JP5515637B2 - Method for treating sulfur-containing slag - Google Patents
Method for treating sulfur-containing slag Download PDFInfo
- Publication number
- JP5515637B2 JP5515637B2 JP2009251133A JP2009251133A JP5515637B2 JP 5515637 B2 JP5515637 B2 JP 5515637B2 JP 2009251133 A JP2009251133 A JP 2009251133A JP 2009251133 A JP2009251133 A JP 2009251133A JP 5515637 B2 JP5515637 B2 JP 5515637B2
- Authority
- JP
- Japan
- Prior art keywords
- aqueous solution
- slag
- sulfur
- desulfurization
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002893 slag Substances 0.000 title claims description 87
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims description 64
- 239000011593 sulfur Substances 0.000 title claims description 64
- 229910052717 sulfur Inorganic materials 0.000 title claims description 64
- 238000000034 method Methods 0.000 title claims description 26
- 239000007864 aqueous solution Substances 0.000 claims description 81
- 238000006477 desulfuration reaction Methods 0.000 claims description 14
- 230000023556 desulfurization Effects 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 13
- 238000003672 processing method Methods 0.000 claims description 6
- 239000011575 calcium Substances 0.000 description 22
- 238000000605 extraction Methods 0.000 description 22
- 238000011084 recovery Methods 0.000 description 20
- 239000002253 acid Substances 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 5
- 238000007664 blowing Methods 0.000 description 5
- 239000013049 sediment Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 229910052602 gypsum Inorganic materials 0.000 description 3
- 239000010440 gypsum Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000006174 pH buffer Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B5/00—Treatment of metallurgical slag ; Artificial stone from molten metallurgical slag
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Furnace Details (AREA)
Description
本発明は、硫黄含有スラグである脱硫スラグの硫黄含有量を低減するための処理方法に関する。 The present invention relates to a treatment method for reducing the sulfur content of desulfurized slag , which is a sulfur-containing slag .
従来、鉄鋼スラグ(鉄鋼製造プロセスで発生するスラグ)は、コンクリート骨材や路盤材料、港湾土木材料などの土木材料として広く利用されている。この鉄鋼スラグのなかで、脱硫スラグなどの硫黄含有スラグを路盤材料として利用する場合、特に水の存在する環境下で使用すると、硫黄(黄水)が流出して環境に悪影響を与えるおそれがある。従来、このような問題の対策として、(a)強制エージング(例えば、水蒸気エージング)を施して硫黄成分の酸化を促進させ、硫黄成分が溶出しにくいスラグとする方法、(b)スラグを水に浸漬し若しくはスラグに散水することにより硫黄成分を抽出し、スラグ中の硫黄含有量を低減する方法(例えば、特許文献1)、などが行われている。 Conventionally, steel slag (slag generated in a steel manufacturing process) has been widely used as a civil engineering material such as a concrete aggregate, a roadbed material, and a harbor civil engineering material. Among these steel slags, when sulfur-containing slag such as desulfurized slag is used as roadbed material, especially when used in an environment where water exists, sulfur (yellow water) may flow out and adversely affect the environment. . Conventionally, as a countermeasure against such a problem, (a) a method of applying forced aging (for example, steam aging) to promote oxidation of sulfur components to make slag in which sulfur components hardly dissolve, (b) slag into water The method (for example, patent document 1) etc. which extract a sulfur component by immersing or sprinkling to slag and reducing the sulfur content in slag are performed.
しかし、(a)の方法では、エージングの際に生じる排水中に硫黄成分が溶出する問題があり、排水処理に手間とコストがかかる。また、(b)の方法では、硫黄成分を効率的に抽出することができず、大部分の硫黄成分がスラグに残存してしまうので、硫黄成分を除去したスラグの利用も含めた有効な対策にはなり得ない。
したがって本発明の目的は、脱硫スラグの硫黄含有量を効果的に低減することができるスラグ処理方法を提供することにある。
また、本発明の他の目的は、硫黄含有量が効果的に低減された脱硫黄処理スラグ等の製造方法を提供することにある。
However, in the method (a), there is a problem that the sulfur component is eluted in the wastewater generated during aging, and the wastewater treatment takes time and cost. In addition, in the method (b), sulfur components cannot be extracted efficiently, and most of the sulfur components remain in the slag, so effective measures including the use of slag from which sulfur components have been removed are included. It cannot be.
Accordingly, an object of the present invention is to provide a slag treatment method capable of effectively reducing the sulfur content of desulfurized slag .
Another object of the present invention is to provide a method for producing desulfurized slag and the like in which the sulfur content is effectively reduced.
本発明者らは、脱硫スラグを水溶液中に浸漬し、この水溶液を特定のpHに調整することにより、スラグに含まれる硫黄成分を水溶液中に効率的に抽出することができ、脱硫スラグの硫黄含有量を効果的に低減できることを見出した。
本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]脱硫スラグを水溶液に浸漬し、この水溶液をpH4〜10に調整することで、脱硫スラグに含まれる硫黄成分を水溶液中に抽出する工程(A)を有することを特徴とする硫黄含有スラグの処理方法。
[2]上記[1]の処理方法において、さらに、水溶液に抽出された硫黄成分を回収する工程(B)を有することを特徴とする硫黄含有スラグの処理方法。
The present inventors, the desulfurization slag was immersed in an aqueous solution, by adjusting the aqueous solution to a particular pH, it is possible to efficiently extracted into the aqueous solution of sulfur components contained in the slag, the sulfur of the desulfurization slag It has been found that the content can be effectively reduced.
The present invention has been made on the basis of such findings and has the following gist.
[1] The desulfurization slag was immersed in an aqueous solution, by adjusting the aqueous solution to pH 4-10, the sulfur-containing slag and a step of extracting the sulfur components contained in desulfurization slag in an aqueous solution (A) Processing method.
[2] The processing method of [1], further comprising a step (B) of recovering the sulfur component extracted into the aqueous solution.
[3]上記[1]または[2]の処理方法において、さらに、水溶液に抽出されたCa成分を回収する工程(C)を有することを特徴とする硫黄含有スラグの処理方法。
[4]上記[2]または[3]の処理方法において、工程(B)および/または工程(C)を経た水溶液を工程(A)に循環させることを特徴とする硫黄含有スラグの処理方法。
[5]脱硫スラグを水溶液に浸漬し、この水溶液をpH4〜10に調整することで、脱硫スラグに含まれる硫黄成分を水溶液中に抽出する工程(A)を有し、該工程で脱硫黄処理スラグを得ることを特徴とする脱硫黄処理スラグ等の製造方法。
[3] The processing method of [1] or [2], further comprising a step (C) of recovering the Ca component extracted into the aqueous solution.
[4] A method for treating a sulfur-containing slag, characterized in that, in the treatment method of [2] or [3], the aqueous solution that has undergone step (B) and / or step (C) is circulated to step (A).
[5] A step (A) of extracting the sulfur component contained in the desulfurized slag into the aqueous solution by immersing the desulfurized slag in the aqueous solution and adjusting the aqueous solution to pH 4 to 10, and desulfurizing treatment in the step A method for producing desulfurized slag, etc., characterized by obtaining slag.
[6]上記[5]の製造方法において、さらに、水溶液に抽出された硫黄成分を回収する工程(B)を有し、該工程の回収物として硫黄含有原料を得ることを特徴とする脱硫黄処理スラグ等の製造方法。
[7]上記[5]または[6]の製造方法において、さらに、水溶液に抽出されたCa成分を回収する工程(C)を有し、該工程の回収物としてCa含有原料を得ることを特徴とする脱硫黄処理スラグ等の製造方法。
[8]上記[6]または[7]の製造方法において、工程(B)および/または工程(C)を経た水溶液を工程(A)に循環させることを特徴とする脱硫黄処理スラグ等の製造方法。
[6] The desulfurization method according to [5], further comprising a step (B) of recovering a sulfur component extracted into an aqueous solution, and obtaining a sulfur-containing raw material as a recovered product of the step Manufacturing methods for processing slag, etc.
[7] The method according to [5] or [6] above, further comprising a step (C) of recovering the Ca component extracted into the aqueous solution, and obtaining a Ca-containing raw material as a recovered product of the step A method for producing desulfurized slag and the like.
[8] Production of desulfurized slag and the like characterized in that in the production method of [6] or [7], the aqueous solution that has undergone step (B) and / or step (C) is circulated to step (A). Method.
本発明の処理方法によれば、脱硫スラグに含まれる硫黄成分を水溶液中に効率的に抽出し、硫黄含有量を効果的に低減させることができる。また、本発明の製造方法によれば、硫黄成分が効果的に低減された脱硫黄処理スラグを製造することができ、さらに、脱硫スラグから抽出された硫黄成分等による有用原料を製造することもできる。 According to the treatment method of the present invention, the sulfur component contained in the desulfurized slag can be efficiently extracted into the aqueous solution, and the sulfur content can be effectively reduced. Further, according to the production method of the present invention, it is possible to produce a desulfurized slag in which the sulfur component is effectively reduced, and also to produce a useful raw material using a sulfur component extracted from the desulfurized slag. it can.
本発明が処理対象とするのは脱硫スラグ(溶銑予備処理スラグ)である。脱硫スラグは硫黄含有量が0.5mass%以上であり、硫黄含有量が0.5mass%以上の硫黄含有スラグが特に上述したような問題を生じやすい。脱硫スラグは硫黄含有量が多く、利材化しにくい面があるので、本発明は有用性が高い。 The subject of the present invention is desulfurization slag (hot metal pretreatment slag). Desulfurized slag has a sulfur content of 0.5 mass% or more, and sulfur-containing slag having a sulfur content of 0.5 mass% or more is particularly likely to cause the above-described problems . Since the desulfurization slag has many sulfur content, it is difficult to interest material of the surface, the present invention has high usefulness.
本発明法は、脱硫スラグ(以下、単に「スラグ」という場合がある)を水溶液に浸漬し、この水溶液をpH4〜10に調整することで、スラグに含まれる硫黄成分を水溶液中に抽出する工程Aを有する。また、この工程Aに加えて、水溶液に抽出された硫黄成分を回収する工程Bを有すること、さらに、水溶液に抽出されたCa成分を回収する工程Cを有することが好ましく、これらの場合、工程Bおよび/または工程Cを経た水溶液を工程Aに循環させることが好ましい。
本発明では、必要に応じて破砕処理、磁選処理を施したスラグを処理対象とするが、硫黄成分の抽出を効率的に行うため、スラグ粒度は粒径0.5mm以下の割合が15質量%以上、より好ましくは30質量%以上であることが望ましい。
また、工程Aでの液/固比(水溶液/スラグの質量比)は、3以上、100以下が好ましい。液/固比が3未満では、溶媒が不足することから硫黄抽出効率が低下する。一方、液/固比が100を超えると抽出設備などが大きくなり、コスト面で不利となる。
In the method of the present invention, a sulfur component contained in slag is extracted into an aqueous solution by immersing desulfurized slag (hereinafter sometimes referred to simply as “slag”) in an aqueous solution and adjusting the aqueous solution to pH 4-10. A. In addition to this step A, it is preferable to have a step B for recovering the sulfur component extracted into the aqueous solution, and further to have a step C for recovering the Ca component extracted into the aqueous solution. It is preferable to circulate the aqueous solution that has undergone B and / or Step C to Step A.
In the present invention, slag that has been subjected to crushing treatment and magnetic separation treatment as required is treated, but in order to efficiently extract sulfur components, the slag particle size is 15% by mass with a particle size of 0.5 mm or less. As described above, it is desirable that the content is 30% by mass or more.
Moreover, the liquid / solid ratio (mass ratio of aqueous solution / slag) in step A is preferably 3 or more and 100 or less. If the liquid / solid ratio is less than 3, the solvent is insufficient and the sulfur extraction efficiency decreases. On the other hand, if the liquid / solid ratio exceeds 100, the extraction equipment becomes large, which is disadvantageous in terms of cost.
図1は、本発明の一実施形態を示すものである。この実施形態は、スラグに含まれる硫黄成分を水溶液(溶媒)中に抽出する工程Aと、水溶液に抽出された硫黄成分を回収する工程Bと、水溶液に抽出されたCa成分を回収する工程Cを有する。図において、1は工程Aを行う抽出処理槽、2は工程Bを行う回収処理槽、3は工程Cを行う回収処理槽である。抽出処理槽1内の水溶液は、流路4a,4b,4cを通じて、回収処理槽2および回収処理槽3を経て抽出処理槽1へと循環(返送)され、この系内で循環使用される。
FIG. 1 shows an embodiment of the present invention. In this embodiment, the step A for extracting the sulfur component contained in the slag into the aqueous solution (solvent), the step B for recovering the sulfur component extracted into the aqueous solution, and the step C for recovering the Ca component extracted into the aqueous solution Have In the figure, 1 is an extraction processing tank for performing step A, 2 is a recovery processing tank for performing step B, and 3 is a recovery processing tank for performing step C. The aqueous solution in the extraction processing tank 1 is circulated (returned) to the extraction processing tank 1 through the recovery processing tank 2 and the recovery processing tank 3 through the
前記工程Aでは、抽出処理槽1内に入れられた水溶液に脱硫スラグを投入・浸漬し、この水溶液がpH4〜10、好ましくはpH5〜9になるように調整する。脱硫スラグを浸漬した水溶液のpHが10を超えると硫黄成分の抽出率が低下し、一方、pH4未満では、硫黄成分やCa成分以外の成分も溶解するので好ましくない。特に、上述したように水溶液を系内で循環使用する場合は、なるべく硫黄成分、Ca成分以外の成分の溶解を抑える必要があることから、pH5以上が好ましい。以上の観点から、より好ましい水溶液のpHは5〜9である。脱硫スラグは所定の時間水溶液中に浸漬されるが、その間、水溶液は上記pHに維持されることが好ましい。 In the step A, desulfurized slag is poured and immersed in the aqueous solution placed in the extraction treatment tank 1, and the aqueous solution is adjusted to have a pH of 4 to 10, preferably 5 to 9. When the pH of the aqueous solution in which the desulfurized slag is immersed exceeds 10, the extraction rate of the sulfur component is lowered. On the other hand, when the pH is less than 4, components other than the sulfur component and the Ca component are dissolved, which is not preferable. In particular, when the aqueous solution is circulated and used in the system as described above, it is necessary to suppress dissolution of components other than the sulfur component and the Ca component as much as possible, and thus a pH of 5 or more is preferable. From the above viewpoint, the pH of the more preferable aqueous solution is 5-9. While the desulfurized slag is immersed in the aqueous solution for a predetermined time, the aqueous solution is preferably maintained at the above pH during that time.
脱硫スラグを水溶液中に浸漬し、この水溶液のpHを上記の範囲に調整・維持することにより、スラグに含まれる硫黄成分が水溶液中に効率的に抽出される。また、一般に脱硫スラグはCa成分も含有しているので、このCa成分も水溶液中に抽出される。
脱硫スラグが浸漬された水溶液を上記pHに調整する方法に特別な制限はなく、例えば、強酸+弱塩基、弱酸(補助的に強酸)、pH緩衝液などでpHを調整することができる。したがって、水溶液としては、例えば、(a)強酸+弱塩基の水溶液、(b)弱酸水溶液、(c)pH緩衝剤水溶液、などを用いることができる。
By immersing desulfurized slag in an aqueous solution and adjusting and maintaining the pH of the aqueous solution in the above range, sulfur components contained in the slag are efficiently extracted into the aqueous solution. Further, since desulfurized slag generally contains a Ca component, this Ca component is also extracted into the aqueous solution.
There is no particular limitation on the method of adjusting the pH of the aqueous solution in which the desulfurized slag is immersed. For example, the pH can be adjusted with a strong acid + a weak base, a weak acid (auxiliarily a strong acid), a pH buffer solution, or the like. Therefore, as the aqueous solution, for example, (a) a strong acid + weak base aqueous solution, (b) a weak acid aqueous solution, (c) a pH buffer aqueous solution, and the like can be used.
上記(a)の水溶液では、強酸として塩酸、硝酸などの1種以上を、弱塩基としてアンモニア、アミン類(例えば、ジエタノールアミンなど)などの1種以上を、それぞれ用いることができる。また、上記(b)の弱酸水溶液では、弱酸として、酢酸、クエン酸、リン酸などの1種以上を用いることができるが、クエン酸やリン酸はスラグから溶出するカルシウムと難溶性化合物を形成することで消費されるので、弱酸としてはカルシウムと難溶性化合物を形成しない酸(例えば、酢酸)を用いることがより好ましい。また、上記(c)のpH緩衝剤水溶液は、目的とするpHを安定化させるために有効であり、酢酸系、リン酸系などのpH緩衝剤が利用できる。但し、単独でpHを下げる効果は比較的小さいため、上述した他の酸などとの併用が望ましい。
さらに、上記(a)〜(c)以外に、水にCO2またはCO2含有ガスを吹き込むことでpHを調整してもよく、この場合にはCO2吸収水溶液を用いることになる。
In the aqueous solution (a), one or more kinds such as hydrochloric acid and nitric acid can be used as the strong acid, and one or more kinds such as ammonia and amines (for example, diethanolamine) can be used as the weak base. In the weak acid aqueous solution (b), one or more of acetic acid, citric acid, phosphoric acid and the like can be used as the weak acid, but citric acid and phosphoric acid form a hardly soluble compound with calcium eluted from the slag. Therefore, it is more preferable to use an acid (for example, acetic acid) that does not form a poorly soluble compound with calcium as the weak acid. The aqueous pH buffer solution (c) is effective for stabilizing the target pH, and acetic acid and phosphoric acid pH buffers can be used. However, since the effect of lowering the pH by itself is relatively small, the combined use with the above-mentioned other acids is desirable.
Furthermore, in addition to the above (a) to (c), the pH may be adjusted by blowing CO 2 or a CO 2 -containing gas into water. In this case, a CO 2 absorbing aqueous solution is used.
抽出処理槽1内の水溶液は、脱硫スラグが浸漬された状態で撹拌手段5で撹拌してもよい。硫黄成分の抽出処理が完了したスラグは槽外に排出され、脱硫黄処理済みのスラグとして回収される。このスラグは、例えば、土木材料や骨材などに利材化される。
抽出処理槽1内の水溶液は、流路4aを通じて回収処理槽2に適宜移送され、ここで硫黄成分の回収が行われる。この回収処理槽2において水溶液中の硫黄成分を回収するために、例えば石灰が投入され、硫黄成分と反応させて石膏などとして沈降させ、この沈降物を回収する。回収処理槽2内の水溶液は、石灰が投入された状態で撹拌手段6で撹拌してもよい。ここで回収された沈降物は、硫黄含有原料(例えば石膏原料)として利材化することができる。なお、抽出処理槽1から回収処理槽2への水溶液の移送や、回収処理槽2での水溶液の処理および沈降物の回収は、バッチ式、連続式のいずれでもよい。
The aqueous solution in the extraction treatment tank 1 may be stirred by the stirring means 5 in a state where the desulfurized slag is immersed. The slag for which the sulfur component extraction process has been completed is discharged out of the tank and recovered as a desulfurized slag. For example, this slag is used as a civil engineering material or an aggregate.
The aqueous solution in the extraction processing tank 1 is appropriately transferred to the recovery processing tank 2 through the flow path 4a, where the sulfur component is recovered. In order to recover the sulfur component in the aqueous solution in the recovery treatment tank 2, for example, lime is introduced and reacted with the sulfur component to settle as gypsum and the like, and the sediment is recovered. The aqueous solution in the recovery treatment tank 2 may be stirred by the stirring means 6 in a state where lime is charged. The sediment collected here can be used as a sulfur-containing raw material (for example, a gypsum raw material). The transfer of the aqueous solution from the extraction treatment tank 1 to the recovery treatment tank 2, the treatment of the aqueous solution in the recovery treatment tank 2, and the recovery of the sediment may be either a batch type or a continuous type.
回収処理槽2内の水溶液は、流路4bを通じて回収処理槽3に適宜移送され、ここでCa成分の回収が行われる。水溶液中のCa成分を回収するために、例えば、ガス吹込手段7からCO2(またはCO2含有ガス)が吹き込まれ、Ca成分と反応させて炭酸カルシウムとして沈降させ、この沈降物を回収する。回収処理槽2内の水溶液は、CO2が吹き込まれた状態で撹拌手段8で撹拌してもよい。ここで回収された沈降物は、Ca含有原料(例えば焼成用原料)として利材化することができる。なお、回収処理槽2から回収処理槽3への水溶液の移送や、回収処理槽3での水溶液の処理および沈降物の回収は、バッチ式、連続式のいずれでもよい。
The aqueous solution in the recovery processing tank 2 is appropriately transferred to the recovery processing tank 3 through the
回収処理槽3内の水溶液は、流路4cを通じて抽出処理槽1に適宜返送され、循環使用される。なお、この抽出処理槽1への水溶液の返送は、バッチ式、連続式のいずれでもよい。
また、本発明の製造方法では、上述した工程Aにおいて、脱硫黄処理されたスラグが製造され、このスラグはそのまま或いは適当な処理を加えて土木材料、その他の材料に利用される。また、工程Bにおいては、回収物として硫黄含有原料(例えば石膏原料)が製造され、工程Cにおいては、回収物としてCa含有原料(例えば焼成用原料)が製造される。
The aqueous solution in the recovery processing tank 3 is appropriately returned to the extraction processing tank 1 through the
Moreover, in the manufacturing method of this invention, the desulfurized slag is manufactured in the process A mentioned above, and this slag is utilized for civil engineering materials and other materials as it is or after appropriate treatment. In Step B, a sulfur-containing raw material (for example, gypsum raw material) is manufactured as a recovered product, and in Step C, a Ca-containing raw material (for example, a raw material for firing) is manufactured as a recovered product.
[実施例1]
表1に示す成分を添加した水溶液(DEA,アンモニア:0.3mol/L)を入れた容器内に0.5mm篩下の脱硫スラグを投入・浸漬し、30分間撹拌した。液/固比:60とし、処理中水溶液が表1に示すpHに維持されるよう、塩酸を適宜添加してpHを調整した。
処理完了後、容器の内容物をろ過し、液相(水溶液)と固相(処理済みスラグ)を分離回収し、硫黄成分とCa成分の抽出率を測定した。この抽出率とは、スラグ中に含まれていた硫黄とCaに対する水溶液に溶解した硫黄とCaの割合(質量%)である。また、スラグの他成分の溶解の有無を調べた。
処理後のスラグ成分の抽出結果を表1に示す。これによれば、本発明例では、スラグ中の硫黄成分(およびCa成分)が選択的に溶解し、且つ水溶液中への硫黄成分の抽出が効率的になされていることが判る。
[Example 1]
Into a container containing an aqueous solution (DEA, ammonia: 0.3 mol / L) to which the components shown in Table 1 were added, desulfurized slag under a 0.5 mm sieve was placed and immersed, and stirred for 30 minutes. The liquid / solid ratio was 60, and the pH was adjusted by appropriately adding hydrochloric acid so that the aqueous solution during the treatment was maintained at the pH shown in Table 1.
After completion of the treatment, the contents of the container were filtered, the liquid phase (aqueous solution) and the solid phase (treated slag) were separated and recovered, and the extraction rates of the sulfur component and the Ca component were measured. This extraction rate is the ratio (mass%) of sulfur and Ca dissolved in the aqueous solution for sulfur and Ca contained in the slag. In addition, the presence or absence of dissolution of other components of the slag was examined.
Table 1 shows the extraction results of the slag components after the treatment. According to this, in the example of this invention, it turns out that the sulfur component (and Ca component) in slag selectively melt | dissolves, and extraction of the sulfur component in aqueous solution is made | formed efficiently.
[実施例2]
表2に示す成分を添加した水溶液を入れた容器内に0.5mm篩下の脱硫スラグを投入・浸漬し、30分間撹拌した。液/固比:60とし、処理中水溶液が表2に示すpHに維持されるよう、酸を適宜添加してpHを調整した。処理完了後、実施例1と同様に、容器の内容物をろ過し、液相(水溶液)と固相(処理済みスラグ)を分離回収し、硫黄成分とCa成分の抽出率を測定するとともに、スラグの他成分の溶解の有無を調べた。処理後のスラグ成分の抽出結果を表2に示すが、実施例1の本発明例と同様の結果が得られた。
[Example 2]
Table 2 components shown desulfurization slag under 0.5mm sieve was put, immersed in the aqueous solution was placed within the vessel added and stirred for 30 minutes. The liquid / solid ratio was 60, and the pH was adjusted by appropriately adding an acid so that the aqueous solution during the treatment was maintained at the pH shown in Table 2. After completion of the treatment, as in Example 1, the contents of the container are filtered, and the liquid phase (aqueous solution) and the solid phase (treated slag) are separated and recovered, and the extraction rate of the sulfur component and the Ca component is measured. The presence or absence of dissolution of other components of the slag was examined. The extraction result of the slag component after the treatment is shown in Table 2, and the same result as that of the inventive example of Example 1 was obtained.
[実施例3]
水を入れた容器内に0.5mm篩下の脱硫スラグを投入・浸漬し、CO2含有ガス(CO2濃度:20vol%)を吹き込みつつ、30分間撹拌した。液/固比:60とし、処理中水溶液がpH6.4に維持されるよう、CO2含有ガスの吹き込みを適宜中断した。処理完了後、実施例1と同様に、容器の内容物をろ過し、液相(水溶液)と固相(処理済みスラグ)を分離回収し、硫黄成分とCa成分の抽出率を測定するとともに、スラグの他成分の溶解の有無を調べた。処理後のスラグ成分の抽出結果を表3に示すが、実施例1の本発明例と同様の結果が得られた。
[Example 3]
The desulfurized slag of 0.5 mm below the sieve was put in and immersed in a vessel containing water, and stirred for 30 minutes while blowing CO 2 -containing gas (CO 2 concentration: 20 vol%). The liquid / solid ratio was set to 60, and the blowing of the CO 2 -containing gas was appropriately interrupted so that the aqueous solution was maintained at pH 6.4 during the treatment. After completion of the treatment, as in Example 1, the contents of the container are filtered, and the liquid phase (aqueous solution) and the solid phase (treated slag) are separated and recovered, and the extraction rate of the sulfur component and the Ca component is measured. The presence or absence of dissolution of other components of the slag was examined. The extraction result of the slag component after the treatment is shown in Table 3, and the same result as that of the inventive example of Example 1 was obtained.
1 抽出処理槽
2 回収処理槽
3 回収処理槽
4a,4b,4c 流路
5 撹拌手段
6 撹拌手段
7 ガス吹込手段
8 撹拌手段
DESCRIPTION OF SYMBOLS 1 Extraction processing tank 2 Recovery processing tank 3
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009251133A JP5515637B2 (en) | 2009-10-30 | 2009-10-30 | Method for treating sulfur-containing slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009251133A JP5515637B2 (en) | 2009-10-30 | 2009-10-30 | Method for treating sulfur-containing slag |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011093760A JP2011093760A (en) | 2011-05-12 |
JP5515637B2 true JP5515637B2 (en) | 2014-06-11 |
Family
ID=44111124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009251133A Active JP5515637B2 (en) | 2009-10-30 | 2009-10-30 | Method for treating sulfur-containing slag |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5515637B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5983537B2 (en) * | 2012-05-29 | 2016-08-31 | Jfeスチール株式会社 | Method for removing sulfur from slag containing sulfur |
JP6885094B2 (en) * | 2017-02-17 | 2021-06-09 | 日本製鉄株式会社 | Desulfurization method of sulfur-containing slag, manufacturing method of civil engineering construction materials using sulfur-containing slag, and manufacturing method of slag construction body |
WO2019107115A1 (en) * | 2017-11-30 | 2019-06-06 | 日新製鋼株式会社 | Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag |
-
2009
- 2009-10-30 JP JP2009251133A patent/JP5515637B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011093760A (en) | 2011-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5515638B2 (en) | Sulfur / Ca-containing slag treatment method | |
JP6927033B2 (en) | How to recover calcium from steelmaking slag | |
TW201831697A (en) | Method for eluting calcium from steelmaking slag and method for recovering calcium from steelmaking slag | |
JP6263144B2 (en) | Method for recovering solid component containing calcium from steelmaking slag, and recovered solid component | |
AU2014282527B2 (en) | Hematite manufacturing method and hematite manufactured by same | |
MX2007013182A (en) | Method for the recovery of valuable metals and arsenic from a solution. | |
EP1593417A4 (en) | Method and apparatus for removing ion in fluid by crystallization | |
JP5515637B2 (en) | Method for treating sulfur-containing slag | |
JP6703077B2 (en) | Lithium recovery method | |
JP6483406B2 (en) | Treatment method for fluorine-containing wastewater | |
JP5904100B2 (en) | Method for settling and separating neutralized slurry and method for hydrometallizing nickel oxide ore | |
JP2007175673A (en) | Treatment method of ammonia-containing drain | |
JP2017075065A (en) | Method for recovering phosphate from steel slag | |
JP2011058017A (en) | Method for regenerating aqueous rust removing agent | |
JP7401415B2 (en) | Method for suppressing expansion of steelmaking slag, method for utilizing steelmaking slag, and method for producing low f-CaO-containing slag | |
JP6874784B2 (en) | How to treat hot metal desulfurized slag | |
JP5983537B2 (en) | Method for removing sulfur from slag containing sulfur | |
TW201925485A (en) | Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag | |
JP2012219316A (en) | Method for treating manganese ore extraction residue | |
JP2005144336A (en) | Method for removing fluorine in wastewater and precipitate reducing method | |
JP6956971B2 (en) | How to remove manganese from wastewater | |
WO2019107115A1 (en) | Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag | |
JP2014028746A (en) | Sulfur removal processing method of iron and steel slag | |
JP6332164B2 (en) | Chromium separation method | |
JP6328446B2 (en) | Water treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120727 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130821 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140317 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5515637 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |