JP5518773B2 - Flux-cored wire for gas shielded arc welding - Google Patents

Flux-cored wire for gas shielded arc welding Download PDF

Info

Publication number
JP5518773B2
JP5518773B2 JP2011056703A JP2011056703A JP5518773B2 JP 5518773 B2 JP5518773 B2 JP 5518773B2 JP 2011056703 A JP2011056703 A JP 2011056703A JP 2011056703 A JP2011056703 A JP 2011056703A JP 5518773 B2 JP5518773 B2 JP 5518773B2
Authority
JP
Japan
Prior art keywords
welding
flux
wire
less
sided joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011056703A
Other languages
Japanese (ja)
Other versions
JP2012192422A (en
Inventor
雄己 栢森
政男 鎌田
州司郎 長島
竜太郎 千葉
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2011056703A priority Critical patent/JP5518773B2/en
Publication of JP2012192422A publication Critical patent/JP2012192422A/en
Application granted granted Critical
Publication of JP5518773B2 publication Critical patent/JP5518773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は軟鋼および490N/mm級高張力鋼などの溶接構造物を製造する際に使用するガスシールドアーク溶接用フラックス入りワイヤに係わるものであり、鋼板の片面突き合わせ継手溶接(以下、片面継手溶接という。)の初層パスで問題となる耐高温割れ性を向上させたガスシールドアーク溶接用フラックス入りワイヤ(以下、フラックス入りワイヤという。)に関する。 The present invention relates to a flux-cored wire for gas shielded arc welding used in manufacturing welded structures such as mild steel and 490 N / mm grade 2 high-strength steel. This relates to a flux-cored wire for gas shield arc welding (hereinafter referred to as a flux-cored wire) that has improved hot crack resistance, which is a problem in the first pass of welding.

造船での溶接には、TiO系フラックス入りワイヤを使用して、鋼板の片面継手溶接を自動および半自動溶接で行っている。図1(a)に片面継手の開先形状、図1(b)にその溶接状況例(下向姿勢の場合)を示す。鋼板1を開先角度θ、ルート間隔Gの開先形状にして突き合わせ、開先裏面にセラミックス裏当材2(以下、裏当材という。)を当てて、初層パスで裏ビード3を形成した後、順に積層して継手溶接金属4を形成する。 For welding in shipbuilding, TiO 2 flux cored wire is used, and single-sided joint welding of steel sheets is performed automatically and semi-automatically. FIG. 1 (a) shows the groove shape of a single-sided joint, and FIG. 1 (b) shows an example of the welding situation (in the downward posture). The steel plate 1 is abutted with a groove shape having a groove angle θ and a route interval G, and a ceramic backing material 2 (hereinafter referred to as backing material) is applied to the back surface of the groove to form a back bead 3 by the first layer pass. After that, the joint weld metal 4 is formed by sequentially laminating.

溶接姿勢は、下向、立向など全姿勢で行われるが、特に下向姿勢の片面継手溶接における初層パスはその凝固形態からビード中央に高温割れが発生しやすいので、高温割れ防止の観点から溶接電流および溶接速度を抑え、また、鋼板1の開先角度θおよびルート間隔Gもあまり小さくしないで溶接されている。   Welding postures are performed in all orientations, such as downward and vertical, but the first layer pass in single-sided joint welding, particularly in downward orientation, is prone to hot cracking in the center of the bead due to its solidification form. Therefore, the welding current and the welding speed are suppressed, and the groove angle θ and the route interval G of the steel plate 1 are not reduced so much.

最近、溶接能率を上げるために、溶接電流を高めて溶接速度を速くすること、あるいは開先角度θおよびルート間隔Gを小さくした狭い開先形状にして、溶接パス数を少なくして溶接した場合でも、高温割れが発生しにくいフラックス入りワイヤの開発要望が強い。   Recently, in order to increase the welding efficiency, when welding speed is increased by increasing the welding current, or by forming a narrow groove shape with a small groove angle θ and route interval G, and welding with a small number of welding passes. However, there is a strong demand for the development of flux-cored wires that are less prone to hot cracking.

これに対し特許文献1および特許文献2に、P、Sの低減以外にSn、B、Bi、Pbの含有量を規制することにより耐高温割れ性を改良したフラックス入りワイヤの提案がある。   On the other hand, Patent Document 1 and Patent Document 2 propose a flux-cored wire with improved hot cracking resistance by regulating the contents of Sn, B, Bi, and Pb in addition to reducing P and S.

また、本出願人は先に特許文献3で、P、S、B、およびBiを低減した耐高温割れ性の良好なフラックス入りワイヤを提案した。   The applicant previously proposed a flux-cored wire with good hot cracking resistance in which P, S, B, and Bi are reduced in Patent Document 3.

しかし、前記技術のようなフラックス入りワイヤの不純物低減だけでは現場的に安定した耐高温割れ性向上効果が得られない。特に半自動下向姿勢で、鋼板の開先角度30〜40°、ルート間隔3〜5mmのような狭い開先形状にして、初層パスを溶接電流260A以上(ワイヤ径1.2mm)、溶接速度25cm/min以上の高能率な溶接条件で溶接すると、ビード中央に微小な高温割れが点々と発生する場合がある。これは開先角度が狭い開先形状や高電流の溶接条件になるほど、半自動溶接特有のアーク状態や溶接速度の変動が裏ビード形成に敏感に影響することによる。特に裏ビードの形状が不均一になって開先内ビード表面に凹んだ部分ができると、その箇所に微小な高温割れの発生頻度が高くなる。従って、開先角度が狭い開先形状で、かつ高電流の溶接条件でも安定した耐高温割れ性を得るためには、アークを安定させ裏ビードを安定して形成できる溶接が可能なフラックス入りワイヤが必要となる。   However, only the reduction of impurities in the flux-cored wire as in the above-described technique does not provide an on-site stable hot crack resistance improvement effect. Especially in a semi-automatic downward posture, the groove angle of the steel sheet is 30-40 ° and the groove shape is narrow, such as a route interval of 3-5 mm, the first layer pass has a welding current of 260 A or more (wire diameter 1.2 mm), welding speed When welding is performed under highly efficient welding conditions of 25 cm / min or more, minute hot cracks may occur in the center of the bead. This is because, as the groove shape is narrower and the welding conditions are higher in current, the arc state and welding speed characteristic of semi-automatic welding are more sensitive to back bead formation. In particular, if the shape of the back bead is non-uniform and a recessed portion is formed on the surface of the bead in the groove, the frequency of occurrence of minute hot cracks increases at that location. Therefore, in order to obtain a stable hot cracking resistance even under high current welding conditions with a groove shape with a narrow groove angle, a flux-cored wire that can be welded to stabilize the arc and form the back bead stably. Is required.

また、フラックス入りワイヤが含有するP、Sを始めとし、凝固時に不純物として高温割れを発生しやすくするSn、B、Bi、Pbを規制することは初層パスの高温割れ防止のための必須要件であるが、全姿勢溶接用フラックス入りワイヤにおいて、Bi、PbおよびSはスラグ剥離性、Bは溶接金属の衝撃靱性に効果的に作用する成分であり、これら溶接性能の劣化に対しての回復手段についても十分に配慮する必要がある。   In addition, P, S contained in the flux-cored wire, and Sn, B, Bi, Pb, which make it easy to generate hot cracks as impurities during solidification, are essential requirements for preventing hot cracks in the first layer pass. However, in all-position welding flux-cored wires, Bi, Pb, and S are components that effectively act on the slag peelability, and B is a component that effectively acts on the impact toughness of the weld metal. Sufficient consideration should be given to the means.

なお、特許文献4は、TiOを低めにし、CaO、MgOを含有させて溶融スラグの塩基度を高め、酸素量低減による耐高温割れ性向上を図ったフラックス入りワイヤの提案がある。しかし、上向や立向姿勢でメタル垂れが発生しやすく、全姿勢溶接用フラックス入りワイヤとしては、耐高温割れ性向上に偏らず、溶接条件範囲が広く良好な溶接作業性が得られることも必要である。 Patent Document 4 proposes a flux-cored wire in which TiO 2 is lowered and CaO and MgO are contained to increase the basicity of the molten slag and to improve hot cracking resistance by reducing the amount of oxygen. However, metal dripping is likely to occur in an upward or vertical position, and as a flux-cored wire for welding in all positions, there is a tendency to improve the hot cracking resistance and a wide welding condition range and good welding workability can be obtained. is necessary.

特開2002−137090号公報JP 2002-137090 A 特開2003−311476号公報Japanese Patent Laid-Open No. 2003-311476 特開2006−289404号公報JP 2006-289404 A 特開昭62−151293号公報Japanese Patent Laid-Open No. 62-151293

本発明は、片面継手溶接の初層パスで問題となる耐高温割れ性の一段の向上とともに、スラグ剥離性や上向や立向姿勢での耐メタル垂れ性など溶接作業性および溶接金属の衝撃靱性が良好なガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。   The present invention further improves the hot cracking resistance, which is a problem in the first pass of single-sided joint welding, as well as welding workability such as slag peelability and resistance to metal sag in upward and vertical positions, and the impact of weld metal. An object of the present invention is to provide a flux-cored wire for gas shielded arc welding with good toughness.

本発明の要旨は、鋼製外皮内にフラックスを充填してなるガスシ−ルドア−ク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、C:0.04〜0.09%、Si:0.3〜0.6%、Mn:2.5〜3.1%、但し、Mn/Si:4.5以上、Al:0.1〜0.4%、Mg:0.3〜0.6%、TiO:5.1〜6.5%、SiO:0.3〜0.7%、ZrO:0.1〜0.5%、Al:0.2〜0.5%、NaOおよびKOの合計:0.10〜0.25%、但し、KO/NaO:2.0以上、弗素化合物のF換算値:0.03〜0.08%、鉄粉:2.0〜5.0%を含有し、かつ、P:0.015%以下、S:0.010%以下、B:0.0005%以下、Bi:0.0005%以下、鉄酸化物のFeO換算値:0.09%以下で、残部は鋼製外皮のFe分、合金鉄のFe分および不可避的不純物からなることを特徴とする。 The gist of the present invention is that, in a flux cored wire for gas shield arc welding in which a steel outer sheath is filled with flux, C: 0.04 to 0.09%, and Si: 0.3-0.6%, Mn: 2.5-3.1%, provided that Mn / Si: 4.5 or more, Al: 0.1-0.4%, Mg: 0.3-0. 6%, TiO 2: 5.1~6.5% , SiO 2: 0.3~0.7%, ZrO 2: 0.1~0.5%, Al 2 O 3: 0.2~0. 5%, the total of Na 2 O and K 2 O: 0.10 to 0.25%, however, K 2 O / Na 2 O : 2.0 or higher, F converted value of the fluorine compounds: 0.03 to 0. 08%, iron powder: 2.0 to 5.0%, P: 0.015% or less, S: 0.010% or less, B: 0.0005% or less, Bi: 0.000 % Or less, FeO converted value of the iron oxide: 0.09% or less, the balance is characterized in that Fe content of the steel sheath, Fe content of the alloy iron and inevitable impurities.

また、ワイヤ表面に0.10〜0.60μmのCuめっきを有することも特徴とするガスシールドアーク溶接用フラックス入りワイヤにある。   Further, the present invention provides a flux-cored wire for gas shielded arc welding, which has Cu plating of 0.10 to 0.60 μm on the wire surface.

本発明のガスシールドアーク溶接用フラックス入りワイヤによれば、開先角度が狭い開先形状の片面継手溶接の初層パスを高電流の溶接条件で行った場合でも高温割れが発生しにくく、かつ、全姿勢溶接用ワイヤとして保有すべき各種溶接作業性および溶接金属の衝撃靱性が良好であるので、溶接の高能率化および溶接部の品質向上が図れる。   According to the flux-cored wire for gas shielded arc welding of the present invention, even when the first layer pass of the groove-shaped single-sided joint welding with a narrow groove angle is performed under high current welding conditions, high-temperature cracking is unlikely to occur, and Since various welding workability and the weld metal impact toughness that should be possessed as the all-position welding wire are good, it is possible to improve the efficiency of welding and improve the quality of the welded portion.

下向片面継手溶接の開先形状および溶接状況を説明するために示した模式図で、(a)は溶接前、(b)は溶接後の状況を示す図である。It is the schematic diagram shown in order to demonstrate the groove | channel shape and welding condition of downward single-sided joint welding, (a) is a figure before welding, (b) is a figure which shows the condition after welding.

本発明者らは、種々のフラックス入りワイヤを試作して、狭開先片面継手溶接における耐高温割れ性、全姿勢溶接における溶接作業性および溶接金属の衝撃靱性に及ぼす各種成分組成の影響について詳細に検討した。   The inventors have made various types of flux-cored wires as prototypes, and details of the effects of various components on hot crack resistance in narrow groove single-sided joint welding, welding workability in all-position welding, and impact toughness of weld metal It was examined.

その結果、狭開先の初層パスでの溶接では、アークが安定しなかったり、また、溶融スラグの追従が悪く溶融スラグがアーク点より先行しすぎたり、或いは後退しすぎると、溶接作業者は裏ビードを出すために最適な位置にアーク点を移そうとして瞬間的に溶接速度を変化させたりするので、裏ビードや開先内のビードが長手方向に凹凸が生じた形状となり、その凹み部に微小な高温割れが発生しやすくなることから、スラグ生成状態やアークの安定性が重要となることを知見した。   As a result, in welding in the first layer pass with a narrow groove, if the arc is not stable, or if the molten slag does not follow well and the molten slag precedes the arc point or retracts too much, the welding operator Because the welding speed is changed instantaneously in an attempt to move the arc point to the optimal position for taking out the back bead, the back bead and the bead in the groove have a shape with irregularities in the longitudinal direction, and the dent It has been found that the slag generation state and arc stability are important because small hot cracks are likely to occur in the part.

また、片面継手溶接における耐高温割れ性と溶接金属の衝撃性能に作用する成分としてC、Si、Mn、Al、Mg、P、S、B、Bi、FeO、全姿勢溶接における溶接作業性や片面初層パスでの溶接作業性をよくするためアーク安定剤として作用するNaO、KO、鉄粉およびスラグ形成剤として作用するTiO、SiO、ZrO、Alをそれぞれ適量含有させ、さらにワイヤ送給性の安定化や通電性の安定化およびチップ磨耗量の減少によりアークの安定化をより図るためワイヤ表面にCuめっきを施すことにより所期の目的を達したものである。 In addition, C, Si, Mn, Al, Mg, P, S, B, Bi, FeO, welding workability in all-position welding and one-sided as components affecting hot crack resistance in single-sided joint welding and impact performance of weld metal TiO 2 , SiO 2 , ZrO 2 , Al 2 O 3 acting as arc stabilizers and Na 2 O, K 2 O acting as arc stabilizers to improve welding workability in the first layer pass, and slag forming agents, respectively In order to stabilize the arc by containing an appropriate amount and further stabilizing the wire feedability, stabilizing the electrical conductivity, and reducing the amount of chip wear, the intended purpose was achieved by applying Cu plating to the wire surface. It is.

以下に、本発明のフラックス入りワイヤの成分限定理由を述べる。以下、組成における質量%は、単に%と記載する。   The reasons for limiting the components of the flux-cored wire of the present invention will be described below. Hereinafter, the mass% in the composition is simply described as%.

C:0.04〜0.09%
フラックスおよび外皮成分の合計で、Cが0.04%未満では溶接金属の強度が低下する。一方、Cが0.09%を超えると溶接金属の強度が高くなりすぎて衝撃靱性が低下する。
C: 0.04 to 0.09%
If C is less than 0.04%, the strength of the weld metal decreases. On the other hand, if C exceeds 0.09%, the strength of the weld metal becomes too high and the impact toughness decreases.

Si:0.3〜0.6%
Siは、溶接金属の強度および衝撃靱性を確保するために、フラックスおよび外皮成分の合計で0.3%以上含有させる。Siが0.3%未満では溶接金属の強度および衝撃靱性が低下する。一方、Siが0.6%を超えると溶接金属の衝撃靱性が低下する。
Si: 0.3-0.6%
In order to ensure the strength and impact toughness of the weld metal, Si is contained in a total of 0.3% or more of the flux and the skin component. If Si is less than 0.3%, the strength and impact toughness of the weld metal decrease. On the other hand, if Si exceeds 0.6%, the impact toughness of the weld metal decreases.

Mn:2.5〜3.1%
Mnは、耐高温割れ性や溶接金属の強度、衝撃靱性の確保、特に片面継手溶接金属の衝撃靭性確保のために、フラックスおよび外皮成分の合計で2.5〜3.1%含有させる。Mnが2.5%未満では高温割れが発生しやすくなる。また、片面継手溶接金属の衝撃靱性が低下する。一方、Mnが3.1%を超えると溶接金属の強度が高くなりすぎる。
Mn: 2.5-3.1%
Mn is contained in a total of 2.5 to 3.1% of the flux and the outer skin component in order to ensure hot cracking resistance, weld metal strength and impact toughness, in particular to ensure impact toughness of the single-sided joint weld metal. If Mn is less than 2.5%, hot cracking tends to occur. Moreover, the impact toughness of the single-sided joint weld metal is lowered. On the other hand, if Mn exceeds 3.1%, the strength of the weld metal becomes too high.

Mn/Si:4.5以上
溶接金属の特に片面継手溶接金属の衝撃靱性を確保するために、MnとSiの比Mn/Siを4.5以上とする。Mn/Siが4.5未満では片面継手溶接金属の衝撃靱性が低下する。
Mn / Si: 4.5 or more In order to ensure the impact toughness of the weld metal, particularly the single-sided joint weld metal, the ratio Mn / Si of Mn / Si is set to 4.5 or more. When Mn / Si is less than 4.5, the impact toughness of the single-sided joint weld metal decreases.

Al:0.1〜0.4%
Alは、フラックスおよび外皮成分の合計で、0.1%以上含有させることによって溶接金属の酸素量を低下して溶接金属の衝撃靱性を向上させる。一方、Alが0.4%を超えると溶接金属中にSiおよびMnが歩留まって強度が高くなり衝撃靱性が低下する。また、脱酸生成物であるAlが溶融スラグ中に過剰に増加するため、狭開先片面継手溶接では溶融スラグの追従性が安定せず、裏ビードに凹凸が生じて凹部に高温割れが発生しやすくなる。
Al: 0.1 to 0.4%
Al is a total of the flux and the skin component, and is contained by 0.1% or more, thereby reducing the oxygen content of the weld metal and improving the impact toughness of the weld metal. On the other hand, when Al exceeds 0.4%, Si and Mn are yielded in the weld metal, the strength is increased, and the impact toughness is lowered. Moreover, since Al 2 O 3 which is a deoxidation product increases excessively in the molten slag, the followability of the molten slag is not stable in narrow groove single-sided joint welding, and irregularities occur in the back bead, resulting in high temperatures in the recesses. Cracks are likely to occur.

Mg:0.3〜0.6%
Mgは、0.3%以上含有させることによって、溶接金属の酸素量が低下して衝撃靱性を向上させる。一方、Mgが0.6%を超えると、脱酸生成物であるMgOが溶融スラグ中に過剰に増加し、立向姿勢溶接でメタル垂れが発生しやすくなる。また、狭開先片面継手溶接の初層パスでは、溶融スラグの追従性が不安定になり、裏ビードに凹凸が生じて凹部に高温割れが発生しやすくなる。
Mg: 0.3-0.6%
By containing 0.3% or more of Mg, the oxygen content of the weld metal is reduced and impact toughness is improved. On the other hand, when Mg exceeds 0.6%, MgO which is a deoxidation product is excessively increased in the molten slag, and metal dripping is likely to occur in the vertical posture welding. Further, in the first layer pass of the narrow groove single-sided joint welding, the followability of the molten slag becomes unstable, and irregularities are generated in the back bead, and hot cracks are likely to occur in the concave portions.

TiO:5.1〜6.5%
ルチール、チタンスラグなどを原料として、TiOが5.1%未満では、溶融スラグの粘性が不足して上向や立向姿勢でメタル垂れが発生しやすく、ビード形状が凸状になるなど全姿勢溶接用ワイヤとしての溶接作業性が劣化する。また、スラグ生成量が不足して、立向下進溶接ではスラグ剥離性が劣化する。一方、TiOが6.5%を超えるとスラグ生成量が多すぎて、狭開先片面継手溶接の初層パスでスラグ追従性が不安定になり、裏ビードに凹凸が生じて凹部に高温割れが発生しやすくなる。
TiO 2: 5.1~6.5%
If TiO 2 is less than 5.1% using rutile, titanium slag, etc. as a raw material, the viscosity of the molten slag is insufficient, and metal dripping is likely to occur in an upward or vertical position, and the bead shape becomes convex. Welding workability as a posture welding wire deteriorates. Moreover, the amount of slag generation is insufficient, and the slag peelability deteriorates in vertical downward welding. On the other hand, if TiO 2 exceeds 6.5%, the amount of slag generated is too large, and the slag followability becomes unstable in the first layer pass of narrow groove single-sided joint welding, resulting in unevenness in the back bead and high temperature in the recess. Cracks are likely to occur.

SiO:0.3〜0.7%
珪砂、ジルコンサンドなどを原料として、SiOが0.3%未満では、スラグ被包状態が悪く各姿勢溶接ともスラグ剥離性、ビード形状、外観が不良となる。一方、SiOが0.7%を超えると、溶融スラグの凝固が遅れて上向、立向姿勢溶接でメタル垂れが発生しやすくなる。また、片面継手溶接の初層パスでは溶融スラグの追従性が不安定になり、裏ビードに凹凸が生じて凹部に高温割れが発生しやすくなる。
SiO 2: 0.3~0.7%
If silica 2 or less is less than 0.3% using silica sand, zircon sand or the like as a raw material, the slag encapsulation state is poor, and slag peelability, bead shape, and appearance are poor in each position welding. On the other hand, when SiO 2 exceeds 0.7%, solidification of the molten slag is delayed and metal dripping is likely to occur during upward and vertical posture welding. Further, in the first layer pass of single-sided joint welding, the followability of the molten slag becomes unstable, unevenness is generated in the back bead, and high temperature cracking is likely to occur in the recess.

ZrO:0.1〜0.5%
ジルコンサンド、酸化ジルコンなどを原料として、ZrOが0.1%未満では、立向姿勢溶接の耐メタル垂れ性や水平すみ肉溶接のビード形状が劣化する。また、狭開先片面継手溶接の初層パスでは、溶融スラグが先行しやすくなり裏ビードが出にくく、高温割れも発生しやすくなる。一方、ZrOが0.5%を超えるとスラグ剥離性が劣化する。
ZrO 2 : 0.1 to 0.5%
When ZrO 2 is less than 0.1% using zircon sand, zircon oxide or the like as a raw material, the metal drooping resistance of vertical position welding and the bead shape of horizontal fillet welding are deteriorated. Further, in the first layer pass of the narrow groove single-sided joint welding, the molten slag is likely to precede, the back bead is not easily generated, and hot cracking is likely to occur. On the other hand, when ZrO 2 exceeds 0.5%, the slag removability deteriorates.

Al:0.2〜0.5%
Alは立向上進溶接のビード形状を良好にするが、0.2%未満では効果が無くなり、0.5%を超えると、狭開先片面継手溶接の初層パスのスラグ剥離性が悪くなり、耐高温割れ性も悪くなる。
Al 2 O 3 : 0.2 to 0.5%
Al 2 O 3 improves the bead shape of vertical improvement welding, but if it is less than 0.2%, the effect is lost, and if it exceeds 0.5%, the slag peelability of the first layer pass of narrow groove single-sided joint welding Deteriorates and the hot cracking resistance also deteriorates.

NaOおよびKOの合計:0.10〜0.25%
チタン酸ソーダ、カリ長石などを原料として、NaOおよびKOの合計が0.10%未満では、アーク状態が不安定になるとともに、上向や立向姿勢溶接でメタルが垂れやすくビード形状が不良になる。また、狭開先片面継手溶接の初層パスではアーク状態が不安定なことにより溶融スラグの追従性が不安定となり、裏ビードに凹凸が生じて凹部に高温われが発生しやすくなる。一方、NaOおよびKOの合計が0.25%を超えると、溶融スラグの流動性が過剰になり、上向および立向姿勢溶接でメタル垂れが発生しやすく、スラグ剥離性も劣化する。さらに、狭開先片面継手溶接の初層パスでは溶融スラグの追従性が不安定で、高温割れが発生しやすくなる。
Total Na 2 O and K 2 O: 0.10~0.25%
If the total content of Na 2 O and K 2 O is less than 0.10% using sodium titanate, potash feldspar, etc. as a raw material, the arc state becomes unstable and the bead is prone to dripping during upward or vertical welding. The shape becomes defective. Further, in the first layer pass of the narrow groove single-sided joint welding, the arc state is unstable, so that the followability of the molten slag becomes unstable, and the back bead is uneven, and the recess is likely to be hot. On the other hand, if the total of Na 2 O and K 2 O exceeds 0.25%, the fluidity of the molten slag becomes excessive, metal sag is likely to occur during upward and vertical welding, and the slag peelability is also degraded. To do. Furthermore, in the first layer pass of narrow groove single-sided joint welding, the followability of the molten slag is unstable, and high temperature cracking is likely to occur.

O/NaO:2.0以上
O/NaOが2.0未満であると、アークが集中しすぎて、溶融スラグの追従性が不安定となり、裏ビードに凹凸が生じて凹部に高温われが発生しやすくなる。
K 2 O / Na 2 O: 2.0 or more When K 2 O / Na 2 O is less than 2.0, the arc is excessively concentrated, the followability of the molten slag becomes unstable, and the back bead has irregularities. This is likely to cause high temperature cracks in the recesses.

弗素化合物のF換算値:0.03〜0.08%
弗化ソーダや珪弗化カリなどの弗素化合物のF換算値が0.03%未満では、アークの集中性が弱く、立向下進溶接でメタル垂れが発生しやすくなる。また、狭開先片面継手溶接の初層パスで裏ビードが出にくく、さらに溶融スラグの流動性が不足し溶融スラグ追従性が安定せず、裏ビードに凹凸が生じて凹部に高温割れが発生しやすくなる。一方、弗素化合物のF換算値が0.08%を超えると、アークの吹きつけが強すぎ、溶融スラグの流動性も過剰になり、溶融スラグの追従性が不安定で、裏ビードに凹凸が生じて凹部に高温割れが発生しやすくなる。
F conversion value of fluorine compound: 0.03 to 0.08%
If the F-converted value of a fluorine compound such as sodium fluoride or potassium silicofluoride is less than 0.03%, the arc concentration is weak and metal sag tends to occur during vertical downward welding. In addition, the back bead is hard to come out in the first layer pass of the narrow groove single-sided joint welding, and the flowability of the molten slag is insufficient, the molten slag followability is not stable, and the back bead is uneven and high temperature cracks are generated in the recess. It becomes easy to do. On the other hand, if the F-converted value of the fluorine compound exceeds 0.08%, the arc blowing is too strong, the flowability of the molten slag becomes excessive, the followability of the molten slag is unstable, and the back bead has irregularities. It arises and it becomes easy to generate | occur | produce a hot crack in a recessed part.

鉄粉:2.0〜5.0%
フラックス入りワイヤにおいて鉄粉はアーク安定剤と溶着速度を上げる効果がある。鉄粉が2.0%未満ではアークが不安定となり狭開先片面継手溶接内のビードや裏ビードの凹凸とともに高温割れが発生しやすくなる。一方5.0%を超えると、アークの吹き付けが弱くなりすぎて、良好な裏ビード形成ができなくなり高温割れが発生しやすくなる。
Iron powder: 2.0-5.0%
In the flux-cored wire, iron powder has the effect of increasing the welding speed with the arc stabilizer. If the iron powder is less than 2.0%, the arc becomes unstable, and hot cracks are likely to occur along with the irregularities of the bead and the back bead in the narrow groove single-sided joint weld. On the other hand, if it exceeds 5.0%, the spraying of the arc becomes too weak to form a good back bead, and high temperature cracking is likely to occur.

P:0.015%以下、S:0.010%以下
P、Sはフラックス原料および鋼製外皮から不可避的不純物として含有される成分であるが、鋼製外皮およびフラックス原料の選択により、Pを0.015%以下、Sを0.010%以下に制限することは、耐高温割れ性に極めて効果的である。
P: 0.015% or less, S: 0.010% or less P and S are components contained as inevitable impurities from the flux raw material and the steel outer shell, but P is selected depending on the selection of the steel outer shell and the flux raw material. Limiting to 0.015% or less and S to 0.010% or less is extremely effective for hot crack resistance.

B:0.0005%以下、Bi:0.0005%以下
BおよびBiは、不純物として含有され狭開先片面継手溶接の初層パスの高温割れを生じる。これを防止するために、BおよびBiは少ない方が好ましく、フラックスおよび鋼製外皮成分の合計でそれぞれ0.0005%以下に制限する。
B: 0.0005% or less, Bi: 0.0005% or less B and Bi are contained as impurities and cause high-temperature cracking in the first layer pass of narrow groove single-sided joint welding. In order to prevent this, it is preferable that B and Bi are small, and the total of the flux and the steel outer skin component is limited to 0.0005% or less.

鉄酸化物のFeO換算値:0.09%以下
ミルスケール、赤鉄鉱およびTiO原料に不可避的に含有されるFe、FeOなどの鉄酸化物は、水平すみ肉溶接におけるビード形状を良好にするが、狭開先片面継手溶接の初層パスの耐高温割れ性および上向や立向姿勢溶接の耐メタル垂れ性を劣化する。また、溶接金属の衝撃靱性を低下する。したがって、鉄酸化物のFeO換算値は0.09%以下に制限する。
FeO equivalent value of iron oxide: 0.09% or less Iron oxides such as Fe 2 O 3 and FeO inevitably contained in mill scale, hematite and TiO 2 raw materials have a bead shape in horizontal fillet welding. Although good, the hot crack resistance of the first layer pass of narrow groove single-sided joint welding and the metal dripping resistance of upward and vertical position welding are deteriorated. In addition, the impact toughness of the weld metal is reduced. Therefore, the FeO equivalent value of iron oxide is limited to 0.09% or less.

ワイヤ表面のCuめっき:0.10〜0.60μm
ワイヤ表面のCuめっきは、ワイヤ送給性およびチップ部での通電性を良好にしてアークを安定させ、特に狭開先片面継手溶接の初層パスにおいて良好なビード形状を形成する。ワイヤ表面のCuめっき厚さが0.10μm未満の場合、長時間溶接するとチップの磨耗に起因する通電性が悪くなってアークが安定せずに、狭開先片面継手溶接の初層パスで裏ビードに凹凸が生じて凹部に高温割れが発生しやすくなる。一方、0.60μmを超えると最終凝固点への析出が多くなるので高温割れが発生しやすくなる。
Cu plating on wire surface: 0.10 to 0.60 μm
Cu plating on the surface of the wire stabilizes the arc by improving the wire feedability and the electrical conductivity at the tip portion, and forms a good bead shape, particularly in the first layer pass of the narrow groove single face joint welding. If the Cu plating thickness on the wire surface is less than 0.10 μm, the long-time welding will deteriorate the electrical conductivity due to wear of the tip and the arc will not stabilize, and the back will be the first layer pass of narrow groove single-sided joint welding. Unevenness is generated in the bead, and hot cracking is likely to occur in the recess. On the other hand, if it exceeds 0.60 μm, precipitation at the final freezing point increases, so that hot cracking is likely to occur.

本発明のフラックス入りワイヤはフラックス充填後の伸線加工性が良好な軟鋼または合金鋼の外皮内にフラックスを充填後、ダイス伸線やローラ圧延加工により所定のワイヤ径(1.0〜1.6mm)に縮径して製造され、または、所定のワイヤ径になる前にワイヤ表面にCuめっきを施して製造されるものである。ワイヤの断面構造は特に限定するものではない。   The flux-cored wire of the present invention is filled with a flux in a soft steel or alloy steel outer shell having good wire drawing workability after filling the flux, and then a predetermined wire diameter (1.0-1. 6 mm) or manufactured by subjecting the wire surface to Cu plating before reaching a predetermined wire diameter. The cross-sectional structure of the wire is not particularly limited.

溶接用シールドガスはCOガスが一般的であるが、Ar−COなどの混合ガスも使用できる。 The welding shield gas is generally CO 2 gas, but a mixed gas such as Ar—CO 2 can also be used.

以下、実施例により本発明の効果をさらに詳細に説明する。   Hereinafter, the effect of the present invention will be described in more detail with reference to examples.

表1に示す成分の軟鋼パイプにフラックスを充填後、縮径してフラックス充填率13〜17%で表2に示すワイヤ径1.2mmのシームレスタイプのフラックス入りワイヤを各種試作した。なお、一部の試作ワイヤは、所定の線径になる前にワイヤ表面にCuめっきを施した。   After filling a mild steel pipe having the components shown in Table 1 with flux, the diameter was reduced and various types of seamless-type flux-cored wires having a wire filling rate of 13 to 17% and a wire diameter of 1.2 mm shown in Table 2 were produced. Some of the prototype wires were subjected to Cu plating on the wire surface before reaching a predetermined wire diameter.

Figure 0005518773
Figure 0005518773

Figure 0005518773
Figure 0005518773

Figure 0005518773
Figure 0005518773

これら試作ワイヤを使用して、図1に示す形状の片面継手溶接試験体(鋼種:KD36鋼、板厚t:20mm、幅400mm、長さ500mm、開先角度θ:30°、ルート間隔G:5mm、裏面の拘束:3箇所)に、裏当材(Al−SiO−MgO系)を当てて、表3に示す溶接条件で、半自動下向姿勢で、初層パスの耐高温割れ性試験を行った。初層パスの高温割れの発生状況はX線透過試験により判定した。 Using these prototype wires, a single-sided joint weld specimen having the shape shown in FIG. 1 (steel type: KD36 steel, plate thickness t: 20 mm, width 400 mm, length 500 mm, groove angle θ: 30 °, route interval G: Applying the backing material (Al 2 O 3 —SiO 2 —MgO system) to 5 mm, restraint on the back surface (3 locations), under the welding conditions shown in Table 3, semi-automatic downward posture, high temperature resistance of the first layer pass A cracking test was conducted. The occurrence of hot cracks in the first layer pass was determined by an X-ray transmission test.

次いで、表3に示す溶接条件により半自動下向溶接で順次積層して溶接作業性の観察とともに、X線透過試験で割れがない部分より、溶接後JIS Z3111に準じて板厚中央部から引張試験片(A1号)と衝撃試験片(4号)を採取し、溶接金属の引張試験と、衝撃試験実施した。なお、引張試験は引張強さ520〜620N/mmを良好とした。また、衝撃試験は0℃におけるシャルピー吸収エネルギーが47J以上を良好とした。 Next, it is sequentially laminated by semi-automatic downward welding according to the welding conditions shown in Table 3, and the welding workability is observed, and from the portion where there is no crack in the X-ray transmission test, a tensile test is performed from the center of the plate thickness according to JIS Z3111 after welding A piece (A1) and an impact test piece (No. 4) were collected, and a weld metal tensile test and an impact test were performed. In addition, the tensile test made the tensile strength 520-620 N / mm < 2 > favorable. In the impact test, Charpy absorbed energy at 0 ° C. was 47 J or more.

Figure 0005518773
Figure 0005518773

さらに、板厚12mm、幅150mm、長さ450mmのSM490B鋼をT字型に仮組みし、上向および立向(上進、下進)姿勢溶接で、特に問題となる耐メタル垂れ性とスラグ剥離性を評価した。これらの結果を表4にまとめて示す。   In addition, SM490B steel with a plate thickness of 12 mm, width of 150 mm, and length of 450 mm is temporarily assembled into a T-shape, and metal sag resistance and slag that are particularly problematic in upward and vertical (upward and downward) posture welding The peelability was evaluated. These results are summarized in Table 4.

Figure 0005518773
Figure 0005518773

Figure 0005518773
Figure 0005518773

表2および表4中のワイヤ記号W1〜W8が本発明例、ワイヤ記号W9〜W29は比較例である。本発明例であるワイヤ記号W1〜W8は、フラックス入りワイヤの成分がいずれも適正であるので、片面継手溶接での初層パスで問題となる高温割れの発生はなく、また、スラグ剥離性および溶接金属の引張強さおよび吸収エネルギーも良好な結果であった。また、上向や立向姿勢溶接で問題となる耐メタル垂れ性およびスラグ剥離性などの溶接作業性についても良好で、極めて満足な結果であった。なお、ワイヤ表面にCuめっきを施こしてあるワイヤ記号W1、W2、W4、W6およびW7は、アークが極めて安定していた。   The wire symbols W1 to W8 in Tables 2 and 4 are examples of the present invention, and the wire symbols W9 to W29 are comparative examples. In the wire symbols W1 to W8 according to the present invention, since the components of the flux-cored wire are all appropriate, there is no occurrence of hot cracking that becomes a problem in the first layer pass in single-sided joint welding, and the slag peelability and The tensile strength and absorbed energy of the weld metal were also good results. In addition, the welding workability such as metal sag resistance and slag peelability, which are problems in upward and vertical position welding, was also satisfactory, and the results were extremely satisfactory. The wire symbols W1, W2, W4, W6, and W7 in which Cu plating was applied to the wire surface had an extremely stable arc.

比較例中、ワイヤ記号W9は、Cが少ないので溶接金属の引張強さが低かった。また、Mgが多いので上向および立向姿勢溶接でメタル垂れが発生した。さらに、片面継手溶接の初層パスでは溶融スラグの追従性が不安定で、裏ビード形状が不均一となり高温割れが発生した。   In the comparative example, the wire symbol W9 had a low C, so the tensile strength of the weld metal was low. Moreover, since there was much Mg, metal dripping generate | occur | produced by the upward and vertical posture welding. Furthermore, in the first layer pass of single-sided joint welding, the followability of the molten slag was unstable, the back bead shape was uneven, and high temperature cracking occurred.

ワイヤ記号W10は、Cが多いので溶接金属の引張強さが高くなり吸収エネルギーが低かった。また、Pが多いので片面継手溶接の初層パスで高温割れが発生した。   Since the wire symbol W10 has a large amount of C, the tensile strength of the weld metal was high and the absorbed energy was low. Moreover, since there is much P, the high temperature crack generate | occur | produced in the first layer pass of single-sided joint welding.

ワイヤ記号W11は、Siが少ないので溶接金属の引張強さおよび吸収エネルギーが低かった。また、Sが多いので片面継手溶接の初層パスで高温割れが発生した。   Since the wire symbol W11 has a small amount of Si, the tensile strength and absorbed energy of the weld metal were low. Moreover, since there was much S, the hot crack generate | occur | produced in the first layer pass of the single-sided joint welding.

ワイヤ記号W12は、Siが多いので溶接金属の吸収エネルギーが低かった。また、Bが多いので片面継手溶接の初層パスで高温割れが発生した。   Since the wire symbol W12 has a large amount of Si, the absorbed energy of the weld metal was low. Moreover, since there is much B, the high temperature crack generate | occur | produced in the first layer pass of single-sided joint welding.

ワイヤ記号W13は、Mnが少ないので片面継手溶接の初層パスで高温割れが発生した。また、溶接金属の吸収エネルギーが低かった。   Since the wire symbol W13 has a small amount of Mn, hot cracking occurred in the first layer pass of single-sided joint welding. Moreover, the absorbed energy of the weld metal was low.

ワイヤ記号W14は、Mnが多いので溶接金属の引張強さが高かった。また、鉄粉が多いのでアークの吹き付けが弱くなりすぎて良好な裏ビード形成ができなくなり高温割れが発生した。   Since the wire symbol W14 has a large amount of Mn, the tensile strength of the weld metal was high. Moreover, since there was much iron powder, the spraying of the arc became too weak to form a good back bead and hot cracking occurred.

ワイヤ記号W15は、Mn/Siが小さいので溶接金属の吸収エネルギーが低下かった。   Since the wire symbol W15 has a small Mn / Si, the absorbed energy of the weld metal was low.

ワイヤ記号W16は、Alが少ないので溶接金属の吸収エネルギーが低かった。また、NaOとKOの合計が少ないのでアーク状態が不安定で、片面継手溶接で高温割れが発生し、さらに、上向および立向姿勢溶接でメタル垂れが発生した。 Since the wire symbol W16 has a small amount of Al, the absorbed energy of the weld metal was low. Further, since the total amount of Na 2 O and K 2 O was small, the arc state was unstable, hot cracking occurred in single-sided joint welding, and metal sagging occurred in upward and vertical position welding.

ワイヤ記号W17は、Alが多いので片面継手溶接の初層パスで溶融スラグの追従性が不安定で、裏ビード形状が不均一で高温割れが発生し、溶接金属の引張強さが高かった。また、ZrOが多いので、各姿勢溶接でスラグ剥離性が不良であった。 Since the wire symbol W17 has a large amount of Al, the followability of the molten slag is unstable in the first layer pass of single-sided joint welding, the back bead shape is uneven, hot cracking occurs, and the tensile strength of the weld metal is high. Further, since ZrO 2 is large, the slag removability was poor in each position welding.

ワイヤ記号W18は、Mgが少ないので溶接金属の吸収エネルギーが低かった。また、NaOとKOの合計が多いので上向および立向姿勢溶接でメタル垂れが発生し、スラグ剥離性も不良であった。また、片面継手溶接の初層パスでは溶融スラグの追従性が不安定で、裏ビード形状が不均一で高温割れが発生し、スラグ剥離性も不良であった。 Since the wire symbol W18 has a small amount of Mg, the absorbed energy of the weld metal was low. Further, the metal sag occurs in an upward and vertical position welding because Na 2 O and K 2 O Total many of the slag peeling properties were poor. Further, in the first layer pass of single-sided joint welding, the followability of the molten slag was unstable, the back bead shape was uneven, hot cracking occurred, and the slag peelability was poor.

ワイヤ記号W19は、Biが多いので片面継手溶接の初層パスで高温割れが発生した。また、Alが少ないので立向上進溶接の作業性が低下した。 Since the wire symbol W19 has a large amount of Bi, hot cracking occurred in the first layer pass of single-sided joint welding. Further, workability vertical upward advance welding is decreased because Al 2 O 3 is less.

ワイヤ記号W20は、KO/NaOが小さいので片面継手溶接の初層パスで溶融スラグの追従性が不安定で、裏ビード形状が不均一で高温割れが発生した。 In the wire symbol W20, since K 2 O / Na 2 O was small, the followability of the molten slag was unstable in the first layer pass of single-sided joint welding, the back bead shape was uneven, and hot cracking occurred.

ワイヤ記号W21は、弗素化合物のF換算値が少ないので立向下進溶接でメタル垂れが発生した。また、片面継手溶接の初層パスでは溶融スラグの追従性が不安定で、裏ビード形状が不均一で高温割れが発生した。   With the wire symbol W21, metal dripping occurred in vertical downward welding because the F-converted value of the fluorine compound was small. Also, in the first layer pass of single-sided joint welding, the followability of the molten slag was unstable, the back bead shape was uneven and hot cracking occurred.

ワイヤ記号W22は、弗素化合物のF換算値が多いのでアークの吹きつけが強すぎ、片面継手溶接の初層パスでは溶融スラグの追従性が不安定で、裏ビード形状が不均一で高温割れが発生した。   The wire symbol W22 has a large F-converted value of the fluorine compound, so the arc blowing is too strong. In the first pass of single-sided joint welding, the followability of the molten slag is unstable, the back bead shape is uneven, and hot cracking occurs. Occurred.

ワイヤ記号W23は、鉄粉が少ないので、アークが不安定で上向や立向姿勢溶接での溶接作業性が不良で、狭開先片面継手溶接内のビードや裏ビードが凹凸となって高温割れが発生した。   Since the wire symbol W23 has less iron powder, the arc is unstable, welding workability in upward and vertical position welding is poor, and the bead and back bead in the narrow groove single-sided joint weld are uneven and high temperature Cracking occurred.

ワイヤ記号W24は、鉄酸化物のFeO換算値が多いので上向および立向姿勢溶接でメタル垂れが発生した。また、狭開先片面継手溶接で高温割れが発生し、溶接金属の吸収エネルギーも低かった。   Since the wire symbol W24 has many FeO equivalent values of iron oxide, metal dripping occurred in upward and vertical posture welding. In addition, hot cracking occurred in narrow groove single-sided joint welding, and the absorbed energy of the weld metal was also low.

ワイヤ記号W25は、TiOが少ないので上向および立向姿勢溶接でメタル垂れが発生してビード形状が不良で、立向下進溶接ではスラグ剥離性も不良であった。また、ワイヤ表面のCuめっきが厚いので狭開先片面継手溶接で高温割れが発生した。 Since the wire symbol W25 has a small amount of TiO 2 , metal sag is generated in upward and vertical position welding, and the bead shape is poor. In vertical downward welding, the slag peelability is also poor. Moreover, since Cu plating on the wire surface was thick, high temperature cracking occurred in narrow groove single-sided joint welding.

ワイヤ記号W26は、TiOが多いのでスラグ生成量が多すぎて、狭開先片面継手溶接の初層パスでスラグ剥離性が不良でスラグ追従性が不安定になり、裏ビードが凹凸となり高温割れが発生した。また、SiOが少ないので上向および立向姿勢溶接でメタル垂れが発生してビード形状およびスラグ剥離性が不良であった。 The wire symbol W26 has a large amount of TiO 2 , so the amount of slag generated is too much, the slag peelability is poor and the slag followability becomes unstable in the first layer pass of narrow groove single-sided joint welding, and the back bead becomes uneven and the temperature is high. Cracking occurred. Further, the bead shape and the slag removability since SiO 2 is small metal sag in an upward and vertical position welding occurred was poor.

ワイヤ記号W27は、SiOが多いので上向および立向姿勢溶接でメタル垂れが発生してビード形状が不良で、また、片面継手溶接の初層パスでは溶融スラグの追従性が不安定で、裏ビード形状が不均一で高温割れが発生した。 The wire symbol W27 has a large amount of SiO 2 , so metal dripping occurs in upward and vertical position welding and the bead shape is poor, and in the first layer pass of single-sided joint welding, the followability of the molten slag is unstable, The back bead shape was uneven and hot cracking occurred.

ワイヤ記号W28は、ZrOが少ないので上向および立向姿勢溶接でメタル垂れが発生してビード形状が不良となった。また、片面継手溶接の初層パスでは溶融スラグの追従性が不安定で、裏ビード形状が不均一で高温割れが発生した。 Since the wire symbol W28 has a small amount of ZrO 2 , metal dripping occurred during upward and vertical posture welding, resulting in a poor bead shape. Also, in the first layer pass of single-sided joint welding, the followability of the molten slag was unstable, the back bead shape was uneven and hot cracking occurred.

ワイヤ記号W29は、Alが多いので狭開先片面継手溶接の初層パスのスラグ剥離性が悪く、高温割れも発生した。 Since the wire symbol W29 has a large amount of Al 2 O 3 , the slag peelability of the first layer pass of the narrow groove single-sided joint welding was poor, and hot cracking also occurred.

1 鋼板
2 裏当材
3 裏ビード
4 溶接金属
1 Steel plate 2 Backing material 3 Back bead 4 Weld metal

Claims (2)

鋼製外皮内にフラックスを充填してなるガスシ−ルドア−ク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、
C:0.04〜0.09%、
Si:0.3〜0.6%、
Mn:2.5〜3.1%、
但し、Mn/Si:4.5以上、
Al:0.1〜0.4%、
Mg:0.3〜0.6%、
TiO:5.1〜6.5%、
SiO:0.3〜0.7%、
ZrO:0.1〜0.5%、
Al:0.2〜0.5%、
NaOおよびKOの合計:0.10〜0.25%、
但し、KO/NaO:2.0以上
弗素化合物のF換算値:0.03〜0.08%、
鉄粉:2.0〜5.0%を含有し、かつ、
P:0.015%以下、
S:0.010%以下、
B:0.0005%以下、
Bi:0.0005%以下、
鉄酸化物のFeO換算値:0.09以下で、
残部は鋼製外皮のFe分、合金鉄のFe分および不可避的不純物からなることを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。
In the flux-cored wire for gas shield arc welding formed by filling the steel outer shell with flux,
C: 0.04 to 0.09%,
Si: 0.3-0.6%
Mn: 2.5 to 3.1%
However, Mn / Si: 4.5 or more,
Al: 0.1 to 0.4%,
Mg: 0.3-0.6%
TiO 2: 5.1~6.5%,
SiO 2: 0.3~0.7%,
ZrO 2 : 0.1 to 0.5%,
Al 2 O 3 : 0.2 to 0.5%,
Total of Na 2 O and K 2 O: 0.10 to 0.25%,
However, K 2 O / Na 2 O : 2.0 or more F converted value of the fluorine compounds: from 0.03 to 0.08%,
Containing iron powder: 2.0-5.0%, and
P: 0.015% or less,
S: 0.010% or less,
B: 0.0005% or less,
Bi: 0.0005% or less,
FeO equivalent value of iron oxide: 0.09 or less,
The balance consists of the Fe content of the steel sheath, the Fe content of the alloy iron, and inevitable impurities, and a flux-cored wire for gas shielded arc welding.
ワイヤ表面に0.10〜0.60μmのCuめっきを有することを特徴とする請求項1記載のガスシールドアーク溶接用フラックス入りワイヤ。   The flux-cored wire for gas shielded arc welding according to claim 1, wherein the wire surface has Cu plating of 0.10 to 0.60 μm.
JP2011056703A 2011-03-15 2011-03-15 Flux-cored wire for gas shielded arc welding Active JP5518773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011056703A JP5518773B2 (en) 2011-03-15 2011-03-15 Flux-cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056703A JP5518773B2 (en) 2011-03-15 2011-03-15 Flux-cored wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2012192422A JP2012192422A (en) 2012-10-11
JP5518773B2 true JP5518773B2 (en) 2014-06-11

Family

ID=47084846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056703A Active JP5518773B2 (en) 2011-03-15 2011-03-15 Flux-cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP5518773B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322096B2 (en) * 2014-09-09 2018-05-09 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
CN104439754B (en) * 2014-11-05 2016-05-18 安徽华众焊业有限公司 Environment friendly and pollution-free aluminium soldering silk and preparation technology thereof
CN109702371A (en) * 2019-01-11 2019-05-03 西安理工大学 TA1-Q235 middle layer welding wire and preparation and welding method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915756B2 (en) * 1979-09-04 1984-04-11 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding
JP4531617B2 (en) * 2005-04-07 2010-08-25 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
JP4986562B2 (en) * 2006-10-02 2012-07-25 株式会社神戸製鋼所 Flux-cored wire for titania-based gas shielded arc welding
JP2009148774A (en) * 2007-12-19 2009-07-09 Nippon Steel & Sumikin Welding Co Ltd Rutile type flux cored wire for gas shielded arc welding
JP5236566B2 (en) * 2009-04-24 2013-07-17 日鐵住金溶接工業株式会社 Circumferential welding method for fixed steel pipes
JP5356142B2 (en) * 2009-07-28 2013-12-04 日鐵住金溶接工業株式会社 Gas shield arc welding method

Also Published As

Publication number Publication date
JP2012192422A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP4531617B2 (en) Flux-cored wire for gas shielded arc welding
JP5207994B2 (en) Metal flux cored wire for Ar-CO2 mixed gas shielded arc welding
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP5356142B2 (en) Gas shield arc welding method
JP6382117B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP6786427B2 (en) Flux-filled wire for gas shielded arc welding
JP6033755B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP5557790B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP4300153B2 (en) Flux-cored wire for gas shielded arc welding
JP5014189B2 (en) Two-electrode fillet gas shielded arc welding method
JP5726708B2 (en) Submerged arc welding method for low temperature steel
JP2017094360A (en) Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture
JP5518773B2 (en) Flux-cored wire for gas shielded arc welding
JP6322096B2 (en) Flux-cored wire for gas shielded arc welding
JP6385879B2 (en) Flux-cored wire for gas shielded arc welding
JP2014188540A (en) Low hydrogen type covered electrode
JP5938375B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP2009148774A (en) Rutile type flux cored wire for gas shielded arc welding
JP5448497B2 (en) Flux-cored wire for 2-electrode horizontal fillet gas shielded arc welding
JP3793429B2 (en) Flux-cored wire for gas shielded arc welding
JP2014065066A (en) Flux cored wire for horizontal gas shielded arc welding
JP2003094196A (en) Flux cored wire for gas shielded arc welding
JP3718464B2 (en) Flux-cored wire for gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5518773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250