JP5518775B2 - Processing method for copper containing iron and tin - Google Patents

Processing method for copper containing iron and tin Download PDF

Info

Publication number
JP5518775B2
JP5518775B2 JP2011064737A JP2011064737A JP5518775B2 JP 5518775 B2 JP5518775 B2 JP 5518775B2 JP 2011064737 A JP2011064737 A JP 2011064737A JP 2011064737 A JP2011064737 A JP 2011064737A JP 5518775 B2 JP5518775 B2 JP 5518775B2
Authority
JP
Japan
Prior art keywords
iron
tin
mass
copper
containing copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011064737A
Other languages
Japanese (ja)
Other versions
JP2012201894A (en
Inventor
和明 宮本
一也 高橋
洋 宮永
誠 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011064737A priority Critical patent/JP5518775B2/en
Publication of JP2012201894A publication Critical patent/JP2012201894A/en
Application granted granted Critical
Publication of JP5518775B2 publication Critical patent/JP5518775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、鉄・錫含有銅の処理方法に関する。   The present invention relates to a method for treating iron / tin-containing copper.

特許文献1では、「廃棄物の処理によって得られた銅を主体とする溶融体から不純物金属を分離除去して高純度の銅メタルを回収する方法であって、
(イ)上記溶融体に「鉄源」とカルシウム源を添加して溶融体中の酸素濃度を0.6から1.0mass%にした酸化熔錬を行うことによって、亜酸化銅−酸化鉄を主体とする酸化カルシウム含有スラグ(亜酸化銅−酸化鉄系スラグと云う)を形成して上記溶融体に含まれる不純物金属をスラグ化し、当該スラグを分離する第一工程と、
(ロ)第一工程でスラグ化した不純物金属を除去した溶融体にカルシウム源を添加して溶融体中の酸素濃度を0.8mass%から1.1mass%にした酸化熔錬を行うことによって、亜酸化銅−酸化カルシウムを主体とするスラグ(亜酸化銅−酸化カルシウム系スラグと云う)を形成して上記溶融体に残留する不純物金属をスラグ化し、該スラグを分離する第二工程とを有することを特徴とする高純度銅の回収方法である。」旨の記載がある。
In Patent Document 1, “a method of separating and removing impurity metals from a copper-based melt obtained by waste treatment to recover high-purity copper metal,
(B) By adding an “iron source” and a calcium source to the melt and performing an oxygen smelting in which the oxygen concentration in the melt is 0.6 to 1.0 mass%, cuprous oxide-iron oxide is obtained. Forming a calcium oxide-containing slag (referred to as cuprous oxide-iron oxide slag) as a main component to slag the impurity metal contained in the melt, and separating the slag;
(B) By performing oxidation smelting by adding a calcium source to the melt from which the impurity metal slagged in the first step has been removed and changing the oxygen concentration in the melt from 0.8 mass% to 1.1 mass%, Forming a slag mainly composed of cuprous oxide-calcium oxide (referred to as cuprous oxide-calcium oxide slag), converting the impurity metal remaining in the melt into slag, and separating the slag. This is a method for recovering high purity copper. Is described.

特開2003−193147号公報JP 2003-193147 A

しかしながら、特許文献1の方法では、鉄・錫含有銅から鉄および錫を効率よく除去することができない。   However, the method of Patent Document 1 cannot efficiently remove iron and tin from iron / tin-containing copper.

本発明は上記の課題に鑑み、鉄・錫含有銅から鉄および錫を効率よく除去することができる鉄・錫含有銅の処理方法を提供することを目的とする。   An object of this invention is to provide the processing method of the iron and tin containing copper which can remove iron and tin efficiently from iron and tin containing copper in view of said subject.

本発明に係る鉄・錫含有銅の処理方法は、溶剤を用いて所定温度で溶融させた鉄・錫含有銅の鉄を酸化する鉄酸化工程と、鉄酸化工程で得られる溶融メタルをスラグと分離して鋳造する鋳造工程と、鋳造工程で得られたメタルを溶剤とともに再度溶融し、溶融したメタル中の錫を、炭酸ソーダの存在下で酸化する錫酸化工程と、を含むことを特徴とするものである。本発明に係る鉄・錫含有銅の処理方法によれば、鉄・錫含有銅から鉄および錫を効率よく除去することができる。 The method for treating iron / tin-containing copper according to the present invention includes an iron oxidation step of oxidizing iron of iron / tin-containing copper melted at a predetermined temperature using a solvent, and a molten metal obtained in the iron oxidation step as slag. A casting process for separating and casting, and a tin oxidation process in which the metal obtained in the casting process is melted again with a solvent, and tin in the molten metal is oxidized in the presence of sodium carbonate. To do. According to the iron / tin-containing copper treatment method of the present invention, iron and tin can be efficiently removed from the iron / tin-containing copper.

前記鉄酸化工程前の鉄・錫含有銅は、鉄を5mass%〜25mass%含み、錫を1mass%〜8mass%含んでいてもよい。前記鉄酸化工程および前記錫酸化工程で用いる溶剤は、珪砂および石灰石としてもよい。前記鉄酸化工程における溶湯温度は、1300℃〜1400℃としてもよい。前記錫酸化工程における溶湯温度は、1200℃〜1270℃としてもよい。   The iron / tin-containing copper before the iron oxidation step may contain 5 mass% to 25 mass% of iron and 1 mass% to 8 mass% of tin. The solvent used in the iron oxidation step and the tin oxidation step may be silica sand and limestone. The molten metal temperature in the iron oxidation step may be 1300 ° C to 1400 ° C. The molten metal temperature in the tin oxidation step may be 1200 ° C to 1270 ° C.

溶湯に冷材を投入することによって前記溶湯温度を調整してもよい。前記冷材は、鉄・錫含有銅としてもよい。前記鉄酸化工程において、溶湯中の酸素濃度を2mass%以下に調整してもよい。前記鉄酸化工程において、前記鉄酸化工程で得られるスラグ中の銅濃度を5mass%以下に調整してもよい。   The molten metal temperature may be adjusted by introducing a cold material into the molten metal. The cold material may be iron / tin-containing copper. In the iron oxidation step, the oxygen concentration in the molten metal may be adjusted to 2 mass% or less. In the iron oxidation step, the copper concentration in the slag obtained in the iron oxidation step may be adjusted to 5 mass% or less.

本発明によれば、鉄・錫含有銅から鉄および錫を効率よく除去することができる鉄・錫含有銅の処理方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the processing method of iron and tin containing copper which can remove iron and tin efficiently from iron and tin containing copper can be provided.

実施形態に係る鉄・錫含有銅の処理方法を示すフロー図である。It is a flowchart which shows the processing method of the iron and tin containing copper which concerns on embodiment. 脱鉄工程における経過時間と各成分の濃度変化を表す図である。It is a figure showing the elapsed time in a iron removal process, and the density | concentration change of each component. 脱鉄工程における経過時間と各成分の濃度変化を表す図である。It is a figure showing the elapsed time in a iron removal process, and the density | concentration change of each component.

以下、本発明を実施するための実施形態について説明する。   Hereinafter, an embodiment for carrying out the present invention will be described.

(実施形態)
以下に、実施形態に係る鉄・錫含有銅の処理方法の内容を説明する。本処理方法は、鉄・錫含有銅から鉄および錫を効率よく除去することを目的としている。本実施形態において対象とする鉄・錫含有銅は、一例として、鉄を5mass%から25mass%、錫を1mass%から8mass%、銅を50mass%から80mass%含有する。図1に示す処理フローに沿って、本実施形態に係る鉄・錫含有銅の処理方法について説明する。
(Embodiment)
Below, the content of the processing method of the iron and tin containing copper which concerns on embodiment is demonstrated. The purpose of this treatment method is to efficiently remove iron and tin from iron / tin-containing copper. As an example, the iron / tin-containing copper to be used in the present embodiment contains 5 mass% to 25 mass% of iron, 1 mass% to 8 mass% of tin, and 50 mass% to 80 mass% of copper. The iron / tin-containing copper processing method according to the present embodiment will be described along the processing flow shown in FIG.

(脱鉄工程(鉄酸化工程))
まず、第一工程として、鉄を酸化除去する脱鉄工程を実施する。脱鉄工程では、上記の鉄・錫含有銅を炉内に投入し、溶剤を投入する。溶剤として、例えば、珪砂(SiO)および石灰石(CaCO)を投入する。例えば、25トンから30トンの鉄・錫含有銅に対して、硅砂を2.5トンから3トン、石灰石を3.5トンから4.5トン投入する。
(Deironing process (Iron oxidation process))
First, as a first step, a deironing step of oxidizing and removing iron is performed. In the iron removal step, the above iron / tin-containing copper is put into a furnace and a solvent is put in. As the solvent, for example, silica sand (SiO 2 ) and limestone (CaCO 3 ) are added. For example, 2.5 to 3 tons of dredged sand and 3.5 to 4.5 tons of limestone are added to 25 to 30 tons of iron / tin-containing copper.

鉄・錫含有銅が投入される炉は、特に限定されるものではない。一例として、転炉、上吹き炉などを用いることができる。鉄・錫含有銅および溶剤を投入した後、プロパンガス、重油等の燃焼熱を用いて炉を加熱することによって、鉄・錫含有銅を溶融させ、溶融メタルとする。プロパンガスは硫黄分が低いので、排気ガスの処理軽減の観点からは、プロパンガスを用いることが好ましい。炉内の溶湯の温度は、1300℃〜1400℃に維持することが好ましい。銅の酸化を抑制しつつ効率よく鉄を酸化除去することができるからである。銅の酸化をより抑制するためには、炉内の溶湯の温度は、1300℃〜1350℃に維持することが好ましい。   The furnace in which the iron / tin-containing copper is charged is not particularly limited. As an example, a converter, an upper blowing furnace, or the like can be used. After the iron / tin-containing copper and solvent are added, the iron / tin-containing copper is melted by heating the furnace using combustion heat such as propane gas or heavy oil to form a molten metal. Since propane gas has a low sulfur content, it is preferable to use propane gas from the viewpoint of reducing processing of exhaust gas. The temperature of the molten metal in the furnace is preferably maintained at 1300 ° C to 1400 ° C. This is because iron can be efficiently oxidized and removed while suppressing the oxidation of copper. In order to further suppress copper oxidation, the temperature of the molten metal in the furnace is preferably maintained at 1300 ° C to 1350 ° C.

次に、溶融メタル中に酸素含有ガス(例えば空気)を吹き込む。一例として、羽口から空気を300Nm/h〜400Nm/hの流量で4時間〜5時間程度吹き込む。羽口は、例えば、炉の側壁に、2箇所〜6箇所程度設けられていることが好ましい。空気の吹き込み量は、例えば、5000Nm/バッチ〜7000Nm/バッチとする。酸素含有ガスの吹き込みによって溶融メタル中の鉄が酸化し、スラグに移動する。それにより、溶融メタルから鉄が除去される。 Next, an oxygen-containing gas (for example, air) is blown into the molten metal. As an example, it is blown about 4 hours to 5 hours of air at a flow rate of 300Nm 3 / h~400Nm 3 / h from the tuyere. For example, the tuyere is preferably provided at about 2 to 6 locations on the side wall of the furnace. The amount of air blown is, for example, 5000 Nm 3 / batch to 7000 Nm 3 / batch. By blowing the oxygen-containing gas, iron in the molten metal is oxidized and moves to the slag. Thereby, iron is removed from the molten metal.

なお、鉄の酸化の際に酸化熱が発生する。そこで、溶湯の温度が過度に上昇することを抑制する目的で、溶湯に冷材を投入する。ただし、冷材を投入した際に、溶融メタル中の酸素濃度が2mass%以下となるように調整することが好ましい。銅ロスを抑制するためである。より銅ロスを抑制するためには、溶融メタル中の酸素濃度が1mass%以下となるように調整することが好ましい。   Oxidation heat is generated when iron is oxidized. Therefore, in order to suppress the temperature of the molten metal from rising excessively, a cold material is introduced into the molten metal. However, it is preferable to adjust the oxygen concentration in the molten metal to be 2 mass% or less when the cold material is added. This is to suppress copper loss. In order to further suppress the copper loss, it is preferable to adjust the oxygen concentration in the molten metal to be 1 mass% or less.

冷材は、特に限定されるものではない。一例として、故銅を冷材として用いることが好ましい。故銅中の不純物も除去可能となるからである。例えば、鉄および錫の少なくともいずれか一方を含む故銅を冷材として用いることが好ましい。または、故銅として、めっき屑などの低品位のリサイクル品を用いてもよい。高品位の故銅を用いてもよいが、低品位の故銅を用いた方が経済的である。   The cold material is not particularly limited. As an example, it is preferable to use late copper as a cooling material. This is because impurities in the late copper can be removed. For example, it is preferable to use late copper containing at least one of iron and tin as the cooling material. Alternatively, low-quality recycled products such as plating scraps may be used as the late copper. Although high quality waste copper may be used, it is more economical to use low quality waste copper.

冷材として故銅を用いる場合、出発原料の鉄・錫含有銅に対して冷材の投入量は、やや少ない量であることが好ましい。例えば、鉄・錫含有銅25トンから30トンに対して冷材の投入量を20トン〜30トンとすることが好ましい。一例として、故銅として、鉄を5mass%から10mass%、錫を1mass%から10mass%、銅を70mass%から90mass%含むものを用いる。   When using late copper as a cold material, it is preferable that the amount of the cold material to be introduced is a little smaller than the starting iron-tin-containing copper. For example, it is preferable that the input amount of the cooling material is 20 to 30 tons with respect to 25 to 30 tons of iron / tin-containing copper. As an example, a copper containing 5 mass% to 10 mass% of iron, 1 mass% to 10 mass% of tin, and 70 mass% to 90 mass% of copper is used as the late copper.

表1、表2、図2および図3は、脱鉄工程における経過時間と各成分の濃度変化を表す図である。図2および図3において、横軸は経過時間を表す。図2の縦軸は、脱鉄工程におけるメタル中の鉄濃度、スラグ中の錫濃度、およびスラグ中の銅濃度を示す。図3の縦軸は、メタル中の錫濃度、メタル中の酸素濃度、およびメタル中の鉄濃度を示す。   Table 1, Table 2, FIG. 2 and FIG. 3 are diagrams showing elapsed time and concentration change of each component in the deironing process. 2 and 3, the horizontal axis represents elapsed time. The vertical axis | shaft of FIG. 2 shows the iron concentration in the metal in a deironing process, the tin concentration in slag, and the copper concentration in slag. The vertical axis in FIG. 3 indicates the tin concentration in the metal, the oxygen concentration in the metal, and the iron concentration in the metal.

Figure 0005518775
Figure 0005518775

Figure 0005518775
Figure 0005518775

表1、表2、図2および図3に示すように、時間の経過とともに、鉄・錫含有銅中の鉄濃度が低下する。したがって、酸素含有ガスの吹き込みによって鉄が酸化除去されていることがわかる。鉄の酸化除去がある程度進行した後、錫が酸化除去される。しかしながら、この場合、錫の酸化とともに銅も酸化するため、銅ロスが大きくなってしまう。したがって、脱鉄工程において、銅のロスを抑制することが好ましい。   As shown in Table 1, Table 2, FIG. 2, and FIG. 3, the iron concentration in the iron / tin-containing copper decreases with time. Therefore, it can be seen that iron is oxidized and removed by blowing the oxygen-containing gas. After iron has been oxidized and removed to some extent, tin is oxidized and removed. However, in this case, copper loss is increased because copper is oxidized together with tin. Therefore, it is preferable to suppress copper loss in the iron removal step.

例えば、銅ロスが10mass%以下に保たれるように、脱鉄工程を実施することが好ましい。なお、この場合の銅ロスとは、スラグ中の銅品位(mass%)である。   For example, it is preferable to carry out the iron removal step so that the copper loss is kept at 10 mass% or less. In addition, the copper loss in this case is the copper quality (mass%) in slag.

(スラグ排出・鋳造工程)
脱鉄工程後、炉からスラグを排出する。また、溶融メタルを鋳型に流し込んで冷却することによって鋳造する。この場合、鉄除去用スラグが除去された後に後述の錫除去用スラグが生成されることから、鉄除去用スラグと錫除去用スラグとが混合することが抑制される。それにより、後述の脱錫工程における錫除去効率低下を抑制することができる。
(Slag discharge / casting process)
After the iron removal process, slag is discharged from the furnace. Further, casting is performed by pouring molten metal into a mold and cooling. In this case, since the tin removal slag described later is generated after the iron removal slag is removed, mixing of the iron removal slag and the tin removal slag is suppressed. Thereby, the tin removal efficiency fall in the below-mentioned tin removal process can be suppressed.

脱鉄工程後に排出されるスラグ成分は、例えば、鉄が25mass%から45mass%、錫が0.5mass%から2mass%、銅が5mass%以下(例えば、1mass%から5mass%)である。また、鋳造によって得られるメタル(銅地金)は、例えば、鉄が0.2mass%から2mass%、錫が2mass%から4mass%、銅が90mass%から95mass%である。このように、脱鉄工程を経ることによって、鉄・錫含有銅中の鉄濃度を大幅に低下させることができる。また、スラグ排出工程および鋳造工程を経ることによって、高濃度の鉄を含むスラグを排出することができる。   The slag components discharged after the iron removal process are, for example, 25 mass% to 45 mass% for iron, 0.5 mass% to 2 mass% for tin, and 5 mass% or less for copper (for example, 1 mass% to 5 mass%). Moreover, the metal (copper ingot) obtained by casting is, for example, 0.2 mass% to 2 mass% for iron, 2 mass% to 4 mass% for tin, and 90 mass% to 95 mass% for copper. Thus, the iron concentration in the iron / tin-containing copper can be significantly reduced by passing through the iron removal step. Moreover, the slag containing high concentration iron can be discharged | emitted by passing through a slag discharge process and a casting process.

(脱錫工程(錫酸化工程))
次に、脱錫工程を実施する。まず、上記銅地金および溶剤を再び炉に投入する。脱錫工程における溶剤として、例えば、珪砂および石灰石を投入する。例えば、鉄・錫含有銅25トンから27トンに対して、硅砂を0.8トンから1.5トン、石灰石を1トンから2トン投入する。さらに、錫を効率よく除去するための脱錫剤として、炭酸ソーダ(NaCO)を投入する。例えば、鉄・錫含有銅25トンから27トンに対して、炭酸ソーダを2トンから3トン投入する。
(Tin removal process (tin oxidation process))
Next, a tin removal step is performed. First, the copper metal and the solvent are again put into the furnace. As a solvent in the tin removal process, for example, silica sand and limestone are added. For example, 0.8 to 1.5 tons of dredged sand and 1 to 2 tons of limestone are added to 25 to 27 tons of copper containing iron and tin. Further, sodium carbonate (Na 2 CO 3 ) is added as a tin removal agent for efficiently removing tin. For example, 2 to 3 tons of sodium carbonate is added to 25 to 27 tons of iron / tin-containing copper.

鉄・錫含有銅が投入される炉は、特に限定されるものではない。一例として、転炉、上吹き炉などを用いることができる。銅地金、溶剤、および脱錫剤を投入した後、重油、プロパンガス等の燃焼熱を用いて炉を加熱することによって、銅地金を溶融させ、溶融メタルとする。炉内の溶湯の温度は、1200℃〜1270℃に維持することが好ましい。銅の酸化を抑制しつつ効率よく錫を酸化除去することができるからである。   The furnace in which the iron / tin-containing copper is charged is not particularly limited. As an example, a converter, an upper blowing furnace, or the like can be used. After charging the copper ingot, the solvent, and the tin removal agent, the copper ingot is melted to form a molten metal by heating the furnace using combustion heat such as heavy oil and propane gas. The temperature of the molten metal in the furnace is preferably maintained at 1200 to 1270 ° C. This is because tin can be efficiently removed by oxidation while suppressing oxidation of copper.

次に、溶融メタル中に酸素含有ガス(例えば空気)を吹き込む。一例として、羽口から空気を300Nm/h〜400Nm/hの流量で1.5時間〜2.5時間程度吹き込む。羽口は、例えば、炉の側壁に、2箇所〜6箇所程度設けられていることが好ましい。銅の酸化を抑制するために、脱鉄工程の際に用いた羽口数よりも脱錫工程の際に用いる羽口数を減らしてもよい。空気の吹き込み量は、例えば、5000Nm/バッチ〜7000Nm/バッチとする。酸素含有ガスおよび脱錫剤によって溶湯中の錫が酸化し、スラグに移動する。それにより、錫が除去される。 Next, an oxygen-containing gas (for example, air) is blown into the molten metal. As an example, blown 300Nm 3 / h~400Nm 3 / 1.5 hours to 2.5 hours at a flow rate of h air from tuyere. For example, the tuyere is preferably provided at about 2 to 6 locations on the side wall of the furnace. In order to suppress the oxidation of copper, the number of tuyere used in the tin removal step may be reduced from the number of tuyere used in the iron removal step. The amount of air blown is, for example, 5000 Nm 3 / batch to 7000 Nm 3 / batch. The oxygen in the molten metal is oxidized by the oxygen-containing gas and the tin removal agent and moves to the slag. Thereby, tin is removed.

なお、脱錫工程においても溶湯温度調整のために冷材を炉内に投入することが好ましい。例えば、鋳造工程で得られた銅地金と鉄・錫が同程度の品位の故銅を冷材として用いてもよい。また、銅地金よりも高品位の故銅(鉄が0.2mass%から2mass%、錫が0mass%から4mass%、銅が90mass%から98mass%)を冷材として用いてもよい。高品位の故銅として、アノードの未電解部分(鋳返しアノード)等を用いてもよい。高品位の故銅を投入することによって、溶融メタルの汚染を抑制することができるからである。また、同時に鋳返しアノードの溶解に使用できることになるからである。   In the tin removal step, it is preferable to put a cold material into the furnace in order to adjust the molten metal temperature. For example, the copper ingot obtained in the casting process and the late copper having the same grade of iron and tin may be used as the cooling material. Moreover, you may use late copper (iron is 0.2 mass% to 2 mass%, tin is 0 mass% to 4 mass%, copper is 90 mass% to 98 mass%) as a cooling material, which is higher quality than copper bullion. As high-quality waste copper, an unelectrolyzed portion of the anode (turned anode) or the like may be used. This is because the contamination of the molten metal can be suppressed by introducing high-quality waste copper. Moreover, it is because it can be used for melt | dissolution of a cast-back anode simultaneously.

脱錫工程を経て得られた銅地金の各成分は、例えば、鉄が0.05mass%から0.25mass%、錫が0.2mass%から1.0mass%、銅が96mass%から99mass%である。また、脱錫工程で得られたスラグの各成分は、例えば、鉄が10mass%から25mass%、錫が3mass%から15mass%、銅が8mass%から15mass%である。このように、脱鉄工程、スラグ排出工程、鋳造工程、および脱錫工程を実施することによって、効率よく鉄および錫を除去することができる。   Each component of the copper ingot obtained through the tin removal step is, for example, 0.05 mass% to 0.25 mass% for iron, 0.2 mass% to 1.0 mass% for tin, and 96 mass% to 99 mass% for copper. is there. Moreover, each component of the slag obtained by the tin removal process is, for example, 10 mass% to 25 mass% for iron, 3 mass% to 15 mass% for tin, and 8 mass% to 15 mass% for copper. Thus, iron and tin can be efficiently removed by carrying out the iron removal step, the slag discharge step, the casting step, and the tin removal step.

以下、本発明の実施例について説明するが、実施例は例示目的であって発明が限定されることを意図しない。   Examples of the present invention will be described below, but the examples are for illustrative purposes and are not intended to limit the invention.

出発原料として、鉄15mass%、錫5mass%、銅75mass%の鉄・錫含有銅を用いた。このような鉄・錫含有銅は、ブラック銅と称されることもある。図1に示す処理フローに沿って、各工程を実施した。   As a starting material, iron / tin-containing copper of 15 mass% iron, 5 mass% tin, and 75 mass% copper was used. Such iron / tin-containing copper is sometimes referred to as black copper. Each process was implemented along the processing flow shown in FIG.

(脱鉄工程)
まず、第一工程として、鉄を除去する処理を行った。脱鉄工程では、上記鉄・錫含有銅を転炉に投入し、溶剤である硅砂および石灰石を投入した。鉄・錫含有銅27トンに対して、硅砂を2.7トン、石灰石を4.0トン投入した。鉄・錫含有銅の投入後、重油の燃焼熱により炉内の温度を上昇させ、空気を吹き込んだ。不純物である鉄の酸化熱により、炉内の温度がさらに上昇した。
(Deironing process)
First, the process which removes iron was performed as a 1st process. In the iron removal process, the iron / tin-containing copper was put into a converter, and cinnabar sand and limestone as solvents were added. For 27 tons of copper containing iron and tin, 2.7 tons of dredged sand and 4.0 tons of limestone were added. After introducing the iron-tin-containing copper, the temperature in the furnace was raised by the combustion heat of heavy oil, and air was blown in. The temperature in the furnace further increased due to the oxidation heat of iron, an impurity.

空気は、350Nm/hの流量で4時間、羽口から供給した。羽口は、炉の側壁に、4箇所配置した。空気は、6000Nm/バッチ吹き込んだ。空気を吹き込み続けると溶湯温度が1350℃以上となるため、冷材として故銅を投入した。なお、溶融メタル中の酸素濃度が、1mass%以下となるようにした。 Air was supplied from the tuyere at a flow rate of 350 Nm 3 / h for 4 hours. Four tuyere were placed on the side wall of the furnace. Air was blown in at 6000 Nm 3 / batch. If the air was continuously blown in, the molten metal temperature became 1350 ° C. or higher, so the spent copper was added as a cold material. The oxygen concentration in the molten metal was set to 1 mass% or less.

25トンの故銅を、昇温状況を把握しながら断続的に投入した。故銅として、鉄を5mass%から10mass%、錫を2mass%から4mass%、銅を70mass%から90mass%含むものを用いた。脱鉄工程を経て得られた脱鉄銅の各成分は、鉄が0.2mass%から2mass%、錫が2mass%から4mass%、銅が90mass%から95mass%であった。   25 tons of late copper was added intermittently while grasping the temperature rise. As the late copper, iron containing 5 mass% to 10 mass%, tin containing 2 mass% to 4 mass%, and copper containing 70 mass% to 90 mass% was used. Each component of the deironed copper obtained through the deironing step was 0.2 mass% to 2 mass% for iron, 2 mass% to 4 mass% for tin, and 90 mass% to 95 mass% for copper.

(スラグ排出・鋳造工程)
次に、炉内のスラグを排出し、溶融メタルを鋳型で鋳造した。排出したスラグの各成分は、鉄が25mass%から45mass%、錫が0.2mass%から2mass%、銅が1amss%から5mass%であった。また、鋳造で得られた銅地金の各成分は、鉄が0.2mass%から2mass%、錫が2mass%から4mass%、銅が90mass%から95mass%であった。
(Slag discharge / casting process)
Next, the slag in the furnace was discharged, and molten metal was cast with a mold. The components of the discharged slag were 25 mass% to 45 mass% for iron, 0.2 mass% to 2 mass% for tin, and 1 mass% to 5 mass% for copper. Moreover, each component of the copper ingot obtained by casting was 0.2 mass% to 2 mass% for iron, 2 mass% to 4 mass% for tin, and 90 mass% to 95 mass% for copper.

(脱錫工程)
次に、鋳造で得られた銅地金を炉に再び投入し、溶剤である硅砂および石灰石を投入し、脱錫剤である炭酸ソーダを投入した。この際、銅地金26トンに対して、硅砂を1.2トン、石灰石を1.5トン、炭酸ソーダを2.5トン投入した。銅地金、溶剤および脱錫剤の投入後、重油の燃焼熱により炉内の温度を上昇させ、空気を吹き込んだ。
(Tinning process)
Next, the copper ingot obtained by casting was again put into the furnace, cinnabar and limestone as solvents were added, and sodium carbonate as a tin removal agent was added. At this time, 1.2 tons of dredged sand, 1.5 tons of limestone, and 2.5 tons of sodium carbonate were added to 26 tons of copper metal. After adding the copper ingot, the solvent and the tin removal agent, the temperature in the furnace was raised by the combustion heat of heavy oil, and air was blown in.

空気は、350Nm/hの流量で2時間、羽口から供給した。羽口は、炉の側壁に、2箇所配置した。空気は、6000Nm/バッチ吹き込んだ。空気を吹き込み続けると溶湯温度が1350℃以上となるため、冷材として故銅を投入した。故銅として、鉄を0.2mass%から2mass%、錫を0mass%から4mass%、銅を90mass%から98mass%含むものを用いた。 Air was supplied from the tuyere at a flow rate of 350 Nm 3 / h for 2 hours. Two tuyere were placed on the side wall of the furnace. Air was blown in at 6000 Nm 3 / batch. If the air was continuously blown in, the molten metal temperature became 1350 ° C. or higher, so the spent copper was added as a cold material. As the late copper, iron containing 0.2 mass% to 2 mass%, tin containing 0 mass% to 4 mass%, and copper containing 90 mass% to 98 mass% was used.

脱錫工程後に得られた銅地金の各成分は、鉄が0.05mass%から0.25mass%、錫が0.2mass%から1.0mass%、銅が96mass%から99mass%であった。脱錫工程で得られたスラグの各成分は、鉄が10mass%から25mass%、錫が3mass%から15mass%、銅が8mass%から15mass%であった。   Each component of the copper ingot obtained after the tin removal step was 0.05 mass% to 0.25 mass% for iron, 0.2 mass% to 1.0 mass% for tin, and 96 mass% to 99 mass% for copper. Each component of the slag obtained in the tin removal step was 10 mass% to 25 mass% for iron, 3 mass% to 15 mass% for tin, and 8 mass% to 15 mass% for copper.

実施例の結果によれば、脱鉄工程、スラグ排出工程、鋳造工程、および脱錫工程を実施することによって、鉄・錫含有銅中の鉄および錫を効率よく除去することができた。   According to the results of Examples, iron and tin in iron / tin-containing copper could be efficiently removed by carrying out the iron removal step, the slag discharge step, the casting step, and the tin removal step.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

Claims (9)

溶剤を用いて所定温度で溶融させた鉄・錫含有銅の鉄を酸化する鉄酸化工程と、
前記鉄酸化工程で得られる溶融メタルをスラグと分離して鋳造する鋳造工程と、
前記鋳造工程で得られたメタルを溶剤とともに再度溶融し、溶融したメタル中の錫を、炭酸ソーダの存在下で酸化する錫酸化工程と、を含むことを特徴とする鉄・錫含有銅の処理方法。
An iron oxidation step of oxidizing iron of iron / tin-containing copper melted at a predetermined temperature using a solvent;
A casting process in which the molten metal obtained in the iron oxidation process is separated from the slag and cast;
And a tin oxidation step of re-melting the metal obtained in the casting step together with a solvent and oxidizing the tin in the molten metal in the presence of sodium carbonate, Method.
前記鉄酸化工程前の鉄・錫含有銅は、鉄を5mass%〜25mass%含み、錫を1mass%〜8mass%含むことを特徴とする請求項1記載の鉄・錫含有銅の処理方法。   The method for treating iron / tin-containing copper according to claim 1, wherein the iron / tin-containing copper before the iron oxidation step contains 5 mass% to 25 mass% of iron and 1 mass% to 8 mass% of tin. 前記鉄酸化工程および前記錫酸化工程で用いる溶剤は、珪砂および石灰石であることを特徴とする請求項1または2記載の鉄・錫含有銅の処理方法。   The method for treating iron / tin-containing copper according to claim 1 or 2, wherein the solvent used in the iron oxidation step and the tin oxidation step is silica sand and limestone. 前記鉄酸化工程における溶湯温度は、1300℃〜1400℃であることを特徴とする請求項1〜3のいずれかに記載の鉄・錫含有銅の処理方法。   The molten metal temperature in the said iron oxidation process is 1300 degreeC-1400 degreeC, The processing method of the iron and tin containing copper in any one of Claims 1-3 characterized by the above-mentioned. 前記錫酸化工程における溶湯温度は、1200℃〜1270℃であることを特徴とする請求項1〜4のいずれかに記載の鉄・錫含有銅の処理方法。   The molten metal temperature in the said tin oxidation process is 1200-1270 degreeC, The processing method of the iron and tin containing copper in any one of Claims 1-4 characterized by the above-mentioned. 溶湯に冷材を投入することによって前記溶湯温度を調整することを特徴とする請求項4または5記載の鉄・錫含有銅の処理方法。   The method for treating iron / tin-containing copper according to claim 4, wherein the temperature of the molten metal is adjusted by introducing a cold material into the molten metal. 前記冷材は、鉄・錫含有銅であることを特徴とする請求項6記載の鉄・錫含有銅の処理方法。   The method for treating iron / tin-containing copper according to claim 6, wherein the cold material is iron / tin-containing copper. 前記鉄酸化工程において、溶湯中の酸素濃度を2mass%以下に調整することを特徴とする請求項1〜7のいずれかに記載の鉄・錫含有銅の処理方法。   In the said iron oxidation process, the oxygen concentration in molten metal is adjusted to 2 mass% or less, The processing method of the iron and tin containing copper in any one of Claims 1-7 characterized by the above-mentioned. 前記鉄酸化工程において、前記鉄酸化工程で得られるスラグ中の銅濃度を5mass%以下に調整することを特徴とする請求項1〜8のいずれかに記載の鉄・錫含有銅の処理方法。   The said iron oxidation process WHEREIN: The copper concentration in the slag obtained by the said iron oxidation process is adjusted to 5 mass% or less, The processing method of the iron and tin containing copper in any one of Claims 1-8 characterized by the above-mentioned.
JP2011064737A 2011-03-23 2011-03-23 Processing method for copper containing iron and tin Active JP5518775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011064737A JP5518775B2 (en) 2011-03-23 2011-03-23 Processing method for copper containing iron and tin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011064737A JP5518775B2 (en) 2011-03-23 2011-03-23 Processing method for copper containing iron and tin

Publications (2)

Publication Number Publication Date
JP2012201894A JP2012201894A (en) 2012-10-22
JP5518775B2 true JP5518775B2 (en) 2014-06-11

Family

ID=47183211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011064737A Active JP5518775B2 (en) 2011-03-23 2011-03-23 Processing method for copper containing iron and tin

Country Status (1)

Country Link
JP (1) JP5518775B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173818A (en) * 1984-09-20 1986-04-16 Nippon Kokan Kk <Nkk> Method and device for producing clean steel
JP3203848B2 (en) * 1993-01-14 2001-08-27 株式会社神戸製鋼所 Melting method of copper or copper alloy
JPH10147821A (en) * 1996-11-19 1998-06-02 Mitsubishi Materials Corp Method for refining copper
JP3747852B2 (en) * 2001-12-27 2006-02-22 三菱マテリアル株式会社 Method for recovering high-purity copper from treated waste
JP4140471B2 (en) * 2003-07-22 2008-08-27 住友電気工業株式会社 Copper refining method

Also Published As

Publication number Publication date
JP2012201894A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
CN101903543B (en) Method for refining copper concentrate
CN110846514A (en) High-efficiency recovery method for secondary aluminum
JP6136379B2 (en) Molten steel manufacturing method
KR101844707B1 (en) A method of converting copper containing material
JP5726618B2 (en) Method for treating tin-containing copper
JP6794598B2 (en) Manufacturing method of Ti—Al alloy
JP6516264B2 (en) Method of treating copper smelting slag
JP5707668B2 (en) Hot copper decoppering method
CN103937992A (en) Method for recycling copper scum during top-blown furnace smelting lead refining process
JP5518775B2 (en) Processing method for copper containing iron and tin
JP6451462B2 (en) Method for recovering chromium from chromium-containing slag
JP4932309B2 (en) Chromium recovery method from chromium-containing slag
JP4751100B2 (en) Copper recovery method by flotation
JP2009209405A (en) Method for smelting copper-containing dross
JP6542560B2 (en) Method of treating non-ferrous smelting slag
JP5575026B2 (en) Iron / tin-containing copper processing apparatus and iron / tin-containing copper processing method
JP2008248304A (en) METHOD FOR RECOVERING Sb AND Bi
JP2013234356A (en) Pyrometallurgy process for lead using high impurity-containing lead slag as raw material
KR102147695B1 (en) How to operate the copper smelting furnace
JP2009167469A (en) Method for treating copper-containing dross
JP5614056B2 (en) Method of operating copper smelting furnace and copper smelting furnace
JP5749546B2 (en) Method for removing bottom deposits of iron and tin-containing copper processing furnaces
JP2006022387A (en) Method for recovering metal
JP5724861B2 (en) Method for removing sulfur from copper scrap
JP3921511B2 (en) Operation method of copper converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5518775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250