JP5505687B2 - Method for producing toner for developing electrostatic image, and toner - Google Patents

Method for producing toner for developing electrostatic image, and toner Download PDF

Info

Publication number
JP5505687B2
JP5505687B2 JP2009065594A JP2009065594A JP5505687B2 JP 5505687 B2 JP5505687 B2 JP 5505687B2 JP 2009065594 A JP2009065594 A JP 2009065594A JP 2009065594 A JP2009065594 A JP 2009065594A JP 5505687 B2 JP5505687 B2 JP 5505687B2
Authority
JP
Japan
Prior art keywords
toner
organic solvent
emulsion
producing
electrostatic charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009065594A
Other languages
Japanese (ja)
Other versions
JP2010217632A (en
Inventor
博 山田
彰法 斉藤
雅英 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009065594A priority Critical patent/JP5505687B2/en
Publication of JP2010217632A publication Critical patent/JP2010217632A/en
Application granted granted Critical
Publication of JP5505687B2 publication Critical patent/JP5505687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子写真、静電記録、静電印刷等に於ける静電荷像を現像する為の現像剤に使用されるトナーの製造方法、トナー及び該トナーを使用する電子写真現像装置に関する。更に詳しくは直接または間接電子写真現像方式を用いた複写機、レーザープリンター及び、普通紙ファックス等に使用される電子写真用トナーの製造方法、トナー、及び該トナーを用いた画像形成方法に関する。   The present invention relates to a method for producing toner used as a developer for developing an electrostatic charge image in electrophotography, electrostatic recording, electrostatic printing, and the like, a toner, and an electrophotographic developing apparatus using the toner. More particularly, the present invention relates to a method for producing a toner for electrophotography used in a copying machine, a laser printer, a plain paper fax machine or the like using a direct or indirect electrophotographic developing method, a toner, and an image forming method using the toner.

近年、市場からの高画質化の強い要求から、それに適した電子写真装置、それに使用するトナー現像剤の開発に拍車がかかっている。高画質化に対応したトナーとしては、粒径の揃ったトナーであることが必須である。トナーの粒径が揃い粒径分布がシャープになると、個々のトナー粒子の現像の際の挙動が揃って、微小ドット再現性が著しく向上する。   In recent years, the strong demand for higher image quality from the market has spurred the development of an electrophotographic apparatus suitable for it and a toner developer used therefor. As a toner corresponding to high image quality, it is essential that the toner has a uniform particle size. When the toner particle size is uniform and the particle size distribution becomes sharp, the behavior of individual toner particles during development is aligned, and the reproducibility of minute dots is remarkably improved.

重合トナー工法には、懸濁重合の他、異型化が比較的容易な乳化重合法や溶解懸濁法などがあり、粉砕トナー工法と比べて、小粒径でかつ粒径分布がシャープなトナーを得やすいという特長がある。有機溶媒を用いて、結着樹脂を溶解又は分散させ、水中で油滴を造り、所望の粒子径とした後に、有機溶媒を脱溶剤し、洗浄、乾燥し、粉体のトナーを得る。油滴中の有機溶媒の大部分は、脱溶剤工程において加熱減圧下で除去され、残留した有機溶媒の一部は洗浄工程で水中に抽出され、更に乾燥工程で完全に除去される。しかしながら、残留した有機溶媒が多い場合、洗浄工程、乾燥工程での除去に時間がかかり、生産効率が低下するという問題がある。   In addition to suspension polymerization, the polymerization toner method includes emulsion polymerization method and dissolution suspension method, which are relatively easy to modify, and has a smaller particle size and sharper particle size distribution than the pulverized toner method. It is easy to obtain. An organic solvent is used to dissolve or disperse the binder resin, and oil droplets are formed in water to obtain a desired particle size. Then, the organic solvent is removed, washed, and dried to obtain a powder toner. Most of the organic solvent in the oil droplets is removed under heating and reduced pressure in the solvent removal step, and a part of the remaining organic solvent is extracted into water in the washing step and further completely removed in the drying step. However, when there is a large amount of remaining organic solvent, there is a problem that it takes time for the removal in the washing step and the drying step and the production efficiency is lowered.

結着樹脂を溶解させるため極性溶媒を用いた場合、水と極性溶媒の一部が混和し、脱溶剤時に水と極性溶媒が共沸する。有機溶媒を完全に除去するには、共沸の影響が無視できず、溶媒除去の終点近傍では、蒸発してくる液の大部分は水であり、エネルギー効率が低下するという問題がある。効率よく蒸発を行うには、減圧度を上げるか、加熱温度をあげる必要がある。しかしながら、減圧度を上げると、凝縮器の冷却温度を下げる必要があり、一方、加熱温度を上げると、トナーが融着し、粗大化し、粒径分布がブロードになり、画質低下の原因となる。また、製造設備内にトナー融着物が蓄積することで生産トラブルの原因となる場合がある。   When a polar solvent is used to dissolve the binder resin, water and a part of the polar solvent are mixed, and water and the polar solvent azeotrope during the solvent removal. In order to completely remove the organic solvent, the azeotropic effect cannot be ignored, and in the vicinity of the end point of the solvent removal, the majority of the liquid that evaporates is water, and there is a problem that the energy efficiency is lowered. For efficient evaporation, it is necessary to increase the degree of vacuum or increase the heating temperature. However, when the degree of decompression is increased, it is necessary to lower the cooling temperature of the condenser. On the other hand, when the heating temperature is increased, the toner is fused and coarsened, the particle size distribution becomes broad, and the image quality is deteriorated. . In addition, accumulation of toner fusion products in the manufacturing facility may cause production trouble.

分離膜モジュールを用いた水と有機物の脱水法について、特許文献1(特許第274336号公報)にあるように、水蒸気透過速度と有機物蒸発物透過速度を規定したポリイミド製分離膜を用いて、分離膜の供給側から透過側へ水蒸気を選択的に透過させて蒸気混合物から水蒸気を除去することにより、水蒸気含有量が減少した有機物蒸気を得る方法が提案されている。また、特許文献2(特許第3876561号公報)には、分離膜モジュール及びガス分離方法について、キャリアガスの流れと混合ガスの流れが、ガス分離膜モジュールの中空糸膜を挟んで向流となるように構成され、中空糸束の外周部がフィルム状物質で被覆されることで効率的にガス分離を行う方法が提案されている。   About the dehydration method of water and organic matter using a separation membrane module, as described in Patent Document 1 (Patent No. 274336), separation is performed using a polyimide separation membrane that defines a water vapor transmission rate and an organic matter evaporation rate. There has been proposed a method for obtaining an organic vapor having a reduced water vapor content by selectively permeating water vapor from the supply side to the permeation side of the membrane and removing the water vapor from the vapor mixture. In Patent Document 2 (Japanese Patent No. 3876561), regarding the separation membrane module and the gas separation method, the flow of the carrier gas and the flow of the mixed gas are counter-current across the hollow fiber membrane of the gas separation membrane module. There has been proposed a method for efficiently performing gas separation by configuring the outer peripheral portion of the hollow fiber bundle with a film-like substance.

特許文献3(特許第254429号公報)には、有機化合物の浸透気化分離法に用いる分離膜の材質として、反復単位を有する芳香族ポリイミドが提案されている。   Patent Document 3 (Japanese Patent No. 2454429) proposes an aromatic polyimide having a repeating unit as a material for a separation membrane used in the pervaporation separation method of an organic compound.

重合トナーの残留重合性単量体等の揮発性有機分を、シリコーン製の中空糸ガス分離膜モジュールを用いて除去する方法が、特許文献4(特開2005−225698号公報)に提案されている。しかしながら、結着樹脂を有機溶媒に溶解または分散させた乳化液の溶媒除去方法については示されていない。   A method for removing volatile organic components such as residual polymerizable monomers of a polymerized toner using a silicone hollow fiber gas separation membrane module is proposed in Patent Document 4 (Japanese Patent Laid-Open No. 2005-225698). Yes. However, there is no description of a method for removing a solvent from an emulsion obtained by dissolving or dispersing a binder resin in an organic solvent.

これまで、重合トナーの有機溶媒を除去する方法として、芳香族ポリイミドを用いた分離膜モジュールを用いて、水と有機溶媒の共沸混合物から、選択的に水を除去する方法は提案されていないが、これは、有機溶媒除去の条件について様々な条件を鋭意検討しないと適応できない技術おためである。
特許第274336号公報 特許第3876561号公報 特許第254429号公報 特開2005−225698号公報
So far, as a method for removing the organic solvent of the polymerized toner, a method for selectively removing water from an azeotropic mixture of water and an organic solvent using a separation membrane module using an aromatic polyimide has not been proposed. However, this is a technique that cannot be applied without careful study of various conditions regarding the conditions for organic solvent removal.
Japanese Patent No. 274336 Japanese Patent No. 3877561 Japanese Patent No. 254429 JP 2005-225698 A

本発明の課題は、以下のとおり、(1)有機溶媒除去工程の時間短縮で、高効率なトナー製造方法を提供し、(2)乳化液より有機溶媒を除去すると同時に有機溶媒の精製を行うことで溶媒除去の熱エネルギーを有効に利用し、(3)トナー粒径分布のシャープ化を図ることにある。   The objects of the present invention are as follows: (1) providing a highly efficient toner production method by shortening the time of the organic solvent removal step; and (2) removing the organic solvent from the emulsion and simultaneously purifying the organic solvent. Thus, the heat energy for solvent removal is effectively used, and (3) the toner particle size distribution is sharpened.

本発明者らは、前述した課題を解決すべく本発明を完成するに至った。 即ち、前記課題は、つぎのような手段を含む本発明により解決される。
(1) 少なくとも結着樹脂及び/又は結着樹脂前駆体、着色剤、離型剤を含むトナー用材料を有機溶媒中に溶解又は分散させ、前記溶解液又は分散液からなる油相を、水系媒体中に乳化させて粒子を造粒し、前記乳化液から溶剤除去する工程を有することでトナー粒子を得る静電荷像現象用トナーの製造方法であって、
前記乳化液より有機溶媒を除去する工程において、分離膜モジュールを用い、該分離膜の排出側と液導入側の差圧を用いて、該有機溶媒と水系媒体の共沸混合物より、水蒸気を選択的に透過させ、該乳化液より有機溶媒を除去することを特徴とする静電荷像現象用トナーの製造方法。
(2) 少なくとも活性水素基を有する化合物、活性水素基と反応可能な部位を有する重合体、結着樹脂、着色剤、離型剤、変性層状無機鉱物と該結着樹脂との混練複合体を含むトナー用材料を有機溶媒中に溶解又は分散させ、該溶液または分散液からなる油相を、樹脂微粒子含有水系媒体中で分散、乳化させ、該活性水素基を有する化合物と、活性水素基と反応可能な部位を有する重合体を反応させた後、もしくは反応させながら、該有機溶媒を除去する工程を有するトナー製造方法であって、
前記乳化液より有機溶媒を除去する工程において、分離膜モジュールを用い、該分離膜の排出側と液導入側の差圧を用いて、該有機溶媒と水系媒体の共沸混合物より、水蒸気を選択的に透過させ、該乳化液より有機溶媒を除去することを特徴とする静電荷像現象用トナーの製造方法。
(3) 前記乳化液より有機溶媒を除去する工程において、該分離膜モジュールの排出側を30〜200mmHgの減圧状態とすることを特徴とする前記第(1)項または第(2)項に記載の静電荷像現象用トナーの製造方法。
(4) 前記分離膜モジュールの該分離膜が芳香族ポリイミド製であることを特徴とする前記第(1)項乃至第(3)項のいずれかに記載の静電荷像現象用トナーの製造方法。
(5) 前記有機溶媒が酢酸エチルであることを特徴とする前記第(1)項乃至第(4)項のいずれかに記載の静電荷像現像用トナーの製造方法。
(6) 前記静電荷像現象用トナーのガラス転移点が40〜70℃であることを特徴とする前記第(1)項乃至第(5)項のいずれかに記載の静電荷像現像用トナーの製造方法。
(7) 前記乳化液より有機溶媒を除去する工程において、該乳化液、及び該乳化液と水系媒体の共沸混合物の処理温度が前記静電荷像現象用トナーのガラス転移点より低い温度であることを特徴とする前記第(1)項乃至第(6)項のいずれかに記載の静電荷像現像用トナーの製造方法
The present inventors have completed the present invention to solve the above-described problems. That is, the said subject is solved by this invention containing the following means.
(1) A toner material including at least a binder resin and / or a binder resin precursor, a colorant, and a release agent is dissolved or dispersed in an organic solvent, and an oil phase composed of the solution or the dispersion is converted into an aqueous system. A method for producing a toner for an electrostatic charge image phenomenon, comprising emulsifying in a medium, granulating particles, and removing the solvent from the emulsion to obtain toner particles,
In the step of removing the organic solvent from the emulsion, a separation membrane module is used, and water vapor is selected from the azeotropic mixture of the organic solvent and the aqueous medium by using the differential pressure between the discharge side and the liquid introduction side of the separation membrane. A method for producing a toner for an electrostatic charge image phenomenon, wherein the organic solvent is removed from the emulsified liquid.
(2) A compound having at least an active hydrogen group, a polymer having a site capable of reacting with an active hydrogen group, a binder resin, a colorant, a release agent, and a kneaded composite of a modified layered inorganic mineral and the binder resin. The toner material is dissolved or dispersed in an organic solvent, and an oil phase composed of the solution or dispersion is dispersed and emulsified in an aqueous medium containing resin fine particles. The compound having the active hydrogen group, the active hydrogen group, A method for producing a toner comprising a step of removing the organic solvent after reacting or reacting a polymer having a reactable site,
In the step of removing the organic solvent from the emulsion, a separation membrane module is used, and water vapor is selected from the azeotropic mixture of the organic solvent and the aqueous medium by using the differential pressure between the discharge side and the liquid introduction side of the separation membrane. A method for producing a toner for an electrostatic charge image phenomenon, wherein the organic solvent is removed from the emulsified liquid.
(3) In the step of removing the organic solvent from the emulsion, the discharge side of the separation membrane module is in a reduced pressure state of 30 to 200 mmHg. Manufacturing method of toner for electrostatic charge image phenomenon.
(4) The method for producing a toner for an electrostatic charge image phenomenon according to any one of (1) to (3), wherein the separation membrane of the separation membrane module is made of aromatic polyimide. .
(5) The method for producing a toner for developing an electrostatic charge image according to any one of (1) to (4), wherein the organic solvent is ethyl acetate.
(6) The electrostatic image developing toner according to any one of (1) to (5), wherein the toner for electrostatic image phenomenon is 40 to 70 ° C. Manufacturing method.
(7) In the step of removing the organic solvent from the emulsion, the processing temperature of the emulsion and the azeotrope of the emulsion and the aqueous medium is lower than the glass transition point of the toner for electrostatic image phenomenon. The method for producing a toner for developing an electrostatic charge image according to any one of the above items (1) to (6) .

以下の詳細な説明から明らかなように、本発明の静電荷像現像用トナーの製造方法は、有機溶媒除去工程の時間が短縮でき、乳化液より有機溶媒を除去すると同時に有機溶媒の精製を行うことで溶媒除去の熱エネルギーを有効に利用できる。本発明の静電荷像現像用トナーの製造方法により得られたトナーは、粒径分布がのシャープで、低温定着性にすぐれ、ブレードクリーニングを使用する装置において転写残トナーが少なく、高画質で高い解像度の画像を与えるという極めて優れた効果を奏するものである。   As will be apparent from the following detailed description, the method for producing a toner for developing an electrostatic charge image according to the present invention can shorten the time of the organic solvent removal step, and simultaneously removes the organic solvent from the emulsion and simultaneously purifies the organic solvent. Thus, the heat energy for solvent removal can be used effectively. The toner obtained by the method for producing a toner for developing an electrostatic charge image of the present invention has a sharp particle size distribution, excellent low-temperature fixability, little residual toner in an apparatus using blade cleaning, high image quality and high This provides an extremely excellent effect of providing a resolution image.

本発明の装置図の一例として、ジャケット付き脱溶剤釜を用いたバッチ式脱溶剤装置を示した図である。It is the figure which showed the batch type solvent removal apparatus using the solvent removal pot with a jacket as an example of the apparatus figure of this invention. 本発明の装置図の一例として、機械的攪拌遠心薄膜型脱溶剤装置を用いた連続式装置を示した図である。It is the figure which showed the continuous type apparatus using the mechanical stirring centrifugal thin film type | mold solvent removal apparatus as an example of the apparatus figure of this invention. 本発明の装置図の一例として、縦型流下液膜式脱溶剤装置を用いた連続式装置を示した図である。It is the figure which showed the continuous type apparatus using the vertical falling liquid film type | mold solvent removal apparatus as an example of the apparatus figure of this invention. 本発明における画像形成装置の1つの例についての要部断面構成図である。1 is a cross-sectional configuration diagram of a main part of an example of an image forming apparatus according to the present invention.

従来は、少なくとも結着樹脂及び/又は結着樹脂前駆体、着色剤、離型剤を有機溶媒中に溶解又は分散させ、前記溶解液又は分散液からなる油相を、水系媒体中に乳化させて粒子を造粒し、乳化液より有機溶媒を除去する工程において、有機溶媒と水が共沸するため、トナー中の残留溶媒量を減らすために減圧下で長時間加熱を行っている。
本発明のトナー製造方法においては、分離膜モジュールを用いて有機溶媒と水の共沸混合物から、水蒸気を選択的に透過させることで、気液平衡によらず、有機溶媒を除去できる。また、一度の脱溶剤操作で有機溶媒と水を高純度で分離でき、脱溶剤にかかる熱エネルギー効率が良い。
Conventionally, at least a binder resin and / or a binder resin precursor, a colorant, and a release agent are dissolved or dispersed in an organic solvent, and an oil phase composed of the solution or the dispersion is emulsified in an aqueous medium. In the step of granulating the particles and removing the organic solvent from the emulsion, the organic solvent and water azeotrope, and thus heating is performed under reduced pressure for a long time in order to reduce the amount of residual solvent in the toner.
In the toner production method of the present invention, the organic solvent can be removed regardless of vapor-liquid equilibrium by selectively allowing water vapor to permeate from the azeotropic mixture of the organic solvent and water using the separation membrane module. Moreover, the organic solvent and water can be separated with high purity by a single solvent removal operation, and the thermal energy efficiency required for solvent removal is good.

本発明のトナー製造方法においては、分離膜モジュールの透過側(排出側)を30〜200mmHgの減圧状態とし、非透過側(液導入側)との差圧を保持することで水蒸気を選択的に透過させることができる。水蒸気を選択的に透過させる分離膜として、芳香族ポリイミドが好ましい。芳香族ポリイミドは水と比べて低沸点の有機溶媒と水が共沸する場合、有機溶媒のモル分率が極小の時、すなわち脱溶剤の終点近傍では、水の減圧蒸留と同様に、蒸発温度は、30mmHgでは約29℃、200mmHgでは約66℃に近づく。   In the toner manufacturing method of the present invention, the permeation side (discharge side) of the separation membrane module is in a reduced pressure state of 30 to 200 mmHg, and the water vapor is selectively selected by maintaining the differential pressure from the non-permeation side (liquid introduction side). Can be transmitted. An aromatic polyimide is preferable as a separation membrane that selectively allows water vapor to pass therethrough. In the case of aromatic polyimide, when an organic solvent having a low boiling point and water are azeotroped with water, when the molar fraction of the organic solvent is minimal, that is, in the vicinity of the end point of desolvation, the evaporation temperature is similar to that of water under reduced pressure. Of about 29 ° C. at 30 mmHg and about 66 ° C. at 200 mmHg.

本発明のトナー製造方法においては、極性溶媒の中でも特に酢酸エチルを用いることが好ましい。定着画像の光沢性に優れたポリエステル樹脂を結着樹脂として用いた場合、酢酸エチルはポリエステル樹脂の溶解性に優れ、また、大気圧中での沸点が約77℃と比較的低く、熱エネルギー的にも脱溶剤しやすい有機溶媒である。   In the toner production method of the present invention, it is particularly preferable to use ethyl acetate among polar solvents. When a polyester resin having excellent glossiness of a fixed image is used as a binder resin, ethyl acetate is excellent in solubility of the polyester resin and has a relatively low boiling point of about 77 ° C. at atmospheric pressure. In addition, it is an organic solvent that can be easily removed.

本発明のトナーのガラス転移点は40〜70℃であることが好ましく、ガラス転移点が40℃より低いと保管時の耐熱性が劣り、ガラス転移点が70℃より高いと低温定着性に劣る。また、有機溶媒を除去する際に30〜200mmHgの減圧状態とした場合に、蒸発温度は約30〜65℃となる為、トナーのガラス転移点は40〜70℃であることが好ましく、製造設備内にトナーの融着物が蓄積することによる生産トラブルを防ぐことができる。   The glass transition point of the toner of the present invention is preferably 40 to 70 ° C. When the glass transition point is lower than 40 ° C., the heat resistance during storage is poor, and when the glass transition point is higher than 70 ° C., the low temperature fixability is poor. . Further, when the organic solvent is removed, when the pressure is reduced to 30 to 200 mmHg, the evaporation temperature is about 30 to 65 ° C. Therefore, the glass transition point of the toner is preferably 40 to 70 ° C. It is possible to prevent production troubles due to accumulation of toner melts.

乳化液、及び有機溶媒除去後の乳化液、及び乳化液と水の共沸混合物の処理温度が、トナーのガラス転移点より低い温度であることが、融着物の蓄積、トナー粒子の粗大化防止の点から好ましい。   The processing temperature of the emulsion, the emulsion after removal of the organic solvent, and the azeotrope of the emulsion and water should be lower than the glass transition point of the toner to prevent the accumulation of fused materials and toner particle coarsening. From the point of view, it is preferable.

以下、本発明のトナーの性状に関する測定方法を示す。
本発明において乳化液中の分散粒子内酢酸エチル濃度は、具体的に次のような手順で決定される。
[測定機器条件]
測定装置:GC-2010(島津製作所製ガスクロマトグラフ)
注入量:2.0μL
試料気化室
注入モード:スプリット
気化室温度:180℃
キャリアガス:He
圧力:40.2kPa
全流量:56.0mL/min
カラム流量:1.04mL/min
線速度:20.0cm/sec
パージ流量:3.0mL/min
スプリット比:50.0
Hereafter, the measuring method regarding the property of the toner of this invention is shown.
In the present invention, the concentration of ethyl acetate in dispersed particles in the emulsion is specifically determined by the following procedure.
[Measurement equipment conditions]
Measuring device: GC-2010 (Shimadzu gas chromatograph)
Injection volume: 2.0μL
Sample vaporization chamber injection mode: Split vaporization chamber temperature: 180 ° C
Carrier gas: He
Pressure: 40.2kPa
Total flow rate: 56.0mL / min
Column flow rate: 1.04mL / min
Linear velocity: 20.0cm / sec
Purge flow rate: 3.0mL / min
Split ratio: 50.0

[カラム]
カラム名称:ZB-50
液相の膜厚0.25μm
長さ30.0m
内径:0.32mmID
カラム上限温度:340℃
[column]
Column name: ZB-50
Liquid phase film thickness 0.25μm
Length 30.0m
Inner diameter: 0.32mmID
Maximum column temperature: 340 ° C

[カラムオーブン]
カラム温度:60℃
カラムオーブン温度プログラム:
60℃ホールド6min→昇温速度60℃/min→230℃ホールド5min
[Column oven]
Column temperature: 60 ° C
Column oven temperature program:
60 ° C hold 6 min → Temperature rise rate 60 ° C / min → 230 ° C hold 5 min

[検出器]
検出器温度:250℃
メイクアップガス:N2/Air
メイクアップ流量:30.0mL/min
H2流量:47.0mL/min
Air流量:400mL/min
[Detector]
Detector temperature: 250 ° C
Make-up gas: N2 / Air
Make-up flow rate: 30.0mL / min
H2 flow rate: 47.0mL / min
Air flow rate: 400mL / min

[測定方法]
内標準液の調整:トルエン4gをメスフラスコ中に計量して、DMFで500mLに希釈する。
測定試料の調整:測定する乳化液1.5gをDMFで約50mLに希釈した後、内標液10mLをホールピペットで採取して投入する。スターラ−で測定試料を4分400rpmで攪拌した後、測定機器GCのオートサンプラ−に試料をセッティングし測定を行う。測定終了後に内標準物質のトルエンと酢酸エチルの比率から、内標準法により乳化液中の酢酸エチル量を計算する。
[Measuring method]
Preparation of internal standard solution: Weigh 4 g of toluene in a volumetric flask and dilute to 500 mL with DMF.
Preparation of measurement sample: After 1.5 g of the emulsion to be measured is diluted to about 50 mL with DMF, 10 mL of the internal standard solution is collected with a whole pipette and charged. After stirring the measurement sample with a stirrer at 400 rpm for 4 minutes, the sample is set on the autosampler of the measuring instrument GC and measurement is performed. After the measurement, the amount of ethyl acetate in the emulsion is calculated by the internal standard method from the ratio of toluene and ethyl acetate as the internal standard substance.

(円形度及び2μm以下粒子)
本発明においては、粒径2μm以下トナーの計測にフロー式粒子像分析装置(「FPIA−2100」;シスメックス社製)を用いて計測し、解析ソフト(FPIA−2100 Data Processing Program for FPIA version00−10)を用いて解析を行った。具体的には、ガラス製100mlビーカーに10wt%界面活性剤(アルキルベンゼンスフォン酸塩ネオゲンSC−A;第一工業製薬性)を0.1〜0.5ml添加し、各トナー0.1〜0.5g添加しミクロスパーテルでかき混ぜ、次いでイオン交換水80mlを添加した。得られた分散液を超音波分散器(本多電子社製)で3分間分散処理した。前記分散液を前記FPIA−2100を用いて濃度を5000〜15000個/μlが得られるまでトナーの形状及び分布を測定した。本測定法は平均円形度の測定再現性の点から前記分散液濃度が5000〜15000個/μlにすることが重要である。前記分散液濃度を得るために前記分散液の条件、すなわち添加する界面活性剤量、トナー量を変更する必要がある。界面活性剤量は前述したトナー粒径の測定と同様にトナーの疎水性により必要量が異なり、多く添加すると泡によるノイズが発生し、少ないとトナーを十分にぬらすことが出来ないため、分散が不十分となる。またトナー添加量は粒径のより異なり、小粒径の場合は少なく、また大粒径の場合は多くする必要があり、トナー粒径が3〜7μmの場合、トナー量を0.1〜0.5g添加することにより分散液濃度を5000〜15000個/μlにあわせる事が可能となる。
(Circularity and particles below 2 μm)
In the present invention, a flow type particle image analyzer (“FPIA-2100”; manufactured by Sysmex Corporation) is used to measure toner having a particle size of 2 μm or less, and analysis software (FPIA-2100 Data Processing Program for FPIA version 00-10) is measured. ) Was used for analysis. Specifically, 0.1 to 0.5 ml of 10 wt% surfactant (alkylbenzene sulfonate Neogen SC-A; Daiichi Kogyo Seiyaku) is added to a glass 100 ml beaker, and each toner 0.1 to 0 is added. 0.5 g was added and stirred with a microspatel, and then 80 ml of ion-exchanged water was added. The obtained dispersion was subjected to a dispersion treatment for 3 minutes with an ultrasonic disperser (manufactured by Honda Electronics Co., Ltd.). The shape and distribution of the toner were measured using the FPIA-2100 until the density of the dispersion was 5000 to 15000 / μl. In this measurement method, it is important that the concentration of the dispersion liquid is 5000 to 15000 / μl from the viewpoint of measurement reproducibility of the average circularity. In order to obtain the dispersion concentration, it is necessary to change the conditions of the dispersion, that is, the amount of surfactant to be added and the amount of toner. The amount of the surfactant varies depending on the hydrophobicity of the toner as in the measurement of the toner particle diameter described above. If it is added in a large amount, noise due to bubbles is generated. If the amount is too small, the toner cannot be sufficiently wetted. It becomes insufficient. Further, the toner addition amount differs from the particle size, and it is necessary to decrease the small particle size and increase the large particle size. When the toner particle size is 3 to 7 μm, the toner amount is 0.1 to 0. By adding 0.5 g, the dispersion concentration can be adjusted to 5000 to 15000 / μl.

(トナー形状)
本発明に用いられる形状係数SF−1、SF−2は、日立製作所製FE−SEM(S−4200)により測定して得られたトナーのSEM像を300個無作為にサンプリングし、その画像情報をインターフェースを介してニレコ社製画像解析装置(LuzexAP)に導入し解析を行い、下式より算出し得られた値をSF−1、SF−2と定義した。SF−1、SF−2の値は上記Luzexにより求めた値が好ましいが、同様の解析結果が得られるのであれば特に上記FE−SEM装置、画像解析装置に限定されない。
(Toner shape)
The shape factors SF-1 and SF-2 used in the present invention were obtained by randomly sampling 300 SEM images of the toner obtained by measurement using an FE-SEM (S-4200) manufactured by Hitachi, Ltd. Were introduced into an image analysis apparatus (LuzexAP) manufactured by Nireco through an interface and analyzed, and values obtained from the following equations were defined as SF-1 and SF-2. The values of SF-1 and SF-2 are preferably values obtained by the above Luzex, but are not particularly limited to the FE-SEM device and the image analysis device as long as similar analysis results can be obtained.

Figure 0005505687
Figure 0005505687

真球であればSF−1、SF−2のいずれも100となり、100より値が大きくなるにつれて球形から不定形になる。また特にSF−1はトナー全体の形状(楕円や球等)を表し、SF−2は表面の凹凸程度を示す形状係数である。   In the case of a true sphere, both SF-1 and SF-2 become 100, and the value becomes larger from 100 and becomes an indeterminate shape. In particular, SF-1 represents the shape of the whole toner (ellipse, sphere, etc.), and SF-2 is a shape factor indicating the degree of surface irregularities.

(トナー粒径)
トナーの平均粒径及び粒度分布はカーコールターカウンター法による。トナー粒子の粒度分布の測定装置としては、コールターカウンターTA−IIやコールターマルチサイザーII(いずれもコールター社製)があげられる。本発明においてはコールターカウンターTA−II型を用いて、個数分布、体積分布を出力するインターフェイス(日科技研)及びPC9801パーソナルコンピューター(NEC製)接続し測定した。
(Toner particle size)
The average particle size and the particle size distribution of the toner are determined by the car Coulter counter method. Examples of the measuring device for the particle size distribution of toner particles include Coulter Counter TA-II and Coulter Multisizer II (both manufactured by Coulter). In the present invention, measurement was performed using a Coulter Counter TA-II type connected to an interface (Nichiken Giken) that outputs number distribution and volume distribution and a PC9801 personal computer (manufactured by NEC).

以下にその測定方法について述べる。
まず、電解水溶液100〜150ml中に分散剤として界面活性剤(好ましくはアルキルベンゼンスルフォン酸塩)を0.1〜5ml加える。ここで、電解液とは1級塩化ナトリウムを用いて約1%NaCl水溶液を調製したもので、例えばISOTON−II(コールター社製)が使用できる。ここで、更に測定試料を2〜20mg加える。試料を懸濁した電解液は、超音波分散器で約1〜3分間分散処理を行ない、前記測定装置により、アパーチャーとして100μmアパーチャーを用いて、トナー粒子又はトナーの体積、個数を測定して、体積分布と個数分布を算出する。
チャンネルとしては、2.00〜2.52μm未満;2.52〜3.17μm未満;3.17〜4.00μm未満;4.00〜5.04μm未満;5.04〜6.35μm未満;6.35〜8.00μm未満;8.00〜10.08μm未満;10.08〜12.70μm未満;12.70〜16.00μm未満;16.00〜20.20μm未満;20.20〜25.40μm未満;25.40〜32.00μm未満;32.00〜40.30μm未満の13チャンネルを使用し、粒径2.00μm以上乃至40.30μm未満の粒子を対象とする。本発明に係わる体積分布から求めた体積基準の体積平均粒径(Dv)及び個数分布から求めた個数平均粒径(Dn)とその比Dv/Dnを求めた。
The measurement method is described below.
First, 0.1 to 5 ml of a surfactant (preferably alkylbenzene sulfonate) is added as a dispersant to 100 to 150 ml of an aqueous electrolytic solution. Here, the electrolytic solution is a solution prepared by preparing a 1% NaCl aqueous solution using primary sodium chloride. For example, ISOTON-II (manufactured by Coulter) can be used. Here, 2 to 20 mg of a measurement sample is further added. The electrolytic solution in which the sample is suspended is subjected to a dispersion treatment with an ultrasonic disperser for about 1 to 3 minutes, and the measurement device is used to measure the volume and number of toner particles or toner using a 100 μm aperture as an aperture. Volume distribution and number distribution are calculated.
As channels, 2.00 to less than 2.52 μm; 2.52 to less than 3.17 μm; 3.17 to less than 4.00 μm; 4.00 to less than 5.04 μm; 5.04 to less than 6.35 μm; 6 Less than 35 to 8.00 μm; less than 8.00 to less than 10.08 μm; less than 10.08 to less than 12.70 μm; less than 12.70 to less than 16.00 μm; less than 16.00 to less than 20.20 μm; Uses 13 channels of less than 40 μm; 25.40 to less than 32.00 μm; 32.00 to less than 40.30 μm, and targets particles having a particle size of 2.00 μm to less than 40.30 μm. The volume-based volume average particle diameter (Dv) obtained from the volume distribution according to the present invention and the number average particle diameter (Dn) obtained from the number distribution and the ratio Dv / Dn were obtained.

本発明の更なる検討によれば、耐熱保存性を維持しつつ、より低温定着性を効果的に発揮し、プレポリマーによる変性後の耐オフセット性を付与するには、結着樹脂としてポリエステル樹脂を用いることが好ましく、該ポリエステル樹脂のTHF可溶分の重量平均分子量が1,000〜30,000であることが好ましい。これは、1,000未満ではオリゴマー成分が増加するため耐熱保存性が悪化し、30,000を超えると立体障害によりプレポリマーによる変性が不十分となり耐オフセット性が悪化するためである。   According to a further study of the present invention, a polyester resin is used as a binder resin in order to effectively exhibit low-temperature fixability while maintaining heat-resistant storage stability and to impart offset resistance after modification with a prepolymer. Preferably, the polyester resin has a THF-soluble component weight average molecular weight of 1,000 to 30,000. This is because when the amount is less than 1,000, the oligomer component increases, the heat-resistant storage stability is deteriorated, and when it exceeds 30,000, the modification with the prepolymer is insufficient due to steric hindrance and the offset resistance is deteriorated.

本発明による分子量はGPC(ゲルパーミエーションクロマトグラフィー)により次のように測定される。40℃のヒートチャンバー中でカラムを安定させ、この温度におけるカラムに、溶媒としてTHFを毎分1mlの流速で流し、試料濃度として0.05〜0.6重量%に調製した樹脂のTHF試料溶液を50〜200μl注入して測定する。試料の分子量測定に当たっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により、作成された検量線の対数値とカウント数との関係から算出した。検量線作成用の標準ポリスチレン試料としては、例えば、Pressure Chemical Co.あるいは東洋ソーダ工業社製の分子量が6×102、2.1×103、4×103、1.75×104、5.1×104、1.1×105、3.9×105、8.6×105、2×106、4.48×106のものを用い、少なくとも10点程度の標準ポリスチレン試料を用いるのが適当である。また、検出器にはRI(屈折率)検出器を用いる。 The molecular weight according to the present invention is measured by GPC (gel permeation chromatography) as follows. Stabilize the column in a heat chamber at 40 ° C., flow THF at a flow rate of 1 ml / min through the column at this temperature, and prepare a THF sample solution of resin prepared at a sample concentration of 0.05 to 0.6% by weight. Is measured by injecting 50 to 200 μl. In measuring the molecular weight of the sample, the molecular weight distribution of the sample was calculated from the relationship between the logarithmic value of the prepared calibration curve and the count using several types of monodisperse polystyrene standard samples. As a standard polystyrene sample for preparing a calibration curve, for example, Pressure Chemical Co. Alternatively, the molecular weights of Toyo Soda Kogyo Co., Ltd. are 6 × 10 2 , 2.1 × 10 3 , 4 × 10 3 , 1.75 × 10 4 , 5.1 × 10 4 , 1.1 × 10 5 , 3.9. It is appropriate to use x10 5 , 8.6 × 10 5 , 2 × 10 6 , 4.48 × 10 6 , and use at least about 10 standard polystyrene samples. An RI (refractive index) detector is used as the detector.

また、該ポリエステル樹脂の酸価を1.0〜50.0(KOHmg/g)にすることにより、塩基化合物添加による粒経コントロール、低温定着性、耐高温オフセット性、耐熱保存性、帯電安定性などのトナー特性をより高品位にすることが可能である。つまり、酸価が50.0(KOHmg/g)を超えると変性ポリエステルの伸長または架橋反応が不十分となり、耐高温オフセット性に影響が見られ、また、1.0(KOHmg/g)未満では、製造時の塩基化合物による分散安定効果が得られず、また変性ポリエステルの伸長または架橋反応が進みやすく、製造安定性に問題が生じるためである。   In addition, by adjusting the acid value of the polyester resin to 1.0 to 50.0 (KOHmg / g), grain size control by adding a basic compound, low temperature fixability, high temperature offset resistance, heat resistant storage stability, charging stability It is possible to make the toner characteristics such as higher quality. That is, when the acid value exceeds 50.0 (KOHmg / g), the extension or crosslinking reaction of the modified polyester becomes insufficient, and the high-temperature offset resistance is affected, and when it is less than 1.0 (KOHmg / g) This is because a dispersion stabilizing effect due to the base compound during production cannot be obtained, and the elongation or cross-linking reaction of the modified polyester tends to proceed, resulting in a problem in production stability.

本発明のポリエステル樹脂の酸価の測定方法は、JIS K0070に準拠した方法による。但しサンプルが溶解しない場合は、溶媒にジオキサン又はTHF等の溶媒を用いる。
酸価は具体的に次のような手順で決定される。
測定装置:電位差自動滴定装置DL−53 Titrator
(メトラー・トレド社製)
使用電極:DG113−SC(メトラー・トレド社製)
解析ソフト:LabX Light Version 1.00.000
装置の校正:トルエン120mlとエタノール30mlの混合溶媒を使用する。
測定温度:23℃
測定条件は以下のとおりである。
Stir
Speed [%] 25
Time [s] 15
EQP titration
Titrant/Sensor
Titrant CH3ONa
Concentration [mol/L] 0.1
Sensor DG115
Unit of measurement mV
Predispensing to volume
Volume [mL] 1.0
Wait time [s] 0
Titrant addition Dynamic
dE(set) [mV] 8.0
dV(min) [mL] 0.03
dV(max) [mL] 0.5
Measure mode Equilibrium controlled
dE [mV] 0.5
dt [s] 1.0
t(min) [s] 2.0
t(max) [s] 20.0
Recognition
Threshold 100.0
Steepest jump only No
Range No
Tendency None
Termination
at maximum volume [mL] 10.0
at potential No
at slope No
after number EQPs Yes
n = 1
comb. termination conditions No
Evaluation
Procedure Standard
Potential 1 No
Potential 2 No
Stop for reevaluation No
The method for measuring the acid value of the polyester resin of the present invention is based on a method based on JIS K0070. However, when the sample does not dissolve, a solvent such as dioxane or THF is used as the solvent.
The acid value is specifically determined by the following procedure.
Measuring device: potentiometric automatic titrator DL-53 Titrator
(Metler Toledo)
Electrode used: DG113-SC (manufactured by METTLER TOLEDO)
Analysis software: LabX Light Version 1.00.000
Calibration of the apparatus: Use a mixed solvent of 120 ml of toluene and 30 ml of ethanol.
Measurement temperature: 23 ° C
The measurement conditions are as follows.
Stir
Speed [%] 25
Time [s] 15
EQP titration
Titrant / Sensor
Titrant CH 3 ONa
Concentration [mol / L] 0.1
Sensor DG115
Unit of measurement mV
Predispensing to volume
Volume [mL] 1.0
Wait time [s] 0
Titrant addition Dynamic
dE (set) [mV] 8.0
dV (min) [mL] 0.03
dV (max) [mL] 0.5
Measure mode Equilibrium controlled
dE [mV] 0.5
dt [s] 1.0
t (min) [s] 2.0
t (max) [s] 20.0
Recognition
Threshold 100.0
Steepest jump only No
Range No
Tendency None
Termination
at maximum volume [mL] 10.0
at potential No
at slope No
after number EQPs Yes
n = 1
comb. termination conditions No
Evaluation
Procedure Standard
Potential 1 No
Potential 2 No
Stop for reevaluation No

(酸価の測定方法)
JIS K0070−1992に記載の測定方法に準拠して以下の条件で測定を行う。試料調整:ポリエステル0.5g(酢酸エチル可溶成分では0.3g)をトルエン120mlに添加して室温(23℃)で約10時間撹拌して溶解する。更にエタノール30mlを添加して試料溶液とする。
測定は上記記載の装置にて計算することができるが、具体的には次のように計算する。あらかじめ標定されたN/10苛性カリ〜アルコール溶液で滴定し、アルコールカリ液の消費量から次の計算で酸価を求める。
酸価=KOH(ml数)×N×56.1/試料重量
(ただしNはN/10KOHのファクター)
(Measurement method of acid value)
Measurement is performed under the following conditions in accordance with the measurement method described in JIS K0070-1992. Sample preparation: 0.5 g of polyester (0.3 g for ethyl acetate-soluble component) is added to 120 ml of toluene and dissolved by stirring at room temperature (23 ° C.) for about 10 hours. Further, 30 ml of ethanol is added to prepare a sample solution.
The measurement can be calculated by the apparatus described above, and specifically, the calculation is performed as follows. Titrate with a pre-standardized N / 10 caustic potash to alcohol solution, and determine the acid value from the consumption of the alcohol potash solution by the following calculation.
Acid value = KOH (ml) x N x 56.1 / sample weight (where N is a factor of N / 10 KOH)

本発明においては、変性後のポリエステル樹脂すなわち結着樹脂の主成分の耐熱保存性能は、変性前のポリエステル樹脂のガラス転移点に依存するため、ポリエステル樹脂のガラス転移点を35℃〜65℃に設計することが好ましい。つまり、35℃未満では、耐熱保存性が不足し、65℃を超えると低温定着に悪影響を及ぼす。   In the present invention, the heat-resistant storage performance of the main component of the polyester resin after modification, that is, the binder resin depends on the glass transition point of the polyester resin before modification, so that the glass transition point of the polyester resin is 35 ° C. to 65 ° C. It is preferable to design. That is, if it is less than 35 ° C., the heat-resistant storage stability is insufficient, and if it exceeds 65 ° C., it adversely affects low-temperature fixing.

本発明においてガラス転移点の測定は、理学電機社製のRigaku THRMOFLEX TG8110により、昇温速度10℃/minの条件にて測定される。
Tgの測定方法について概説する。Tgを測定する装置として、理学電機社製TG−DSCシステムTAS−100を使用した。
まず試料約10mgをアルミ製試料容器に入れ、それをホルダユニットにのせ、電気炉中にセットする。まず、室温から昇温速度10℃/minで150℃まで加熱した後、150℃で10min間放置、室温まで試料を冷却して10min放置、窒素雰囲気下で再度150℃まで昇温速度10℃/minで加熱してDSC測定を行った。Tgは、TAS−100システム中の解析システムを用いて、Tg近傍の吸熱カーブの接線とベースラインとの接点から算出した。
In the present invention, the glass transition point is measured with a Rigaku THRMOFLEX TG8110 manufactured by Rigaku Corporation under a temperature increase rate of 10 ° C./min.
A method for measuring Tg will be outlined. As an apparatus for measuring Tg, a TG-DSC system TAS-100 manufactured by Rigaku Corporation was used.
First, about 10 mg of a sample is placed in an aluminum sample container, which is placed on a holder unit and set in an electric furnace. First, after heating from room temperature to 150 ° C. at a temperature rising rate of 10 ° C./min, the sample was allowed to stand at 150 ° C. for 10 min, the sample was cooled to room temperature and left for 10 min, and the temperature rising rate was again increased to 150 ° C. under a nitrogen atmosphere. DSC measurement was performed by heating at min. Tg was calculated from the tangent of the endothermic curve near the Tg and the base line using the analysis system in the TAS-100 system.

本発明のさらなる検討によれば、活性水素基と反応可能な部位を有する重合体は低温定着性、耐高温オフセット性を実現するために重要な結着樹脂成分であり、その重量平均分子量は3,000〜50,000が好ましい。すなわち、重量平均分子量が3,000未満では反応速度の制御が困難となり、製造安定性に問題が生じ始める。また、重量平均分子量が50,000を超えた場合には十分な変性ポリエステルが得られずに、耐オフセット性に影響を及ぼし始める。   According to a further study of the present invention, a polymer having a site capable of reacting with an active hydrogen group is an important binder resin component for realizing low-temperature fixability and high-temperature offset resistance, and its weight average molecular weight is 3 , 50,000 to 50,000 are preferred. That is, when the weight average molecular weight is less than 3,000, it becomes difficult to control the reaction rate, and problems in production stability begin to occur. On the other hand, when the weight average molecular weight exceeds 50,000, sufficient modified polyester cannot be obtained and the offset resistance starts to be affected.

本発明のさらなる検討によれば、トナー酸価は低温定着性、耐高温オフセット性に対して、結着樹脂酸価より重要な指標であることが判明した。本発明のトナー酸価は未変性ポリエステルの末端カルボキシル基に由来する。この未変性ポリエステルは、トナーとしての低温定着性(定着下限温度、ホットオフセット発生温度など)を制御するために、酸価を0.5〜40.0(KOHmg/g)にする事が好ましい。つまり、トナー酸価が40.0(KOHmg/g)を超えると変性ポリエステルの伸長または架橋反応が不十分となり、耐高温オフセット性に影響が見られ、また、0.5(KOHmg/g)未満では、製造時の塩基化合物による分散安定効果が得られず、変性ポリエステルの伸長または架橋反応が進みやすく、製造安定性に問題が生じるためである。
JIS K0070に準拠した方法による。但しサンプルが溶解しない場合は、溶媒にジオキサン又はTHF等の溶媒を用いる。
酸価は具体的に次のような手順で決定される。
測定装置:電位差自動滴定装置DL−53 Titrator
(メトラー・トレド社製)
使用電極:DG113−SC (メトラー・トレド社製)
解析ソフト:LabX Light Version 1.00.000
装置の校正:トルエン120mlとエタノール30mlの混合溶媒を使用する。
測定温度 :23℃
測定条件は以下のとおりである。
Stir
Speed [%] 25
Time [s] 15
EQP titration
Titrant/Sensor
Titrant CH3ONa
Concentration [mol/L] 0.1
Sensor DG115
Unit of measurement mV
Predispensing to volume
Volume [mL] 1.0
Wait time [s] 0
Titrant addition Dynamic
dE(set) [mV] 8.0
dV(min) [mL] 0.03
dV(max) [mL] 0.5
Measure mode Equilibrium controlled
dE [mV] 0.5
dt [s] 1.0
t(min) [s] 2.0
t(max) [s] 20.0
Recognition
Threshold 100.0
Steepest jump only No
Range No
Tendency None
Termination
at maximum volume [mL] 10.0
at potential No
at slope No
after number EQPs Yes
n = 1
comb. termination conditions No
Evaluation
Procedure Standard
Potential 1 No
Potential 2 No
Stop for reevaluation No
Further examination of the present invention revealed that the toner acid value is a more important index than the binder resin acid value for low-temperature fixability and high-temperature offset resistance. The toner acid value of the present invention is derived from the terminal carboxyl group of the unmodified polyester. This unmodified polyester preferably has an acid value of 0.5 to 40.0 (KOHmg / g) in order to control low-temperature fixability (fixing lower limit temperature, hot offset occurrence temperature, etc.) as a toner. In other words, when the toner acid value exceeds 40.0 (KOHmg / g), the modified polyester is insufficiently stretched or cross-linked, affecting high-temperature offset resistance, and less than 0.5 (KOHmg / g). In this case, the dispersion stabilizing effect due to the base compound at the time of production cannot be obtained, and the extension or crosslinking reaction of the modified polyester tends to proceed, resulting in a problem in production stability.
According to a method based on JIS K0070. However, when the sample does not dissolve, a solvent such as dioxane or THF is used as the solvent.
The acid value is specifically determined by the following procedure.
Measuring device: potentiometric automatic titrator DL-53 Titrator
(Metler Toledo)
Electrode used: DG113-SC (Metler Toledo)
Analysis software: LabX Light Version 1.00.000
Calibration of the apparatus: Use a mixed solvent of 120 ml of toluene and 30 ml of ethanol.
Measurement temperature: 23 ° C
The measurement conditions are as follows.
Stir
Speed [%] 25
Time [s] 15
EQP titration
Titrant / Sensor
Titrant CH 3 ONa
Concentration [mol / L] 0.1
Sensor DG115
Unit of measurement mV
Predispensing to volume
Volume [mL] 1.0
Wait time [s] 0
Titrant addition Dynamic
dE (set) [mV] 8.0
dV (min) [mL] 0.03
dV (max) [mL] 0.5
Measure mode Equilibrium controlled
dE [mV] 0.5
dt [s] 1.0
t (min) [s] 2.0
t (max) [s] 20.0
Recognition
Threshold 100.0
Steepest jump only No
Range No
Tendency None
Termination
at maximum volume [mL] 10.0
at potential No
at slope No
after number EQPs Yes
n = 1
comb. termination conditions No
Evaluation
Procedure Standard
Potential 1 No
Potential 2 No
Stop for reevaluation No

(酸価の測定方法)
JIS K0070−1992に記載の測定方法に準拠して以下の条件で測定を行う。
試料調整:トナー0.5g(酢酸エチル可溶成分では0.3g)をトルエン120mlに添加して室温(23℃)で約10時間撹拌して溶解する。更にエタノール30mlを添加して試料溶液とする。
測定は上記記載の装置にて計算することが出来るが、具体的には次のように計算する。
あらかじめ標定されたN/10苛性カリ〜アルコール溶液で滴定し、アルコールカリ液
の消費量から次の計算で酸価を求める。
酸価=KOH(ml数)×N×56.1/試料重量
(ただしNはN/10KOHのファクター)
(Measurement method of acid value)
Measurement is performed under the following conditions in accordance with the measurement method described in JIS K0070-1992.
Sample preparation: 0.5 g of toner (0.3 g for ethyl acetate soluble component) is added to 120 ml of toluene and dissolved by stirring for about 10 hours at room temperature (23 ° C.). Further, 30 ml of ethanol is added to prepare a sample solution.
The measurement can be calculated by the apparatus described above, but specifically, the calculation is performed as follows.
Titrate with a pre-standardized N / 10 caustic potash to alcohol solution, and determine the acid value from the consumption of the alcohol potash solution by the following calculation.
Acid value = KOH (ml) x N x 56.1 / sample weight (where N is a factor of N / 10 KOH)

本発明のトナーのガラス転移点は低温定着性、耐熱保存性、高耐久性を得るために40〜70℃が好ましい。つまり、ガラス転移点が40℃未満では現像機内でのブロッキングや感光体へのフィルミングが発生し易くなり、また、70℃を超えた場合には低温定着性が悪化しやすくなる。本発明のトナーは、少なくともトナー組成物及び/又はトナー組成物前駆体を含む油相を水系媒体に分散して造粒することにより、又は少なくとも、有機溶媒中に、活性水素基を有する化合物と反応可能な部位を有する重合体、結着樹脂、着色剤、離型剤、層状無機鉱物が有するイオンの少なくとも一部を有機物イオンで変性した層状無機鉱物と該結着樹脂との混練複合体を溶解又は分散させ、該溶液または分散液を樹脂微粒子含有水系媒体中で分散させ、該活性水素基を有する化合物と反応可能な部位を有する重合体を反応させた後、もしくは反応させながら、該有機溶媒を除去し、洗浄、乾燥することにより得られた
ものである。
The glass transition point of the toner of the present invention is preferably 40 to 70 ° C. in order to obtain low temperature fixability, heat resistant storage stability and high durability. That is, when the glass transition point is less than 40 ° C., blocking in the developing machine and filming to the photoreceptor are liable to occur, and when it exceeds 70 ° C., the low-temperature fixability tends to deteriorate. The toner of the present invention is obtained by dispersing and granulating an oil phase containing at least a toner composition and / or a toner composition precursor in an aqueous medium, or at least in a compound having an active hydrogen group in an organic solvent. A kneaded composite of a binder resin with a layered inorganic mineral in which at least a part of the ions of a polymer having a reactive site, a binder resin, a colorant, a release agent, and a layered inorganic mineral is modified with an organic ion. Dissolve or disperse, disperse the solution or dispersion in an aqueous medium containing resin fine particles, and react the polymer having a site capable of reacting with the compound having an active hydrogen group, or while reacting, the organic It was obtained by removing the solvent, washing and drying.

本発明で用いる活性水素基と反応可能な部位を有する重合体としては、活性水素と反応可能な反応性変性ポリエステル系樹脂(RMPE)が挙げられ、例えば、イソシアネート基を有するポリエステルプレポリマー(A)などが挙げられる。このプレポリマー(A)としては、ポリオール(PO)とポリカルボン酸(PC)との重縮合物で、かつ活性水素を有するポリエステルをさらにポリイソシアネート(PIC)と反応させたもの等が挙げられる。上記ポリエステルの有する活性水素を含む基としては、水酸基(アルコール性水素基及びフェノール性水酸基)、アミノ基、カルボキシル基、メルカプト基などが挙げられ、これらのうち好ましいものはアルコール性水酸基である。前記反応性変性ポリエステル系樹脂に対する架橋剤としては、アミン類が用いられ、伸長剤としてはジイソシアネート化合物(ジフェニルメタンジイソシアネート等)が用いられる。後述に詳しく説明するアミン類は、活性水素と反応可能な変性ポリエステルに対する架橋剤や伸長剤として作用する。
前記イソシアネート基を有するポリエステルプレポリマー(A)にアミン類(B)を反応させて得られるウレア変性ポリエステル等の変性ポリエステルはその高分子成分の分子量を調節しやすく、乾式トナー、特にオイルレス低温定着特性(定着用加熱媒体への離型オイル塗布機構のない広範な離型性及び定着性)を確保するのに好都合である。特にポリエステルプレポリマーの末端をウレア変性したものは未変性のポリエステル樹脂自体の定着温度域での高流動性、透明性を維持したまま、定着用加熱媒体への接着性を抑制することができる。
Examples of the polymer having a site capable of reacting with an active hydrogen group used in the present invention include a reactive modified polyester resin (RMPE) capable of reacting with active hydrogen. For example, a polyester prepolymer (A) having an isocyanate group Etc. Examples of the prepolymer (A) include a polycondensate of a polyol (PO) and a polycarboxylic acid (PC) and a polyester having active hydrogen further reacted with a polyisocyanate (PIC). Examples of the group containing active hydrogen in the polyester include a hydroxyl group (alcoholic hydrogen group and phenolic hydroxyl group), an amino group, a carboxyl group, a mercapto group, and the like. Among these, an alcoholic hydroxyl group is preferable. An amine is used as a crosslinking agent for the reactive modified polyester resin, and a diisocyanate compound (diphenylmethane diisocyanate or the like) is used as an extender. The amines described in detail later act as a crosslinking agent and an extender for the modified polyester capable of reacting with active hydrogen.
Modified polyester such as urea-modified polyester obtained by reacting the polyester prepolymer (A) having an isocyanate group with an amine (B) can easily adjust the molecular weight of the polymer component, and is a dry toner, particularly oilless low-temperature fixing. It is convenient to ensure the characteristics (wide releasability and fixability without a release oil application mechanism to the fixing heating medium). Particularly, a polyester prepolymer whose end is modified with urea can suppress adhesion to a heating medium for fixing while maintaining high fluidity and transparency in the fixing temperature range of the unmodified polyester resin itself.

本発明で用いる好ましいポリエステルプレポリマーは、末端に酸基や水酸基等の活性水素基を有するポリエステルに、その活性水素と反応するイソシアネート基等の官能基を導入したものである。このプレポリマーからウレア変性ポリエステル等の変性ポリエステル(MPE)を誘導することができるが、本発明の場合、トナーバインダーとして用いる好ましい変性ポリエステルは、イソシアネート基を有するポリエステルプレポリマー(A)に対して、架橋剤及び/又は伸長剤としてアミン類(B)を反応させて得られるウレア変性ポリエステルである。イソシアネート基を有するポリエステルプレポリマー(A)は、ポリオール(PO)とポリカルボン酸(PC)との重縮合物でかつ活性水素基を有するポリエステルをさらにポリイソシアネート(PIC)と反応させることによって得ることができる。上記ポリエステルの有する活性水素基としては、水酸基(アルコール性水酸基及びフェノール性水酸基)、アミノ基、カルボキシル基、メルカプト基などが挙げられ、これらのうち好ましいものはアルコール性水酸基である。   A preferred polyester prepolymer used in the present invention is a polyester having an active hydrogen group such as an acid group or a hydroxyl group at the terminal, and a functional group such as an isocyanate group that reacts with the active hydrogen. A modified polyester (MPE) such as urea-modified polyester can be derived from this prepolymer, but in the case of the present invention, a preferred modified polyester used as a toner binder is a polyester prepolymer (A) having an isocyanate group. It is a urea-modified polyester obtained by reacting amines (B) as a crosslinking agent and / or an extender. The polyester prepolymer (A) having an isocyanate group is obtained by further reacting a polyester having an active hydrogen group, which is a polycondensate of a polyol (PO) and a polycarboxylic acid (PC), with a polyisocyanate (PIC). Can do. Examples of the active hydrogen group possessed by the polyester include a hydroxyl group (alcoholic hydroxyl group and phenolic hydroxyl group), an amino group, a carboxyl group, a mercapto group, and the like. Among these, an alcoholic hydroxyl group is preferable.

ポリオール(PO)としては、ジオール(DIO)及び3価以上のポリオール(TO)が挙げられ、(DIO)単独、または(DIO)と少量の(TO)との混合物が好ましい。ジオール(DIO)としては、アルキレングリコール(エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオールなど);アルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールなど);脂環式ジオール(1,4−シクロヘキサンジメタノール、水素添加ビスフェノールAなど);ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールSなど);上記脂環式ジオールのアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)付加物;上記ビスフェノール類のアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)付加物などが挙げられる。これらのうち好ましいものは、炭素数2〜12のアルキレングリコール及びビスフェノール類のアルキレンオキサイド付加物であり、特に好ましいものはビスフェノール類のアルキレンオキサイド付加物、及びこれと炭素数2〜12のアルキレングリコールとの併用である。3価以上のポリオール(TO)としては、3〜8価またはそれ以上の多価脂肪族アルコール(グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなど);3価以上のフェノール類(トリスフェノールPA、フェノールノボラック、クレゾールノボラックなど);上記3価以上のポリフェノール類のアルキレンオキサイド付加物などが挙げられる。   Examples of the polyol (PO) include a diol (DIO) and a trivalent or higher polyol (TO), and (DIO) alone or a mixture of (DIO) and a small amount of (TO) is preferable. Diol (DIO) includes alkylene glycol (ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, etc.); alkylene ether glycol (diethylene glycol, triethylene glycol, Ethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, etc.); alicyclic diols (1,4-cyclohexanedimethanol, hydrogenated bisphenol A, etc.); bisphenols (bisphenol A, bisphenol F, Bisphenol S, etc.); alkylene oxide (ethylene oxide, propylene oxide, butylene oxide, etc.) adduct of the above alicyclic diol; Alkylene oxide phenol compound (ethylene oxide, propylene oxide, butylene oxide, etc.), etc. adducts. Among these, preferred are alkylene glycols having 2 to 12 carbon atoms and alkylene oxide adducts of bisphenols, and particularly preferred are alkylene oxide adducts of bisphenols and alkylene glycols having 2 to 12 carbon atoms. It is a combined use. Examples of the trivalent or higher polyol (TO) include 3 to 8 or higher polyhydric aliphatic alcohols (glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, etc.); trivalent or higher phenols (Tris) Phenol PA, phenol novolak, cresol novolak, etc.); alkylene oxide adducts of the above trivalent or more polyphenols.

ポリカルボン酸(PC)としては、ジカルボン酸(DIC)及び3価以上のポリカルボン酸(TC)が挙げられ、DIC単独、及びDICと少量の(TC)との混合物が好ましい。ジカルボン酸(DIC)としては、アルキレンジカルボン酸(コハク酸、アジピン酸、セバシン酸など);アルケニレンジカルボン酸(マレイン酸、フマール酸など);芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸など)などが挙げられる。これらのうち好ましいものは、炭素数4〜20のアルケニレンジカルボン酸及び炭素数8〜20の芳香族ジカルボン酸である。3価以上のポリカルボン酸(TC)としては、炭素数9〜20の芳香族ポリカルボン酸(トリメリット酸、ピロメリット酸など)などが挙げられる。なお、ポリカルボン酸(PC)としては、上述のものの酸無水物または低級アルキルエステル(メチルエステル、エチルエステル、イソプロピルエステルなど)を用いてポリオール(PO)と反応させてもよい。ポリオール(PO)とポリカルボン酸(PC)の比率は、水酸基[OH]とカルボキシル基[COOH]の当量比[OH]/[COOH]として、通常2/1〜1/1、好ましくは1.5/1〜1/1、さらに好ましくは1.3/1〜1.02/1である。   Examples of the polycarboxylic acid (PC) include dicarboxylic acid (DIC) and trivalent or higher polycarboxylic acid (TC), and DIC alone or a mixture of DIC and a small amount of (TC) is preferable. Dicarboxylic acids (DIC) include alkylene dicarboxylic acids (succinic acid, adipic acid, sebacic acid, etc.); alkenylene dicarboxylic acids (maleic acid, fumaric acid, etc.); aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid, naphthalene) Dicarboxylic acid and the like). Of these, preferred are alkenylene dicarboxylic acids having 4 to 20 carbon atoms and aromatic dicarboxylic acids having 8 to 20 carbon atoms. Examples of the trivalent or higher polycarboxylic acid (TC) include aromatic polycarboxylic acids having 9 to 20 carbon atoms (such as trimellitic acid and pyromellitic acid). In addition, as polycarboxylic acid (PC), you may make it react with a polyol (PO) using the above-mentioned acid anhydride or lower alkyl ester (Methyl ester, ethyl ester, isopropyl ester, etc.). The ratio of the polyol (PO) and the polycarboxylic acid (PC) is usually 2/1 to 1/1, preferably 1 as the equivalent ratio [OH] / [COOH] of the hydroxyl group [OH] and the carboxyl group [COOH]. 5/1 to 1/1, more preferably 1.3 / 1 to 1.02 / 1.

ポリイソシアネート(PIC)としては、脂肪族ポリイソシアネート(テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,6−ジイソシアナトメチルカプロエートなど);脂環式ポリイソシアネート(イソホロンジイソシアネート、シクロヘキシルメタンジイソシアネートなど);芳香族ジイソシアネート(トリレンジイソシアネート、ジフェニルメタンジイソシアネートなど);芳香脂肪族ジイソシアネート(α,α,α’,α’−テトラメチルキシリレンジイソシアネートなど);イソシアヌレート類;前記ポリイソシアネートをフェノール誘導体、オキシム、カプロラクタムなどでブロックしたもの;及びこれら2種以上の併用が挙げられる。
ポリイソシアネート(PIC)の比率は、イソシアネート基[NCO]と、水酸基を有するポリエステルの水酸基[OH]の当量比[NCO]/[OH]として、通常5/1〜1/1、好ましくは4/1〜1.2/1、さらに好ましくは2.5/1〜1.5/1である。[NCO]/[OH]が5を超えると低温定着性が悪化する。[NCO]のモル比が1未満では、変性ポリエステルを用いる場合、そのエステル中のウレア含量が低くなり、耐ホットオフセット性が悪化する。末端にイソシアネート基を有するプレポリマー(A)中のポリイソシアネート(3)構成成分の含有量は、通常0.5〜40重量%、好ましくは1〜30重量%、さらに好ましくは2〜20重量%である。0.5重量%未満では、耐ホットオフセット性が悪化するとともに、耐熱保存性と低温定着性の両立の面で不利になる。また、40重量%を超えると低温定着性が悪化する。
As polyisocyanate (PIC), aliphatic polyisocyanate (tetramethylene diisocyanate, hexamethylene diisocyanate, 2,6-diisocyanatomethylcaproate, etc.); alicyclic polyisocyanate (isophorone diisocyanate, cyclohexylmethane diisocyanate, etc.); aromatic Diisocyanates (tolylene diisocyanate, diphenylmethane diisocyanate, etc.); araliphatic diisocyanates (α, α, α ′, α′-tetramethylxylylene diisocyanate, etc.); isocyanurates; polyisocyanates such as phenol derivatives, oximes, caprolactams, etc. And a combination of two or more of these.
The ratio of the polyisocyanate (PIC) is usually 5/1 to 1/1, preferably 4 /, as an equivalent ratio [NCO] / [OH] of the isocyanate group [NCO] and the hydroxyl group [OH] of the polyester having a hydroxyl group. 1 to 1.2 / 1, more preferably 2.5 / 1 to 1.5 / 1. When [NCO] / [OH] exceeds 5, low-temperature fixability deteriorates. When the molar ratio of [NCO] is less than 1, when a modified polyester is used, the urea content in the ester becomes low and the hot offset resistance deteriorates. The content of the polyisocyanate (3) component in the prepolymer (A) having an isocyanate group at the terminal is usually 0.5 to 40% by weight, preferably 1 to 30% by weight, more preferably 2 to 20% by weight. It is. If it is less than 0.5% by weight, the hot offset resistance deteriorates, and it is disadvantageous in terms of both heat-resistant storage stability and low-temperature fixability. On the other hand, if it exceeds 40% by weight, the low-temperature fixability deteriorates.

イソシアネート基を有するプレポリマー(A)中の1分子当たりに含有するイソシアネート基は、通常1個以上、好ましくは、平均1.5〜3個、さらに好ましくは、平均1.8〜2.5個である。1分子当たり1個未満では、ウレア変性ポリエステルの分子量が低くなり、耐ホットオフセット性が悪化する。   The number of isocyanate groups contained per molecule in the prepolymer (A) having an isocyanate group is usually 1 or more, preferably 1.5 to 3 on average, more preferably 1.8 to 2.5 on average. It is. If it is less than 1 per molecule, the molecular weight of the urea-modified polyester will be low, and the hot offset resistance will deteriorate.

アミン類(B)としては、ジアミン(B1)、3価以上のポリアミン(B2)、アミノアルコール(B3)、アミノメルカプタン(B4)、アミノ酸(B5)、及びB1〜B5のアミノ基をブロックしたもの(B6)などが挙げられる。ジアミン(B1)としては、芳香族ジアミン(フェニレンジアミン、ジエチルトルエンジアミン、4,4’ジアミノジフェニルメタンなど);脂環式ジアミン(4,4’−ジアミノ−3,3’ジメチルジシクロヘキシルメタン、ジアミンシクロヘキサン、イソホロンジアミンなど);及び脂肪族ジアミン(エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなど)などが挙げられる。3価以上のポリアミン(B2)としては、ジエチレントリアミン、トリエチレンテトラミンなどが挙げられる。アミノアルコール(B3)としては、エタノールアミン、ヒドロキシエチルアニリンなどが挙げられる。アミノメルカプタン(B4)としては、アミノエチルメルカプタン、アミノプロピルメルカプタンなどが挙げられる。アミノ酸(B5)としては、アミノプロピオン酸、アミノカプロン酸などが挙げられる。(B1)〜(B5)のアミノ基をブロックしたもの(B6)としては、前記(B1)〜(B5)のアミン類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)から得られるケチミン化合物、オキサゾリジン化合物などが挙げられる。これらアミン類(B)のうち好ましいものは、(B1)及び(B1)と少量の(B2)の混合物である。   As amines (B), diamine (B1), trivalent or higher polyamine (B2), aminoalcohol (B3), aminomercaptan (B4), amino acid (B5), and amino acids B1 to B5 blocked (B6) etc. are mentioned. Examples of the diamine (B1) include aromatic diamines (phenylenediamine, diethyltoluenediamine, 4,4′diaminodiphenylmethane, etc.); alicyclic diamines (4,4′-diamino-3,3′dimethyldicyclohexylmethane, diaminecyclohexane, Isophorone diamine etc.); and aliphatic diamines (ethylene diamine, tetramethylene diamine, hexamethylene diamine etc.) and the like. Examples of the trivalent or higher polyamine (B2) include diethylenetriamine and triethylenetetramine. Examples of amino alcohol (B3) include ethanolamine and hydroxyethylaniline. Examples of amino mercaptan (B4) include aminoethyl mercaptan and aminopropyl mercaptan. Examples of the amino acid (B5) include aminopropionic acid and aminocaproic acid. As (B6) which blocked the amino group of (B1) to (B5), ketimine compounds obtained from the amines and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.) of (B1) to (B5), And oxazolidine compounds. Among these amines (B), preferred are (B1) and a mixture of (B1) and a small amount of (B2).

さらに、必要により伸長停止剤を用いてポリエステルの分子量を調整することができる。伸長停止剤としては、モノアミン(ジエチルアミン、ジブチルアミン、ブチルアミン、ラウリルアミンなど)、及びそれらをブロックしたもの(ケチミン化合物)などが挙げられる。   Furthermore, if necessary, the molecular weight of the polyester can be adjusted using an elongation terminator. Examples of the elongation terminator include monoamines (diethylamine, dibutylamine, butylamine, laurylamine, etc.), and those obtained by blocking them (ketimine compounds).

アミン類(B)の比率は、イソシアネート基を有するプレポリマー(A)中のイソシアネート基[NCO]と、アミン類(B)中のアミノ基[NHx]の当量比[NCO]/[NHx]として、通常1/2〜2/1、好ましくは1.5/1〜1/1.5、さらに好ましくは1.2/1〜1/1.2である。[NCO]/[NHx]が2を超えたり1/2未満では、ポリエステルの分子量が低くなり、耐ホットオフセット性が悪化する。
本発明においては、結着樹脂として好ましく用いられるポリエステル系樹脂(ポリエステル)は、ウレア変性ポリエステル(UMPE)であるが、このポリエステル中に、ウレア結合と共にウレタン結合を含有していてもよい。ウレア結合含有量とウレタン結合含有量のモル比は、通常100/0〜10/90であり、好ましくは80/20〜20/80、さらに好ましくは、60/40〜30/70である。ウレア結合のモル比が10%未満では、耐ホットオフセット性が悪化する。
ウレア変性ポリエステル(UMPE)等の変性ポリエステルは、ワンショット法などにより製造される。ウレア変性ポリエステル(UMPE)等の変性ポリエステルの重量平均分子量は、通常1万以上、好ましくは2万〜1000万、さらに好ましくは3万〜100万である。1万未満では耐ホットオフセット性が悪化する。ウレア変性ポリエステル等の変性ポリエステル数平均分子量は、後述の変性されていないポリエステル(PE)を用いる場合は特に限定されるものではなく、前記重量平均分子量とするのに得やすい数平均分子量でよい。UMPE等の変性ポリエステル単独の場合は、その数平均分子量は、通常2000〜15000、好ましくは2000〜10000、さらに好ましくは2000〜8000である。20000を超えると低温定着性及びフルカラー装置に用いた場合の光沢性が悪化する。
The ratio of amines (B) is the equivalent ratio [NCO] / [NHx] of isocyanate groups [NCO] in the prepolymer (A) having isocyanate groups and amino groups [NHx] in amines (B). The ratio is usually 1/2 to 2/1, preferably 1.5 / 1 to 1 / 1.5, more preferably 1.2 / 1 to 1 / 1.2. When [NCO] / [NHx] is more than 2 or less than 1/2, the molecular weight of the polyester is lowered and the hot offset resistance is deteriorated.
In the present invention, the polyester resin (polyester) preferably used as the binder resin is a urea-modified polyester (UMPE), but this polyester may contain a urethane bond together with a urea bond. The molar ratio of the urea bond content to the urethane bond content is usually 100/0 to 10/90, preferably 80/20 to 20/80, and more preferably 60/40 to 30/70. When the molar ratio of the urea bond is less than 10%, the hot offset resistance is deteriorated.
Modified polyester such as urea-modified polyester (UMPE) is produced by a one-shot method or the like. The weight average molecular weight of the modified polyester such as urea-modified polyester (UMPE) is usually 10,000 or more, preferably 20,000 to 10,000,000, more preferably 30,000 to 1,000,000. If it is less than 10,000, the hot offset resistance deteriorates. The number average molecular weight of a modified polyester such as a urea-modified polyester is not particularly limited when a non-modified polyester (PE) described later is used, and may be a number average molecular weight that can be easily obtained to obtain the weight average molecular weight. In the case of a modified polyester such as UMPE alone, the number average molecular weight is usually 2000-15000, preferably 2000-10000, and more preferably 2000-8000. When it exceeds 20000, the low-temperature fixability and the glossiness when used in a full-color device are deteriorated.

本発明においては、前記ウレア結合で変性されたポリエステル(UMPE)等の変性ポリエステルは単独使用だけでなく、このものと共に、変性されていないポリエステル(PE)を結着樹脂成分として含有させることもできる。PEを併用することで、低温定着性及びフルカラー装置に用いた場合の光沢性が向上し、単独使用より好ましい。PEとしては、前記UMPEのポリエステル成分と同様なポリオールPOとポリカルボン酸PCとの重縮合物などが挙げられ、好ましいものもUMPEの場合と同様である。PEの重量平均分子量(Mw)は、10000〜300000、好ましくは14000〜200000である。そのMn(数平均分子量)は、1000〜10000、好ましくは1500〜6000である。また、UMPEに対しては、無変性のポリエステルだけでなく、ウレア結合以外の化学結合で変性されているもの、例えばウレタン結合で変性されているものも併用することができる。UMPEとPEは少なくとも一部が相溶していることが低温定着性、耐ホットオフセット性の面で好ましい。従って、UMPEのポリエステル成分とPEは類似の組成が好ましい。PEを含有させる場合のUMPEとPEの重量比は、通常5/95〜80/20、好ましくは5/95〜30/70、さらに好ましくは5/95〜25/75、特に好ましくは7/93〜20/80である。UMPEの重量比が5%未満では、耐ホットオフセット性が悪化するとともに、耐熱保存性と低温定着性の両立の面で不利になる。   In the present invention, the above modified polyester such as polyester modified with urea bond (UMPE) is not only used alone, but can also contain unmodified polyester (PE) as a binder resin component. . By using PE together, the low-temperature fixability and the gloss when used in a full-color apparatus are improved, which is preferable to single use. Examples of PE include polycondensates of polyol PO and polycarboxylic acid PC similar to the polyester component of UMPE, and preferred ones are also the same as in UMPE. The weight average molecular weight (Mw) of PE is 10,000 to 300,000, preferably 14,000 to 200,000. Its Mn (number average molecular weight) is 1000 to 10000, preferably 1500 to 6000. For UMPE, not only unmodified polyesters but also those modified with chemical bonds other than urea bonds, such as those modified with urethane bonds, can be used in combination. UMPE and PE are preferably at least partially compatible with each other in terms of low-temperature fixability and hot offset resistance. Accordingly, the polyester component of UMPE and PE preferably have similar compositions. The weight ratio of UMPE to PE when PE is contained is usually 5/95 to 80/20, preferably 5/95 to 30/70, more preferably 5/95 to 25/75, particularly preferably 7/93. ~ 20/80. When the weight ratio of UMPE is less than 5%, the hot offset resistance is deteriorated, and it is disadvantageous in terms of both heat-resistant storage stability and low-temperature fixability.

PEの水酸基価(mgKOH/g)は5以上であることが好ましく、PEの酸価(mgKOH/g)は通常1〜30、好ましくは5〜20である。酸価を持たせることで負帯電性となりやすく、さらには紙への定着時紙とトナーの親和性がよく低温定着性が向上する。しかし、酸価が30を超えると帯電の安定性特に環境変動に対し悪化傾向がある。重合反応においては酸価がふれると造粒工程でのぶれにつながり乳化における制御が難しくなる。   The hydroxyl value (mgKOH / g) of PE is preferably 5 or more, and the acid value (mgKOH / g) of PE is usually 1 to 30, preferably 5 to 20. By giving an acid value, it tends to be negatively charged, and further, the affinity between the paper and the toner is good when fixing to paper, and the low-temperature fixability is improved. However, when the acid value exceeds 30, there is a tendency to deteriorate with respect to the stability of charging, particularly the environmental fluctuation. In the polymerization reaction, if the acid value is touched, it will cause blurring in the granulation process, making it difficult to control the emulsification.

PEの水酸基価及び酸価は具体的に次のような手順で決定される。
測定装置:電位差自動滴定装置DL−53 Titrator
(メトラー・トレド社製)
使用電極:DG113−SC (メトラー・トレド社製)
解析ソフト:LabX Light Version 1.00.000
装置の校正:トルエン120mlとエタノール30mlの混合溶媒を使用する。
測定温度:23℃
測定条件は以下のとおりである。
Stir
Speed [%] 25
Time [s] 15
EQP titration
Titrant/Sensor
Titrant CH3ONa
Concentration [mol/L] 0.1
Sensor DG115
Unit of measurement mV
Predispensing to volume
Volume [mL] 1.0
Wait time [s] 0
Titrant addition Dynamic
dE(set) [mV] 8.0
dV(min) [mL] 0.03
dV(max) [mL] 0.5
Measure mode Equilibrium controlled
dE [mV] 0.5
dt [s] 1.0
t(min) [s] 2.0
t(max) [s] 20.0
Recognition
Threshold 100.0
Steepest jump only No
Range No
Tendency None
Termination
at maximum volume [mL] 10.0
at potential No
at slope No
after number EQPs Yes
n = 1
comb. termination conditions No
Evaluation
Procedure Standard
Potential 1 No
Potential 2 No
Stop for reevaluation No
Specifically, the hydroxyl value and acid value of PE are determined by the following procedure.
Measuring device: potentiometric automatic titrator DL-53 Titrator
(Metler Toledo)
Electrode used: DG113-SC (Metler Toledo)
Analysis software: LabX Light Version 1.00.000
Calibration of the apparatus: Use a mixed solvent of 120 ml of toluene and 30 ml of ethanol.
Measurement temperature: 23 ° C
The measurement conditions are as follows.
Stir
Speed [%] 25
Time [s] 15
EQP titration
Titrant / Sensor
Titrant CH3ONa
Concentration [mol / L] 0.1
Sensor DG115
Unit of measurement mV
Predispensing to volume
Volume [mL] 1.0
Wait time [s] 0
Titrant addition Dynamic
dE (set) [mV] 8.0
dV (min) [mL] 0.03
dV (max) [mL] 0.5
Measure mode Equilibrium controlled
dE [mV] 0.5
dt [s] 1.0
t (min) [s] 2.0
t (max) [s] 20.0
Recognition
Threshold 100.0
Steepest jump only No
Range No
Tendency None
Termination
at maximum volume [mL] 10.0
at potential No
at slope No
after number EQPs Yes
n = 1
comb. termination conditions No
Evaluation
Procedure Standard
Potential 1 No
Potential 2 No
Stop for reevaluation No

(酸価の測定方法)
JIS K0070−1992に記載の測定方法に準拠して以下の条件で測定を行う。試料調整:ポリエステル0.5g(酢酸エチル可溶成分では0.3g)をトルエン120mlに添加して室温(23℃)で約10時間撹拌して溶解する。更にエタノール30mlを添加して試料溶液とする。
測定は上記記載の装置にて計算することが出来るが、具体的には次のように計算する。
あらかじめ標定されたN/10苛性カリ〜アルコール溶液で滴定し、アルコールカリ液の消費量から次の計算で酸価を求める。
酸価=KOH(ml数)×N×56.1/試料重量
(ただしNはN/10KOHのファクター)
(Measurement method of acid value)
Measurement is performed under the following conditions in accordance with the measurement method described in JIS K0070-1992. Sample preparation: 0.5 g of polyester (0.3 g for ethyl acetate-soluble component) is added to 120 ml of toluene and dissolved by stirring at room temperature (23 ° C.) for about 10 hours. Further, 30 ml of ethanol is added to prepare a sample solution.
The measurement can be calculated by the apparatus described above, but specifically, the calculation is performed as follows.
Titrate with a pre-standardized N / 10 caustic potash to alcohol solution, and determine the acid value from the consumption of the alcohol potash solution by the following calculation.
Acid value = KOH (ml) x N x 56.1 / sample weight (where N is a factor of N / 10 KOH)

(水酸基価の測定方法)
試料0.5gを100mlのメスフラスコに精秤し、これにアセチル化試薬5mlを正しく加える。その後100℃±5℃の浴中に浸して加熱する。1〜2時間後フラスコを浴から取り出し、放冷後水を加えて振り動かして無水酢酸を分解する。更に分解を完全にするため再びフラスコを浴中で10分間以上加熱し放冷後、有機溶剤でフラスコの壁を良く洗う。この液を前記電極を用いてN/2水酸化カリウムエチルアルコール溶液で電位差滴定を行いOH価を求める(JISK0070−1966に準ずる。)。
(Measurement method of hydroxyl value)
Weigh accurately 0.5 g of sample into a 100 ml volumetric flask and add 5 ml of acetylating reagent correctly. Then, it is immersed in a bath at 100 ° C. ± 5 ° C. and heated. After 1-2 hours, the flask is removed from the bath, allowed to cool, water is added and shaken to decompose acetic anhydride. Furthermore, in order to complete the decomposition, the flask is again heated in a bath for 10 minutes or more and allowed to cool, and then the wall of the flask is thoroughly washed with an organic solvent. This solution is subjected to potentiometric titration with an N / 2 potassium hydroxide ethyl alcohol solution using the electrode to determine the OH value (according to JISK0070-1966).

本発明において、結着樹脂のガラス転移点(Tg)は、通常40〜70℃、好ましくは40〜60℃である。40℃未満ではトナーの耐熱性が悪化し、70℃を超えると低温定着性が不十分となる。ウレア変性ポリエステル樹脂等の変性ポリエステルの共存により、本発明の乾式トナーにおいては、公知のポリエステル系トナーと比較して、ガラス転移点が低くても耐熱保存性が良好な傾向を示す。   In the present invention, the glass transition point (Tg) of the binder resin is usually 40 to 70 ° C, preferably 40 to 60 ° C. If it is less than 40 ° C., the heat resistance of the toner deteriorates, and if it exceeds 70 ° C., the low-temperature fixability becomes insufficient. Due to the coexistence of a modified polyester such as a urea-modified polyester resin, the dry toner of the present invention tends to have good heat-resistant storage stability even when the glass transition point is low, as compared with a known polyester-based toner.

(変性層状無機鉱物)
本発明のトナーに用いる変性層状無機鉱物層は、スメクタイト系の基本結晶構造を持つものを有機物カチオンで変性したものが望ましい。有機物カチオンで変性される層状無機鉱物としては、モンモリロナイト又はベントナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライトなどが挙げられる。
前記変性層状無機鉱物の、有機カチオン変性剤としては第4級アルキルアンモニウム塩、フォスフォニウム塩やイミダゾリウム塩などが挙げられるが、第4級アルキルアンモニウム塩が望ましい。前記第4級アルキルアンモニウムとしては、トリメチルステアリルアンモニウム、ジメチルステアリルベンジルアンモニウム、ジメチルオクタデシルアンモニウム、オレイルビス(2−ヒドロキシエチル)メチルアンモニウムなどが挙げられる。
(Modified layered inorganic mineral)
The modified layered inorganic mineral layer used in the toner of the present invention is preferably a layer having a smectite basic crystal structure modified with an organic cation. Examples of the layered inorganic mineral modified with an organic cation include montmorillonite or bentonite, beidellite, nontronite, saponite, hectorite and the like.
Examples of the organic cation modifier for the modified layered inorganic mineral include quaternary alkyl ammonium salts, phosphonium salts, imidazolium salts, and the like, and quaternary alkyl ammonium salts are desirable. Examples of the quaternary alkyl ammonium include trimethyl stearyl ammonium, dimethyl stearyl benzyl ammonium, dimethyl octadecyl ammonium, oleyl bis (2-hydroxyethyl) methyl ammonium, and the like.

前記変性層状無機鉱物としては、ELEMENTIS社製のBENTONE34、BENTONE52、BENTONE38、BENTONE27、BENTONE57、BENTONE SD1、BENTONE SD2、BENTONE SD3等、SCP社製のCRAYTONE34、CRAYTONE40、CRAYTONE HT、CRAYTONE2000、CRAYTONE AF、CRAYTONE APA、CRAYTONE HY等、HOJUN社製のエスベン、エスベンE、エスベンC、エスベンNZ、エスベンNZ70、エスベンW、エスベンN400、エスベンNX、エスベンNX80、エスベンNO12S、エスベンNEZ、エスベンNO12、エスベンWX、エスベンNE等、クニミネ工業社製のクニビス110、クニビス120、クニビス127等が挙げられる。   Examples of the modified layered inorganic mineral include BENTONE 34, BENTONE 52, BENTONE 38, BENTONE 27, BENTONE 57, BENTONE SD, BENTONE CRYTONE 34, CENTONE 34, CENTONE 34, CENTONE 34 , CRAYTONE HY, etc., made by HOJUN, such as Esben, Esben E, Esben C, Esben NZ, Esben NZ70, Esven W, Esben N400, Esven NX, Esven NX80, Esven NO12S, Esven NEZ, Esven NO12, Esben WX, Esben NE, etc. Kunibis 110 manufactured by Kunimine Industry Co., Ltd. Kunibisu 120, Kunibisu 127, and the like.

前記変性層状無機鉱物と結着樹脂との混練複合体すなわちマスターバッチは結着樹脂と有機カチオンで変性した層状無機鉱物とを高せん断力をかけて混合、混練してマスターバッチを得る事ができる。この際、該変性層状無機鉱物と結着樹脂の相互作用を高めるために、有機溶剤を用いる事ができる。またいわゆるフラッシング法と呼ばれる前該変性層状無機鉱物と水を含んだ水性ペーストを樹脂と有機溶剤とともに混合混練し、該変性層状無機鉱物を樹脂側に移行させ、水分と有機溶剤成分を除去する方法もウエットケーキをそのまま用いる事ができるため乾燥する必要がなく、好ましく用いられる。混合混練するには3本ロールミル等の高せん断分散装置が好ましく用いられる。   The kneaded composite of the modified layered inorganic mineral and the binder resin, that is, the masterbatch can be obtained by mixing and kneading the binder resin and the layered inorganic mineral modified with an organic cation with high shear force to obtain a masterbatch. . At this time, an organic solvent can be used to enhance the interaction between the modified layered inorganic mineral and the binder resin. Also, a so-called flushing method is a method in which an aqueous paste containing the modified layered inorganic mineral and water is mixed and kneaded together with a resin and an organic solvent, and the modified layered inorganic mineral is transferred to the resin side to remove moisture and organic solvent components. Also, since the wet cake can be used as it is, it does not need to be dried and is preferably used. For mixing and kneading, a high shear dispersion device such as a three-roll mill is preferably used.

前記変性層状無機鉱物と結着樹脂との混練複合体すなわちマスターバッチ中において、該変性層状無機鉱物の体積平均粒径Dvが0.1μm〜0.55μmであり、かつ体積平均粒径1μm以上の該変性層状無機鉱物の頻度が15%以下を満たすことが必要である。体積平均粒径Dvが0.55μmを超えるか、又は粒径1μm以上の頻度が15%を超えるとトナー形状及びトナー帯電性能への効果が低下する。
前記変性層状無機鉱物はトナー中に0.1〜5%含有されることが好ましい。0.1%未満ではトナー形状及びトナー帯電性能への効果が低下するし、5%を超えると、定着性能が悪化する。
In the kneaded composite of the modified layered inorganic mineral and the binder resin, ie, the master batch, the volume average particle diameter Dv of the modified layered inorganic mineral is 0.1 μm to 0.55 μm, and the volume average particle diameter is 1 μm or more. The frequency of the modified layered inorganic mineral needs to satisfy 15% or less. When the volume average particle diameter Dv exceeds 0.55 μm, or the frequency of the particle diameter of 1 μm or more exceeds 15%, the effect on the toner shape and toner charging performance decreases.
The modified layered inorganic mineral is preferably contained in the toner in an amount of 0.1 to 5%. If it is less than 0.1%, the effect on the toner shape and the toner charging performance is lowered, and if it exceeds 5%, the fixing performance is deteriorated.

(離型剤)
本発明のトナーに用いるワックスとしては、融点が50〜120℃の低融点のワックスが、バインダー樹脂との分散の中でより離型剤として効果的に定着ローラーとトナー界面との間で働き、これにより定着ローラーにオイルの如き離型剤を塗布することなく高温耐オフセットに対し効果を示す。
なお、本発明におけるワックスの融点は、示差走査熱量計(DSC)による最大吸熱ピークとした。本発明において使用できる離型剤として機能するワックス成分としては、以下の材料が使用できる。すなわち、具体例としては、ロウ類及びワックス類としては、カルナバワックス、綿ロウ、木ロウ、ライスワックス等の植物系ワックス、ミツロウ、ラノリン等の動物系ワックス、オゾケライト、セルシン等の鉱物系ワックス、及びパラフィン、マイクロクリスタリン、ペトロラタム等の石油ワックス等が挙げられる。またこれら天然ワックスの他に、フィッシャー・トロプシュワックス、ポリエチレンワックス等の合成炭化水素ワックス、エステル、ケトン、エーテル等の合成ワックス等が挙げられる。さらに、12−ヒドロキシステアリン酸アミド、ステアリン酸アミド、無水フタル酸イミド、塩素化炭化水素等の脂肪酸アミド及び、低分子量の結晶性高分子樹脂である、ポリn−ステアリルメタクリレート、ポリn−ラウリルメタクリレート等のポリアクリレートのホモ重合体あるいは共重合体(例えば、n−ステアリルアクリレート−エチルメタクリレートの共重合体等)等、側鎖に長いアルキル基を有する結晶性高分子等も用いることができる。
(Release agent)
As the wax used in the toner of the present invention, a low melting point wax having a melting point of 50 to 120 ° C. works more effectively as a release agent in the dispersion with the binder resin between the fixing roller and the toner interface, This shows an effect against high temperature offset resistance without applying a release agent such as oil to the fixing roller.
The melting point of the wax in the present invention was the maximum endothermic peak measured by a differential scanning calorimeter (DSC). The following materials can be used as the wax component that functions as a release agent that can be used in the present invention. That is, as specific examples, waxes and waxes include plant waxes such as carnauba wax, cotton wax, wood wax and rice wax, animal waxes such as beeswax and lanolin, mineral waxes such as ozokerite and cercin, And petroleum waxes such as paraffin, microcrystalline, and petrolatum. In addition to these natural waxes, synthetic hydrocarbon waxes such as Fischer-Tropsch wax and polyethylene wax, and synthetic waxes such as esters, ketones and ethers can be used. Furthermore, fatty acid amides such as 12-hydroxystearic acid amide, stearic acid amide, phthalic anhydride imide, chlorinated hydrocarbon, and poly n-stearyl methacrylate, poly n-lauryl methacrylate, which are low molecular weight crystalline polymer resins A crystalline polymer having a long alkyl group in the side chain, such as a polyacrylate homopolymer or copolymer (for example, a copolymer of n-stearyl acrylate-ethyl methacrylate, etc.) can also be used.

(着色剤)
本発明で用いる着色剤としては、公知の染料及び顔料が使用でき、例えば、カーボンブラック、ニグロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミュウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミュウムレッド、カドミュウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ピグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロームバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトポン及びそれらの混合物が使用できる。着色剤の含有量はトナーに対して通常1〜15重量%、好ましくは3〜10重量%である。
(Coloring agent)
As the colorant used in the present invention, known dyes and pigments can be used. For example, carbon black, nigrosine dye, iron black, naphthol yellow S, Hansa yellow (10G, 5G, G), cadmium yellow, yellow oxidation Iron, ocher, yellow lead, titanium yellow, polyazo yellow, oil yellow, Hansa yellow (GR, A, RN, R), pigment yellow L, benzidine yellow (G, GR), permanent yellow (NCG), Vulcan fast yellow (5G, R), Tartrazine Lake, Quinoline Yellow Lake, Anthrazan Yellow BGL, Isoindolinone Yellow, Bengala, Red Dan, Lead Zhu, Cadmium Red, Cadmium Mercury Red, Antimon Zhu, Permanent Red 4R, Para Red, Faisa Red, Parachlor Rutonitroaniline Red, Resol Fast Scarlet G, Brilliant Fast Scarlet, Brilliant Carnmin BS, Permanent Red (F2R, F4R, FRL, FRLL, F4RH), Fast Scarlet VD, Belkan Fast Rubin B, Brilliant Scarlet G, Resol Rubin GX, Permanent Red F5R, Brilliant Carmine 6B, Pigment Scarlet 3B, Bordeaux 5B, Tolujing Maroon, Permanent Bordeaux F2K, Helio Bordeaux BL, Bordeaux 10B, Bon Maroon Light, Bon Maroon Medium, Eosin Lake, Rhodamine Lake B, Rhodamine Lake Y, Alizarin Lake , Thioindigo red B, thioindigo maroon, oil red, quinacridone red, pyrazo Red, polyazo red, chrome vermillion, benzidine orange, perinone orange, oil orange, cobalt blue, cerulean blue, alkali blue rake, peacock blue rake, Victoria blue rake, metal free phthalocyanine blue, phthalocyanine blue, fast sky blue, indance Ren Blue (RS, BC), Indigo, Ultramarine Blue, Bitumen, Anthraquinone Blue, Fast Violet B, Methyl Violet Lake, Cobalt Purple, Manganese Purple, Dioxane Violet, Anthraquinone Violet, Chrome Green, Zinc Green, Chrome Oxide, Pyridian, Emerald Green , Pigment Green B, Naphthol Green B, Green Gold, Acid Green Lake, Malachite Green , Phthalocyanine green, anthraquinone green, titanium oxide, zinc white, lithopone and mixtures thereof can be used. The content of the colorant is usually 1 to 15% by weight, preferably 3 to 10% by weight, based on the toner.

本発明で用いる着色剤は樹脂と複合化されたマスターバッチとして用いることもできる。 マスターバッチの製造またはマスターバッチとともに混練されるバインダー樹脂としては、先にあげた変性、未変性ポリエステル樹脂の他にポリスチレン、ポリp−クロロスチレン、ポリビニルトルエンなどのスチレン及びその置換体の重合体;スチレン−p−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸ブチル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体などのスチレン系共重合体;ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリエステル、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族又は脂環族炭化水素樹脂、芳香族系石油樹脂、塩素化パラフィン、パラフィンワックスなどが挙げられ、単独あるいは混合して使用できる。   The colorant used in the present invention can also be used as a master batch combined with a resin. As the binder resin to be kneaded together with the production of the masterbatch or the masterbatch, in addition to the modified and unmodified polyester resins mentioned above, styrene such as polystyrene, poly p-chlorostyrene, polyvinyltoluene, and polymers of substituted products thereof; Styrene-p-chlorostyrene copolymer, styrene-propylene copolymer, styrene-vinyltoluene copolymer, styrene-vinylnaphthalene copolymer, styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer Styrene-butyl acrylate copolymer, styrene-octyl acrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-butyl methacrylate copolymer, styrene-α- Chloromethyl methacrylate copolymer, Tylene-acrylonitrile copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile-indene copolymer, styrene-maleic acid copolymer, styrene-malein Styrene copolymers such as acid ester copolymers; polymethyl methacrylate, polybutyl methacrylate, polyvinyl chloride, polyvinyl acetate, polyethylene, polypropylene, polyester, epoxy resin, epoxy polyol resin, polyurethane, polyamide, polyvinyl butyral, poly Acrylic resin, rosin, modified rosin, terpene resin, aliphatic or alicyclic hydrocarbon resin, aromatic petroleum resin, chlorinated paraffin, paraffin wax, etc. The

さらに、トナー組成分を含む分散媒体の粘度を低くするために、ウレア変性ポリエステルやプレポリマー(A)等のポリエステルが可溶の溶剤を使用することもできる。溶剤を用いたほうが粒度分布がシャープになる点で好ましい。
該溶剤は沸点が100℃未満の揮発性であることが除去が容易である点から好ましい。該溶剤としては、例えば、トルエン、キシレン、ベンゼン、四塩化炭素、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、クロロホルム、モノクロロベンゼン、ジクロロエチリデン、酢酸メチル、酢酸エチル、メチルエチルケトン、メチルイソブチルケトンなどを単独あるいは2種以上組合せて用いることができる。特に、トルエン、キシレン等の芳香族系溶媒及び塩化メチレン、1,2−ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素が好ましい。プレポリマー(A)100部に対する溶剤の使用量は、通常0〜300部、好ましくは0〜100部、さらに好ましくは25〜70部である。溶剤を使用した場合は、変性ポリエステル(プレポリマー)のアミンによる伸長及び/または架橋反応後、得られた反応物から、溶媒(溶剤)を常圧または減圧下で除去する。
Furthermore, in order to reduce the viscosity of the dispersion medium containing the toner composition, a solvent in which a polyester such as urea-modified polyester or prepolymer (A) is soluble can be used. The use of a solvent is preferable in that the particle size distribution becomes sharp.
The solvent is preferably volatile with a boiling point of less than 100 ° C. from the viewpoint of easy removal. Examples of the solvent include toluene, xylene, benzene, carbon tetrachloride, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, trichloroethylene, chloroform, monochlorobenzene, dichloroethylidene, methyl acetate, ethyl acetate, Methyl ethyl ketone, methyl isobutyl ketone and the like can be used alone or in combination of two or more. In particular, aromatic solvents such as toluene and xylene and halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, chloroform and carbon tetrachloride are preferred. The usage-amount of the solvent with respect to 100 parts of prepolymers (A) is 0-300 parts normally, Preferably it is 0-100 parts, More preferably, it is 25-70 parts. When a solvent is used, the solvent (solvent) is removed from the obtained reaction product under normal pressure or reduced pressure after the extension and / or crosslinking reaction of the modified polyester (prepolymer) with an amine.

本マスターバッチはマスターバッチ用の樹脂と着色剤とを高せん断力をかけて混合、混練してマスターバッチを得ることができる。この際着色剤と樹脂の相互作用を高めるために、有機溶剤を用いる事ができる。またいわゆるフラッシング法と呼ばれる着色剤の水を含んだ水性ペーストを樹脂と有機溶剤とともに混合混練し、着色剤を樹脂側に移行させ、水分と有機溶剤成分を除去する方法も着色剤のウエットケーキをそのまま用いることができるため乾燥する必要がなく、好ましく用いられる。混合混練するには3本ロールミル等の高せん断分散装置が好ましく用いられる。   The master batch can be obtained by mixing and kneading a resin for a master batch and a colorant under a high shear force to obtain a master batch. At this time, an organic solvent can be used to enhance the interaction between the colorant and the resin. Also, a so-called flushing method called watering paste containing water of a colorant is mixed and kneaded together with a resin and an organic solvent, and the colorant is transferred to the resin side to remove moisture and organic solvent components. Since it can be used as it is, it does not need to be dried and is preferably used. For mixing and kneading, a high shear dispersion device such as a three-roll mill is preferably used.

トナー粒子表面に帯電制御剤を付着固定化するために、着色剤と樹脂を含む粒子と少なくとも帯電制御剤粒子からなる粒子同士を容器中で回転体を用いて混合する電子写真用トナーの製造方法が知られているが、本発明では、この方法において、容器内壁より突出した固定部材が存在しない容器中で、回転体の周速が40〜150m/secで混合する工程が含まれることにより目的のトナー粒子が得られる。続いて使用したトナーについて説明する。   A method for producing an electrophotographic toner in which particles comprising a colorant and a resin and particles comprising at least charge control agent particles are mixed together in a container using a rotating body in order to adhere and immobilize the charge control agent on the toner particle surface. However, in this method, the object of the present invention is to include a step of mixing at a peripheral speed of the rotating body of 40 to 150 m / sec in a container without a fixing member protruding from the inner wall of the container. Toner particles are obtained. Next, the used toner will be described.

本発明のトナーは、必要に応じて帯電制御剤を含有してもよい。帯電制御剤としては公知のものが使用でき、例えばニグロシン系染料、トリフェニルメタン系染料、クロム含有金属錯体染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、4級アンモニウム塩(フッ素変性4級アンモニウム塩を含む)、アルキルアミド、燐の単体または化合物、タングステンの単体または化合物、フッ素系活性剤、サリチル酸金属塩及び、サリチル酸誘導体の金属塩等である。具体的にはニグロシン系染料のボントロン03、第四級アンモニウム塩のボントロンP−51、含金属アゾ染料のボントロンS−34、オキシナフトエ酸系金属錯体のE−82、サリチル酸系金属錯体のE−84、フェノール系縮合物のE−89(以上、オリエント化学工業社製)、第四級アンモニウム塩モリブデン錯体のTP−302、TP−415(以上、保土谷化学工業社製)、第四級アンモニウム塩のコピーチャージPSY VP2038、トリフェニルメタン誘導体のコピーブルーPR、第四級アンモニウム塩のコピーチャージ NEG VP2036、コピーチャージ NX VP434(以上、ヘキスト社製)、LRA−901、ホウ素錯体であるLR−147(日本カーリット社製)、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、その他スルホン酸基、カルボキシル基、四級アンモニウム塩等の官能基を有する高分子系の化合物が挙げられる。   The toner of the present invention may contain a charge control agent as necessary. Known charge control agents can be used, such as nigrosine dyes, triphenylmethane dyes, chromium-containing metal complex dyes, molybdate chelate pigments, rhodamine dyes, alkoxy amines, quaternary ammonium salts (fluorine-modified 4 Secondary ammonium salts or compounds, tungsten simple substances or compounds, fluorine activators, salicylic acid metal salts, and metal salts of salicylic acid derivatives. Specifically, Nitronine-based dye Bontron 03, quaternary ammonium salt Bontron P-51, metal-containing azo dye Bontron S-34, oxynaphthoic acid metal complex E-82, salicylic acid metal complex E- 84, E-89 of a phenol-based condensate (manufactured by Orient Chemical Industry Co., Ltd.), TP-302 of a quaternary ammonium salt molybdenum complex, TP-415 (manufactured by Hodogaya Chemical Industry Co., Ltd.), quaternary ammonium Copy charge PSY VP2038 of salt, copy blue PR of triphenylmethane derivative, copy charge of quaternary ammonium salt NEG VP2036, copy charge NX VP434 (manufactured by Hoechst), LRA-901, LR-147 which is a boron complex (Nippon Carlit), copper phthalocyanine, perylene, quinaclide And azo pigments, and other high molecular compounds having a functional group such as a sulfonic acid group, a carboxyl group, and a quaternary ammonium salt.

本発明において荷電制御剤の使用量は、バインダー樹脂の種類、必要に応じて使用される添加剤の有無、分散方法を含めたトナー製造方法によって決定されるもので、一義的に限定されるものではないが、好ましくはバインダー樹脂100重量部に対して、0.1〜10重量部の範囲で用いられる。好ましくは、0.2〜5重量部の範囲がよい。10重量部を越える場合にはトナーの帯電性が大きすぎ、主帯電制御剤の効果を減退させ、現像ローラとの静電的吸引力が増大し、現像剤の流動性低下や、画像濃度の低下を招く。これらの帯電制御剤、離型剤はマスターバッチ、樹脂とともに溶融混練する事もできるし、もちろん有機溶剤に溶解、分散する際に加えても良い。   In the present invention, the amount of charge control agent used is determined by the toner production method including the type of binder resin, the presence or absence of additives used as necessary, and the dispersion method, and is uniquely limited. However, it is preferably used in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the binder resin. The range of 0.2 to 5 parts by weight is preferable. When the amount exceeds 10 parts by weight, the chargeability of the toner is too high, the effect of the main charge control agent is reduced, the electrostatic attractive force with the developing roller is increased, the flowability of the developer is reduced, and the image density is reduced. Incurs a decline. These charge control agents and mold release agents can be melt-kneaded together with the masterbatch and resin, and of course, they may be added when dissolved and dispersed in an organic solvent.

本発明で得られた着色粒子の流動性や現像性、帯電性を補助するために外添剤が用いられているが、この外添剤としては、無機微粒子を好ましく用いることができる。この無機微粒子の一次粒子径は、5mμ〜2μmであることが好ましく、特に5mμ〜500mμであることが好ましい。また、BET法による比表面積は、20〜500m/gであることが好ましい。この無機微粒子の使用割合は、トナーの0.01〜5重量%であることが好ましく、特に0.01〜2.0重量%であることが好ましい.無機微粒子の具体例としては、例えばシリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ペンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素などを挙げることができる。中でも、流動性付与剤としては、疎水性シリカ微粒子と疎水性酸化チタン微粒子を併用するのが好ましい。特に両微粒子の平均粒径が50mμ以下のものを使用して攪拌混合を行なった場合、トナーとの静電力、ファンデルワールス力は格段に向上することより、所望の帯電レベルを得るために行なわれる現像機内部の攪拌混合によっても、トナーから流動性付与剤が脱離することなく、ホタルなどが発生しない良好な画像品質が得られて、さらに転写残トナーの低減が図られることが明らかになった。 An external additive is used to assist the fluidity, developability, and chargeability of the colored particles obtained in the present invention. As this external additive, inorganic fine particles can be preferably used. The primary particle diameter of the inorganic fine particles is preferably 5 mμ to 2 μm, and particularly preferably 5 mμ to 500 mμ. Moreover, it is preferable that the specific surface area by BET method is 20-500 m < 2 > / g. The proportion of the inorganic fine particles used is preferably 0.01 to 5% by weight of the toner, and particularly preferably 0.01 to 2.0% by weight. Specific examples of the inorganic fine particles include, for example, silica, alumina, titanium oxide, barium titanate, magnesium titanate, calcium titanate, strontium titanate, zinc oxide, tin oxide, silica sand, clay, mica, wollastonite, diatomaceous earth. Examples include soil, chromium oxide, cerium oxide, pengala, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate, barium carbonate, calcium carbonate, silicon carbide, and silicon nitride. Among these, as the fluidity imparting agent, it is preferable to use hydrophobic silica fine particles and hydrophobic titanium oxide fine particles in combination. In particular, when stirring and mixing is performed using an average particle size of both fine particles of 50 mμ or less, the electrostatic force and van der Waals force with the toner are remarkably improved, so that a desired charge level is obtained. It is clear that even with stirring and mixing inside the developing machine, a fluidity-imparting agent is not detached from the toner, a good image quality that does not generate fireflies and the like can be obtained, and the residual toner can be further reduced. became.

酸化チタン微粒子は、環境安定性、画像濃度安定性に優れている反面、帯電立ち上がり特性の悪化傾向にあることより、酸化チタン微粒子添加量がシリカ微粒子添加量よりも多くなると、副作用の影響が大きくなることが考えられる。しかし、疎水性シリカ微粒子及び疎水性酸化チタン微粒子の添加量が0.3〜1.5wt%の範囲では、帯電立ち上がり特性が大きく損なわれず、所望な帯電立ち上がり特性が得られ、すなわち、コピーの繰り返しを行なっても、安定した画像品質が得られて、トナー吹きも抑制できることが判った。   Titanium oxide fine particles are excellent in environmental stability and image density stability, but have a tendency to deteriorate the charge rise characteristics. Therefore, if the amount of titanium oxide fine particles added is larger than the amount of silica fine particles added, the effect of side effects is large. It is possible to become. However, when the addition amount of the hydrophobic silica fine particles and the hydrophobic titanium oxide fine particles is in the range of 0.3 to 1.5 wt%, the charge rising characteristics are not greatly impaired, and the desired charge rising characteristics can be obtained, that is, repeated copying. It has been found that stable image quality can be obtained and toner blowing can be suppressed even if the process is performed.

トナーバインダー用樹脂は以下の方法などで製造することができる。ポリオール(PO)とポリカルボン酸(PC)を、テトラブトキシチタネート、ジブチルチンオキサイドなど公知のエステル化触媒の存在下、150〜280℃に加熱し、必要により減圧としながら生成する水を溜去して、水酸基を有するポリエステルを得る。次いで40〜140℃にて、これにポリイソシアネート(PIC)を反応させ、イソシアネート基を有するポリエステルプレポリマー(A)を得る。さらにこのAにアミン類(B)を0〜140℃にて反応させ、ウレア結合で変性されたポリエステル(UMPE)を得る。この変性ポリエステルの数平均分子量は、1000〜10000、好ましくは1500〜6000である。PICを反応させる際及びAとBを反応させる際には、必要により溶剤を用いることもできる。使用可能な溶剤としては、芳香族溶剤(トルエン、キシレンなど);ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトンなど);エステル類(酢酸エチルなど);アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)及びエーテル類(テトラヒドロフランなど)などのイソシアネート(PIC)に対して不活性なものが挙げられる。ウレア結合で変性されていないポリエステル(PE)を併用する場合は、水酸基を有するポリエステルと同様な方法でPEを製造し、これを前記UMPEの反応完了後の溶液に溶解し、混合する。   The resin for toner binder can be produced by the following method. Polyol (PO) and polycarboxylic acid (PC) are heated to 150-280 ° C. in the presence of a known esterification catalyst such as tetrabutoxytitanate, dibutyltin oxide, etc., and the generated water is distilled off as necessary. Thus, a polyester having a hydroxyl group is obtained. Next, this is reacted with polyisocyanate (PIC) at 40 to 140 ° C. to obtain a polyester prepolymer (A) having an isocyanate group. Further, this A is reacted with amines (B) at 0 to 140 ° C. to obtain a polyester (UMPE) modified with a urea bond. The number average molecular weight of this modified polyester is 1000 to 10000, preferably 1500 to 6000. When reacting PIC and when A and B are reacted, a solvent may be used as necessary. Usable solvents include aromatic solvents (toluene, xylene, etc.); ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.); esters (ethyl acetate, etc.); amides (dimethylformamide, dimethylacetamide, etc.) and ethers And those inert to isocyanates (PIC), such as tetrahydrofuran (such as tetrahydrofuran). When polyester (PE) that is not modified with a urea bond is used in combination, PE is produced in the same manner as the polyester having a hydroxyl group, and this is dissolved in the solution after completion of the UMPE reaction and mixed.

本発明のトナーは以下の方法で製造することができるが勿論これらに限定されることはない。
(水系媒体中でのトナー製造法)
本発明で用いる水系媒体としては、水単独でもよいが、水と混和可能な溶剤を併用することもできる。混和可能な溶剤としては、アルコール(メタノール、イソプロパノール、エチレングリコールなど)、ジメチルホルムアミド、テトラヒドロフラン、セルソルブ類(メチルセルソルブなど)、低級ケトン類(アセトン、メチルエチルケトンなど)などが挙げられる。
本発明では、水系媒体中でイソシアネート基を有するポリエステルプレポリマー(A)等の反応性変性ポリエステルをアミン(B)と反応させることにより、ウレア変性ポリエステル(UMPE)等を得ることができる。水系媒体中でウレア変性ポリエステル等の変性ポリエステルやプレポリマー(A)等の反応性変性ポリエステルからなる分散体を安定して形成させる方法としては、水系媒体中にウレア変性ポリエステル等の変性ポリエステルやプレポリマー(A)等の反応性変性ポリエステルからなるトナー原料の組成分を加えて、せん断力により分散させる方法などが挙げられる。プレポリマー(A)等の反応性変性ポリエステルと他のトナー組成分である(以下トナー原料と呼ぶ)着色剤、着色剤マスターバッチ、離型剤、荷電制御剤、未変性ポリエステル樹脂などは、水系媒体中で分散体を形成させる際に混合してもよいが、あらかじめトナー原料を混合した後、水系媒体中にその混合物を加えて分散させたほうがより好ましい。また、本発明においては、着色剤、離型剤、荷電制御剤などの他のトナー原料は、必ずしも、水系媒体中で粒子を形成させる時に混合しておく必要はなく、粒子を形成せしめた後、添加してもよい。たとえば、着色剤を含まない粒子を形成させた後、公知の染着の方法で着色剤を添加することもできる。
The toner of the present invention can be produced by the following method, but is not limited thereto.
(Toner production method in aqueous medium)
As the aqueous medium used in the present invention, water alone may be used, but a solvent miscible with water may be used in combination. Examples of the miscible solvent include alcohol (methanol, isopropanol, ethylene glycol, etc.), dimethylformamide, tetrahydrofuran, cellosolves (methylcellosolve, etc.), lower ketones (acetone, methyl ethyl ketone, etc.) and the like.
In the present invention, a urea-modified polyester (UMPE) or the like can be obtained by reacting a reactive modified polyester such as a polyester prepolymer (A) having an isocyanate group with an amine (B) in an aqueous medium. As a method for stably forming a dispersion comprising a modified polyester such as urea-modified polyester or a reactive modified polyester such as prepolymer (A) in an aqueous medium, a modified polyester such as urea-modified polyester or a pre-polymer can be used in an aqueous medium. Examples thereof include a method in which a composition of a toner raw material composed of reactive modified polyester such as polymer (A) is added and dispersed by shearing force. Reactive modified polyester such as prepolymer (A) and other toner composition (hereinafter referred to as toner raw material), colorant, colorant masterbatch, release agent, charge control agent, unmodified polyester resin, etc. Although mixing may be performed when forming the dispersion in the medium, it is more preferable to mix the toner raw materials in advance and then add and disperse the mixture in the aqueous medium. In the present invention, other toner materials such as a colorant, a release agent, and a charge control agent do not necessarily have to be mixed when forming particles in an aqueous medium, but after the particles are formed. , May be added. For example, after forming particles containing no colorant, the colorant can be added by a known dyeing method.

分散の方法としては特に限定されるものではないが、低速せん断式、高速せん断式、摩擦式、高圧ジェット式、超音波などの公知の設備が適用できる。分散体の粒径を2〜20μmにするために高速せん断式が好ましい。高速せん断式分散機を使用した場合、回転数は特に限定はないが、通常1000〜30000rpm、好ましくは5000〜20000rpmである。分散時間は特に限定はないが、バッチ方式の場合は、通常0.1〜5分である。分散時の温度としては、通常、0〜150℃(加圧下)、好ましくは40〜98℃である。高温なほうが、ウレア変性ポリエステルやプレポリマー(A)からなる分散体の粘度が低く、分散が容易な点で好ましい。   The dispersion method is not particularly limited, and known equipment such as a low-speed shear method, a high-speed shear method, a friction method, a high-pressure jet method, and an ultrasonic wave can be applied. In order to make the particle size of the dispersion 2 to 20 μm, a high-speed shearing type is preferable. When a high-speed shearing disperser is used, the rotational speed is not particularly limited, but is usually 1000 to 30000 rpm, preferably 5000 to 20000 rpm. The dispersion time is not particularly limited, but in the case of a batch method, it is usually 0.1 to 5 minutes. The temperature during dispersion is usually 0 to 150 ° C. (under pressure), preferably 40 to 98 ° C. Higher temperatures are preferred in that the dispersion of the urea-modified polyester or prepolymer (A) has a low viscosity and is easy to disperse.

ウレア変性ポリエステルやプレポリマー(A)等のポリエステルを含むトナー組成分100部に対する水系媒体の使用量は、通常50〜2000重量部、好ましくは100〜1000重量部である。50重量部未満ではトナー組成物の分散状態が悪く、所定の粒径のトナー粒子が得られない。20000重量部を超えると経済的でない。また、必要に応じて、分散剤を用いることもできる。分散剤を用いたほうが、粒度分布がシャープになるとともに分散が安定である点で好ましい。   The amount of the aqueous medium used is usually 50 to 2000 parts by weight, preferably 100 to 1000 parts by weight, based on 100 parts of the toner composition containing a polyester such as urea-modified polyester and prepolymer (A). If the amount is less than 50 parts by weight, the dispersion state of the toner composition is poor, and toner particles having a predetermined particle diameter cannot be obtained. If it exceeds 20000 parts by weight, it is not economical. Moreover, a dispersing agent can also be used as needed. It is preferable to use a dispersant because the particle size distribution becomes sharp and the dispersion is stable.

トナー用組成物が分散された油性相を水が含まれる液体には、乳化、分散するための各種の分散剤が用いられる。このような分散剤には、界面活性剤、無機微粒子分散剤、ポリマー微粒子分散剤等が包含される。
界面活性剤としては、アルキルベンゼンスルホン酸塩、α−オレフィンスルホン酸塩、リン酸エステルなどの陰イオン界面活性荊、アルキルアミン塩、アミノアルコール脂肪酸誘導体、ポリアミン脂肪酸誘導体、イミダゾリンなどのアミン塩型や、アルキルトリメチルアンモニム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、ピリジニウム塩、アルキルイソキノリニウム塩、塩化ベンゼトニウムなどの四級アンモニウム塩型の陽イオン界面活性剤、脂肪酸アミド誘導体、多価アルコール誘導体などの非イオン界面活性剤、例えばアラニン、ドデシルジ(アミノエチル)グリシン、ジ(オクチルアミノエチル)グリシンやN−アルキル−N,N−ジメチルアンモニウムべタインなどの両性界面活性剤が挙げられる。
Various dispersants for emulsifying and dispersing the oily phase in which the toner composition is dispersed are used in the liquid containing water. Such a dispersant includes a surfactant, an inorganic fine particle dispersant, a polymer fine particle dispersant and the like.
As surfactants, anionic surfactants such as alkylbenzene sulfonates, α-olefin sulfonates, phosphate esters, alkylamine salts, amino alcohol fatty acid derivatives, polyamine fatty acid derivatives, amine salt types such as imidazoline, Quaternary ammonium salt type cationic surfactants such as alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkyldimethylbenzylammonium salt, pyridinium salt, alkylisoquinolinium salt, benzethonium chloride, fatty acid amide derivative, polyhydric alcohol Nonionic surfactants such as derivatives, for example, amphoteric surfactants such as alanine, dodecyldi (aminoethyl) glycine, di (octylaminoethyl) glycine and N-alkyl-N, N-dimethylammonium betaine. It is.

また、フルオロアルキル基を有する界面活性剤を用いることにより、非常に少量でその効果を上げることができる。好ましく用いられるフルオロアルキル基を有するアニオン性界面活性剤としては、炭素数2〜10のフルオロアルキルカルボン酸及びその金属塩、パーフルオロオクタンスルホニルグルタミン酸ジナトリウム、3−[オメガ−フルオロアルキル(C6〜C11)オキシ]−1−アルキル(C3〜C4)スルホン酸ナトリウム、3−[オメガ−フルオロアルカノイル(C6〜C8)−N−エチルアミノ]−1−プロパンスルホン酸ナトリウム、フルオロアルキル(C11〜C20)カルボン酸及び金属塩、パーフルオロアルキルカルボン酸(C7〜C13)及びその金属塩、パーフルオロアルキル(C4〜C12)スルホン酸及びその金属塩、パーフルオロオクタンスルホン酸ジエタノールアミド、N−プロピル−N−(2ヒドロキシエチル)パーフルオロオクタンスルホンアミド、パーフルオロアルキル(C6〜C10)スルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル(C6〜C10)−N−エチルスルホニルグリシン塩、モノパーフルオロアルキル(C6〜C16)エチルリン酸エステルなどが挙げられる。   Further, by using a surfactant having a fluoroalkyl group, the effect can be increased in a very small amount. Preferred anionic surfactants having a fluoroalkyl group include fluoroalkyl carboxylic acids having 2 to 10 carbon atoms and metal salts thereof, disodium perfluorooctanesulfonyl glutamate, 3- [omega-fluoroalkyl (C6-C11 ) Oxy] -1-alkyl (C3-C4) sodium sulfonate, 3- [omega-fluoroalkanoyl (C6-C8) -N-ethylamino] -1-propanesulfonic acid sodium, fluoroalkyl (C11-C20) carvone Acids and metal salts, perfluoroalkylcarboxylic acids (C7 to C13) and metal salts thereof, perfluoroalkyl (C4 to C12) sulfonic acids and metal salts thereof, perfluorooctanesulfonic acid diethanolamide, N-propyl-N- ( 2-hydroxyethyl) -Fluorooctanesulfonamide, perfluoroalkyl (C6-C10) sulfonamidopropyltrimethylammonium salt, perfluoroalkyl (C6-C10) -N-ethylsulfonylglycine salt, monoperfluoroalkyl (C6-C16) ethyl phosphate, etc. Is mentioned.

商品名としては、サーフロンS−111、S−112、S−113(旭硝子社製)、フロラードFC−93、FC−95、FC−98、FC−129(住友3M社製)、ユニダインDS−101、DS−102、(ダイキン工業社製)、メガファックF−110、F−120、F−113、F−191、F−812、F−833(大日本インキ社製)、エクトップEF−102、103、104、105、112、123A、123B、306A、501、201、204、(トーケムプロダクツ社製)、フタージェントF−100、F150(ネオス社製)などが挙げられる。 また、カチオン界面活性剤としては、フルオロアルキル基を右する脂肪族一級、二級もしくは二級アミン酸、パーフルオロアルキル(C6−C10)スルホンアミドプロピルトリメチルアンモニウム塩などの脂肪族4級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩、商品名としてはサーフロンS−121(旭硝子社製)、フロラードFC−135(住友3M社製)、ユニダインDS−202(ダイキン工業社製)、メガファックF−150、F−824(大日本インキ社製)、エクトップEF−132(トーケムプロダクツ社製)、フタージェントF−300(ネオス社製)などが挙げられる。
また、水に難溶の無機化合物分散剤としてリン酸三カルシウム、炭酸カルシウム、酸価チタン、コロイダルシリカ、ヒドロキシアパタイト等も用いることができる。
Product names include Surflon S-111, S-112, S-113 (Asahi Glass Co., Ltd.), Florard FC-93, FC-95, FC-98, FC-129 (Sumitomo 3M Co., Ltd.), Unidyne DS-101. DS-102 (Daikin Kogyo Co., Ltd.), MegaFuck F-110, F-120, F-113, F-191, F-812, F-833 (Dainippon Ink Co., Ltd.), Xtop EF-102 , 103, 104, 105, 112, 123A, 123B, 306A, 501, 201, 204 (manufactured by Tochem Products), and Fgentent F-100, F150 (manufactured by Neos). In addition, as the cationic surfactant, aliphatic quaternary ammonium salts such as aliphatic primary, secondary or secondary amic acid, perfluoroalkyl (C 6 -C 10) sulfonamidopropyltrimethylammonium salt which right the fluoroalkyl group, Benzalkonium salt, benzethonium chloride, pyridinium salt, imidazolinium salt, trade names include Surflon S-121 (manufactured by Asahi Glass), Florard FC-135 (manufactured by Sumitomo 3M), Unidyne DS-202 (manufactured by Daikin Industries, Ltd.) ), Megafuck F-150, F-824 (manufactured by Dainippon Ink, Inc.), Xtop EF-132 (manufactured by Tochem Products), and Footgent F-300 (manufactured by Neos).
Moreover, tricalcium phosphate, calcium carbonate, acid value titanium, colloidal silica, hydroxyapatite, etc. can be used as an inorganic compound dispersant which is hardly soluble in water.

また、樹脂微粒子も無機分散剤と同様な効果が確認された。例えばMMAポリマー微粒子1μm、及び3μm、スチレン微粒子0.5μm及び2μm、スチレン−アクリロニトリル微粒子ポリマー1μm、(PB−200H(花王製)SGP(総研)、テクノポリマーSB(積水化成品工業)、SGP−3G(総研)ミクロパール(積水ファインケミカル))等がある。
また、上記の無機分散剤、樹脂微粒子と併用して使用可能な分散剤としては、高分子系保護コロイドにより分散液滴を安定化させても良い。例えばアクリル酸、メタクリル酸、α−シアノアクリル酸、α−シアノメタクリル酸、イタコン酸、クロトン酸、フマール酸、マレイン酸または無水マレイン酸などの酸類、あるいは水酸基を含有する(メタ)アクリル系単量体、例えばアクリル酸β−ヒドロキシエチル、メタクリル酸β−ヒドロキシエチル、アクリル酸β−ヒドロキシプロビル、メタクリル酸β−ヒドロキシプロピル、アクリル酸γ−ヒドロキシプロピル、メタクリル酸γ−ヒドロキシプロピル、アクリル酸3−クロロ2−ヒドロキシプロビル、メタクリル酸3−クロロ−2−ヒドロキシプロピル、ジエチレングリコールモノアクリル酸エステル、ジエチレングリコールモノメタクリル酸エステル、グリセリンモノアクリル酸エステル、グリセリンモノメタクリル酸エステル、N−メチロールアクリルアミド、N−メチロールメタクリルアミドなど、ビニルアルコールまたはビニルアルコールとのエーテル類、例えばビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテルなど、またはビニルアルコールとカルボキシル基を含有する化合物のエステル類、例えば酢酸ビニル、プロピオン酸ピニル、酪酸ビニルなど、アクリルアミド、メタクリルアミド、ジアセトンアクリルアミドあるいはこれらのメチロール化合物、アクリル酸クロライド、メタクリル酸クロライドなどの酸クロライド類、ビニルビリジン、ビニルピロリドン、ビニルイミダゾール、エチレンイミンなどの窒素原子、またはその複素環を有するものなどのホモポリマーまたは共重合体、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシエチレンアルキルアミン、ポリオキシプロピレンアルキルアミン、ポリオキシエチレンアルキルアミド、ポリオキシプロピレンアルキルアミド、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルフェニルエーテル、ポリオキシエチレンステアリルフェニルエステル、ポリオキシエチレンノニルフェニルエステルなどのポリオキシエチレン系、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロース類などが使用できる。
Further, the same effect as that of the inorganic dispersant was confirmed for the resin fine particles. For example, MMA polymer fine particles 1 μm and 3 μm, styrene fine particles 0.5 μm and 2 μm, styrene-acrylonitrile fine particle polymer 1 μm, (PB-200H (Kao) SGP (Soken), Technopolymer SB (Sekisui Plastics), SGP-3G (Soken) Micropearl (Sekisui Fine Chemical)).
In addition, as a dispersant that can be used in combination with the above inorganic dispersant and resin fine particles, the dispersed droplets may be stabilized by a polymeric protective colloid. For example, acrylic acid, methacrylic acid, α-cyanoacrylic acid, α-cyanomethacrylic acid, itaconic acid, crotonic acid, fumaric acid, maleic acid or maleic anhydride and other (meth) acrylic monomers containing hydroxyl groups Bodies such as β-hydroxyethyl acrylate, β-hydroxyethyl methacrylate, β-hydroxypropyl acrylate, β-hydroxypropyl methacrylate, γ-hydroxypropyl acrylate, γ-hydroxypropyl methacrylate, 3-acrylate Chloro-2-hydroxypropyl, 3-chloro-2-hydroxypropyl methacrylate, diethylene glycol monoacrylate, diethylene glycol monomethacrylate, glycerol monoacrylate, glycerol monomethacrylate, N -Methylol acrylamide, N-methylol methacrylamide, etc., vinyl alcohol or ethers with vinyl alcohol, such as vinyl methyl ether, vinyl ethyl ether, vinyl propyl ether, etc., or esters of compounds containing vinyl alcohol and carboxyl groups, such as Vinyl acetate, pinyl propionate, vinyl butyrate, etc., acrylamide, methacrylamide, diacetone acrylamide or their methylol compounds, acid chlorides such as acrylic acid chloride, methacrylic acid chloride, vinyl pyridine, vinyl pyrrolidone, vinyl imidazole, ethylene imine, etc. Homopolymers or copolymers such as those having a nitrogen atom or a heterocyclic ring thereof, polyoxyethylene, polyoxypropylene, Oxyethylene alkylamine, polyoxypropylene alkylamine, polyoxyethylene alkylamide, polyoxypropylene alkylamide, polyoxyethylene nonyl phenyl ether, polyoxyethylene lauryl phenyl ether, polyoxyethylene stearyl phenyl ester, polyoxyethylene nonyl phenyl ester Polyoxyethylenes such as, celluloses such as methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose can be used.

伸長及び/または架橋反応時間は、例えば、プレポリマー(A)の有するイソシアネート基構造とアミン類(B)の組み合わせによる反応性により選択されるが、通常10分〜40時間、好ましくは2〜24時間である。反応温度は、通常、0〜150℃、好ましくは40〜98℃である。また、必要に応じて公知の触媒を使用することができる。具体的にはジブチルチンラウレート、ジオクチルチンラウレートなどが挙げられる。   The elongation and / or crosslinking reaction time is selected, for example, depending on the reactivity of the isocyanate group structure of the prepolymer (A) and the amines (B), but is usually 10 minutes to 40 hours, preferably 2 to 24. It's time. The reaction temperature is generally 0 to 150 ° C, preferably 40 to 98 ° C. Moreover, a well-known catalyst can be used as needed. Specific examples include dibutyltin laurate and dioctyltin laurate.

なお、伸長剤及び/又は架橋剤としては、前記したアミン類(B)が用いられる。
本発明のトナーは、2成分系現像剤として用いることができる。この場合には、磁性キャリアと混合して用いれば良く、現像剤中のキャリアとトナーの含有比は、キャリア100重量部に対してトナー1〜10重量部が好ましい。磁性キャリアとしては、粒子径20〜200μm程度の鉄粉、フェライト粉、マグネタイト粉、磁性樹脂キャリアなど従来から公知のものが使用できる。また、被覆材料としては、アミノ系樹脂、例えば尿素−ホルムアルデヒド樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ユリア樹脂、ポリアミド樹脂、エポキシ樹脂等が挙げられる。またポリビニル及びポリビニリデン系樹脂、例えばアクリル樹脂、ポリメチルメタクリレート樹脂、ポリアクリロニトリル樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリスチレン樹脂及びスチレンアクリル共重合樹脂等のポリスチレン系樹脂、ポリ塩化ビニル等のハロゲン化オレフィン樹脂、ポリエチレンテレフタレート樹脂及びポリブチレンテレフタレート樹脂等のポリエステル系樹脂、ポリカーボネート系樹脂、ポリエチレン樹脂、ポリ弗化ビニル樹脂、ポリ弗化ビニリデン樹脂、ポリトリフルオロエチレン樹脂、ポリヘキサフルオロプロピレン樹脂、弗化ビニリデンとアクリル単量体との共重合体、弗化ビニリデンと弗化ビニルとの共重合体、テトラフルオロエチレンと弗化ビニリデンと非弗化単量体とのターポリマー等のフルオロターポリマー、及びシリコーン樹脂等が使用できる。また必要に応じて、導電粉等を被覆樹脂中に含有させてもよい。導電粉としては、金属粉、カーボンブラック、酸化チタン、酸化錫、酸化亜鉛等が使用できる。これらの導電粉は、平均粒子径1μm以下のものが好ましい。平均粒子径が1μmよりも大きくなると、電気抵抗の制御が困難になる。
また、本発明のトナーはキャリアを使用しない1成分系の磁性トナー或いは、非磁性トナーとしても用いることができる。
本発明の画像形成方法は、トナーを用いる従来の画像形成方法において、該トナーとして本発明のトナーを用いる方法である。
本発明の画像形成装置は、トナーを用いる従来の画像形成装置において、該トナーとして本発明のトナーを用いる装置である。
In addition, as an extender and / or a crosslinking agent, the above-described amines (B) are used.
The toner of the present invention can be used as a two-component developer. In this case, it may be used by mixing with a magnetic carrier, and the content ratio of the carrier to the toner in the developer is preferably 1 to 10 parts by weight of the toner relative to 100 parts by weight of the carrier. As the magnetic carrier, conventionally known ones such as iron powder, ferrite powder, magnetite powder, magnetic resin carrier having a particle diameter of about 20 to 200 μm can be used. Examples of the coating material include amino resins such as urea-formaldehyde resin, melamine resin, benzoguanamine resin, urea resin, polyamide resin, and epoxy resin. Polyvinyl and polyvinylidene resins such as acrylic resins, polymethyl methacrylate resins, polyacrylonitrile resins, polyvinyl acetate resins, polyvinyl alcohol resins, polyvinyl butyral resins, polystyrene resins and styrene acrylic copolymer resins, Halogenated olefin resins such as vinyl, polyester resins such as polyethylene terephthalate resin and polybutylene terephthalate resin, polycarbonate resins, polyethylene resins, polyvinyl fluoride resins, polyvinylidene fluoride resins, polytrifluoroethylene resins, polyhexafluoro Propylene resin, copolymer of vinylidene fluoride and acrylic monomer, copolymer of vinylidene fluoride and vinyl fluoride, tetrafluoroethylene and vinylidene fluoride and non- Monomers including a fluoro terpolymers such, and silicone resins. Moreover, you may contain electrically conductive powder etc. in coating resin as needed. As the conductive powder, metal powder, carbon black, titanium oxide, tin oxide, zinc oxide or the like can be used. These conductive powders preferably have an average particle diameter of 1 μm or less. When the average particle diameter is larger than 1 μm, it becomes difficult to control electric resistance.
The toner of the present invention can also be used as a one-component magnetic toner that does not use a carrier or a non-magnetic toner.
The image forming method of the present invention is a method of using the toner of the present invention as the toner in a conventional image forming method using toner.
The image forming apparatus of the present invention is an apparatus using the toner of the present invention as the toner in a conventional image forming apparatus using toner.

以下、本発明の図1、図2、図3及び図4についての詳細な説明について以下に説明する。   Hereinafter, a detailed description of FIGS. 1, 2, 3, and 4 of the present invention will be described.

図1は本発明の装置図の一例として、ジャケット付き脱溶剤釜を用いたバッチ式脱溶剤装置である。乳化液タンク(11)に乳化液を送液した後、乳化液タンクを密閉し、真空ポンプ(33)を作動させ、減圧にする。ジャケット(12)に温水、または減圧蒸気を供給し、乳化液タンク(11)を加熱する。乳化液より、溶剤と水の共沸混合蒸気が発生し、分離膜モジュール(21)に送られる。分離膜モジュールの透過側(排出側)を減圧状態とし、圧力調整弁(43)により、非透過側(液導入側)との差圧を保持することで水蒸気を選択的に透過させることができ、凝縮器(32)により冷却され、水タンク(31)に水が回収される。一方、溶剤は凝縮器(42)により、冷却され、有機溶媒タンク(41)により回収される。   FIG. 1 shows a batch type solvent removal apparatus using a jacketed solvent removal tank as an example of the apparatus diagram of the present invention. After feeding the emulsion to the emulsion tank (11), the emulsion tank is sealed, and the vacuum pump (33) is operated to reduce the pressure. Warm water or reduced-pressure steam is supplied to the jacket (12) to heat the emulsion tank (11). An azeotropic vapor mixture of solvent and water is generated from the emulsion and sent to the separation membrane module (21). By making the permeation side (discharge side) of the separation membrane module into a reduced pressure state and maintaining the differential pressure from the non-permeation side (liquid introduction side) by the pressure regulating valve (43), water vapor can be selectively permeated. Then, it is cooled by the condenser (32), and water is collected in the water tank (31). On the other hand, the solvent is cooled by the condenser (42) and recovered by the organic solvent tank (41).

図2は本発明の装置図の一例として、機械的攪拌遠心薄膜型脱溶剤装置を用いた連続式装置である。真空ポンプ(33)を作動させ、脱溶剤装置(13)を減圧にする。脱溶剤装置(13)に乳化液を送液し、回転翼を高速で回転させ、脱溶剤装置(13)の内筒壁面に薄膜を形成した後、乳化液タンク(11)に回収される。減圧下でジャケット(12)に温水、または減圧蒸気を供給し、脱溶剤装置(13)を加熱すると、乳化液より、溶剤と水の共沸混合蒸気が発生し、分離膜モジュール(21)に送られる。分離膜モジュールの透過側(排出側)を減圧状態とし、圧力調整弁(43)により、非透過側(液導入側)との差圧を保持することで水蒸気を選択的に透過させることができ、凝縮器(32)により冷却され、水タンク(31)に水が回収される。一方、溶剤は凝縮器(42)により、冷却され、有機溶媒タンク(41)により回収される。乳化液タンク(11)に回収された脱溶剤後スラリーは、ポンプ(14)により、排出される。水タンク(31)に回収された水は、ポンプ(34)により、排出される。有機溶媒タンク(41)に回収された溶剤は、ポンプ(44)により、排出される。乳化液を脱溶剤装置(13)に送液速度と、乳化液タンク(11)、水タンク(31)、及び有機溶媒タンク(41)に回収される各々の処理液の排出速度を制御することで脱溶剤を連続的に行うことができる。   FIG. 2 shows a continuous apparatus using a mechanical stirring centrifugal thin film type solvent removal apparatus as an example of the apparatus diagram of the present invention. The vacuum pump (33) is operated, and the desolventizer (13) is depressurized. The emulsion is sent to the desolventizer (13), the rotor blades are rotated at high speed, a thin film is formed on the inner cylinder wall surface of the desolventizer (13), and then collected in the emulsion tank (11). When hot water or reduced-pressure steam is supplied to the jacket (12) under reduced pressure and the desolventizer (13) is heated, an azeotropic mixture of solvent and water is generated from the emulsified liquid and is supplied to the separation membrane module (21). Sent. By making the permeation side (discharge side) of the separation membrane module into a reduced pressure state and maintaining the differential pressure from the non-permeation side (liquid introduction side) by the pressure regulating valve (43), water vapor can be selectively permeated. Then, it is cooled by the condenser (32), and water is collected in the water tank (31). On the other hand, the solvent is cooled by the condenser (42) and recovered by the organic solvent tank (41). The solvent-removed slurry recovered in the emulsion liquid tank (11) is discharged by the pump (14). The water collected in the water tank (31) is discharged by the pump (34). The solvent recovered in the organic solvent tank (41) is discharged by the pump (44). Controlling the feeding speed of the emulsion to the solvent removal apparatus (13) and the discharge speed of each processing liquid collected in the emulsion tank (11), water tank (31), and organic solvent tank (41). The solvent can be removed continuously.

図3は本発明の装置図の一例として、縦型流下液膜式脱溶剤装置を用いた連続式装置である。真空ポンプ(33)を作動させ、脱溶剤装置(13)を減圧にする。脱溶剤装置(13)に乳化液を送液し、脱溶剤装置(13)の内筒壁面に乳化液を流下させ、薄膜を形成した後、乳化液タンク(11)に回収される。減圧下でジャケット(12)に温水、または減圧蒸気を供給し、脱溶剤装置(13)を加熱すると、乳化液より、溶剤と水の共沸混合蒸気が発生し、分離膜モジュール(21)に送られる。分離膜モジュールの透過側(排出側)を減圧状態とし、圧力調整弁(43)により、非透過側(液導入側)との差圧を保持することで水蒸気を選択的に透過させることができ、凝縮器(32)により冷却され、水タンク(31)に水が回収される。一方、溶剤は凝縮器(42)により、冷却され、有機溶媒タンク(41)により回収される。乳化液タンク(11)に回収された脱溶剤後スラリーは、ポンプ(14)により、排出される。水タンク(31)に回収された水は、ポンプ(34)により、排出される。有機溶媒タンク(41)に回収された溶剤は、ポンプ(44)により、排出される。乳化液を脱溶剤装置(13)に送液速度と、乳化液タンク(11)、水タンク(31)、及び有機溶媒タンク(41)に回収される各々の処理液の排出速度を制御することで脱溶剤を連続的に行うことができる。   FIG. 3 shows a continuous apparatus using a vertical falling film type solvent removal apparatus as an example of the apparatus diagram of the present invention. The vacuum pump (33) is operated, and the desolventizer (13) is depressurized. The emulsion is sent to the desolventizer (13), and the emulsion is allowed to flow down to the inner cylinder wall surface of the desolventizer (13) to form a thin film, which is then collected in the emulsion tank (11). When hot water or reduced-pressure steam is supplied to the jacket (12) under reduced pressure and the desolventizer (13) is heated, an azeotropic mixture of solvent and water is generated from the emulsified liquid and is supplied to the separation membrane module (21). Sent. By making the permeation side (discharge side) of the separation membrane module into a reduced pressure state and maintaining the differential pressure from the non-permeation side (liquid introduction side) by the pressure regulating valve (43), water vapor can be selectively permeated. Then, it is cooled by the condenser (32), and water is collected in the water tank (31). On the other hand, the solvent is cooled by the condenser (42) and recovered by the organic solvent tank (41). The solvent-removed slurry recovered in the emulsion liquid tank (11) is discharged by the pump (14). The water collected in the water tank (31) is discharged by the pump (34). The solvent recovered in the organic solvent tank (41) is discharged by the pump (44). Controlling the feeding speed of the emulsion to the solvent removal apparatus (13) and the discharge speed of each processing liquid collected in the emulsion tank (11), water tank (31), and organic solvent tank (41). The solvent can be removed continuously.

図4は画像形成装置の1つの例についての要部断面構成図である。この例では、画像形成装置として、電子写真式複写機を例示している。図3において、(1)は潜像担持体としての感光体ドラムであり、図面の矢印方向に回転し、その周囲には帯電器(2)が配置されており、原稿から読み取った画像に対応したレーザ光(3)が露光手段として照射される。さらに感光体(1)の周囲には現像装置(4)と、給紙手段(7)と、転写装置(5)と、クリーニング装置(6)及び除電ランプ(9)が配置されている。上記現像装置(4)は、さらに現像ローラ(41)及び(42)と、パドル状撹袢部材(43)と、撹袢部材(44)と、ドクター(45)と、トナー補給部(46)と、補給ローラ(47)を備えている。またクリーニング手段(6)はクリーニングブラシ(62)とクリーニングブレード(61)を備えている。なお、上記現像装置(4)の上下に配置されている番号(81)と(82)の部材は現像装置を着脱あるいは支持するためのガイドレールである。クリーニング装置のクリーニング・ブレード(61)に関しても、その寿命を検知することが可能である。クリーニング・ブレード(61)は作像中は常に感光体に当接し、感光体の回転に伴って磨耗する。クリーニング・ブレードが磨耗すると、感光体面の残留トナー除去機能が低下し、複写画像品質が劣化する。また、磨耗しなくともトナーが真球に近く流動性が粉砕型トナーに比べ改善されると転写性は向上するもののクリーニングにおいては設置されたブレードを通り抜けクリーニング不良が発生しやすく重合トナーの問題とされる。この問題に対し本発明のトナーを用いることにより、良好にクリーニングすることができる。   FIG. 4 is a cross-sectional configuration diagram of a main part of an example of the image forming apparatus. In this example, an electrophotographic copying machine is illustrated as an image forming apparatus. In FIG. 3, reference numeral (1) denotes a photosensitive drum as a latent image carrier, which rotates in the direction of the arrow in the drawing, and a charger (2) is disposed around it, corresponding to an image read from a document. The irradiated laser beam (3) is irradiated as exposure means. Further, a developing device (4), a paper feeding means (7), a transfer device (5), a cleaning device (6), and a charge eliminating lamp (9) are arranged around the photoreceptor (1). The developing device (4) further includes developing rollers (41) and (42), a paddle-shaped stirring member (43), a stirring member (44), a doctor (45), and a toner replenishing section (46). And a replenishment roller (47). The cleaning means (6) includes a cleaning brush (62) and a cleaning blade (61). Members (81) and (82) arranged above and below the developing device (4) are guide rails for attaching / detaching or supporting the developing device. The life of the cleaning blade (61) of the cleaning device can also be detected. The cleaning blade (61) always abuts on the photoconductor during image formation and wears as the photoconductor rotates. When the cleaning blade is worn, the function of removing the residual toner on the surface of the photoreceptor is lowered, and the copy image quality is deteriorated. Even if the toner is not worn, the transferability is improved when the toner is close to a true sphere and the fluidity is improved as compared with the pulverized toner. However, in cleaning, it is easy to cause defective cleaning through the installed blade. Is done. By using the toner of the present invention with respect to this problem, it can be satisfactorily cleaned.

つまり、(1)有機溶媒除去工程の時間短縮で、高効率なトナー製造方法が提供され、(2)乳化液より有機溶媒を除去すると同時に有機溶媒の精製を行うことで溶媒除去の熱エネルギーが有効に利用され、(3)トナー粒径分布のシャープ化を図ることができる。   In other words, (1) a highly efficient toner production method is provided by shortening the time of the organic solvent removal step, and (2) the heat energy of solvent removal is obtained by removing the organic solvent from the emulsion and simultaneously purifying the organic solvent. Effectively used, (3) it is possible to sharpen the toner particle size distribution.

(図1〜図3)
11 乳化液タンク
12 ジャケット
13 脱溶剤装置
14 ポンプ
21 分離膜モジュール
31 水タンク
32 凝縮器
33 真空ポンプ
34 ポンプ
41 有機溶媒タンク
42 圧力調整弁
43 ポンプ
44 有機溶媒出口
(図4)
1 感光体ドラム
2 帯電器
3 レーザ光
4 現像装置
5 転写装置
6 クリーニング装置
7 給紙手段
9 除電ランプ
41 現像装置
42 現像ローラ
43 パドル状撹袢部材
44 撹袢部材
45 ドクター
46 トナー補給部
47 補給ローラ
61 クリーニングブレード
62 クリーニングブラシ
81 ガイドレール
82 ガイドレール
A 回転方向
(FIGS. 1 to 3)
11 Emulsified liquid tank 12 Jacket 13 Solvent removal device 14 Pump 21 Separation membrane module 31 Water tank 32 Condenser 33 Vacuum pump 34 Pump 41 Organic solvent tank 42 Pressure adjustment valve 43 Pump 44 Organic solvent outlet (FIG. 4)
DESCRIPTION OF SYMBOLS 1 Photosensitive drum 2 Charger 3 Laser beam 4 Developing device 5 Transfer device 6 Cleaning device 7 Feeding means 9 Static elimination lamp 41 Developing device 42 Developing roller 43 Paddle-shaped stirring member 44 Stirring member 45 Doctor 46 Toner replenishing part 47 Replenishment Roller 61 Cleaning blade 62 Cleaning brush 81 Guide rail 82 Guide rail A Rotation direction

Claims (7)

少なくとも結着樹脂及び/又は結着樹脂前駆体、着色剤、離型剤を含むトナー用材料を有機溶媒中に溶解又は分散させ、前記溶解液又は分散液からなる油相を、水系媒体中に乳化させて粒子を造粒し、前記乳化液から溶剤除去する工程を有することでトナー粒子を得る静電荷像現象用トナーの製造方法であって、
前記乳化液より有機溶媒を除去する工程において、分離膜モジュールを用い、該分離膜の排出側と液導入側の差圧を用いて、該有機溶媒と水系媒体の共沸混合物より、水蒸気を選択的に透過させ、該乳化液より有機溶媒を除去することを特徴とする静電荷像現象用トナーの製造方法。
A toner material containing at least a binder resin and / or a binder resin precursor, a colorant, and a release agent is dissolved or dispersed in an organic solvent, and an oil phase composed of the solution or the dispersion is dispersed in an aqueous medium. A method for producing a toner for an electrostatic charge image phenomenon, wherein the toner particles are obtained by emulsifying and granulating the particles and removing the solvent from the emulsion.
In the step of removing the organic solvent from the emulsion, a separation membrane module is used, and water vapor is selected from the azeotropic mixture of the organic solvent and the aqueous medium by using the differential pressure between the discharge side and the liquid introduction side of the separation membrane. A method for producing a toner for an electrostatic charge image phenomenon, wherein the organic solvent is removed from the emulsified liquid.
少なくとも活性水素基を有する化合物、活性水素基と反応可能な部位を有する重合体、結着樹脂、着色剤、離型剤、変性層状無機鉱物と該結着樹脂との混練複合体を含むトナー用材料を有機溶媒中に溶解又は分散させ、該溶液または分散液からなる油相を、樹脂微粒子含有水系媒体中で分散、乳化させ、該活性水素基を有する化合物と、活性水素基と反応可能な部位を有する重合体を反応させた後、もしくは反応させながら、該有機溶媒を除去する工程を有するトナー製造方法であって、
前記乳化液より有機溶媒を除去する工程において、分離膜モジュールを用い、該分離膜の排出側と液導入側の差圧を用いて、該有機溶媒と水系媒体の共沸混合物より、水蒸気を選択的に透過させ、該乳化液より有機溶媒を除去することを特徴とする静電荷像現象用トナーの製造方法。
For toners comprising a compound having at least an active hydrogen group, a polymer having a site capable of reacting with the active hydrogen group, a binder resin, a colorant, a release agent, and a kneaded composite of a modified layered inorganic mineral and the binder resin A material is dissolved or dispersed in an organic solvent, and an oil phase composed of the solution or dispersion is dispersed and emulsified in an aqueous medium containing resin fine particles so that the compound having active hydrogen groups can react with the active hydrogen groups. A method for producing a toner comprising a step of removing the organic solvent after reacting a polymer having a site or while reacting the polymer,
In the step of removing the organic solvent from the emulsion, a separation membrane module is used, and water vapor is selected from the azeotropic mixture of the organic solvent and the aqueous medium by using the differential pressure between the discharge side and the liquid introduction side of the separation membrane. A method for producing a toner for an electrostatic charge image phenomenon, wherein the organic solvent is removed from the emulsified liquid.
前記乳化液より有機溶媒を除去する工程において、該分離膜モジュールの排出側を30〜200mmHgの減圧状態とすることを特徴とする請求項1または2に記載の静電荷像現象用トナーの製造方法。   3. The method for producing a toner for an electrostatic charge image phenomenon according to claim 1, wherein in the step of removing the organic solvent from the emulsion, the discharge side of the separation membrane module is in a reduced pressure state of 30 to 200 mmHg. . 前記分離膜モジュールの該分離膜が芳香族ポリイミド製であることを特徴とする請求項1乃至3のいずれかに記載の静電荷像現象用トナーの製造方法。 4. The method for producing a toner for an electrostatic charge image phenomenon according to claim 1, wherein the separation membrane of the separation membrane module is made of an aromatic polyimide. 前記有機溶媒が酢酸エチルであることを特徴とする請求項1乃至4のいずれかに記載の静電荷像現像用トナーの製造方法。   The method for producing a toner for developing an electrostatic charge image according to claim 1, wherein the organic solvent is ethyl acetate. 前記静電荷像現象用トナーのガラス転移点が40〜70℃であることを特徴とする請求項1乃至5のいずれかに記載の静電荷像現像用トナーの製造方法。   The method for producing a toner for developing an electrostatic charge image according to any one of claims 1 to 5, wherein the toner for electrostatic charge image phenomenon has a glass transition point of 40 to 70 ° C. 前記乳化液より有機溶媒を除去する工程における該乳化液、及び該乳化液と水系媒体の共沸混合物の処理温度が前記静電荷像現象用トナーのガラス転移点より低い温度であることを特徴とする請求項1乃至6のいずれかに記載の静電荷像現像用トナーの製造方法。   The processing temperature of the emulsion and the azeotropic mixture of the emulsion and an aqueous medium in the step of removing the organic solvent from the emulsion is a temperature lower than the glass transition point of the electrostatic charge image phenomenon toner. A method for producing a toner for developing an electrostatic charge image according to any one of claims 1 to 6.
JP2009065594A 2009-03-18 2009-03-18 Method for producing toner for developing electrostatic image, and toner Expired - Fee Related JP5505687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009065594A JP5505687B2 (en) 2009-03-18 2009-03-18 Method for producing toner for developing electrostatic image, and toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065594A JP5505687B2 (en) 2009-03-18 2009-03-18 Method for producing toner for developing electrostatic image, and toner

Publications (2)

Publication Number Publication Date
JP2010217632A JP2010217632A (en) 2010-09-30
JP5505687B2 true JP5505687B2 (en) 2014-05-28

Family

ID=42976544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065594A Expired - Fee Related JP5505687B2 (en) 2009-03-18 2009-03-18 Method for producing toner for developing electrostatic image, and toner

Country Status (1)

Country Link
JP (1) JP5505687B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434348B2 (en) * 2009-08-04 2014-03-05 株式会社リコー Toner production method
JP2015175950A (en) * 2014-03-14 2015-10-05 株式会社リコー Reservoir facility and toner production device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743346B2 (en) * 1991-12-26 1998-04-22 宇部興産株式会社 Water-organic solution dehydration method
JP3876561B2 (en) * 1999-03-15 2007-01-31 宇部興産株式会社 Gas separation membrane module and gas separation method
JP4030937B2 (en) * 2003-05-22 2008-01-09 株式会社リコー Method for producing toner for developing electrostatic image, toner, and image forming apparatus
JP2005225968A (en) * 2004-02-12 2005-08-25 Nippon Zeon Co Ltd Method for stripping volatile organic material, and method for producing polymer toner
JP4647465B2 (en) * 2005-11-11 2011-03-09 株式会社リコー Toner base particle manufacturing method, toner particle and toner manufacturing method, toner
JP5008129B2 (en) * 2006-03-17 2012-08-22 株式会社リコー Method for producing toner for developing electrostatic image

Also Published As

Publication number Publication date
JP2010217632A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP4719089B2 (en) Toner and developer for developing electrostatic image, image forming method and image forming apparatus using the toner
JP5467505B2 (en) Toner manufacturing method, toner and developer
JP5146661B2 (en) Toner manufacturing method and toner
JP5196120B2 (en) Toner for developing electrostatic image and image forming method and apparatus using the toner
JP2009133959A (en) Toner for electrostatic charge image development, and image forming device and process using the toner
JP2008233256A (en) Toner for electrostatic charge image development, container containing toner, developer, image forming apparatus, process cartridge, and method for manufacturing toner
JP5008129B2 (en) Method for producing toner for developing electrostatic image
JP5511315B2 (en) Toner for developing electrostatic image, method for producing the same, developer, image forming method and image forming apparatus
JP5434348B2 (en) Toner production method
JP5417796B2 (en) Toner production method
JP2008233406A (en) Toner for developing electrostatic charge image, method for producing the toner, image forming method, image forming apparatus and process cartridge using the toner
JP5453862B2 (en) Toner production method
JP2009134061A (en) Toner manufacturing method
JP5332545B2 (en) Toner production method
JP3686059B2 (en) Toner and method and apparatus for forming an image using the toner
JP5505687B2 (en) Method for producing toner for developing electrostatic image, and toner
JP2012118362A (en) Toner for developing electrostatic charge image
JP2010152305A (en) Manufacturing method of toner
JP3947194B2 (en) Method for producing toner for electrophotography
JP4024242B2 (en) Toner and method and apparatus for forming an image using the toner
JP5434133B2 (en) Method for producing toner for developing electrostatic image
JP5429560B2 (en) Method for producing toner base particles, toner base particles obtained thereby, and solvent removal apparatus
JP4787700B2 (en) Toner for developing electrostatic image and method for producing the same
JP2012247657A (en) Toner for electrostatic charge image development, developer, and image forming apparatus
JP2010262170A (en) Toner for electrostatic charge image development and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

LAPS Cancellation because of no payment of annual fees