JP5518586B2 - Fatigue damage evaluation method of connector lead wire in connector of train line - Google Patents

Fatigue damage evaluation method of connector lead wire in connector of train line Download PDF

Info

Publication number
JP5518586B2
JP5518586B2 JP2010137982A JP2010137982A JP5518586B2 JP 5518586 B2 JP5518586 B2 JP 5518586B2 JP 2010137982 A JP2010137982 A JP 2010137982A JP 2010137982 A JP2010137982 A JP 2010137982A JP 5518586 B2 JP5518586 B2 JP 5518586B2
Authority
JP
Japan
Prior art keywords
connector
lead wire
fatigue damage
train
transfer function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010137982A
Other languages
Japanese (ja)
Other versions
JP2012001100A (en
Inventor
主税 山下
光雄 網干
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2010137982A priority Critical patent/JP5518586B2/en
Publication of JP2012001100A publication Critical patent/JP2012001100A/en
Application granted granted Critical
Publication of JP5518586B2 publication Critical patent/JP5518586B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、電車線のコネクタにおけるコネクタリード線の疲労損傷度評価方法に係り、特にコネクタのコネクタリード線の疲労寿命評価方法に関するものである。 The present invention relates to a method for evaluating the fatigue damage degree of a connector lead wire in a connector of a train line , and more particularly to a method for evaluating the fatigue life of a connector lead wire of a connector.

従来の電車線のコネクタにおけるコネクタリード線の寿命評価では、旧JRS(国鉄備品雑品類規格)やJISに基づいて、一定の加振振幅(〜20mm)と加振周波数(〜5Hz)で振動耐久試験を行っているのみで、疲労に着目した評価方法は提案されていなかった。 In the life evaluation of connector lead wires in conventional train line connectors , vibration durability with a constant excitation amplitude (~ 20mm) and excitation frequency (~ 5Hz) based on the old JRS (JNR standard) and JIS An evaluation method focusing on fatigue has not been proposed only by conducting tests.

遠藤達雄,井上肇,「レインフロウ法の考え方とその応用:疲労の累積被害評価法」,日本造船学会誌,No.706,pp.204−213,1988Endo Tatsuo and Inoue Satoshi, “The Concept of Rainflow Method and Its Application: Cumulative Damage Evaluation Method”, Journal of the Japan Institute of Shipbuilding, No. 706, pp. 204-213, 1988

しかしながら、電車線のコネクタの損傷は、コネクタリード線の金属疲労による素線切れが多い。上記した振動耐久試験は、コネクタの振動特性を無視しているため、加振試験で発生するひずみと現場で発生するひずみが一致しておらず、現場におけるコネクタリード線の疲労特性を的確に評価できなかった。 However, damage to the connector on the train line, there are many wire breakage caused by metal fatigue of the connector lead. Vibration endurance test described above, since ignoring the vibration characteristics of the connector, no strain occurs in the strain and the field generated by the vibration test matches, accurately fatigue properties of the connector leads in the field Could not be evaluated.

本発明は、上記状況に鑑みて、電車線のコネクタにおけるコネクタリード線の疲労耐久性の定量的な評価を行うため、ランダム波加振試験により得られる伝達関数に基づいて疲労特性評価を行う、電車線のコネクタにおけるコネクタリード線の疲労損傷度評価方法を提供することを目的とする。 In view of the above situation, the present invention performs a fatigue characteristic evaluation based on a transfer function obtained by a random wave excitation test in order to quantitatively evaluate the fatigue durability of a connector lead wire in a connector of a train line. An object of the present invention is to provide a method for evaluating the fatigue damage degree of a connector lead wire in a connector of a train line.

つまり、疑似ランダム波加振による伝達関数測定、インパルス応答関数の作成を行い、現場において測定したトロリ線加振変位(実振動波形)により、コネクタリード線に発生するひずみを推定し、レインフロー法を用いることにより疲労損傷度という定量的な評価を行うことができる電車線のコネクタにおけるコネクタリード線の疲労損傷度評価方法を提供することを目的とする。 In other words, transfer function measurement and impulse response function are created by pseudo-random wave excitation, and the strain generated in the connector lead wire is estimated from the trolley wire excitation displacement (actual vibration waveform) measured in the field. It is an object of the present invention to provide a method for evaluating the degree of fatigue damage of a connector lead wire in a connector of a train line , which can be quantitatively evaluated as the degree of fatigue damage by using a cable .

本発明は、上記目的を達成するために、
〔1〕電車線のコネクタにおけるコネクタリード線の疲労損傷度評価方法において、電車線コネクタに疑似ランダム波を加振し、前記コネクタの振動特性である伝達関数を算出し、この算出された伝達関数によりインパルス応答関数を作成し、このインパルス応答関数を現場で観測した電車線の加振変位に畳込み積分することにより、前記コネクタのコネクタリード線に発生するひずみを推定し、レインフロー法により波形計数処理を行い、前記コネクタリード線の疲労損傷度を定量的に評価することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a method for evaluating fatigue damage of a connector lead wire in a connector of a train line , a pseudo random wave is vibrated to the connector of the train line, a transfer function which is a vibration characteristic of the connector is calculated, and the calculated transmission An impulse response function is created by a function, and the impulse response function is convolved with the vibration displacement of the train line observed on site to estimate the strain generated in the connector lead wire of the connector. Waveform counting processing is performed, and the fatigue damage degree of the connector lead wire is quantitatively evaluated.

〔2〕電車線のコネクタにおけるコネクタリード線の疲労損傷度評価方法において、電車線コネクタに疑似ランダム波を加振する疑似ランダム波加振試験を行い、この疑似ランダム波加振試験により前記コネクタの伝達関数を求め、この伝達関数からインパルス応答関数を求め、このインパルス応答関数を電車線の加振変位に畳込み積分することにより、前記コネクタのコネクタリード線に発生するひずみ波形を推定し、レインフロー法により波形計数処理を行い、各ひずみ振幅の発生数を計数し、あらかじめ求めた前記コネクタリード線の疲労特性曲線と、修正マイナー則とにより、列車の1編成通過時の前記コネクタリード線の疲労損傷度を求め、前記コネクタの想定使用年数より通過列車の総本数を概算し、総疲労損傷度が1を超えるかどうかを判定することを特徴とする。 [2] The fatigue damage evaluation method of the connector leads in the connector of the catenary, performs pseudo-random wave excitation test to vibrate the pseudorandom waves to the connector contact line, said by the pseudo-random wave vibration test connector The transfer function of the connector is obtained, an impulse response function is obtained from this transfer function, and the impulse response function is convolved with the excitation displacement of the train line to estimate the distortion waveform generated in the connector lead wire of the connector. Then, the waveform count processing is performed by the rainflow method, the number of occurrences of each strain amplitude is counted, and the connector lead when passing through one train of the train based on the fatigue characteristic curve of the connector lead wire obtained in advance and the modified minor rule Obtain the degree of fatigue damage of the wire, estimate the total number of passing trains based on the estimated years of use of the connector, and the total fatigue damage degree exceeds 1. And judging whether or not the.

〔3〕上記〔1〕記載の電車線のコネクタにおけるコネクタリード線の疲労損傷度評価方法において、前記コネクタの伝達関数がゲインと位相であることを特徴とする。 [3] In [1] above fatigue damage evaluation method of the connector leads in the connector of the catenary according, wherein the transfer function of the connector is a gain and phase.

本発明によれば、振動耐久試験を長時間かけて行わなくても、電車線のコネクタのコネクタリード線の疲労特性を容易に把握することができる。また、現場における電車線のコネクタにおけるコネクタリード線の疲労寿命を予測することができる。 ADVANTAGE OF THE INVENTION According to this invention, even if it does not perform a vibration durability test over a long time, the fatigue characteristic of the connector lead wire of the connector of a train line can be grasped | ascertained easily. Further, it is possible to predict the fatigue life of the connector lead wire in the connector of the train line in the field.

本発明の実施例を示す電車線コネクタの加振試験状況を示す模式図である。It is a schematic diagram which shows the vibration test condition of the connector of a train line which shows the Example of this invention. コネクタの加振試験における疑似ランダム波加振波形の例を示す図である。It is a figure which shows the example of the pseudo-random wave excitation waveform in the excitation test of a connector. 加振試験により得られた伝達関数(ゲイン)を示す図である。It is a figure which shows the transfer function (gain) obtained by the vibration test. 加振試験により得られた伝達関数(位相)を示す図である。It is a figure which shows the transfer function (phase) obtained by the vibration test. 伝達関数に基づいたインパルス応答関数を示す図である。It is a figure which shows the impulse response function based on a transfer function. トロリ線の加振変位(振動波形)と推定ひずみ波形の例を示す図である。It is a figure which shows the example of the excitation displacement (vibration waveform) of a trolley line, and an estimated distortion waveform. レインフロー法を示す図である。It is a figure which shows the rainflow method. レインフロー法を用いたコネクタの疲労損傷度評価フローチャートである。A fatigue damage evaluation flowchart of connectors with rain flow method.

本発明の電車線のコネクタにおけるコネクタリード線の疲労損傷度評価方法は、電車線コネクタに疑似ランダム波を加振し、前記コネクタの振動特性である伝達関数を算出し、この算出された伝達関数によりインパルス応答関数を作成し、このインパルス応答関数を現場で観測した電車線の加振変位に畳込み積分することにより、前記コネクタのコネクタリード線に発生するひずみを推定し、レインフロー法により波形計数処理を行い、前記コネクタリード線の疲労損傷度を定量的に評価する。 According to the method for evaluating fatigue damage of a connector lead wire in a connector of a train line according to the present invention, a pseudo random wave is vibrated to the connector of the train line, a transfer function which is a vibration characteristic of the connector is calculated, and the calculated transmission An impulse response function is created by a function, and the impulse response function is convolved with the vibration displacement of the train line observed on site to estimate the strain generated in the connector lead wire of the connector. A waveform counting process is performed to quantitatively evaluate the degree of fatigue damage of the connector lead wire.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の実施例を示す電車線コネクタの加振試験状況を示す模式図、図2はコネクタの加振試験における疑似ランダム波加振波形の例を示す図、図3は加振試験により得られた伝達関数(ゲイン)を示す図、図4は加振試験により得られた伝達関数(位相)を示す図、図5は伝達関数に基づいたインパルス応答関数を示す図、図6はトロリ線の加振変位(振動波形)と推定ひずみ波形の例を示す図、図7はレインフロー法を示す図、図8はレインフロー法を用いたコネクタの疲労損傷度評価フローチャートである。 Figure 1 is a schematic view showing a vibration test conditions of the connector contact line showing an embodiment of the present invention, FIG 2 is a diagram showing an example of the pseudo-random wave vibration waveform at excitation test connector, FIG. 3 is vibrated FIG. 4 is a diagram showing a transfer function (phase) obtained by an excitation test, FIG. 5 is a diagram showing an impulse response function based on the transfer function, and FIG. is fatigue damage evaluation flowchart of connectors using is a diagram showing an example of a vibration displacement (vibration waveform) and the estimated waveform distortion of the trolley wire, Figure 7 shows a rain flow method, FIG. 8 is a rain flow method .

まず、電車線のコネクタにおけるコネクタリード線のひずみ推定方法について説明する。 First, a method for estimating a distortion of a connector lead wire in a connector for a train line will be described.

コネクタリード線の振動特性を考慮するためには、多様な振動周波数に対する応答特性(伝達関数)を求める必要がある。コネクタリード線の伝達関数は、コネクタのランダム波の加振試験により容易に算出できる。図1のように、加振台1上のイヤー2を有する線条・金具振動試験機にコネクタ3を取り付け、加振波形として図2に示すような疑似ランダム波を入力する。疑似ランダム波の周波数範囲はコネクタ3の固有振動数とS/N比を考慮して決定する。なお、はコネクタリード線、5はちょう架線、6はコネクタリード線4のクランプ、7はコネクタ3に貼り付けられるひずみゲージ、8はクランプに貼り付けられるひずみゲージである。なお、ちょう架線5はトロリ線(図示なし)を吊して水平に保つためにトロリ線の上方に設けられる架線であるので、ちょう架線5にはトロリ線の振動と均等の振動が印加される。 In order to consider the vibration characteristics of the connector lead wire, it is necessary to obtain response characteristics (transfer functions) for various vibration frequencies. The transfer function of the connector lead wire can be easily calculated by a random wave excitation test of the connector. As shown in FIG. 1, a connector 3 is attached to a wire / metal fitting vibration tester having an ear 2 on a vibration table 1 , and a pseudo random wave as shown in FIG. 2 is input as a vibration waveform. The frequency range of the pseudo random wave is determined in consideration of the natural frequency of the connector 3 and the S / N ratio. In addition, 4 is a connector lead wire, 5 is an overhead wire, 6 is a clamp of the connector lead wire 4, 7 is a strain gauge attached to the connector 3 , and 8 is a strain gauge attached to the clamp 6 . Note that the overhead line 5 is an overhead line provided above the trolley line in order to suspend the trolley line (not shown) and keep it horizontal, so that the vibration equivalent to the vibration of the trolley line is applied to the overhead line 5. .

測定項目はトロリ線の加振変位と、イヤー2付け根におけるコネクタリード線4のひずみである。コネクタ3を図のように加振して、得られた加振変位とひずみのデータをFFT(高速フーリエ変換)にかけることにより、図3,図4に示されるようなひずみの加振変位に対する伝達関数が得られる。 The measurement items are the oscillating displacement of the trolley wire and the distortion of the connector lead wire 4 at the base of the ear 2. The connector 3 is vibrated as shown in FIG. 2 , and the obtained vibration displacement and strain data are subjected to FFT (Fast Fourier Transform) to obtain the strain displacement as shown in FIGS. The transfer function for is obtained.

上記図3で得られた伝達関数のゲインを|H(ω)|、図4で得られた伝達関数の位相を∠H(ω)とすれば、インパルス応答関数を下記式(1)で求めることができる。   If the gain of the transfer function obtained in FIG. 3 is | H (ω) | and the phase of the transfer function obtained in FIG. 4 is ∠H (ω), the impulse response function is obtained by the following equation (1). be able to.

Figure 0005518586
Figure 0005518586

ここで、fmax :最大適用周波数、fmin :最小適用周波数、Δt:サンプリング周期、Δf:周波数きざみ、m:次数である。 Here, f max is the maximum application frequency, f min is the minimum application frequency, Δt is the sampling period, Δf is the frequency increment, and m is the order.

図3,図4の伝達関数から、図5に示すようなインパルス応答関数が得られる。これを下記式(2)のようにトロリ線の加振変位x(t)に畳込み積分することで、出力であるコネクタリード線のひずみy(t)を推定できる。ただし、インパルス応答関数が適用できるのは、入力と出力の関数が線形である場合に限られる。   An impulse response function as shown in FIG. 5 is obtained from the transfer functions of FIGS. By convolving and integrating this with the trolley wire excitation displacement x (t) as shown in the following equation (2), the distortion y (t) of the connector lead wire as the output can be estimated. However, the impulse response function can be applied only when the input and output functions are linear.

Figure 0005518586
Figure 0005518586

電車線のコネクタの定量的な疲労特性評価について説明する。 The quantitative fatigue characteristic evaluation of the connector of the train line will be described.

図6に営業線において観測したトロリ線の加振変位(振動波形)〔図6(a)〕と、上記の方法で推定したコネクタリード線の推定ひずみ波形〔図6(b)〕の例を示す。ここで、ひずみ波形はピーク波形ではなく、同等のひずみ振幅が複数回発生していることがわかる。 FIG. 6 shows an example of an oscillating displacement (vibration waveform) of the trolley wire observed on the business line (FIG. 6A) and an estimated strain waveform of the connector lead wire estimated by the above method [FIG. 6B]. Indicates. Here, it can be seen that the distortion waveform is not a peak waveform, and equivalent distortion amplitudes are generated a plurality of times.

このことから、ひずみの最大・最小値を以て疲労損傷を評価することは適切ではなく、図7に示すようなレインフロー法(上記非特許文献1参照)などの手法を用いて波形計数処理を行うことが必要となる。   For this reason, it is not appropriate to evaluate fatigue damage using the maximum and minimum values of strain, and waveform counting processing is performed using a technique such as the rainflow method (see Non-Patent Document 1 above) as shown in FIG. It will be necessary.

レインフロー法を用いたコネクタの疲労損傷度評価フローチャートを図8に示す。 The fatigue damage evaluation flowchart of connectors with rain flow method shown in FIG.

(1)疑似ランダム波加振試験によりコネクタの伝達関数(ゲイン・位相)を求める(ステップS1)。 (1) obtaining a pseudo-random wave excitation test by connector transfer function (gain and phase) (step S1).

(2)伝達関数からインパルス応答関数を求める(ステップS2)。   (2) An impulse response function is obtained from the transfer function (step S2).

(3)インパルス応答関数をトロリ線の加振変位に畳込み積分することで、コネクタリード線に発生するひずみ波形を推定する(ステップS3)。   (3) The distortion waveform generated in the connector lead wire is estimated by convolving and integrating the impulse response function with the excitation displacement of the trolley wire (step S3).

(4)レインフロー法により波形計数処理を行い、各ひずみ振幅の発生数を計数する(ステップS4)。   (4) Waveform counting processing is performed by the rainflow method to count the number of occurrences of each distortion amplitude (step S4).

(5)あらかじめ求めておいたコネクタリード線の疲労特性曲線と、修正マイナー則により列車の1編成通過時のコネクタの疲労損傷度を求める(ステップS5)。 (5) and the fatigue characteristic curve of a connector lead wire which has been previously determined by modified Miner's rule, determine the fatigue damage of the connector during 1 knitting passage of the train (Step S5).

(6)前記コネクタの想定使用年数より通過列車の総本数を概算し、総疲労損傷度が1を超えるかどうかを判定する(ステップS6)。   (6) Approximate the total number of passing trains from the estimated age of the connector, and determine whether the total fatigue damage degree exceeds 1 (step S6).

上記(5)により、1列車通過時の疲労損傷度が予測できる。疲労損傷度の逆数はコネクタが損傷するまでに通過できる列車総数であり、この列車総数が事業者の想定したコネクタ使用年数以内に実際に通過する列車の総本数を上回る場合は、通過列車数管理をする必要がある。一方、実際に通過する列車の総本数を超えないのであれば経年管理でよいことになる。 By the above (5), the degree of fatigue damage when one train passes can be predicted. The reciprocal of the fatigue damage degree is a train the total number that can pass through until the connector is damaged, if you exceed the total number of train this train the total number actually passing within an assumed connector used number of years of business, the number of passing train It is necessary to manage. On the other hand, if it does not exceed the total number of trains that actually pass, aging management is sufficient.

本発明の利点は、振動耐久試験を行わなくても、コネクタの伝達関数を求めることで、疲労損傷度という定量的評価を容易に行うことができることである。 An advantage of the present invention, even without vibration endurance test, by obtaining the transfer function of the connector is that it is possible to perform a quantitative evaluation of the fatigue damage rate easily.

本発明によれば、電車線のコネクタの加振試験において、疑似ランダム波を加振し、トロリ線の加振変位とひずみを測定する。この加振変位とひずみのデータをFFTにかけることで伝達関数を得て、この伝達関数を用いてインパルス応答関数を求める。現場で測定したトロリ線加振変位に図5に示したインパルス応答関数を畳込み積分することで、現場で発生するコネクタリード線のひずみを予測できる。 According to the present invention, in the vibration test of the catenary connectors, a pseudo-random wave vibrated, measuring the displacement Tohi Zumi excitation of the trolley line. A transfer function is obtained by applying FFT to the vibration displacement and strain data, and an impulse response function is obtained using this transfer function. By convolving and integrating the impulse response function shown in FIG. 5 with the trolley wire excitation displacement measured at the site, the distortion of the connector lead wire generated at the site can be predicted.

そして、このコネクタリード線の推定ひずみ波形をレインフロー法で係数処理し、あらかじめ測定したリード線疲労特性曲線と修正マイナー法を用いることで、1列車通過時の疲労損傷度が予測できる。 Then, the estimated waveform distortion of the connector leads and coefficients treated with Rain flow method, by using a correction minor method leads fatigue characteristic curve measured in advance, fatigue damage degree during a single train pass can be predicted.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の電車線のコネクタにおけるコネクタリード線の疲労損傷度評価方法は、電車線のコネクタにおけるコネクタリード線の疲労損傷度の計測を容易に行うことができる。 The method for evaluating the degree of fatigue damage of a connector lead wire in a connector of a train line according to the present invention can easily measure the degree of fatigue damage of a connector lead wire in a connector of a train line.

加振台
2 イヤー
3 コネクタ
4 コネクタリード線
5 ちょう架線
6 コネクタリード線のクランプ
ネクタに貼り付けられるひずみゲージ
8 クランプに貼り付けられるひずみゲージ
1 shaker table 2 Year 3 connector 4 connector leads 5 messenger wire 6 connector lead pasted strain gauge strain gauge 8 clamp to be pasted to the clamp 7 connector of

Claims (3)

電車線コネクタに疑似ランダム波を加振し、前記コネクタの振動特性である伝達関数を算出し、該算出された伝達関数によりインパルス応答関数を作成し、該インパルス応答関数を現場で観測した電車線の加振変位に畳込み積分することにより、前記コネクタのコネクタリード線に発生するひずみを推定し、レインフロー法により波形計数処理を行い、前記コネクタリード線の疲労損傷度を定量的に評価することを特徴とする電車線のコネクタにおけるコネクタリード線の疲労損傷度評価方法。 Vibrated pseudorandom waves to the connector contact line, and calculates a transfer function, which is a vibration characteristic of the connector, to create an impulse response function by a transfer function issued the calculated and observed the impulse response function in situ train By convolution and integration with the excitation displacement of the wire, the strain generated in the connector lead wire of the connector is estimated, the waveform counting process is performed by the rain flow method, and the fatigue damage degree of the connector lead wire is quantitatively evaluated. A method for evaluating the fatigue damage degree of a connector lead wire in a connector of a train line. (a)電車線コネクタに疑似ランダム波を加振する疑似ランダム波加振試験を行い、
(b)該疑似ランダム波加振試験により前記コネクタの伝達関数を求め、
(c)該伝達関数からインパルス応答関数を求め、
(d)該インパルス応答関数を電車線の加振変位に畳込み積分することにより、前記コネクタのコネクタリード線に発生するひずみ波形を推定し、
(e)レインフロー法により波形計数処理を行い、各ひずみ振幅の発生数を計数し、
(f)あらかじめ求めた前記コネクタリード線の疲労特性曲線と、修正マイナー則とにより、列車の1編成通過時の前記コネクタリード線の疲労損傷度を求め、
(g)前記コネクタの想定使用年数より通過列車の総本数を概算し、総疲労損傷度が1を超えるかどうかを判定することを特徴とする電車線のコネクタにおけるコネクタリード線の疲労損傷度評価方法。
(A) Conduct a pseudo-random wave excitation test in which a pseudo-random wave is applied to the connector of the train line.
(B)該疑similar by random wave excitation test determined the transfer function of the connector,
(C) obtaining an impulse response function from the transfer function;
(D) by convolving and integrating the impulse response function with the vibration displacement of the train line, estimating a distortion waveform generated in the connector lead wire of the connector;
(E) Waveform counting processing by the rainflow method, counting the number of occurrences of each strain amplitude,
(F) Using the fatigue characteristic curve of the connector lead wire obtained in advance and the modified minor rule, the fatigue damage degree of the connector lead wire when passing through one train of the train is obtained,
(G) Estimate the total number of passing trains than expected use life of the connector, fatigue damage evaluation of the total fatigue damage of the connector leads in the connector of the contact line, characterized in that determining whether more than 1 Method.
請求項1記載の電車線のコネクタにおけるコネクタリード線の疲労損傷度評価方法において、前記コネクタの伝達関数がゲインと位相であることを特徴とする電車線のコネクタにおけるコネクタリード線の疲労損傷度評価方法。 In fatigue damage evaluation method of the connector leads in claim 1 of the catenary according connectors, the connector of the transfer function gain and fatigue damage of the connector leads in the connector of the contact line, which is a phase Evaluation method.
JP2010137982A 2010-06-17 2010-06-17 Fatigue damage evaluation method of connector lead wire in connector of train line Expired - Fee Related JP5518586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010137982A JP5518586B2 (en) 2010-06-17 2010-06-17 Fatigue damage evaluation method of connector lead wire in connector of train line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010137982A JP5518586B2 (en) 2010-06-17 2010-06-17 Fatigue damage evaluation method of connector lead wire in connector of train line

Publications (2)

Publication Number Publication Date
JP2012001100A JP2012001100A (en) 2012-01-05
JP5518586B2 true JP5518586B2 (en) 2014-06-11

Family

ID=45533581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010137982A Expired - Fee Related JP5518586B2 (en) 2010-06-17 2010-06-17 Fatigue damage evaluation method of connector lead wire in connector of train line

Country Status (1)

Country Link
JP (1) JP5518586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105279580A (en) * 2015-11-13 2016-01-27 广州供电局有限公司 Method for predicting number of times of cable external force damage failure and system thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607975B (en) * 2012-02-22 2014-08-13 南京航空航天大学 Miniature fatigue tester for metallic wires
CN102636399A (en) * 2012-03-26 2012-08-15 南京航空航天大学 Testing device for testing swing fatigue performance of connecting leads
JP2015027835A (en) * 2013-07-30 2015-02-12 公益財団法人鉄道総合技術研究所 Distortion estimation method, fatigue life evaluation method, production method for train line bracket, calculation method for vibration displacement, characteristic estimation method, distortion estimation device, and program
CN115795982B (en) * 2023-02-07 2023-05-05 中汽研汽车检验中心(天津)有限公司 Fatigue endurance life prediction method, equipment and storage medium for automobile

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488957B2 (en) * 2005-05-26 2010-06-23 財団法人鉄道総合技術研究所 Fatigue state analysis apparatus and fatigue state analysis program
JP5289012B2 (en) * 2008-11-27 2013-09-11 東日本旅客鉄道株式会社 Connector for railroad tracks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105279580A (en) * 2015-11-13 2016-01-27 广州供电局有限公司 Method for predicting number of times of cable external force damage failure and system thereof
CN105279580B (en) * 2015-11-13 2018-12-25 广州供电局有限公司 Predict that the method and system of the number of external force destructive malfunction occurs for cable

Also Published As

Publication number Publication date
JP2012001100A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5518586B2 (en) Fatigue damage evaluation method of connector lead wire in connector of train line
Hong et al. Locating fatigue damage using temporal signal features of nonlinear Lamb waves
JP2010048680A5 (en)
CN106949861B (en) A kind of method of non-linear ultrasonic on-line monitoring metal material strain variation
JP5251911B2 (en) Residual stress calculation device, residual stress measurement device, residual stress calculation method, residual stress measurement method, and program
JP2013538353A5 (en)
Ogrinec et al. Vibration fatigue at half-sine impulse excitation in the time and frequency domains
JPWO2015145914A1 (en) Anchor bolt diagnosis system, method and program thereof
Ainsa et al. Experimental evaluation of uncertainty in hand–arm vibration measurements
US20130167615A1 (en) Apparatus and method of vibration testing for manufacturing defect detection in composite insulators
KR101656377B1 (en) Apparatus for assessment of degradation and strength test by using ultrasound, and method for the same
JP2004028907A (en) Device for evaluating soundness of structure and method for evaluating soundness of structure using the device
CN103926324A (en) Method for detecting creep damage of main steam pipeline through ultrasonic surface waves
KR100707389B1 (en) Apparatus and method for evaluating integrity of concrete structure using sound wave analysis
WO2017145850A1 (en) Inspection device, inspection method, and recording medium on which inspection program has been recorded
KR101814462B1 (en) Device and method for measuring yield strength using ultrasonic
Ogrinec et al. Harmonic equivalence of the impulse loads in vibration fatigue
JPWO2019093294A1 (en) Estimator, estimation method and computer program
Pourheidar et al. Comparison of SIF solutions for cracks under rotating bending and their impact upon propagation lifetime of railway axles
KR101566009B1 (en) Apparatus for assessment of degradation by using cumulative ultrasonic nonlinear parameter method for assessment of degradation of the same
KR101415359B1 (en) System and method for estimating circumferential thickness of pipe
Su et al. Quantitative assessment of damage in a structural beam based on wave propagation by impact excitation
CN101526417B (en) Method for diagnosing structural damage by musical tone rule
Iyer et al. Evaluation of dynamic characteristics of an automotive exhaust system using operational modal analysis (OMA) and experimental modal analysis (EMA)
JP2015021749A (en) Inspection device and inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5518586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees