JP5510348B2 - Evaluation method of water vapor barrier property - Google Patents

Evaluation method of water vapor barrier property Download PDF

Info

Publication number
JP5510348B2
JP5510348B2 JP2011015964A JP2011015964A JP5510348B2 JP 5510348 B2 JP5510348 B2 JP 5510348B2 JP 2011015964 A JP2011015964 A JP 2011015964A JP 2011015964 A JP2011015964 A JP 2011015964A JP 5510348 B2 JP5510348 B2 JP 5510348B2
Authority
JP
Japan
Prior art keywords
oxide
water vapor
vapor barrier
barrier film
deposition material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011015964A
Other languages
Japanese (ja)
Other versions
JP2012154865A (en
Inventor
勇気 吉田
久美子 有泉
英章 桜井
良享 黛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011015964A priority Critical patent/JP5510348B2/en
Priority to CN2011104270699A priority patent/CN102621048A/en
Publication of JP2012154865A publication Critical patent/JP2012154865A/en
Application granted granted Critical
Publication of JP5510348B2 publication Critical patent/JP5510348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、液晶ディスプレイ、有機ELディスプレイ又は太陽電池等の機器、或いは食品、薬品等の包装材料等において、高い防湿性を付与するために用いられる水蒸気バリア膜の水蒸気バリア性を評価する方法に関する。   The present invention evaluates the water vapor barrier property of a water vapor barrier film used for imparting high moisture resistance, for example, in devices such as liquid crystal displays, organic EL displays or solar cells, or packaging materials such as foods and chemicals. Regarding the method.

液晶ディスプレイ、有機ELディスプレイ又は太陽電池等の機器は、一般に湿気に弱く、吸湿によって急速にその特性を劣化させるため、高防湿性、即ち酸素や水蒸気等の透過又は侵入を防止するガスバリア性を有する部品を装備することが不可欠である。   Devices such as liquid crystal displays, organic EL displays, or solar cells are generally sensitive to moisture and rapidly deteriorate their characteristics due to moisture absorption. Therefore, they have high moisture resistance, that is, gas barrier properties that prevent permeation or penetration of oxygen, water vapor, and the like. It is essential to equip the parts.

例えば、太陽電池の例では、太陽電池モジュールの受光面とは反対側の裏面にバックシートが設けられている。このバックシートは、基材に、蒸着材等を用いて成膜された高防湿性を有する水蒸気バリア膜と、それらを保護する部材等から構成されたものが代表的なものである。また、上記太陽電池等の機器の他に、食品や薬品等の包装材料等でも高い水蒸気バリア性が求められており、プラスチックの表面に酸化珪素、酸化アルミ又はアルミ金属箔等を蒸着させて成膜した水蒸気バリア膜を備える包装材料等が一般的に広く知られている。   For example, in the example of a solar cell, the back sheet is provided on the back surface opposite to the light receiving surface of the solar cell module. This back sheet is typically composed of a water vapor barrier film having a high moisture-proof property formed on a base material using a vapor deposition material or the like, a member for protecting them, and the like. In addition to the above-mentioned devices such as solar cells, high water vapor barrier properties are also required for packaging materials such as foods and medicines. Silicon oxide, aluminum oxide, aluminum metal foil, etc. are deposited on the plastic surface. A packaging material provided with a filmed water vapor barrier film is generally widely known.

上記太陽電池のバックシート等が備える水蒸気バリア膜の水蒸気バリア性の評価は、これまで、カップ法(JIS Z 0208)やモコン法(JIS K 7129)等によって評価されていたが、モコン法による水蒸気透過率の測定限界が0.01/m2・day程度であることから、有機ELディスプレイ等に要求される高度な水蒸気バリア性の評価が困難であるという問題があった。このような問題を解消する評価方法として、水蒸気透過性を評価する材料から成る固体基板の片面側に、水分と反応して腐食する腐食性金属を形成した金属腐食試験片を湿度環境下に保管し、固体基板を透過した水蒸気によって腐食性金属の一部分が腐食した金属腐食試験片の画像を撮影し、撮影した画像の処理を行う画像処理手段を用いて水分と反応した金属の腐食状態を評価し、腐食領域の形状、分布及び/又は面積から固体基板の水蒸気透過性を評価する評価方法が開示されている(例えば、特許文献1参照。)。 The evaluation of the water vapor barrier property of the water vapor barrier film provided in the back sheet or the like of the solar cell has been evaluated by the cup method (JIS Z 0208), the mocon method (JIS K 7129), or the like. Since the measurement limit of the transmittance is about 0.01 / m 2 · day, there is a problem that it is difficult to evaluate the advanced water vapor barrier property required for an organic EL display or the like. As an evaluation method to eliminate such problems, a metal corrosion test piece in which a corrosive metal that reacts with moisture and corrodes is formed on one side of a solid substrate made of a material for evaluating water vapor permeability is stored in a humidity environment. Then, an image of a metal corrosion test piece in which part of the corrosive metal was corroded by water vapor that permeated through the solid substrate was evaluated, and the corrosion state of the metal that reacted with moisture was evaluated using an image processing means that processes the captured image. And the evaluation method which evaluates the water vapor permeability of a solid substrate from the shape, distribution, and / or area of a corrosion area is disclosed (for example, refer to patent documents 1).

特開2005−181300号公報(請求項1)Japanese Patent Laying-Open No. 2005-181300 (Claim 1)

しかしながら、上記モコン法等による評価方法では、高度な水蒸気バリア性の評価が困難であること以外にも、水蒸気透過率の実測には試験片を所定の温度、湿度環境下に長時間保持する必要があるため、非常に時間がかかるという問題がある。水蒸気透過率の実測に時間がかかると、製品の研究開発や品質検査、品質管理等に多大な時間を要することになり、その結果、製品の製造においても多大な時間と費用が発生するという問題が生じる。また、上記従来の特許文献1に示される評価方法では、金属腐食試験片を形成した後、測定と関係の無い大気中の水分から隔離するために、非腐食性金属やバリア性の高い透明酸化物で保護する、或いは硬化性樹脂とガラス基板で封止するなど、測定前の準備工程が煩雑であり、手間と時間がかかるといった問題があった。   However, in the evaluation method using the above-mentioned Mocon method and the like, it is necessary to hold the test piece for a long time in a predetermined temperature and humidity environment in order to measure the water vapor transmission rate, in addition to the difficulty of evaluating the high water vapor barrier property. There is a problem that it is very time consuming. If it takes time to actually measure the water vapor transmission rate, it will take a lot of time for product research and development, quality inspection, quality control, etc., and as a result, it takes a lot of time and money to produce the product. Occurs. Moreover, in the evaluation method shown in the above-mentioned conventional patent document 1, after forming a metal corrosion test piece, in order to isolate it from moisture in the atmosphere which is not related to measurement, a non-corrosive metal or a transparent oxide having a high barrier property is used. There is a problem that the preparatory steps before measurement, such as protection with an object or sealing with a curable resin and a glass substrate, are complicated and take time and effort.

本発明の目的は、長時間を要する水蒸気透過率を実際に測定することなく、水蒸気バリア膜の水蒸気バリア性を迅速、かつ容易に評価することができる水蒸気バリア性の評価方法を提供することにある。   An object of the present invention is to provide a method for evaluating a water vapor barrier property capable of quickly and easily evaluating a water vapor barrier property of a water vapor barrier film without actually measuring a water vapor transmission rate that takes a long time. is there.

本発明の第1の観点は、第1酸化物(X)からなる蒸着材と第2酸化物(Y)からなる蒸着材、或いは第1酸化物(X)及び第2酸化物(Y)の双方を含む蒸着材を用い、真空成膜法により成膜した水蒸気バリア膜の水蒸気バリア性を評価する方法において、下記式(1)から算出されるS1の値を、温度40℃、相対湿度90%RHの条件で1時間放置した後、温度40℃、相対湿度90%RHの条件で測定される水蒸気バリア膜の水蒸気透過率S(g/m2・day)とみなして評価することを特徴とする。 According to a first aspect of the present invention, there is provided a vapor deposition material comprising the first oxide (X) and a second oxide (Y), or the first oxide (X) and the second oxide (Y). In a method for evaluating the water vapor barrier property of a water vapor barrier film formed by a vacuum film forming method using a vapor deposition material including both, the value of S 1 calculated from the following formula (1) is set to a temperature of 40 ° C. and a relative humidity. After being allowed to stand for 1 hour under the condition of 90% RH, the water vapor transmission rate S (g / m 2 · day) of the water vapor barrier film measured under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH is evaluated. Features.

log101=−0.015×(θ×ΔB)−0.25 (1)
但し、式(1)中、θは成膜後、温度25℃、相対湿度50%RHの条件で1日間保持した後の水蒸気バリア膜における水滴接触角を示し、ΔBは第1酸化物(X)の塩基度Bxと第2酸化物(Y)の塩基度Byとの差の絶対値を示す。また、水蒸気バリア膜中の第1酸化物(X)の含有割合をxモル、第2酸化物(Y)の含有割合をyモルとするとき、x及びyは0.05≦x/(x+y)≦0.95を満たす。
log 10 S 1 = −0.015 × (θ × ΔB) −0.25 (1)
However, in the formula (1), θ represents the water droplet contact angle in the water vapor barrier film after film formation and maintained for 1 day under the conditions of a temperature of 25 ° C. and a relative humidity of 50% RH, and ΔB represents the first oxide (X ) Shows the absolute value of the difference between the basicity Bx of the second oxide (Y) and the basicity By of the second oxide (Y). Further, when the content ratio of the first oxide (X) in the water vapor barrier film is x mol and the content ratio of the second oxide (Y) is y mol, x and y are 0.05 ≦ x / (x + y). ) ≦ 0.95 is satisfied.

本発明の第2の観点は、第1酸化物(X)からなる蒸着材と第2酸化物(Y)からなる蒸着材、或いは第1酸化物(X)及び第2酸化物(Y)の双方を含む蒸着材を用い、真空成膜法により成膜した水蒸気バリア膜の水蒸気バリア性を評価する方法において、下記式(2)及び式(3)の双方を満たすS2の範囲から、温度40℃、相対湿度90%RHの条件で1時間放置した後、温度40℃、相対湿度90%RHの条件で測定される水蒸気バリア膜の水蒸気透過率S(g/m2・day)を定めて評価することを特徴とする。 The second aspect of the present invention is that a vapor deposition material composed of the first oxide (X) and a vapor deposition material composed of the second oxide (Y), or the first oxide (X) and the second oxide (Y). In a method for evaluating the water vapor barrier property of a water vapor barrier film formed by a vacuum film formation method using a vapor deposition material containing both, the temperature is within the range of S 2 satisfying both of the following formulas (2) and (3). After standing for 1 hour under the conditions of 40 ° C. and relative humidity 90% RH, the water vapor transmission rate S (g / m 2 · day) of the water vapor barrier film measured under the conditions of temperature 40 ° C. and relative humidity 90% RH is determined. It is characterized by evaluating.

{−0.015×(θ×ΔB)−0.25}−0.25≦log102 (2)
log102≦{−0.015×(θ×ΔB)−0.25}+0.25 (3)
但し、式(2)及び式(3)中、θは成膜後、温度25℃、相対湿度50%RHの条件で1日間保持した後の水蒸気バリア膜における水滴接触角を示し、ΔBは第1酸化物(X)の塩基度Bxと第2酸化物(Y)の塩基度Byとの差の絶対値を示す。また、水蒸気バリア膜中の第1酸化物(X)の含有割合をxモル、第2酸化物(Y)の含有割合をyモルとするとき、x及びyは0.05≦x/(x+y)≦0.95を満たす。
{−0.015 × (θ × ΔB) −0.25} −0.25 ≦ log 10 S 2 (2)
log 10 S 2 ≦ {−0.015 × (θ × ΔB) −0.25} +0.25 (3)
However, in formula (2) and formula (3), θ represents the water droplet contact angle in the water vapor barrier film after film formation and after holding for 1 day at a temperature of 25 ° C. and a relative humidity of 50% RH. The absolute value of the difference between the basicity Bx of the first oxide (X) and the basicity By of the second oxide (Y) is shown. Further, when the content ratio of the first oxide (X) in the water vapor barrier film is x mol and the content ratio of the second oxide (Y) is y mol, x and y are 0.05 ≦ x / (x + y). ) ≦ 0.95 is satisfied.

本発明の第1の観点の評価方法では、第1酸化物(X)からなる蒸着材と第2酸化物(Y)からなる蒸着材、或いは第1酸化物(X)及び第2酸化物(Y)の双方を含む蒸着材を用い、真空成膜法により成膜した水蒸気バリア膜の水蒸気バリア性を評価する方法において、上記式(1)から算出されるS1の値を、温度40℃、相対湿度90%RHの条件で1時間放置した後、温度40℃、相対湿度90%RHの条件で測定される水蒸気バリア膜の水蒸気透過率S(g/m2・day)とみなして評価する。これにより、従来、多大な時間を要していた水蒸気透過率の実測をせずに、水蒸気バリア膜の水蒸気バリア性を迅速、かつ容易に評価することができる。 In the evaluation method of the 1st viewpoint of this invention, the vapor deposition material which consists of 1st oxide (X) and the 2nd oxide (Y), or 1st oxide (X) and 2nd oxide ( In the method for evaluating the water vapor barrier property of the water vapor barrier film formed by the vacuum film formation method using the vapor deposition material containing both of Y), the value of S 1 calculated from the above formula (1) is set to a temperature of 40 ° C. , After being allowed to stand for 1 hour at a relative humidity of 90% RH, the water vapor transmission rate S (g / m 2 · day) of the water vapor barrier film measured at a temperature of 40 ° C. and a relative humidity of 90% RH is evaluated. To do. This makes it possible to quickly and easily evaluate the water vapor barrier property of the water vapor barrier film without actually measuring the water vapor transmission rate, which has conventionally required a lot of time.

本発明の第2の観点の評価方法では、第1酸化物(X)からなる蒸着材と第2酸化物(Y)からなる蒸着材、或いは第1酸化物(X)及び第2酸化物(Y)の双方を含む蒸着材を用い、真空成膜法により成膜した水蒸気バリア膜の水蒸気バリア性を評価する方法において、式(2)及び式(3)の双方を満たすS2の範囲から、温度40℃、相対湿度90%RHの条件で1時間放置した後、温度40℃、相対湿度90%RHの条件で測定される水蒸気バリア膜の水蒸気透過率S(g/m2・day)を定めて評価する。このように、第2の観点の評価方法では、上記本発明の第1の観点の評価方法によって算出されたlog101の値に、一定の範囲を付加して評価を行うことにより、式(1)から算出される値と実測値との間に比較的大きいな誤差が生じた場合でも、想定され得る誤差範囲を考慮した柔軟な評価を行うことができる。 In the evaluation method of the 2nd viewpoint of this invention, the vapor deposition material which consists of 1st oxide (X) and the 2nd oxide (Y), or 1st oxide (X) and 2nd oxide ( Y) In the method for evaluating the water vapor barrier property of the water vapor barrier film formed by the vacuum film formation method using the vapor deposition material containing both, from the range of S 2 satisfying both the formula (2) and the formula (3) The water vapor transmission rate S (g / m 2 · day) of the water vapor barrier film measured at a temperature of 40 ° C. and a relative humidity of 90% RH after being left for 1 hour at a temperature of 40 ° C. and a relative humidity of 90% RH Determine and evaluate. As described above, in the evaluation method according to the second aspect, the evaluation is performed by adding a certain range to the value of log 10 S 1 calculated by the evaluation method according to the first aspect of the present invention. Even when a relatively large error occurs between the value calculated from (1) and the actual measurement value, it is possible to perform a flexible evaluation in consideration of an error range that can be assumed.

本発明の評価方法に用いる式(1)〜式(3)を示すグラフ図である。It is a graph which shows Formula (1)-Formula (3) used for the evaluation method of this invention. 実施例の結果を示すグラフ図である。It is a graph which shows the result of an Example. 水蒸気透過率が高い水蒸気バリア膜の内部構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the internal structure of the water vapor | steam barrier film | membrane with a high water vapor transmission rate. 水蒸気透過率が低い水蒸気バリア膜の内部構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the internal structure of the water vapor | steam barrier film | membrane with a low water vapor transmission rate.

次に本発明を実施するための形態を図面に基づいて説明する。
<第1実施形態の評価方法>
本発明第一実施形態の評価方法は、第1酸化物(X)からなる蒸着材と第2酸化物(Y)からなる蒸着材、或いは第1酸化物(X)及び第2酸化物(Y)の双方を含む蒸着材を用い、真空成膜法により成膜した水蒸気バリア膜の水蒸気バリア性を評価する新規な評価方法である。この評価方法で評価できる水蒸気バリア膜は、第1酸化物(X)からなる蒸着材と第2酸化物(Y)からなる蒸着材の2つの蒸着材を、いわゆる共蒸着によって成膜した蒸着膜であっても良いし、第1酸化物(X)及び第2酸化物(Y)の双方を含む1つの蒸着材を用いて、成膜した蒸着膜であってもよい。
Next, an embodiment for carrying out the present invention will be described with reference to the drawings.
<Evaluation Method of First Embodiment>
In the evaluation method of the first embodiment of the present invention, the vapor deposition material composed of the first oxide (X) and the vapor deposition material composed of the second oxide (Y), or the first oxide (X) and the second oxide (Y This is a novel evaluation method for evaluating the water vapor barrier property of a water vapor barrier film formed by a vacuum film formation method using a vapor deposition material containing both of the above. The vapor barrier film that can be evaluated by this evaluation method is a vapor deposition film in which two vapor deposition materials, ie, a vapor deposition material composed of a first oxide (X) and a vapor deposition material composed of a second oxide (Y), are formed by so-called co-deposition. Alternatively, a vapor deposition film formed using one vapor deposition material containing both the first oxide (X) and the second oxide (Y) may be used.

また、真空成膜法については特に限定されず、例えば、電子ビーム蒸着法、イオンプレーティング法、反応性プラズマ蒸着法、抵抗加熱法、誘導加熱法等のいずれの成膜方法によって成膜された蒸着膜であってもよい。   Further, the vacuum film forming method is not particularly limited. For example, the film is formed by any film forming method such as an electron beam vapor deposition method, an ion plating method, a reactive plasma vapor deposition method, a resistance heating method, an induction heating method, or the like. A vapor deposition film may be sufficient.

具体的には、下記式(1)から算出されるS1の値を、温度40℃、相対湿度90%RHの条件で1時間放置した後、温度40℃、相対湿度90%RHの条件で測定される水蒸気バリア膜の水蒸気透過率S(g/m2・day)とみなすことにより行う。 Specifically, the value of S 1 calculated from the following formula (1) is left for 1 hour at a temperature of 40 ° C. and a relative humidity of 90% RH, and then at a temperature of 40 ° C. and a relative humidity of 90% RH. This is performed by regarding the water vapor permeability S of the water vapor barrier film to be measured as S (g / m 2 · day).

log101=−0.015×(θ×ΔB)−0.25 (1)
ここで、式(1)中、θは成膜後、温度25℃、相対湿度50%RHの条件で1日間保持した後の水蒸気バリア膜における水滴接触角を示し、ΔBは第1酸化物(X)の塩基度Bxと第2酸化物(Y)の塩基度Byとの差の絶対値を示す。また、水蒸気バリア膜中の第1酸化物(X)の含有割合をxモル、第2酸化物(Y)の含有割合をyモルとするとき、x及びyは0.05≦x/(x+y)≦0.95を満たす。
log 10 S 1 = −0.015 × (θ × ΔB) −0.25 (1)
Here, in the formula (1), θ represents the water droplet contact angle in the water vapor barrier film after film formation and after holding for 1 day under the conditions of a temperature of 25 ° C. and a relative humidity of 50% RH, and ΔB represents the first oxide ( The absolute value of the difference between the basicity Bx of X) and the basicity By of the second oxide (Y) is shown. Further, when the content ratio of the first oxide (X) in the water vapor barrier film is x mol and the content ratio of the second oxide (Y) is y mol, x and y are 0.05 ≦ x / (x + y). ) ≦ 0.95 is satisfied.

水蒸気バリア膜の水蒸気バリア性には、本発明者らのこれまでの研究により、膜の内部構造(断面構造)が大きく影響するものと考えられている。例えば、図3に示す、基材11上に形成される酸化物薄膜22は、柱状晶の結晶がガスの浸透方向に対して平行に集合した構造になる。水蒸気等のガス分子は平行に集合した粒界の界面に沿って進むため、上記柱状晶の結晶が平行に集合した構造の薄膜22ではバリア性が低いことになる。一方、図4に示すように、柱状晶の一部が崩れ、アモルファス状態に近い緻密な微細構造では、水蒸気等のガス分子は迷路状の中を長距離にわたり移動する必要があるため、このような構造の酸化物薄膜32ではバリア性が向上することになる。   The water vapor barrier property of the water vapor barrier film is considered to be greatly influenced by the internal structure (cross-sectional structure) of the film by the present inventors' previous research. For example, the oxide thin film 22 formed on the substrate 11 shown in FIG. 3 has a structure in which columnar crystals are gathered in parallel to the gas permeation direction. Since gas molecules such as water vapor travel along the boundary of grain boundaries gathered in parallel, the thin film 22 having a structure in which the columnar crystals gather together in parallel has a low barrier property. On the other hand, as shown in FIG. 4, in a fine microstructure close to the amorphous state, part of the columnar crystals collapses, and gas molecules such as water vapor need to move over a long distance in the labyrinth. In the oxide thin film 32 having a simple structure, the barrier property is improved.

このような膜の内部構造には、成膜に用いられる蒸着材又はこれらに含まれる酸化物等の塩基度が大きく関係するものと考えられる。この「塩基度」は、森永健次らにより提案されたものであり、例えば彼の著書「K.Morinaga, H.Yoshida And H.Takebe:J.Am Cerm.Soc.,77,3113(1994)」の中で以下に示すような式を用いてガラス粉末の塩基度を規定している。この抜粋を以下に示す。   The internal structure of such a film is considered to be largely related to the basicity of the vapor deposition material used for film formation or the oxide contained therein. This `` basicity '' was proposed by Kenji Morinaga et al., For example, his book `` K. Morinaga, H. Yoshida And H. Takebe: J. Am Cerm. Soc., 77, 3113 (1994) ''. The basicity of the glass powder is defined using the following formula. This excerpt is shown below.

「酸化物MiOのMi−O間の結合力は陽イオン−酸素イオン間引力Aiとして次式で与えられる。 "Coupling force between M i -O oxide M i O cation - given by the following equation as an oxygen ion attraction between A i.

i=Zi・Z02-/(ri+r02-2=Zi・2/(ri+1.40)2
i:陽イオンの価数,酸素イオンは2
i:陽イオンのイオン半径(Å),酸素イオンは1.40Å
このAiの逆数Bi(1/Ai)を単成分酸化物MiOの酸素供与能力とする。
A i = Z i · Z 02− / (r i + r 02− ) 2 = Z i · 2 / (r i +1.40) 2
Z i : valence of cation, oxygen ion is 2
R i : cation radius (Å), oxygen ion is 1.40Å
The A i of the inverse B i a (1 / A i) a single-component oxide M i O oxygen donating ability.

i≡1/Ai
このBiをBCaO=1、BSiO2=0と規格化すると、各単成分酸化物のBi−指標が与えられる。」本発明において用いられる酸化物の塩基度は、ガラス粉末の塩基度の指標について、ガラスを酸化物と置き換えて解釈したものである。
B i ≡1 / A i
When the B i B CaO = 1, B SiO2 = to 0 and the normalized, B i of each single component oxides - index is given. The basicity of the oxide used in the present invention is an interpretation of the basicity index of glass powder by replacing glass with oxide.

また、水蒸気バリア膜の水蒸気バリア性には、膜の内部構造の他に、膜表面の撥水性等も大きく影響する。即ち、膜表面の撥水性が高ければ、膜内部に浸透する水蒸気の量を少なく抑えることができる。膜表面の撥水性を示す指標としては、固体表面に対する液体の吸着現象を表す尺度として一般的に用いられている水滴接触角が挙げられる。水滴接触角には、測定方法により、液適法、転落法、傾斜法等があり、本発明で規定する水滴接触角は、液滴法により、基板に成膜した膜にイオン交換水2μL滴下してから2秒後に測定されたものである。   In addition to the internal structure of the film, the water repellency of the film surface greatly affects the water vapor barrier property of the water vapor barrier film. That is, if the water repellency on the film surface is high, the amount of water vapor penetrating into the film can be reduced. As an index indicating the water repellency of the film surface, there is a water droplet contact angle generally used as a scale representing a liquid adsorption phenomenon on a solid surface. Depending on the measurement method, there are a liquid drop method, a drop method, a tilt method, etc., depending on the measurement method. The water drop contact angle specified in the present invention is obtained by dropping 2 μL of ion-exchanged water on the film formed on the substrate by the droplet method. It was measured 2 seconds after.

このような観点から、水蒸気バリア性の評価において、蒸着材に含まれる酸化物の塩基度と水滴接触角に着目し、本発明者らが研究を重ねたところ、実測された水蒸気バリア膜の水蒸気透過率、バリア膜の形成に用いられる蒸着材が含有する酸化物の塩基度、水蒸気バリア膜表面の水滴接触角の間には、ある一定の相関があることが判った。具体的には、複数の水蒸気バリア膜から測定された水蒸気透過率Sの実測値について、横軸をθ×ΔB、縦軸をlog10Sとしてプロットしたときに、log10Sの値とθ×ΔBの値の間には上記式(1)に示すような傾きが負の比例関係があることが確認された。本発明において用いられる上記式(1)は、このときの複数の水蒸気バリア膜におけるlog10Sの値とθ×ΔBの値のデータから最小二乗法によって求められた直線である。 From this point of view, in the evaluation of the water vapor barrier property, the inventors of the present invention have repeatedly studied focusing on the basicity of the oxide contained in the vapor deposition material and the contact angle of the water droplets. It has been found that there is a certain correlation among the transmittance, the basicity of the oxide contained in the vapor deposition material used for forming the barrier film, and the water droplet contact angle on the surface of the water vapor barrier film. Specifically, the measured values of a plurality of water vapor barrier film as measured from the water vapor transmission rate S, the horizontal axis theta × .DELTA.B, the vertical axis when plotted as log 10 S, the log 10 S values and theta × It was confirmed that there is a negative proportional relationship between the values of ΔB as shown in the above equation (1). The equation (1) used in the present invention is a straight line obtained by the least square method from the log 10 S value and θ × ΔB value data in the plurality of water vapor barrier films at this time.

この直線を用いた具体的な評価手順は、次の通りである。先ず、酸化物(X)からなる蒸着材と、酸化物(Y)からなる蒸着材を用いた共蒸着により、或いは酸化物(X)及び酸化物(Y)の双方を含む蒸着材を用いて水蒸気バリア膜を成膜する。このとき、第1酸化物(X)の含有割合をxモル、第2酸化物(Y)の含有割合をyモルとするときのx及びyを0.05≦x/(x+y)≦0.95の範囲に限定する理由は、x/(x+y)が下限値未満又は上限値を越える水蒸気バリア膜については、本発明の方法では評価が困難であるからである。これは、x/(x+y)が下限値未満又は上限値を越えると、一方の酸化物の割合が少なくなりすぎて、他方の酸化物からなる単一組成の蒸着膜とほぼ同等になるからと推察される。なお、蒸着材に含まれる酸化物(X)又は酸化物(Y)の塩基度は予め求めておく。次に、水蒸気バリア膜を、温度25℃、相対湿度50%RHの条件で1日放置した後、水蒸気バリア膜の水滴接触角θを求める。水滴接触角を測定する際に、上記条件にて放置する理由は、成膜して間もない蒸着膜は、その表面状態が安定しておらず、水滴接触角の経時変化が著しいことから、測定される水滴接触角の値に大きなバラツキが生じるため、少なくとも1日間放置する必要があるからである。次に、酸化物(X)及び酸化物(Y)の塩基度、及び上記測定された水滴接触角θを、式(1)に代入して、S1の値を求める。最後に、式(1)から求めたS1を水蒸気透過率Sの実測値、即ち温度40℃、相対湿度90%RHの条件で1時間放置した後、温度40℃、相対湿度90%RHの条件で、モコン法にて測定された水蒸気透過率とみなす。 A specific evaluation procedure using this straight line is as follows. First, by vapor deposition using a vapor deposition material made of oxide (X) and a vapor deposition material made of oxide (Y), or using a vapor deposition material containing both oxide (X) and oxide (Y). A water vapor barrier film is formed. At this time, when the content ratio of the first oxide (X) is x mol and the content ratio of the second oxide (Y) is y mol, x and y are 0.05 ≦ x / (x + y) ≦ 0. The reason for limiting to the range of 95 is that it is difficult to evaluate the water vapor barrier film in which x / (x + y) is less than the lower limit value or exceeds the upper limit value by the method of the present invention. This is because, when x / (x + y) is less than the lower limit value or exceeds the upper limit value, the ratio of one oxide is too small to be almost equivalent to a vapor deposition film of a single composition made of the other oxide. Inferred. Note that the basicity of the oxide (X) or oxide (Y) contained in the vapor deposition material is determined in advance. Next, the water vapor barrier film is allowed to stand for 1 day under conditions of a temperature of 25 ° C. and a relative humidity of 50% RH, and then a water droplet contact angle θ of the water vapor barrier film is obtained. The reason for leaving under the above conditions when measuring the water droplet contact angle is that the deposited film just after film formation is not stable in its surface state, and the water droplet contact angle changes with time, This is because a large variation occurs in the measured value of the water droplet contact angle, and it is necessary to leave it for at least one day. Next, the basicity of oxide (X) and oxide (Y) and the measured water droplet contact angle θ are substituted into equation (1) to determine the value of S 1 . Finally, S 1 obtained from the formula (1) is measured for the water vapor transmission rate S, that is, after standing for 1 hour under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH, then the temperature of 40 ° C. and the relative humidity of 90% RH It is regarded as the water vapor transmission rate measured by the Mocon method.

以上により、多大な時間を要する水蒸気透過率を実際に測定することなく、水蒸気バリア膜の水蒸気バリア性を容易に評価することができる。
<第二実施形態の評価方法>
本発明第二実施形態の評価方法は、上述した第一実施形態の評価方法と同様、第1酸化物(X)からなる蒸着材と第2酸化物(Y)からなる蒸着材、或いは第1酸化物(X)及び第2酸化物(Y)の双方を含む蒸着材を用い、真空成膜法により成膜した水蒸気バリア膜の水蒸気バリア性を評価する新規な評価方法である。この第二実施形態の評価方法では、下記式(2)及び式(3)の双方を満たすS2の範囲から、温度40℃、相対湿度90%RHの条件で1時間放置した後、温度40℃、相対湿度90%RHの条件で測定される水蒸気バリア膜の水蒸気透過率S(g/m2・day)を定めて評価する。
As described above, it is possible to easily evaluate the water vapor barrier property of the water vapor barrier film without actually measuring the water vapor transmission rate which takes a long time.
<Evaluation method of second embodiment>
The evaluation method of the second embodiment of the present invention is the same as the evaluation method of the first embodiment described above, the vapor deposition material composed of the first oxide (X) and the second oxide (Y), or the first This is a novel evaluation method for evaluating the water vapor barrier property of a water vapor barrier film formed by a vacuum film formation method using a vapor deposition material containing both oxide (X) and second oxide (Y). In the evaluation method of the second embodiment, after leaving for 1 hour at a temperature of 40 ° C. and a relative humidity of 90% RH from the range of S 2 satisfying both the following formulas (2) and (3), the temperature of 40 The water vapor transmission rate S (g / m 2 · day) of the water vapor barrier film measured under the conditions of ° C. and relative humidity 90% RH is determined and evaluated.

{−0.015×(θ×ΔB)−0.25}−0.25≦log102 (2)
log102≦{−0.015×(θ×ΔB)−0.25}+0.25 (3)
但し、式(2)及び式(3)中、θは成膜後、温度25℃、相対湿度50%RHの条件で1日間保持した後の水蒸気バリア膜における水滴接触角を示し、ΔBは第1酸化物(X)の塩基度Bxと第2酸化物(Y)の塩基度Byとの差の絶対値を示す。また、水蒸気バリア膜中の第1酸化物(X)の含有割合をxモル、第2酸化物(Y)の含有割合をyモルとするとき、x及びyは0.05≦x/(x+y)≦0.95を満たす。
{−0.015 × (θ × ΔB) −0.25} −0.25 ≦ log 10 S 2 (2)
log 10 S 2 ≦ {−0.015 × (θ × ΔB) −0.25} +0.25 (3)
However, in formula (2) and formula (3), θ represents the water droplet contact angle in the water vapor barrier film after film formation and after holding for 1 day at a temperature of 25 ° C. and a relative humidity of 50% RH. The absolute value of the difference between the basicity Bx of the first oxide (X) and the basicity By of the second oxide (Y) is shown. Further, when the content ratio of the first oxide (X) in the water vapor barrier film is x mol and the content ratio of the second oxide (Y) is y mol, x and y are 0.05 ≦ x / (x + y). ) ≦ 0.95 is satisfied.

上記式(2)及び式(3)に、上記本発明第一実施形態の評価方法で使用する式(1)を代入すると、上記式(2)及び式(3)は、下記式(4)で表される。   When the formula (1) used in the evaluation method of the first embodiment of the present invention is substituted into the formula (2) and the formula (3), the formula (2) and the formula (3) are expressed by the following formula (4). It is represented by

log101−0.25≦log102≦log101+0.25 (4)
第二実施形態の評価方法では、上記式(4)に示されるように、上述した第一実施形態の評価方法に用いる上記式(1)から算出されるlog101の値に、所定の範囲を設けて評価を行うものである。第一実施形態の評価方法では、上記式(1)から算出されるS1の値を、モコン法による水蒸気透過率そのものとみなすため、画一的かつ迅速な評価が可能である。一方、第1酸化物と第2酸化物が同じ場合、組成比が異なる膜でもΔBは同一となるといった近似的要素を含むため、上記式(1)から算出されるS1の値と実測値との間には比較的大きな誤差が生じることがある。そのため、場合によっては想定される誤差の範囲まで把握しておく必要がある。そこで、この第二実施形態の評価方法は、上記式(1)からlog101の値に一定の範囲を設けて評価を行うことにより、想定され得る実測値との誤差範囲までも考慮した柔軟な評価を可能にしたものである。なお、−0.25〜+0.25という範囲は、上記式(1)を算出する際に用いた実測された水蒸気透過率Sのlog10Sの値と、上記式(1)から算出されたlog101の値の誤差の最大値を考慮して設定した範囲である。
log 10 S 1 −0.25 ≦ log 10 S 2 ≦ log 10 S 1 +0.25 (4)
In the evaluation method of the second embodiment, as shown in the above formula (4), the value of log 10 S 1 calculated from the above formula (1) used in the above-described evaluation method of the first embodiment is set to a predetermined value. A range is set for evaluation. In the evaluation method of the first embodiment, since the value of S 1 calculated from the above formula (1) is regarded as the water vapor transmission rate itself by the Mocon method, uniform and rapid evaluation is possible. On the other hand, when the first oxide and the second oxide are the same, since the ΔB is the same even in films having different composition ratios, the value of S 1 calculated from the above equation (1) and the actual measurement value are included. A relatively large error may occur between the two. Therefore, in some cases, it is necessary to grasp the range of the expected error. Therefore, the evaluation method of the second embodiment takes into consideration an error range from an actually measured value that can be assumed by setting a certain range to the value of log 10 S 1 from the above equation (1). This enables flexible evaluation. Note that the range of −0.25 to +0.25 was calculated from the log 10 S value of the actually measured water vapor transmission rate S used when calculating the above equation (1) and the above equation (1). This is a range set in consideration of the maximum error of the value of log 10 S 1 .

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1〜8>
次の表1に示す条件にて、ガラス基板上に水蒸気バリア膜を成膜し試験片を得た。なお、水蒸気バリア膜の成膜は、反応性プラズマ蒸着法にて行い、実施例1〜7は第1酸化物(X)からなる蒸着材と第2酸化物(Y)からなる蒸着材の2つの蒸着材を用いた共蒸着により、実施例8は第1酸化物(X)及び第2酸化物(Y)の双方を含む1つの蒸着材を用いて行った。
<Examples 1-8>
Under the conditions shown in Table 1 below, a water vapor barrier film was formed on a glass substrate to obtain a test piece. The water vapor barrier film is formed by a reactive plasma vapor deposition method. Examples 1 to 7 are a vapor deposition material composed of a first oxide (X) and a vapor deposition material composed of a second oxide (Y). By co-evaporation using two vapor deposition materials, Example 8 was performed using one vapor deposition material containing both the first oxide (X) and the second oxide (Y).

次に、これらの試験片を、温度25℃、相対湿度50%RHの条件で1日放置した後、水蒸気バリア膜の水滴接触角θを求めた。水滴接触角θは、ガラス基板に成膜した膜にイオン交換水2μL滴下してから2秒後に測定された液滴法による接触角である。上記酸化物(X)及び酸化物(Y)の塩基度、及び上記測定された水滴接触角θを、下記式(1)に代入してS1の値(みなし値)をそれぞれ求めた。 Next, these test pieces were allowed to stand for 1 day under conditions of a temperature of 25 ° C. and a relative humidity of 50% RH, and then the water droplet contact angle θ of the water vapor barrier film was determined. The water droplet contact angle θ is a contact angle according to a droplet method measured 2 seconds after 2 μL of ion-exchanged water was dropped on a film formed on a glass substrate. The basicity of the oxide (X) and oxide (Y) and the measured water droplet contact angle θ were substituted into the following formula (1) to determine the value of S 1 (deemed value).

log101=−0.015×(θ×ΔB)−0.25 (1)
この結果を次の表1に示す。また、式(1)から算出されたlog101の値と、θ×ΔBの値の関係を図2に示す。
log 10 S 1 = −0.015 × (θ × ΔB) −0.25 (1)
The results are shown in Table 1 below. FIG. 2 shows the relationship between the value of log 10 S 1 calculated from the equation (1) and the value of θ × ΔB.

<比較試験及び評価>
実施例1〜8と同じ条件で、水蒸気バリア膜を成膜した試験片をそれぞれ用意した。この試験片について、それぞれモコン法(JIS K 7129)により、温度40℃、相対湿度90%RHの条件で1時間放置した後、温度40℃、相対湿度90%RHの条件にて水蒸気バリア膜の水蒸気透過率Sを測定し、これらを実測値とした。この結果を次の表1に示す。また、実測された水蒸気透過率Sのlog10Sの値と、θ×ΔBの値の関係を図2に示す。
<Comparison test and evaluation>
The test piece which formed the water vapor | steam barrier film | membrane on the same conditions as Examples 1-8 was each prepared. Each test piece was left for 1 hour under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH by the Mokon method (JIS K 7129), and then the water vapor barrier film was formed under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH. The water vapor transmission rate S was measured, and these were measured values. The results are shown in Table 1 below. FIG. 2 shows the relationship between the log 10 S value of the measured water vapor transmission rate S and the value of θ × ΔB.

Figure 0005510348
表1及び図2から明らかなように、実測された水蒸気透過率Sのlog10Sの値、水滴接触角θ、塩基度の絶対値ΔBの間には相関があることが判る。また、式(1)から算出されたlog101の値は、実測された水蒸気透過率Sのlog10Sの値とほぼ近い値を示しており、式(1)から、水蒸気透過率の実測値とほぼ近い値が算出できることが確認された。
Figure 0005510348
As is apparent from Table 1 and FIG. 2, it can be seen that there is a correlation among the log 10 S value of the water vapor transmission rate S actually measured, the water droplet contact angle θ, and the absolute value ΔB of the basicity. In addition, the value of log 10 S 1 calculated from the equation (1) shows a value almost similar to the value of log 10 S of the actually measured water vapor transmission rate S. From the equation (1), the water vapor transmission rate It was confirmed that a value almost close to the actually measured value can be calculated.

更に、図2から明らかなように、実測された水蒸気透過率Sのlog10Sの値は、いずれもlog101−0.25からlog101+0.25の範囲内にあることが判る。このことから、例えば実施例6のように、式(1)から算出されたlog101と、実測された水蒸気透過率Sのlog10Sの値の間に比較的大きな誤差が生じた場合でも、log101の値に上記範囲を付加して評価することで、想定される誤差範囲を把握しておくことができ、より柔軟な評価が行えることが確認された。 Further, as apparent from FIG. 2, the measured log 10 S values of the water vapor transmission rate S are all in the range of log 10 S 1 −0.25 to log 10 S 1 +0.25. I understand. From this, for example, as in Example 6, when a relatively large error occurs between the log 10 S 1 calculated from the expression (1) and the log 10 S value of the measured water vapor transmission rate S However, it was confirmed that by adding the above range to the value of log 10 S 1 and evaluating it, the assumed error range can be grasped and more flexible evaluation can be performed.

Claims (2)

第1酸化物(X)からなる蒸着材と第2酸化物(Y)からなる蒸着材、或いは第1酸化物(X)及び第2酸化物(Y)の双方を含む蒸着材を用い、真空成膜法により成膜した水蒸気バリア膜の水蒸気バリア性を評価する方法において、
下記式(1)から算出されるS1の値を、温度40℃、相対湿度90%RHの条件で1時間放置した後、温度40℃、相対湿度90%RHの条件で測定される前記水蒸気バリア膜の水蒸気透過率S(g/m2・day)とみなして評価することを特徴とする水蒸気バリア性の評価方法。
log101=−0.015×(θ×ΔB)−0.25 (1)
但し、式(1)中、θは成膜後、温度25℃、相対湿度50%RHの条件で1日間保持した後の前記水蒸気バリア膜における水滴接触角を示し、ΔBは前記第1酸化物(X)の塩基度Bxと前記第2酸化物(Y)の塩基度Byとの差の絶対値を示す。また、前記水蒸気バリア膜中の第1酸化物(X)の含有割合をxモル、前記第2酸化物(Y)の含有割合をyモルとするとき、x及びyは0.05≦x/(x+y)≦0.95を満たす。
Using a vapor deposition material made of the first oxide (X) and a vapor deposition material made of the second oxide (Y), or a vapor deposition material containing both the first oxide (X) and the second oxide (Y), a vacuum is used. In the method for evaluating the water vapor barrier property of the water vapor barrier film formed by the film forming method,
The value of S 1 calculated from the following formula (1) is allowed to stand for 1 hour under conditions of a temperature of 40 ° C. and a relative humidity of 90% RH, and then measured under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH. A method for evaluating water vapor barrier properties, characterized by evaluating water vapor permeability S (g / m 2 · day) of a barrier film.
log 10 S 1 = −0.015 × (θ × ΔB) −0.25 (1)
However, in the formula (1), θ represents a water droplet contact angle in the water vapor barrier film after film formation and maintained for 1 day under conditions of a temperature of 25 ° C. and a relative humidity of 50% RH, and ΔB represents the first oxide. The absolute value of the difference between the basicity Bx of (X) and the basicity By of the second oxide (Y) is shown. Further, when the content ratio of the first oxide (X) in the water vapor barrier film is x mol and the content ratio of the second oxide (Y) is y mol, x and y are 0.05 ≦ x / (X + y) ≦ 0.95 is satisfied.
第1酸化物(X)からなる蒸着材と第2酸化物(Y)からなる蒸着材、或いは第1酸化物(X)及び第2酸化物(Y)の双方を含む蒸着材を用い、真空成膜法により成膜した水蒸気バリア膜の水蒸気バリア性を評価する方法において、
下記式(2)及び式(3)の双方を満たすS2の範囲から、温度40℃、相対湿度90%RHの条件で1時間放置した後、温度40℃、相対湿度90%RHの条件で測定される前記水蒸気バリア膜の水蒸気透過率S(g/m2・day)を定めて評価することを特徴とする水蒸気バリア性の評価方法。
{−0.015×(θ×ΔB)−0.25}−0.25≦log102 (2)
log102≦{−0.015×(θ×ΔB)−0.25}+0.25 (3)
但し、式(2)及び式(3)中、θは成膜後、温度25℃、相対湿度50%RHの条件で1日間保持した後の前記水蒸気バリア膜における水滴接触角を示し、ΔBは前記第1酸化物(X)の塩基度Bxと前記第2酸化物(Y)の塩基度Byとの差の絶対値を示す。また、前記水蒸気バリア膜中の第1酸化物(X)の含有割合をxモル、前記第2酸化物(Y)の含有割合をyモルとするとき、x及びyは0.05≦x/(x+y)≦0.95を満たす。
Using a vapor deposition material made of the first oxide (X) and a vapor deposition material made of the second oxide (Y), or a vapor deposition material containing both the first oxide (X) and the second oxide (Y), a vacuum is used. In the method for evaluating the water vapor barrier property of the water vapor barrier film formed by the film forming method,
From the range of S 2 satisfying both of the following formulas (2) and (3), after standing for 1 hour at a temperature of 40 ° C. and a relative humidity of 90% RH, the temperature is 40 ° C. and a relative humidity of 90% RH. A method for evaluating a water vapor barrier property, characterized by determining and evaluating a water vapor permeability S (g / m 2 · day) of the water vapor barrier film to be measured.
{−0.015 × (θ × ΔB) −0.25} −0.25 ≦ log 10 S 2 (2)
log 10 S 2 ≦ {−0.015 × (θ × ΔB) −0.25} +0.25 (3)
However, in the formula (2) and the formula (3), θ represents a water droplet contact angle in the water vapor barrier film after film formation and held for 1 day under the conditions of a temperature of 25 ° C. and a relative humidity of 50% RH, and ΔB is The absolute value of the difference between the basicity Bx of the first oxide (X) and the basicity By of the second oxide (Y) is shown. Further, when the content ratio of the first oxide (X) in the water vapor barrier film is x mol and the content ratio of the second oxide (Y) is y mol, x and y are 0.05 ≦ x / (X + y) ≦ 0.95 is satisfied.
JP2011015964A 2011-01-28 2011-01-28 Evaluation method of water vapor barrier property Active JP5510348B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011015964A JP5510348B2 (en) 2011-01-28 2011-01-28 Evaluation method of water vapor barrier property
CN2011104270699A CN102621048A (en) 2011-01-28 2011-12-19 Method for evaluating vapor blocking performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015964A JP5510348B2 (en) 2011-01-28 2011-01-28 Evaluation method of water vapor barrier property

Publications (2)

Publication Number Publication Date
JP2012154865A JP2012154865A (en) 2012-08-16
JP5510348B2 true JP5510348B2 (en) 2014-06-04

Family

ID=46561095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015964A Active JP5510348B2 (en) 2011-01-28 2011-01-28 Evaluation method of water vapor barrier property

Country Status (2)

Country Link
JP (1) JP5510348B2 (en)
CN (1) CN102621048A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033455A (en) * 2012-12-12 2013-04-10 东莞南玻光伏科技有限公司 Permeable rate test method of solar photovoltaic assembly
JP2016136086A (en) * 2013-05-10 2016-07-28 コニカミノルタ株式会社 Water vapor permeation degree evaluation method, water vapor permeation degree evaluation system and manufacturing method of gas barrier film
CN114577697A (en) * 2022-02-21 2022-06-03 中国食品药品检定研究院 Three-method combined standard membrane for calibrating water vapor transmission capacity and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8428481D0 (en) * 1984-11-10 1984-12-19 Bibby Ltd Noel Measuring water vapour transmission through materials
CN1615431A (en) * 2002-01-18 2005-05-11 迪夫特克公司 Method and apparatus for determining penetration of gaseous substances through membrane
JP4097441B2 (en) * 2002-02-26 2008-06-11 株式会社九州山光社 Calculation method of moisture permeability of moisture permeable membrane
JP4470707B2 (en) * 2003-11-26 2010-06-02 住友ベークライト株式会社 Water vapor permeability evaluation method
JPWO2009041632A1 (en) * 2007-09-28 2011-01-27 株式会社アルバック Apparatus and method for measuring water vapor permeability
JP2010160098A (en) * 2009-01-09 2010-07-22 Yamagata Promotional Organization For Industrial Technology Moisture vapor permeability and gas permeability measuring device
JP5519959B2 (en) * 2009-06-10 2014-06-11 三菱マテリアル株式会社 Laminated sheet

Also Published As

Publication number Publication date
CN102621048A (en) 2012-08-01
JP2012154865A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
Dou et al. Transparent, flexible films based on layered double hydroxide/cellulose acetate with excellent oxygen barrier property
US20190367693A1 (en) Biaxially stretched polybutylene terephthalate film, manufacturing method therefor, and gas barrier laminate film
JP6023402B2 (en) Transparent conductive film and method for producing the same
Yeager et al. Adhesive properties of some fluoropolymer binders with the insensitive explosive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB)
JP5510348B2 (en) Evaluation method of water vapor barrier property
KR20210050596A (en) Delamination Resistant Glass Containers
Vourlias Application of X-rays diffraction for identifying thin oxide surface layers on zinc coatings
Hoffmann et al. Gas permeation barriers deposited by atmospheric pressure plasma enhanced atomic layer deposition
CN111781120B (en) Testing method for thin film package
Liu et al. A facile method of using sulfobetaine‐containing copolymers for biofouling resistance
Startek et al. Structural and functional properties of fluorinated silica hybrid barrier layers on flexible polymeric foil
JP2004333127A (en) Cell for evaluating vapor barrier property, and method for evaluating vapor barrier property
JP5776260B2 (en) Water vapor barrier film
JP6303350B2 (en) Gas barrier laminated film
JP2011178064A (en) Gas-barrier lamination film
JP2009226861A (en) Gas barrier film
CN108037119A (en) A kind of atmospheric environment severity appraisal procedure based on typical polymer material aging
Sabzevari et al. Short chains enhance slip of highly entangled polystyrenes during thin film dewetting
JP2007261134A (en) Antistatic barrier film
WO2015194558A1 (en) Method for evaluating water vapor transmission rate and device for evaluating water vapor transmission rate
Herbst et al. Helium transmission rate as a rapid and reliable method for assessing the water vapour transmission rate of transparent PET‐SiOx barrier foils
TWI479000B (en) Adhesive polymer composition and application thereof
JP5956471B2 (en) Growth layer for solar power generation
JP5810556B2 (en) Gas permeability test piece and gas permeability evaluation method
JP2013160632A (en) Gas permeability test piece, preparation method thereof, preparation device thereof, and gas barrier permeability evaluation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5510348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150