sequence (1-1) has the highest activity, and the peptide having RGD and at least one amino acid on both the N-terminal side and the C-terminal side has high activity. RGD and its N-terminal peptide alone or RGD and its C-terminal peptide only show similar effects, but their activities are considerably reduced. In the peptide of the present invention, amino acids before and after RGD are considered to play an important role in addition to RGD. These peptides can be easily obtained by peptide synthesis by a conventional method.

本発明は、上記ペプチドの少なくとも1種を含有する象牙質再生剤、骨再生剤、または歯周組織再生剤に関する。本発明の象牙質再生剤、骨再生剤または歯周組織再生剤は、上記ペプチドの1種または2種以上を含有するものであり、さらに担体として多孔質ハイドロキシアパタイトまたはI型コラーゲンのリコンビナント体をさらに含むことが好ましい。多孔質ハイドロキシアパタイトまたはI型コラーゲンのリコンビナント体は、ペプチドの質量100に対して100〜200の範囲の質量比で用いることができる。   The present invention relates to a dentin regeneration agent, a bone regeneration agent, or a periodontal tissue regeneration agent containing at least one of the above peptides. The dentin regenerating agent, bone regenerating agent or periodontal tissue regenerating agent of the present invention contains one or more of the above peptides, and further comprises a porous hydroxyapatite or type I collagen recombinant as a carrier. Furthermore, it is preferable to include. Porous hydroxyapatite or type I collagen recombinant can be used at a mass ratio in the range of 100 to 200 with respect to 100 masses of peptide.

本発明の象牙質再生剤、骨再生剤または歯周組織再生剤は、細胞に直接触れて作用するものであり、例えば、直接覆髄材や歯周炎に罹患した患者の骨再生へ適用して、象牙質および骨の再生を可能にし、歯周組織の再生にも有効である。   The dentin regenerative agent, bone regenerative agent or periodontal tissue regenerative agent of the present invention acts by directly touching cells. Thus, it is possible to regenerate dentin and bone, and it is also effective for regenerating periodontal tissue.

本発明の象牙質再生剤、骨再生剤または歯周組織再生剤は、覆髄材の担体として、徐放系となり細胞分化の足場として有効である多孔質ハイドロキシアパタイトまたはI型コラーゲンを使用することが好ましい。例えば、担体25mgをシリンジ内に入れ、生理食塩水にて5μg/30μlに調整したペプチドを滴下含浸することにより複合体を作製することができる。覆髄材は、窩洞形成中の髄角部露出のように、ごく小範囲の非感染性状態の露出歯髄を生じた時に、修復象牙質形成を促進させるための材料として使われる。   The dentin regenerative agent, bone regenerative agent or periodontal tissue regenerative agent of the present invention uses porous hydroxyapatite or type I collagen which is a sustained release system and is effective as a scaffold for cell differentiation as a carrier for pulp capping. Is preferred. For example, a complex can be prepared by placing 25 mg of carrier in a syringe and dropwise impregnating a peptide adjusted to 5 μg / 30 μl with physiological saline. The pulp covering material is used as a material for promoting restoration dentin formation when a very small range of non-infectious exposed pulp is produced, such as medullary exposure during cavity formation.

特許文献4〜6に記載のペプチドは、基質細胞外リンタンパク質のRGDとグリコサミノグリカン結合部位の2つのモチーフをもつペプチドのみが骨格成長や象牙芽細胞数の増加を促進するとされている。RGDの前後数アミノ酸を含むペプチドでは同様の作用を認めていません。つまりペプチドにはこの2つのモチーフが必要で、それ以外の前後のアミノ酸はほとんど重要ではない。   In the peptides described in Patent Documents 4 to 6, only a peptide having two motifs of RGD of the substrate extracellular phosphoprotein and a glycosaminoglycan binding site is supposed to promote skeletal growth and increase in the number of odontoblasts. Peptides containing several amino acids before and after RGD have not found the same effect. In other words, these two motifs are necessary for the peptide, and the other amino acids before and after that are hardly important.

一方、本発明のペプチドは、象牙質フォスフォフォリンのRGD配列に加えてその前後のアミノ酸も活性の発現に関与する。RGDのみのペプチド配列では全く骨芽細胞への分化促進作用や石灰化促進作用は認められない。従って、同じRGD配列を含むペプチドであるが、本発明のペプチドと特許文献4〜6に記載のペプチドとでは、作用機序に大きな違いがあるものと推察される。   On the other hand, in addition to the RGD sequence of dentin phosphophorin, the amino acids before and after the peptide of the present invention are involved in the expression of activity. The peptide sequence of only RGD shows no differentiation promoting action or calcification promoting action into osteoblasts. Therefore, although it is a peptide containing the same RGD sequence, it is speculated that there is a great difference in the mechanism of action between the peptide of the present invention and the peptides described in Patent Documents 4-6.

以下、本発明を実施例によりさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

図1にヒト象牙質フォスフォフォリンの一次構造とペプチドのアミノ酸配列を示す。ヒト象牙質フォスフォフォリン由来のペプチドをInvitrogen社に合成依頼した。RGD-1, RGD-2, RGD-3, RGD-4, RGD-5はRGD配列とそれに隣接するN末端およびC末端の数個のアミノ酸を含むペプチドであり、SGXG-1とSGXG-2はグリコサミノグリカン結合部位を含むペプチドである。さらに、RGD配列の役割を明確にするためにコントロールとしてRGDとRADペプチド(Biomol社)を実験に使用した。さらにRGD-1とRGD配列をRAD配列に変えたRAD-1も対比のためにInvitrogen社に合成依頼した。   FIG. 1 shows the primary structure of human dentin phosphophorin and the amino acid sequence of the peptide. A peptide derived from human dentin phosphophorin was commissioned to Invitrogen. RGD-1, RGD-2, RGD-3, RGD-4, and RGD-5 are peptides that contain an RGD sequence and several amino acids adjacent to it at the N- and C-termini. SGXG-1 and SGXG-2 A peptide containing a glycosaminoglycan binding site. Furthermore, RGD and RAD peptide (Biomol) were used in the experiments as controls to clarify the role of the RGD sequence. Furthermore, RAD-1 in which RGD-1 and RGD sequences were changed to RAD sequences was also commissioned to Invitrogen for comparison.

実験1
ヒト間葉系幹細胞の石灰化能に及ぼすペプチドの影響を調べた。結果を図2に示す。方法は以下のとおりである。
ヒト間葉系幹細胞(BioWhittaker, Walkersville, MD)を、10% FBSを添加したヒト間葉系幹細胞培地(BioWhittaker)を用いて37℃・5% CO2条件下で培養した。24穴プレートに細胞を1x105個播種し、24時間後無血清培地に交換しさらに24時間培養した後、細胞を10% FBS、50μg/mlアスコルビン酸、10mMβ−グリセロリン酸、100nMデキサメタゾンおよび50μM各種ペプチドを含む石灰化誘導培地にて28日間培養した。70%エタノールにて1時間細胞固定し、PBSにて2回洗浄後、40mMアリザリンレッド染色液(pH 4.2, Sigma)で10分間染色し、蒸留水およびPBSにてそれぞれ3回洗浄した。石灰化結節は光学顕微鏡にて観察した。RGD-1はヒト間葉系幹細胞の石灰化を最も促進した。RGD-2、RGD-3も石灰化を促進したが、RGD-1に比べて効果は低かった。SGXG-1、-2は石灰化に影響を及ぼさなかった。
Experiment 1
The effect of peptides on calcification ability of human mesenchymal stem cells was investigated. The results are shown in FIG. The method is as follows.
Human mesenchymal stem cells (BioWhittaker, Walkersville, MD) were cultured under conditions of 37 ° C. and 5% CO 2 using human mesenchymal stem cell medium (BioWhittaker) supplemented with 10% FBS. After seeding 1 × 10 5 cells in a 24-well plate, changing to serum-free medium 24 hours later and culturing for another 24 hours, the cells were 10% FBS, 50 μg / ml ascorbic acid, 10 mM β-glycerophosphate, 100 nM dexamethasone and 50 μM The cells were cultured for 28 days in a calcification induction medium containing peptides. The cells were fixed with 70% ethanol for 1 hour, washed twice with PBS, stained with 40 mM alizarin red staining solution (pH 4.2, Sigma) for 10 minutes, and washed 3 times with distilled water and PBS, respectively. The calcified nodule was observed with an optical microscope. RGD-1 most promoted calcification of human mesenchymal stem cells. RGD-2 and RGD-3 also promoted calcification but were less effective than RGD-1. SGXG-1 and -2 did not affect calcification.

実験2
ヒト間葉系幹細胞の増殖能に及ぼすペプチドの影響を調べた。結果を図3に示す。方法は以下のとおりである。
ヒト間葉系幹細胞の増殖はCell Counting Kit-8(Dojindo)を用いて測定した。96穴プレートに細胞を1x103個播種し、24時間後無血清培地に交換しさらに24時間培養した後、細胞を1% FBSおよび50μM各種ペプチドを含む培地にて培養した。48時間後、新規テトラゾリウム塩WST-8を各ウェルに10μl添加し30分間培養後、細胞内脱水素酵素によってWST-8が還元されて生成する水溶性ホルマザンの450nmにおける吸光度をMicroplate Reader Model 680(Bio-Rad)で測定した。すべてのペプチドはヒト間葉系幹細胞の増殖に影響を与えなかった。
Experiment 2
The effect of peptides on the proliferation ability of human mesenchymal stem cells was investigated. The results are shown in FIG. The method is as follows.
The proliferation of human mesenchymal stem cells was measured using Cell Counting Kit-8 (Dojindo). Cells were seeded in a 96-well plate at 1 × 10 3 cells. After 24 hours, the cells were replaced with a serum-free medium and further cultured for 24 hours, and then the cells were cultured in media containing 1% FBS and 50 μM various peptides. 48 hours later, 10 μl of new tetrazolium salt WST-8 was added to each well and incubated for 30 minutes.The absorbance at 450 nm of water-soluble formazan produced by WST-8 reduction by intracellular dehydrogenase was measured using Microplate Reader Model 680 ( Bio-Rad). All peptides did not affect the proliferation of human mesenchymal stem cells.

実験3
ヒト間葉系幹細胞のアルカリホスファターゼ活性に及ぼすペプチドの影響を調べた。結果を図4−1および4−2に示す。方法は以下のとおりである。
24穴プレートに細胞を1x105個播種し、24時間後無血清培地に交換しさらに24時間培養した後、細胞を10% FBS、50μg/mlアスコルビン酸、10mMβ−グリセロリン酸、100nMデキサメタゾンおよび5, 50μM各種ペプチドを含む石灰化誘導培地にて7日間培養し、細胞抽出液中のアルカリフォスファターゼ(ALP)活性をALP-Labアッセイキット(WAKO)を用いて測定した。なおALP活性(International Unit:IU)は、Bio-Rad Protein Assay(Bio-Rad)で測定した各ウェルの総タンパク質量(mg)当たりの活性(IU/mg)として算出した。図4−1に示すように、RGD-1はコントロールに比べて有意にALP活性を促進し、濃度依存性も認められた。RGD-2とRGD-3もALP活性を有意に促進したが、濃度による差異はほとんどみられなかった。他のSGXGやRGDコントロールペプチドにはALP活性値にほとんど影響を与えなかった。図4−2に示すように、RGD-4はコントロールに比べて有意にALP活性を促進し、濃度依存性も認められた。RGD-5とRAD-1もALP活性を促進したが、コントロールとの間に有意な差はみられなかった。
Experiment 3
The effect of peptides on alkaline phosphatase activity of human mesenchymal stem cells was investigated. The results are shown in FIGS. 4-1 and 4-2. The method is as follows.
After seeding 1 × 10 5 cells in a 24-well plate and replacing the serum-free medium 24 hours later and culturing for another 24 hours, the cells were treated with 10% FBS, 50 μg / ml ascorbic acid, 10 mM β-glycerophosphate, 100 nM dexamethasone and 5, The cells were cultured in a calcification induction medium containing 50 μM various peptides for 7 days, and the alkaline phosphatase (ALP) activity in the cell extract was measured using an ALP-Lab assay kit (WAKO). The ALP activity (International Unit: IU) was calculated as the activity (IU / mg) per total protein amount (mg) in each well measured by Bio-Rad Protein Assay (Bio-Rad). As shown in FIG. 4-1, RGD-1 significantly promoted ALP activity compared to the control, and concentration dependency was also observed. RGD-2 and RGD-3 also significantly enhanced ALP activity, but there was little difference due to concentration. Other SGXG and RGD control peptides had little effect on ALP activity. As shown in FIG. 4-2, RGD-4 significantly promoted ALP activity compared to the control, and concentration dependence was also observed. RGD-5 and RAD-1 also promoted ALP activity, but there was no significant difference from the control.

実験4
ヒト間葉系幹細胞のアルカリホスファターゼ活性に及ぼすペプチドの相乗効果を調べた。結果を図5−1および5−2に示す。方法は以下のとおりである。
RGDとSGXG配列を含むDentonin(Acologix社)が細胞分化を促進する効果があることが報告されていることから、RGDとSGXGの混合ペプチドの効果を検討した。さらに、Dentonin(Acologix社)についても比較試験を行った。しかし、RGD-1とSGXGペプチドのコンビネーションによるALP活性促進効果は認められなかった。RGD-1とDentoninはともに5μMでコントロールに比べてALP活性を有意に促進し、RGD-1はDentoninとほぼ同等の活性促進があることがわかった。
Experiment 4
The synergistic effect of peptides on alkaline phosphatase activity of human mesenchymal stem cells was investigated. The results are shown in FIGS. 5-1 and 5-2. The method is as follows.
Since Dentonin (Acologix) containing RGD and SGXG sequences has been reported to have an effect of promoting cell differentiation, the effect of the mixed peptide of RGD and SGXG was examined. In addition, a comparative test was performed on Dentonin (Acologix). However, the ALP activity promoting effect by the combination of RGD-1 and SGXG peptide was not recognized. Both RGD-1 and Dentonin significantly promoted ALP activity compared to the control at 5 μM, and RGD-1 was found to have almost the same activity promotion as Dentonin.

実験5
ヒト間葉系幹細胞のアルカリホスファターゼ活性に及ぼすRGDコントロールペプチドおよびインテグリン抗体の影響を調べた。結果を図6に示す。方法は以下のとおりである。
24穴プレートに細胞を1x105個播種し、24時間後無血清培地に交換しさらに24時間培養した後、細胞を10% FBS、50μg/mlアスコルビン酸、10mMβ−グリセロリン酸、100nMデキサメタゾンおよび50μMRGDもしくはRADペプチド、25μg/ml αvβ3インテグリン抗体(Santacruz社)を含む石灰化誘導培地にて培養した。1時間後、50μM RGD-1を添加してさらに7日間培養し、細胞抽出液中のALP活性を測定した。RADの前処理ではほとんどALP活性に影響を与えなかったが、RGDやインテグリン抗体の前処理によりRGD-1のALP活性促進効果は有意に抑制された。この結果から、RGD-1の細胞分化促進作用は、そのRGD配列のインテグリンへの結合によることが明らかとなった。
Experiment 5
The effects of RGD control peptide and integrin antibody on alkaline phosphatase activity of human mesenchymal stem cells were investigated. The results are shown in FIG. The method is as follows.
After seeding 1 × 10 5 cells in a 24-well plate and replacing the serum-free medium 24 hours later and culturing for another 24 hours, the cells were 10% FBS, 50 μg / ml ascorbic acid, 10 mM β-glycerophosphate, 100 nM dexamethasone and 50 μMRGD or The cells were cultured in a mineralization induction medium containing RAD peptide, 25 μg / ml αvβ3 integrin antibody (Santacruz). After 1 hour, 50 μM RGD-1 was added and further cultured for 7 days, and ALP activity in the cell extract was measured. The pretreatment with RAD hardly affected the ALP activity, but the pretreatment with RGD or integrin antibody significantly suppressed the AGD activity promoting effect of RGD-1. From this result, it became clear that the RGD-1 cell differentiation promoting action is due to the binding of the RGD sequence to the integrin.

実験6
ヒト間葉系幹細胞のオステオカルシン産生に与えるペプチドの影響を調べた。結果を図7に示す。方法は以下のとおりである。
24穴プレートに細胞を1x105個播種し、24時間後無血清培地に交換しさらに24時間培養した後、細胞を10% FBS、50μg/mlアスコルビン酸、10mMβ−グリセロリン酸、100nMデキサメタゾンおよび50μMRGDを含む石灰化誘導培地にて7日間培養した。50μg/mlアスコルビン酸、10mMβ−グリセロリン酸、100nMデキサメタゾンおよび50μMRGDを含む無血清培地(500μl)に交換し、2日間培養した後培養液をすべて回収し、ヒトオステオカルシンELISA kit(Biomedical technologies社)を用いて培地中のオステオカルシン量を測定した。RGD-1処理によりオステオカルシン量はコントロールに比べて約3倍と有意に増加した。また、RGD-2, RGD-3処理でも約2倍に増加した。しかし、SGXGペプチドでは、コントロールとほとんど違いは認められなかった。
Experiment 6
The effects of peptides on osteocalcin production by human mesenchymal stem cells were investigated. The results are shown in FIG. The method is as follows.
After seeding 1x10 5 cells in a 24-well plate and changing to serum-free medium for 24 hours and culturing for another 24 hours, the cells were treated with 10% FBS, 50 μg / ml ascorbic acid, 10 mM β-glycerophosphate, 100 nM dexamethasone and 50 μMRGD. It was cultured for 7 days in the calcification induction medium containing. Replace with serum-free medium (500 μl) containing 50 μg / ml ascorbic acid, 10 mM β-glycerophosphate, 100 nM dexamethasone and 50 μMRGD, and after culturing for 2 days, collect all cultures and use human osteocalcin ELISA kit (Biomedical technologies) Then, the amount of osteocalcin in the medium was measured. The treatment with RGD-1 significantly increased the amount of osteocalcin, about 3 times that of the control. In addition, the RGD-2 and RGD-3 treatments increased about twice. However, the SGXG peptide showed almost no difference from the control.

本発明は、歯科医療の分野に有用な材料を提供するものである。   The present invention provides materials useful in the field of dentistry.

図1にヒト象牙質フォスフォフォリンの一次構造とペプチドのアミノ酸配列を示す。FIG. 1 shows the primary structure of human dentin phosphophorin and the amino acid sequence of the peptide. ヒト間葉系幹細胞の石灰化能に及ぼすペプチドの影響を調べた結果を示す。The result of having investigated the influence of the peptide on the mineralization ability of a human mesenchymal stem cell is shown. ヒト間葉系幹細胞の増殖能に及ぼすペプチドの影響を調べた結果を示す。The result of having investigated the influence of the peptide on the proliferation ability of a human mesenchymal stem cell is shown. ヒト間葉系幹細胞のアルカリホスファターゼ活性に及ぼすペプチドの影響を調べた結果を示す。The result of having investigated the influence of the peptide on the alkaline phosphatase activity of a human mesenchymal stem cell is shown. ヒト間葉系幹細胞のアルカリホスファターゼ活性に及ぼすペプチドの影響を調べた結果を示す。The result of having investigated the influence of the peptide on the alkaline phosphatase activity of a human mesenchymal stem cell is shown. ヒト間葉系幹細胞のアルカリホスファターゼ活性に及ぼすペプチドの相乗効果を調べた結果を示す。The result of having investigated the synergistic effect of the peptide on the alkaline phosphatase activity of a human mesenchymal stem cell is shown. ヒト間葉系幹細胞のアルカリホスファターゼ活性に及ぼすDentonin(Acologix社)の効果を調べた結果を示す。The result of having investigated the effect of Dentonin (Acologix) on the alkaline phosphatase activity of a human mesenchymal stem cell is shown. ヒト間葉系幹細胞のアルカリホスファターゼ活性に及ぼすRGDコントロールペプチドおよびインテグリン抗体の影響を調べた結果を示す。The result of having investigated the influence of the RGD control peptide and the integrin antibody on the alkaline phosphatase activity of a human mesenchymal stem cell is shown. ヒト間葉系幹細胞のオステオカルシン産生に与えるペプチドの影響を調べた結果を示す。The result of having investigated the influence of the peptide which has on osteocalcin production of a human mesenchymal stem cell is shown.

Claims (2)

以下のいずれかのアミノ酸配列からなるペプチドの少なくとも1種を含有する象牙質再生剤。
SESDNNSSSRGDASYNSDES (1-1)
ANSESDNNSSSRGDA (2-1)
SRGDASYNSDESKD (3-1)
A dentin regenerating agent containing at least one peptide consisting of any of the following amino acid sequences.
SESDNNSSSRGDASYNSDES (1-1)
ANSESDNNSSSRGDA (2-1)
SRGDASYNSDESKD (3-1)
多孔質ハイドロキシアパタイトまたはI型コラーゲンのリコンビナント体をさらに含む請求項1に記載の象牙質再生剤。 2. The dentin regenerating agent according to claim 1, further comprising a recombinant body of porous hydroxyapatite or type I collagen.
JP2008144109A 2008-06-02 2008-06-02 Novel RGD-containing peptide and dentin regenerating agent, bone regenerating agent, periodontal tissue regenerating agent Active JP5519121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144109A JP5519121B2 (en) 2008-06-02 2008-06-02 Novel RGD-containing peptide and dentin regenerating agent, bone regenerating agent, periodontal tissue regenerating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144109A JP5519121B2 (en) 2008-06-02 2008-06-02 Novel RGD-containing peptide and dentin regenerating agent, bone regenerating agent, periodontal tissue regenerating agent

Publications (2)

Publication Number Publication Date
JP2009286767A JP2009286767A (en) 2009-12-10
JP5519121B2 true JP5519121B2 (en) 2014-06-11

Family

ID=41456339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144109A Active JP5519121B2 (en) 2008-06-02 2008-06-02 Novel RGD-containing peptide and dentin regenerating agent, bone regenerating agent, periodontal tissue regenerating agent

Country Status (1)

Country Link
JP (1) JP5519121B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428110B2 (en) 2016-12-27 2019-10-01 HysensBio Co., Ltd. Peptide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8741833B2 (en) 2010-07-16 2014-06-03 Massachusetts Institute Of Technology Self-assembling peptides incorporating modifications and methods of use thereof
JP5855651B2 (en) * 2010-07-16 2016-02-09 マサチューセッツ インスティテュート オブ テクノロジー Self-assembling peptides incorporating modifications and methods of use thereof
JP6692676B2 (en) * 2016-04-12 2020-05-13 学校法人東日本学園 Dental caries therapeutic agent containing nephronectin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1247183C (en) * 2000-08-16 2006-03-29 阿克勒斯股份有限公司 Dental products comprising bone growth enhancing peptide
US6911425B2 (en) * 2000-08-16 2005-06-28 Acologix, Inc. Integrin binding motif containing peptides and methods of treating skeletal diseases
KR101013999B1 (en) * 2004-03-19 2011-02-14 재단법인서울대학교산학협력재단 Membrane and implant immobilized osteogenic enhancing peptides on the surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428110B2 (en) 2016-12-27 2019-10-01 HysensBio Co., Ltd. Peptide
US10844092B2 (en) 2016-12-27 2020-11-24 HysensBio Co., Ltd. Peptide for promoting regeneration of dentin or dental pulp tissue

Also Published As

Publication number Publication date
JP2009286767A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
Ceccarelli et al. Emerging perspectives in scaffold for tissue engineering in oral surgery
Grandin et al. Enamel matrix derivative: a review of cellular effects in vitro and a model of molecular arrangement and functioning
Bartold et al. Mesenchymal stem cells and biologic factors leading to bone formation
US11364323B2 (en) Combination grafts for tissue repair or regeneration applications
Lyngstadaas et al. Enamel matrix proteins; old molecules for new applications
Fu et al. Development and challenges of cells-and materials-based tooth regeneration
An et al. Mineralization processes in hard tissue: Bone
JP5519121B2 (en) Novel RGD-containing peptide and dentin regenerating agent, bone regenerating agent, periodontal tissue regenerating agent
Jose et al. Oral tissue regeneration: Current status and future perspectives
Fan et al. Enamel matrix derivatives for periodontal regeneration: recent developments and future perspectives
Lee et al. Organic matrix of enamel and dentin and developmental defects
Markopoulou et al. Effect of homologous PRP on proliferation of human periodontally affected osteoblasts. In vitro preliminary study. Report of a case
Lim et al. From endodontic therapy to regenerative endodontics: New wine in old bottles
JP5253412B2 (en) Common peptide
Bussadori et al. Production of extracellular matrix proteins by human pulp fibroblasts in contact with Papacárie and Carisolv
Edranov et al. On-bone fixation of free gingival graft induces an osteoinductive effect in human alveolar bone
Li et al. Human digested dentin matrix for dentin regeneration and the applicative potential in vital pulp therapy
JP5424353B2 (en) Hard tissue regeneration treatment composition
Deka Tissue engineering approach for periodontal regeneration
Kaur et al. Tissue engineering and its future perspective in therapeutic medicine-A brief review
Cristaldi et al. In vitro and in vivo investigations of osteogenic differentiation ability of dental pulp stem cells (DPSCs) and gingival mesenchymal stem cells (GMSCs) by use of nanostructured scaffolds
YangFan et al. Transforming Growth Factor-β3 Chitosan Sponge (TGF-β3/CS) Facilitates Osteogenic Differentiation of Human Periodontal Ligament Stem Cells
D'Souza et al. The bioengineering of dental tissues
Neshatian Promoting Mineralization at Biological Interfaces with Novel Amelotin-Based Bio-Nano Complexes
Camassari et al. The Self-assembling peptide P11-4 influences viability and osteogenic differentiation of stem cells of the apical papilla (SCAP)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130827

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140403

R150 Certificate of patent or registration of utility model

Ref document number: 5519121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250