JP5513803B2 - Phosphorus treatment of material surface using molten salt electrochemical process - Google Patents

Phosphorus treatment of material surface using molten salt electrochemical process Download PDF

Info

Publication number
JP5513803B2
JP5513803B2 JP2009183037A JP2009183037A JP5513803B2 JP 5513803 B2 JP5513803 B2 JP 5513803B2 JP 2009183037 A JP2009183037 A JP 2009183037A JP 2009183037 A JP2009183037 A JP 2009183037A JP 5513803 B2 JP5513803 B2 JP 5513803B2
Authority
JP
Japan
Prior art keywords
phosphating
phosphorus
material surface
phosphide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009183037A
Other languages
Japanese (ja)
Other versions
JP2011032567A (en
Inventor
靖彦 伊藤
優一 平沼
健吾 瓜生
徳二郎 錦織
浩行 辻村
誠司 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha
I'MSEP CO Ltd
Original Assignee
Doshisha
I'MSEP CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha, I'MSEP CO Ltd filed Critical Doshisha
Priority to JP2009183037A priority Critical patent/JP5513803B2/en
Publication of JP2011032567A publication Critical patent/JP2011032567A/en
Application granted granted Critical
Publication of JP5513803B2 publication Critical patent/JP5513803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、溶融塩中での電気化学反応を利用した、材料表面の新規なリン化処理法である。   The present invention is a novel phosphating method for a material surface utilizing an electrochemical reaction in a molten salt.

リンは反応性が高い物質で、多くの金属と反応して種々の金属リン化物を生成する。例えばリン化鉄は強磁性体として、リン化ガリウムやリン化インジウムは半導体材料として用いられている。また、材料表面にリン化物被膜を形成させることで、材料表面の高機能化が可能である。特にニッケルリン化物被膜は、硬度や、耐摩耗性、耐食性、溶接性、はんだ付け性を改善でき、ブレーキ・ピストン・シリンダなどの自動車用部品から、抵抗体・マグネットなどの電子部品にまで幅広く用いられている。さらに、GaAs半導体の性能劣化の原因となる表面酸化を抑制する目的で、GaAs半導体表面へのリン化処理などもなされている。   Phosphorus is a highly reactive substance and reacts with many metals to produce various metal phosphides. For example, iron phosphide is used as a ferromagnetic material, and gallium phosphide or indium phosphide is used as a semiconductor material. Further, by forming a phosphide film on the material surface, it is possible to enhance the function of the material surface. Nickel phosphide coatings in particular can improve hardness, wear resistance, corrosion resistance, weldability, and solderability, and are widely used in automotive parts such as brakes, pistons and cylinders, and electronic parts such as resistors and magnets. It has been. Furthermore, for the purpose of suppressing the surface oxidation that causes the performance deterioration of the GaAs semiconductor, phosphation treatment on the surface of the GaAs semiconductor is also performed.

従来、材料表面にリン化物膜を形成させる方法としては、大きく分けて2つある。1つは被処理基材表面にリン化物層を析出させる無電解めっき法である。もう1つは、被処理基材表面をリン化物へと改質する表面リン化処理であり、主にプラズマCVD法により行われている(特許文献1参照)。   Conventionally, there are roughly two methods for forming a phosphide film on a material surface. One is an electroless plating method in which a phosphide layer is deposited on the surface of a substrate to be treated. The other is a surface phosphating treatment for modifying the surface of the substrate to be treated into a phosphide, which is mainly performed by a plasma CVD method (see Patent Document 1).

無電解めっき法では、形成するリン化物として、現状ではニッケルリン化物に限られている。また、プラズマCVD法では、リン化のために急性毒性物質であるホスフィン(PH)を用いており、同物質は可燃性もあることからハンドリングも難しく、安全面・環境面に問題があるといえる。 In the electroless plating method, the phosphide to be formed is currently limited to nickel phosphide. In addition, the plasma CVD method uses phosphine (PH 3 ), which is an acute toxic substance, for phosphation, and since this substance is flammable, it is difficult to handle and there are problems in terms of safety and environment. I can say that.

また、上述された無電解めっき法やプラズマCVD法とは異なり、比較的単純な装置を用いて比較的単純なプロセスにより化合物被膜を形成させるような材料表面の改質技術として、例えば特許文献2に記載されている、クロムを含有する鋼材(特にステンレス鋼)の表面を溶融塩中での電気化学反応を利用して窒化する方法が挙げられる。しかしながら、この表面窒化処理方法は、材料表面にリン化物膜を形成させる方法を記載ないし示唆するものではなかった。   Further, unlike the electroless plating method and plasma CVD method described above, as a material surface modification technique for forming a compound film by a relatively simple process using a relatively simple apparatus, for example, Patent Document 2 And a method of nitriding the surface of a chromium-containing steel material (particularly stainless steel) by using an electrochemical reaction in a molten salt. However, this surface nitriding method does not describe or suggest a method of forming a phosphide film on the material surface.

特開2000−091346号公報JP 2000-091346 A 特開2009−52104号公報JP 2009-52104 A

そこで、本発明は、溶融塩中でのリンを含むイオンの電気化学反応を利用して、被処理基材の表面にリン化物層を形成する材料表面のリン化処理方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a material surface phosphating method for forming a phosphide layer on the surface of a substrate to be processed using an electrochemical reaction of ions containing phosphorus in a molten salt. And

本発明者らは、溶融塩中でのリンを含むイオンの電気化学反応を利用して、被処理基材の表面を安定的にリン化できることを見出した。   The inventors of the present invention have found that the surface of the substrate to be treated can be stably phosphorylated using an electrochemical reaction of ions containing phosphorus in the molten salt.

例えば、リンを含むイオンとしてピロリン酸イオン(P 4−)を用いた場合、リン化処理を施す基材を陰極として、陰極表面でP 4−を電気化学的に還元させる。その際、P 4−は下の(1) 式に従い原子状のリンにまで還元され、続いて、(2) 式のような反応が進行し、被処理基材(M)とリンとの反応により、被処理基材の表面にリン化物層を形成する。 For example, when pyrophosphate ions (P 2 O 7 4− ) are used as ions containing phosphorus, P 2 O 7 4− is electrochemically reduced on the cathode surface using the base material to be phosphized as the cathode. . At that time, P 2 O 7 4- is reduced to atomic phosphorus in accordance with the following formula (1), and then the reaction as represented by formula (2) proceeds to treat the substrate (M) and phosphorus. To form a phosphide layer on the surface of the substrate to be treated.

4− + 10e → 2Pads + 7O2− (1)
xM + yPads → M (2)
〔但し、Pads: 吸着リン原子(ads ;adsorptionの略) 、x,y:自然数〕
P 2 O 7 4− + 10e → 2P ads + 7O 2− (1)
xM + yP ads → M x P y (2)
[However, P ads : Adsorbed phosphorus atom (ads; abbreviation of adsorption), x, y: natural number)

また、リンを含むイオンとしてリン化物イオン(P3−)を用いた場合、リン化処理を施す基材を陽極として、陽極表面でP3−を電気化学的に酸化させる。その際、P3−は下の(3) 式に従い原子状のリンにまで酸化され、続いて、(4) 式のような反応が進行し、被処理基材(M)とリンとの反応により処理基材の表面にリン化物層を形成するものと考えられる。 Further, when phosphide ions (P 3− ) are used as ions containing phosphorus, P 3− is electrochemically oxidized on the anode surface using the base material subjected to the phosphation treatment as the anode. At that time, P 3− is oxidized to atomic phosphorus according to the following formula (3), and then the reaction as represented by formula (4) proceeds to react the substrate (M) to be treated with phosphorus. This is considered to form a phosphide layer on the surface of the treated substrate.

3− → Pads + 3e (3)
xM + yPads → M (4)
〔但し、Pads: 吸着リン原子(ads ;adsorptionの略) 、x,y:自然数〕
P 3− → P ads + 3e (3)
xM + yP ads → M x P y (4)
[However, P ads : Adsorbed phosphorus atom (ads; abbreviation of adsorption), x, y: natural number)

本発明の方法によれば、ホスフィンなどの毒物を用いることなしに、様々な材料に対するリン化処理が可能となるため、環境負荷ははるかに小さく、汎用性の高いリン化処理方法を提供することができる。   According to the method of the present invention, it is possible to perform phosphation treatment on various materials without using toxic substances such as phosphine, so that an environmental load is much smaller and a versatile phosphation treatment method is provided. Can do.

また、プラズマCVD法では、高価で複雑な真空設備や高精度な反応制御が必要であったが、本発明の方法によれば、簡便な装置構成によりリン化が可能であり、電解時の電位や電流密度等を制御することにより、リン化物層の組成・膜厚等を精密かつ簡便に制御できる。また、電解質である溶融塩に接触する被処理基材全面でリン化反応が進行するので、複雑な形状の基材であってもリン化処理が可能である。   In addition, the plasma CVD method requires expensive and complicated vacuum equipment and high-accuracy reaction control. However, according to the method of the present invention, phosphation can be performed with a simple apparatus configuration, and the potential during electrolysis can be obtained. By controlling the current density and the current density, the composition and film thickness of the phosphide layer can be precisely and easily controlled. Further, since the phosphating reaction proceeds on the entire surface of the substrate to be treated which is in contact with the molten salt that is an electrolyte, the phosphating treatment is possible even for a substrate having a complicated shape.

本発明においては、電解浴として、リンのイオンを含まない電解質塩にリンを含むイオンを生成する原料(以下、「リン含有原料」という)を加えたものを用いる。リンのイオンを含まない電解質塩を用いず、リン含有原料のみを溶融させた溶融塩を用いることもできる。   In the present invention, an electrolytic bath in which a raw material that generates ions containing phosphorus (hereinafter referred to as “phosphorus-containing raw material”) is added to an electrolyte salt that does not contain phosphorus ions. It is also possible to use a molten salt obtained by melting only a phosphorus-containing raw material without using an electrolyte salt that does not contain phosphorus ions.

リンのイオンを含まない電解質塩としては、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物などが使用できる。これらの化合物は単独で使用することもできるし、二種以上を組み合わせて使用することもできる。これらの化合物の組み合わせ、組み合わせる化合物の数、混合比等も限定されず、好ましい作動温度域に応じて適宜選択することができる。   As the electrolyte salt not containing phosphorus ions, alkali metal halides, alkaline earth metal halides, and the like can be used. These compounds can also be used independently and can also be used in combination of 2 or more type. A combination of these compounds, the number of compounds to be combined, a mixing ratio, and the like are not limited, and can be appropriately selected according to a preferable operating temperature range.

リン含有原料としては、溶融させた上記電解質塩中に添加した際、あるいはそれ自身が溶融した際に、リンを含むイオンを生成し、その電気化学的な還元反応/酸化反応により活性なリンを生成するものであれば、特に制限されない。   As a phosphorus-containing raw material, when it is added to the molten electrolyte salt or when it melts itself, ions containing phosphorus are generated, and active phosphorus is produced by the electrochemical reduction / oxidation reaction. If it produces | generates, it will not restrict | limit in particular.

好ましくは、リン酸類イオン(リン酸イオン:PO 3−、ピロリン酸イオン:P 4−、三リン酸イオン:P10 5−)を生成するアルカリ金属塩、アルカリ土類金属塩、若しくはリン化物イオン(P3−)を生成するアルカリ金属リン化物、アルカリ土類金属リン化物であり、より好ましくはアルカリ金属ピロリン酸塩である。 Preferably, an alkali metal salt or an alkaline earth metal that generates phosphate ions (phosphate ion: PO 4 3− , pyrophosphate ion: P 2 O 7 4− , triphosphate ion: P 3 O 10 5− ). Alkali metal phosphides and alkaline earth metal phosphides that generate salts or phosphide ions (P 3− ) are preferable, and alkali metal pyrophosphates are more preferable.

添加するリン含有原料の濃度については、被処理基材の種類や浴温に応じて最適な濃度に調整するのが好ましい。   About the density | concentration of the phosphorus containing raw material to add, it is preferable to adjust to the optimal density | concentration according to the kind of to-be-processed base material, and bath temperature.

例示するならば、電解質塩としてLiClを、リン含有原料としてKを用いた場合では、Kの濃度は0.01〜20mol%程度で実施することができ、より好ましくは0.2〜5mol%程度に調整するのが良い。 For example, when LiCl is used as the electrolyte salt and K 4 P 2 0 7 is used as the phosphorus-containing raw material, the concentration of K 4 P 2 0 7 can be about 0.01 to 20 mol%. More preferably, it is good to adjust to about 0.2-5 mol%.

電解浴である溶融塩は、形成したリン化物の高温での表面酸化を防ぐ等の理由により、必要があれば不活性ガスにより雰囲気制御するのが好ましい。   The molten salt, which is an electrolytic bath, is preferably controlled by an inert gas if necessary for reasons such as preventing surface oxidation of the formed phosphide at a high temperature.

電解浴の浴温についても、リン化処理が達成される温度領域であれば特に制限はないが、浴温の高い方がリン化層の成長速度を高くする点で好ましい。一方で、電解槽の材料が限られることや取扱が難しくなるなどの理由から、実施温度としては250℃〜800℃程度が好ましく、特に、350℃〜700℃程度で行うのがより好ましい。   The bath temperature of the electrolytic bath is not particularly limited as long as the phosphating treatment is achieved, but a higher bath temperature is preferable in terms of increasing the growth rate of the phosphide layer. On the other hand, the working temperature is preferably about 250 ° C. to 800 ° C., more preferably about 350 ° C. to 700 ° C., because the electrolytic cell material is limited and handling becomes difficult.

電解条件については、陰極反応を利用する場合と陽極反応を利用する場合でことなる。   The electrolysis conditions are different depending on whether the cathodic reaction is used or the anodic reaction is used.

リン酸類イオンを用いる場合では、溶融塩中のリン酸類イオンが電気化学的に還元されて表面にリン化物が生成する電位領域にあるように、陰極として用いる被処理基材の電位もしくは電解電流を制御すればよい。このような電位は、浴組成や浴温、被処理基材の種類、対象となるリン化物の組成などにより設定値は異なる。   In the case of using phosphate ions, the potential or electrolytic current of the substrate to be treated used as the cathode is set so that the phosphate ions in the molten salt are in the potential region where the phosphide is generated on the surface by electrochemical reduction. Control is sufficient. Such potentials have different set values depending on the bath composition and bath temperature, the type of substrate to be treated, the composition of the target phosphide, and the like.

例示するならば、650℃程度の溶融LiCl−Kを電解浴に用い、被処理基材としてニッケルを用いる場合、Li/Li電位を基準として約0.3Vよりも卑な電位であって、Li金属が析出しない電位(約0Vよりも貴な電位領域)で電解を行うのが好ましい。 For example, when molten LiCl—K 4 P 2 0 7 at about 650 ° C. is used as an electrolytic bath and nickel is used as a substrate to be treated, it is lower than about 0.3 V on the basis of the Li + / Li potential. It is preferable to perform the electrolysis at a potential where no Li metal is deposited (a potential region nobler than about 0 V).

また、形成するリン化物層の形態や組成を制御したり、リン化物層中に基材成分と異なる元素を添加したりする目的で、金属やシリコンあるいはホウ素や炭素、窒素などを含むハロゲン化物や酸化物などの種々の化合物をさらに添加して電解を行っても良い。これらの化合物の種類については、電解浴中で金属やシリコンあるいはホウ素や炭素、窒素などを含むイオンを生成し、かつリン酸類イオンが還元されてリン化合物層が形成する電位領域において、還元反応が同時に進行するものであれば特に制限されない。   In addition, for the purpose of controlling the form and composition of the phosphide layer to be formed, or adding an element different from the base component to the phosphide layer, halides containing metals, silicon, boron, carbon, nitrogen, etc. Electrolysis may be performed by further adding various compounds such as oxides. Regarding the types of these compounds, a reduction reaction occurs in a potential region where ions containing metal, silicon, boron, carbon, nitrogen, etc. are generated in an electrolytic bath and phosphoric acid ions are reduced to form a phosphorus compound layer. If it progresses simultaneously, it will not be restrict | limited.

リン化物イオンを用いる場合も同様に、溶融塩中のリン化物イオンが電気化学的に酸化されて表面にリン化物が生成する電位領域にあるように、陽極として用いる被処理基材の電位もしくは電解電流を制御すればよい。   Similarly, when phosphide ions are used, the potential or electrolysis of the substrate to be treated used as the anode is in a potential region where the phosphide ions in the molten salt are electrochemically oxidized and phosphides are generated on the surface. What is necessary is just to control an electric current.

例示するならば、650℃程度の溶融LiCl−LiPを電解浴に用い、被処理基材としてニッケルを用いる場合、Li/Li電位を基準として約0.3Vよりも貴な電位であって、被処理基材が陽極溶出しない電位(約2.0Vより卑な電位領域)に保持するのが好ましい。 For example, when molten LiCl—Li 3 P of about 650 ° C. is used for the electrolytic bath and nickel is used as the substrate to be treated, the potential is nobler than about 0.3 V with respect to the Li + / Li potential. Thus, it is preferable to hold the substrate to be treated at a potential at which the anode does not elute (potential region lower than about 2.0 V).

上記いずれかの方法によりリン化物を形成した後、逆電解(被処理基材を陰極反応によりリン化処理をした場合には、これを陽極として電解を行う。被処理基材を陽極反応によりリン化処理をした場合には、これを陰極として電解を行う。)を行うことにより、形成したリン化物中のリンを溶融塩中にイオンとして電気化学的に抽出することもできる。これを利用すれば形成するリン化物層内の組成傾斜を制御することもできる。   After forming the phosphide by any of the above methods, reverse electrolysis (in the case where the substrate to be treated is phosphide-treated by a cathodic reaction, electrolysis is performed using this as an anode. In the case where the crystallization treatment is performed, electrolysis is performed using this as a cathode.) By performing the above, phosphorus in the formed phosphide can be electrochemically extracted as ions in the molten salt. By utilizing this, the composition gradient in the phosphide layer to be formed can be controlled.

なお、本発明では、作用極と対極との間で通電を行って作用極である被処理基材の表面にリン化物層を形成する電解を「正電解」と呼び、これとは逆に、正電解と逆向きの電流が流れるように通電して被処理基材の表面に形成されたリン化物を溶融塩中へイオンとして溶出させる電解を「逆電解」と呼ぶ。   In the present invention, the electrolysis in which the phosphide layer is formed on the surface of the substrate to be treated, which is energized between the working electrode and the counter electrode, is referred to as “positive electrolysis”, on the contrary, The electrolysis in which the phosphide formed on the surface of the substrate to be treated is eluted so as to be ionized into the molten salt by energizing so that a current in the direction opposite to that in the forward electrolysis flows is called “reverse electrolysis”.

また、このような正電解によるリン化と逆電解による脱リン化を繰り返し行うことにより、被処理基材中にリンの拡散パスが形成されるため、リン化物層をより厚く成長させることができる。また、脱リン化時の電流密度をコントロールすることで緻密なリン化物層や多孔質なリン化物層といった膜形態を変化させることもできる。   Further, by repeatedly performing such phosphation by positive electrolysis and dephosphorylation by reverse electrolysis, a phosphorus diffusion path is formed in the substrate to be treated, so that the phosphide layer can be grown thicker. . Further, by controlling the current density at the time of dephosphorylation, the film form such as a dense phosphide layer or a porous phosphide layer can be changed.

作用極として用いる被処理基材としては、一般にリン化合物を形成する金属や合金であれば問題なく使用できる。リン化処理を行うにあたり、基材表面の前処理は特に必要としないが、基材表面に酸化物などが存在しこれがリン化反応を阻害するような場合であれば、研磨などによる機械的な除去やエッチングなどによる化学的な除去を前処理として行っても良い。また、対極についても、一般に溶融塩電解で利用される陰極や陽極が使用でき、対極に含まれる成分が溶出したり消耗したりするなどして、作用極でのリン化反応に影響を及ぼさない限り、特に制限は無い。   As the substrate to be treated used as the working electrode, any metal or alloy that generally forms a phosphorus compound can be used without any problem. Pretreatment of the substrate surface is not particularly necessary for the phosphating treatment, but if an oxide or the like exists on the substrate surface and this inhibits the phosphating reaction, mechanical treatment such as polishing is performed. Chemical removal by removal or etching may be performed as a pretreatment. In addition, the cathode and anode commonly used in molten salt electrolysis can also be used for the counter electrode, and the components contained in the counter electrode are eluted and consumed, so that the phosphating reaction at the working electrode is not affected. As long as there is no limit.

電解後の被処理基材に付着した塩の洗浄には、溶融塩電解などの、溶融塩を取り扱う場合の一般的な洗浄方法が利用できる。例えば、脱酸素処理をした温水を使用すれば、付着塩は容易に除去できる。洗浄中の酸化を防ぐために、洗浄時の雰囲気は、不活性ガスなどによる不活性雰囲気に保持するのがより好ましい。   For washing the salt adhering to the substrate to be treated after electrolysis, a general washing method for handling molten salt, such as molten salt electrolysis, can be used. For example, if warm water subjected to deoxygenation treatment is used, the attached salt can be easily removed. In order to prevent oxidation during cleaning, the cleaning atmosphere is more preferably maintained in an inert atmosphere such as an inert gas.

以上の結果をまとめると、本発明の特徴は以下のように整理される。   Summarizing the above results, the features of the present invention are organized as follows.

すなわち、本発明によれば、溶融塩を用いた電気化学プロセスによる材料表面のリン化処理方法において、電解浴として、リンを含むイオンを含有しないアルカリ金属ハロゲン化物またはアルカリ土類金属ハロゲン化物若しくはそれらの混合物からなる溶融塩を準備するステップと、前記電解浴へ、リンを含むイオンを生成するためのリン含有原料を添加するステップと、被処理基材からなる作用極と被処理基材と異なる材料からなる対極を前記電解浴中に配置するステップと、そして前記作用極と前記対極の間に、前記リンを含むイオンを電気化学的に酸化または還元するための電圧または電流を印加することにより被処理基材の表面にリン化物層を形成するステップを含んでいることを特徴とする材料表面のリン化処理方法が提供される。   That is, according to the present invention, in the method for phosphating a surface of a material by an electrochemical process using a molten salt, as an electrolytic bath, an alkali metal halide or alkaline earth metal halide that does not contain phosphorus-containing ions, or those A step of preparing a molten salt made of a mixture of the above, a step of adding a phosphorus-containing raw material for generating ions containing phosphorus to the electrolytic bath, and a working electrode made of a substrate to be treated and a substrate to be treated are different Disposing a counter electrode made of a material in the electrolytic bath, and applying a voltage or current for electrochemically oxidizing or reducing the phosphorus-containing ions between the working electrode and the counter electrode. There is provided a method for phosphating a material surface, comprising the step of forming a phosphide layer on the surface of a substrate to be treated.

本発明によれば、リン化物層内の組成傾斜を制御するため、被処理基材の表面にリン化物層を形成後、さらに逆電解によるリン化物層からのリンの溶出ステップを含んでいてもよい。   According to the present invention, in order to control the composition gradient in the phosphide layer, it may further include an elution step of phosphorus from the phosphide layer by reverse electrolysis after forming the phosphide layer on the surface of the substrate to be treated. Good.

また、本発明によれば、リン化物層の厚膜化や多孔質化を図るため、逆電解によるリン化物層からのリンの溶出ステップの後、さらに正電解によるリン化物層の形成ステップを含んでいてもよい。   Further, according to the present invention, in order to increase the thickness and the porosity of the phosphide layer, the step of eluting phosphorus from the phosphide layer by reverse electrolysis and the step of forming a phosphide layer by positive electrolysis are further included. You may go out.

本発明によれば、リン含有原料として、リン酸類のアルカリ金属塩またはアルカリ土類金属塩若しくはこれらの混合塩を使用することができる。   According to the present invention, an alkali metal salt or alkaline earth metal salt of phosphoric acid or a mixed salt thereof can be used as the phosphorus-containing raw material.

また、本発明によれば、上述のリン酸類のアルカリ金属塩として、アルカリ金属ピロリン酸塩を使用することができる。   Moreover, according to this invention, an alkali metal pyrophosphate can be used as an alkali metal salt of the above-mentioned phosphoric acids.

この場合、上述のリン含有原料の添加により生成されるリンを含むイオンとしては、リン酸イオン(PO 3−)、ピロリン酸イオン(P 4−)または三リン酸イオン(P10 5−)が挙げられる。この場合、作用極は陰極として作用し、対極は陽極として作用するように電源へ接続される。 In this case, as the ion containing phosphorus generated by the addition of the above-described phosphorus-containing raw material, phosphate ion (PO 4 3− ), pyrophosphate ion (P 2 O 7 4− ), or triphosphate ion (P 3) O 10 5− ). In this case, the working electrode acts as a cathode and the counter electrode is connected to a power source so as to act as an anode.

本発明によれば、リン含有原料として、アルカリ金属リン化物またはアルカリ土類金属リン化物若しくはこれらの混合物も使用することができる。   According to the present invention, alkali metal phosphide or alkaline earth metal phosphide or a mixture thereof can also be used as the phosphorus-containing raw material.

この場合、上述のリン含有原料の添加により生成されるリンを含むイオンとしては、リン化物イオン(P3−)が挙げられる。この場合、作用極は陽極として作用し、対極は陰極として作用するように電源へ接続される。 In this case, a phosphide ion (P 3− ) is exemplified as the ion containing phosphorus generated by the addition of the phosphorus-containing material. In this case, the working electrode serves as an anode and the counter electrode is connected to a power source so as to act as a cathode.

本発明において、電解浴は250℃〜800℃の温度範囲に調整されていることが好ましく、350℃〜700℃の温度範囲に調整されていることがより好ましい。   In the present invention, the electrolytic bath is preferably adjusted to a temperature range of 250 ° C to 800 ° C, and more preferably adjusted to a temperature range of 350 ° C to 700 ° C.

本発明の方法によれば、ホスフィンなどの有毒物を用いることなしに、様々な材料に対するリン化処理が可能となるため、環境負荷ははるかに小さく、汎用性の高いリン化処理方法を提供することができる。   According to the method of the present invention, phosphating treatment for various materials can be performed without using a toxic substance such as phosphine, so that an environmental load is much less and a highly versatile phosphating treatment method is provided. be able to.

また、プラズマCVD法では、高価で複雑な真空設備や高精度な反応制御が必要であったが、本発明の方法によれば、簡便な装置構成によりリン化が可能であり、電解時の電位や電流密度等を制御することにより、リン化物層の組成・膜厚等を精密かつ簡便に制御できる。また、電解質である溶融塩に接触する被処理基材全面でリン化反応が進行するので、複雑な形状の被処理基材へのリン化処理が可能となる。   In addition, the plasma CVD method requires expensive and complicated vacuum equipment and high-accuracy reaction control. However, according to the method of the present invention, phosphation can be performed with a simple apparatus configuration, and the potential during electrolysis can be obtained. By controlling the current density and the current density, the composition and film thickness of the phosphide layer can be precisely and easily controlled. Further, since the phosphating reaction proceeds on the entire surface of the substrate to be treated which is in contact with the molten salt that is an electrolyte, the phosphating treatment to the substrate to be processed having a complicated shape becomes possible.

実施例1,2により得られる試料のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the sample obtained by Example 1,2. 実施例1,2の試料の断面のSEM写真である。It is a SEM photograph of the section of the sample of Examples 1 and 2.

以下、図面を参照しながら本発明の実施例について説明する。なお、本発明は、以下に示される実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で各種の変更が可能である。   Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to the examples shown below, and various modifications can be made without departing from the technical idea of the present invention.

電解浴には、溶融LiCl中に、リン含有原料としてピロリン酸カリウム(K)を1.0mol%を添加したものを用い、アルゴン雰囲気下で浴温を650℃に保持した。被処理基材としては、ニッケル板(10×10×0.5mm)を用い、表面を研磨処理して酸化膜を除去したものを作用極として用いた。対極にはグラッシーカーボン電極を用いた。電解は、被処理基材を陰極として電極電位を0.22V(vs. Li/Li)に8時間保つことにより、表面リン化処理を施した。 The electrolytic bath was prepared by adding 1.0 mol% of potassium pyrophosphate (K 4 P 2 0 7 ) as a phosphorus-containing raw material in molten LiCl, and the bath temperature was maintained at 650 ° C. in an argon atmosphere. As the substrate to be treated, a nickel plate (10 × 10 × 0.5 mm t ) was used as the working electrode after polishing the surface and removing the oxide film. A glassy carbon electrode was used as the counter electrode. In the electrolysis, the surface phosphating treatment was performed by maintaining the electrode potential at 0.22 V (vs. Li + / Li) for 8 hours using the substrate to be treated as a cathode.

電解浴や被処理基材であるニッケル板は実施例1と同じものを用い、形成されるリン化物層の形成速度を促進させる目的で、正電解によるリン化と逆電解による脱リン化を繰り返し行った。具体的には、陰極電位を0.13V〜0.73Vの領域において一定速度(100mV/sec)で繰り返し(1000サイクル)電位走査を行った。この場合、卑な方向に電位走査をする間にリン化物が形成され、貴な方向に電位走査をする間にリン化物からのリンの抽出が進行する。このようなサイクル操作を行ったニッケル作用極に対して、実施例1と同じ条件でリン化処理を行った。   For the purpose of accelerating the formation rate of the formed phosphide layer, the nickel bath as the electrolytic bath and the substrate to be treated is the same as in Example 1, and repeats phosphation by positive electrolysis and dephosphorization by reverse electrolysis. went. Specifically, potential scanning was repeated (1000 cycles) at a constant speed (100 mV / sec) in the region of 0.13 V to 0.73 V in cathode potential. In this case, a phosphide is formed during the potential scan in the base direction, and extraction of phosphorus from the phosphide proceeds during the potential scan in the noble direction. The nickel working electrode subjected to such a cycle operation was subjected to phosphating treatment under the same conditions as in Example 1.

実施例1,2の試料のX線回折測定結果を図1に示す。   The X-ray diffraction measurement results of the samples of Examples 1 and 2 are shown in FIG.

実施例1の試料では、ニッケルリン化物であるNiPに帰属される回折パターンが見出され、Ni基板表面のリン化が確認された。この結果より、本方法で被処理基材表面のリン化が可能であることを確認した。一方、実施例2の試料では、NiPとともに、よりリン濃度が高いNiに帰属される回折パターンが見出された。 In the sample of Example 1, a diffraction pattern attributed to Ni 3 P, which is a nickel phosphide, was found, and phosphation on the Ni substrate surface was confirmed. From this result, it was confirmed that phosphation of the surface of the substrate to be treated was possible by this method. On the other hand, in the sample of Example 2, a diffraction pattern attributed to Ni 5 P 2 having a higher phosphorus concentration was found together with Ni 3 P.

実施例1,2の試料の断面のSEM観察結果を図2に示す。   The SEM observation result of the cross section of the sample of Examples 1 and 2 is shown in FIG.

実施例1の試料では、20μm程度の緻密なリン化物層が形成されていることが観察された。実施例2の試料では、100μm以上の厚いリン化物層が一様に形成されており、その構造は多孔質であることが分かった。   In the sample of Example 1, it was observed that a dense phosphide layer of about 20 μm was formed. In the sample of Example 2, a thick phosphide layer of 100 μm or more was uniformly formed, and the structure was found to be porous.

この試料についてマイクロビッカース硬度計を用いて試料断面の硬さ測定を行った。その結果、ビッカース硬度はHv780であり、基板のNi(Hv200程度)よりも硬度が高くなっていることが確認できた。この結果より、正電解によるリン化と逆電解による脱リン化を繰り返すことにより、より厚いリン化物層を形成させることができ、形成されるリン化物膜の形態を有意に変化させ得ることが分かった。   With respect to this sample, the hardness of the cross section of the sample was measured using a micro Vickers hardness tester. As a result, the Vickers hardness was Hv780, and it was confirmed that the hardness was higher than Ni (about Hv200) of the substrate. From this result, it is found that a thicker phosphide layer can be formed by repeating phosphation by positive electrolysis and dephosphorylation by reverse electrolysis, and the form of the formed phosphide film can be changed significantly. It was.

Claims (12)

溶融塩を用いた電気化学プロセスによる材料表面のリン化処理方法において、
電解浴として、リンを含むイオンを含有しないアルカリ金属ハロゲン化物またはアルカリ土類金属ハロゲン化物若しくはそれらの混合物からなる溶融塩を準備するステップと、
前記電解浴へ、リンを含むイオンを生成するためのリン含有原料を添加するステップと、
金属及び/又は合金の被処理基材からなる作用極と、前記被処理基材と異なる材料からなる対極を前記電解浴中に配置するステップと、そして
前記作用極と前記対極の間に、前記リンを含むイオンを電気化学的に酸化または還元するための電圧または電流を印加することにより被処理基材の表面にリン化物層を形成するステップ、
を含んでいることを特徴とする材料表面のリン化処理方法。
In the method for phosphating a material surface by an electrochemical process using a molten salt,
Preparing a molten salt comprising an alkali metal halide or alkaline earth metal halide or a mixture thereof containing no phosphorus-containing ions as an electrolytic bath;
Adding a phosphorus-containing raw material for generating ions containing phosphorus to the electrolytic bath;
A working electrode comprising a substrate to be treated of metal and / or alloy, a step of disposing a counter electrode made of a material different from the substrate to be treated in the electrolytic bath, and between the working electrode and the counter electrode, Forming a phosphide layer on the surface of the substrate to be treated by applying a voltage or current for electrochemically oxidizing or reducing phosphorus-containing ions;
A method for phosphating a surface of a material, comprising:
被処理基材の表面にリン化物層を形成後、さらに逆電解による前記リン化物層からのリンの溶出ステップを含んでいることを特徴とする請求項1に記載の材料表面のリン化処理方法。   The method for phosphating a material surface according to claim 1, further comprising an elution step of phosphorus from the phosphide layer by reverse electrolysis after forming a phosphide layer on the surface of the substrate to be treated. . 逆電解による前記リン化物層からのリンの溶出ステップの後、さらに正電解によるリン化物層の形成ステップを含んでいることを特徴とする請求項2に記載の材料表面のリン化処理方法。   3. The method for phosphating a material surface according to claim 2, further comprising a step of forming a phosphide layer by positive electrolysis after the step of eluting phosphorus from the phosphide layer by reverse electrolysis. 前記リン含有原料は、リン酸類のアルカリ金属塩またはアルカリ土類金属塩若しくはこれらの混合塩であることを特徴とする請求項1ないし3のいずれかに記載の材料表面のリン化処理方法。   4. The method for phosphating a material surface according to claim 1, wherein the phosphorus-containing raw material is an alkali metal salt, an alkaline earth metal salt or a mixed salt of phosphoric acids. 前記リン酸類のアルカリ金属塩は、アルカリ金属ピロリン酸塩であることを特徴とする請求項4に記載の材料表面のリン化処理方法。   The method for phosphating a material surface according to claim 4, wherein the alkali metal salt of phosphoric acid is an alkali metal pyrophosphate. 前記リンを含むイオンは、リン酸イオン(PO 3−)、ピロリン酸イオン(P 4−)または三リン酸イオン(P10 5−)であることを特徴とする請求項1ないし3のいずれかに記載の材料表面のリン化処理方法。 The ion containing phosphorus is a phosphate ion (PO 4 3− ), a pyrophosphate ion (P 2 O 7 4− ), or a triphosphate ion (P 3 O 10 5− ). The method for phosphating a material surface according to any one of 1 to 3. 前記作用極は陰極として作用し、前記対極は陽極として作用するように電源へ接続されていることを特徴とする請求項5又は6に記載の材料表面のリン化処理方法。   The material surface phosphating method according to claim 5 or 6, wherein the working electrode is connected to a power source so as to act as a cathode and the counter electrode as an anode. 前記リン含有原料は、アルカリ金属リン化物またはアルカリ土類金属リン化物若しくはこれらの混合物であることを特徴とする請求項1ないし3のいずれかに記載の材料表面のリン化処理方法。   The method for phosphating a material surface according to any one of claims 1 to 3, wherein the phosphorus-containing raw material is an alkali metal phosphide, an alkaline earth metal phosphide or a mixture thereof. 前記リンを含むイオンは、リン化物イオン(P3−)であることを特徴とする請求項1ないし3のいずれかに記載の材料表面のリン化処理方法。 4. The method for phosphating a material surface according to claim 1, wherein the ions containing phosphorus are phosphide ions (P 3− ). 前記作用極は陽極として作用し、前記対極は陰極として作用するように電源へ接続されていることを特徴とする請求項8又は9に記載の材料表面のリン化処理方法。   10. The method for phosphating a material surface according to claim 8, wherein the working electrode is connected to a power source so that the working electrode acts as an anode and the counter electrode acts as a cathode. 前記電解浴は、250℃〜800℃の温度範囲に調整されていることを特徴とする請求項1ないし3のいずれかに記載の材料表面のリン化処理方法。   The material surface phosphating treatment method according to any one of claims 1 to 3, wherein the electrolytic bath is adjusted to a temperature range of 250 ° C to 800 ° C. 前記電解浴は、350℃〜700℃の温度範囲に調整されていることを特徴とする請求項11に記載の材料表面のリン化処理方法。   The method for phosphating a material surface according to claim 11, wherein the electrolytic bath is adjusted to a temperature range of 350 ° C to 700 ° C.
JP2009183037A 2009-08-06 2009-08-06 Phosphorus treatment of material surface using molten salt electrochemical process Active JP5513803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183037A JP5513803B2 (en) 2009-08-06 2009-08-06 Phosphorus treatment of material surface using molten salt electrochemical process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183037A JP5513803B2 (en) 2009-08-06 2009-08-06 Phosphorus treatment of material surface using molten salt electrochemical process

Publications (2)

Publication Number Publication Date
JP2011032567A JP2011032567A (en) 2011-02-17
JP5513803B2 true JP5513803B2 (en) 2014-06-04

Family

ID=43761929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183037A Active JP5513803B2 (en) 2009-08-06 2009-08-06 Phosphorus treatment of material surface using molten salt electrochemical process

Country Status (1)

Country Link
JP (1) JP5513803B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6861003B2 (en) * 2016-09-26 2021-04-21 株式会社デンソー Method for manufacturing FeNi ordered alloy
CN113764633B (en) * 2021-07-21 2023-05-09 广西师范大学 Surface modified lithium ion battery positive electrode material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074172B2 (en) * 2002-08-02 2006-07-11 Zymequest, Inc. Processing bag for component separator system and method of removing separated components
JP5148209B2 (en) * 2007-08-28 2013-02-20 学校法人同志社 Surface nitriding method using molten salt electrochemical process

Also Published As

Publication number Publication date
JP2011032567A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
Abrantes et al. On the mechanism of electroless Ni‐P plating
US5419821A (en) Process and equipment for reforming and maintaining electroless metal baths
WO2008014987A2 (en) Method for deposition of chromium layers as hard- chrome plating, electroplating bath and hard- chrome surfaces
JP2019529715A5 (en)
JP5513803B2 (en) Phosphorus treatment of material surface using molten salt electrochemical process
Idhayachander et al. Electrolytic recovery of nickel from spent electroless nickel bath solution
WO2018216319A1 (en) Method for producing titanium-plated member
CN104831333B (en) A kind of preparation method of steel surface magnetic differential arc oxidation film layer
Widayatno Kinetics of nickel electrodeposition from low electrolyte concentration and at a narrow interelectrode gap
Génin et al. Influence of phosphate on corrosion products of iron in chloride-polluted-concrete-simulating solutions: ferrihydrite vs green rust
Oliveira et al. Improved corrosion resistance of tool steel H13 by means of cadmium ion implantation and deposition
EP3607116A1 (en) Method for electrolytically depositing a chromium or chromium alloy layer on at least one substrate
Arthanareeswari et al. Influence of galvanic coupling on the formation of zinc phosphate coating
Sireli Molten salt baths: electrochemical boriding
JPH0726240B2 (en) Electrolytic pickling or electrolytic degreasing method for steel sheet
Ved’ et al. Methods for controlling the composition and morphology of electrodeposited Fe–Mo and Fe–Co–Mo coatings
Gustavsson et al. In-situ activated hydrogen evolution by molybdate addition to neutral and alkaline electrolytes
JPH07305189A (en) Electrode comprising iron-containing core and leadcontainingcoating, its production, and reductive coupling method for olefinic reactant
KR20130030891A (en) Method for forming hydroxyapatite coating layer on titanium implant surface and titanium implant having coating layer formed by the same
Sknar et al. Electrolytic codeposition of nickel and phosphorus from methanesulfonate electrolyte
Török et al. Direct cathodic deposition of copper on steel wires from pyrophosphate baths
US10287694B2 (en) Amalgam electrode, method for manufacturing the same, and method for electrochemical reduction of carbon dioxide using the same
JP2015074825A (en) Film formation method by plasma electrolytic oxidation and metal material
Ke‐Ping et al. Acceleration effect of electroless nickel deposition by thiourea
JP5799037B2 (en) Film formation method by plasma electrolytic oxidation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140328

R150 Certificate of patent or registration of utility model

Ref document number: 5513803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250