JP5505245B2 - X-ray irradiation field control method in collimator mechanism - Google Patents

X-ray irradiation field control method in collimator mechanism Download PDF

Info

Publication number
JP5505245B2
JP5505245B2 JP2010229448A JP2010229448A JP5505245B2 JP 5505245 B2 JP5505245 B2 JP 5505245B2 JP 2010229448 A JP2010229448 A JP 2010229448A JP 2010229448 A JP2010229448 A JP 2010229448A JP 5505245 B2 JP5505245 B2 JP 5505245B2
Authority
JP
Japan
Prior art keywords
irradiation field
relational expression
ray irradiation
ray
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010229448A
Other languages
Japanese (ja)
Other versions
JP2012081043A (en
Inventor
雅大 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2010229448A priority Critical patent/JP5505245B2/en
Publication of JP2012081043A publication Critical patent/JP2012081043A/en
Application granted granted Critical
Publication of JP5505245B2 publication Critical patent/JP5505245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

この発明は、コリメータ機構におけるX線照射野制御方法に関する。   The present invention relates to an X-ray irradiation field control method in a collimator mechanism.

X線撮影装置におけるX線管とX線検出器との間には、X線管から照射されたX線の被検者に対する照射領域を規制するため、X線管からのX線の照射領域に開閉可能に配設された複数の遮蔽板を備えたコリメータ機構が設置されている。このコリメータ機構における遮蔽板の開き量は、観察する対象部位に応じて、X線被曝量を低減するためにオペレータにより調整される(特許文献1参照)。   Between the X-ray tube and the X-ray detector in the X-ray imaging apparatus, the X-ray irradiation region from the X-ray tube is restricted in order to regulate the irradiation region of the X-rays irradiated from the X-ray tube to the subject. A collimator mechanism having a plurality of shielding plates arranged to be openable and closable is installed. The opening amount of the shielding plate in this collimator mechanism is adjusted by an operator in order to reduce the X-ray exposure amount according to the target site to be observed (see Patent Document 1).

特開平11−309138号公報JP-A-11-309138

このようなコリメート機構においては、4枚の遮蔽板を単純に水平方向に移動させることにより照射領域を調整する構成ではなく、X線を遮蔽するための一対の遮蔽板を備えた4個の移動部材を特定の軸を中心に各々揺動させることにより各遮蔽板を移動させて、X線の漏洩を確実に防止する構成が採用されている。   In such a collimating mechanism, it is not a configuration in which the irradiation area is adjusted by simply moving the four shielding plates in the horizontal direction, but four movements including a pair of shielding plates for shielding X-rays. A configuration is employed in which each shielding plate is moved by swinging the member around a specific axis to reliably prevent X-ray leakage.

すなわち、X線撮影装置においてX線照射野を調整する場合に、X線の漏洩をより確実に防止するため、軸を中心に揺動可能な揺動部材の上端に遮蔽内板を配設するとともに、揺動部材の下端に遮蔽板(コリメータリーフ)を配設した遮蔽機構を、各遮蔽内板および遮蔽板により矩形状の照射領域が形成可能なように4個配設し、それら4個の揺動部材を揺動させることにより、4枚の遮蔽内板および4枚の遮蔽板を使用して矩形状のX線照射野の大きさを調整する構成となっている。   That is, when adjusting the X-ray irradiation field in the X-ray imaging apparatus, in order to prevent X-ray leakage more reliably, the shielding inner plate is disposed at the upper end of the swinging member that can swing around the axis. At the same time, four shielding mechanisms in which a shielding plate (collimator leaf) is arranged at the lower end of the swing member are arranged so that a rectangular irradiation region can be formed by each shielding inner plate and shielding plate. By swinging the swing member, the size of the rectangular X-ray irradiation field is adjusted using the four shield inner plates and the four shield plates.

このようなコリメータ機構においては、従来、遮蔽板の開き量の計算は、直線近似により計算されていた。すなわち、従来のコリメータ機構においては、例えば、遮蔽板の解放位置と閉鎖位置の間の位置計算を、直線近似により計算することにより、遮蔽板の開き量、すなわち、揺動部材の移動量の指令値xを求め、X線照射野の大きさを調整していた。ここで、4枚の遮蔽板を単純に水平方向に移動させることにより照射領域を調整する場合においては、遮蔽板の開き量の計算を直線近似により実行しても問題は生じない。しかしながら、遮蔽板が軸を中心に揺動する揺動部材に付設されている場合には、直線近似によりその開き量の計算を行えば、直線近似による遮蔽板の開き量と実際の開き量との間に誤差が生じ、X線照射野を正確に設定することができないという問題が生ずる。   In such a collimator mechanism, conventionally, the opening amount of the shielding plate has been calculated by linear approximation. That is, in the conventional collimator mechanism, for example, by calculating the position between the release position and the closing position of the shielding plate by linear approximation, the opening amount of the shielding plate, that is, the movement amount of the swinging member is commanded. The value x was obtained and the size of the X-ray irradiation field was adjusted. Here, in the case where the irradiation area is adjusted by simply moving the four shielding plates in the horizontal direction, there is no problem even if the calculation of the opening amount of the shielding plates is executed by linear approximation. However, if the shielding plate is attached to a swinging member that swings about the axis, the opening amount of the shielding plate by the linear approximation and the actual opening amount can be calculated by calculating the opening amount by linear approximation. An error occurs between the two, and there is a problem that the X-ray irradiation field cannot be set accurately.

このため、遮蔽板の実際の位置、すなわち、実際のX線照射野を、三角関数や平方根などの関数を利用して正確に演算することも不可能ではない。しかしながら、X線照射野は、遮蔽板の位置のみならず、X線管とX線検出器との間の距離である線源受像画間距離(SID/Sourse Image Distance)によってもかわってくることから、これを正確に演算するためには、計算に時間を要し、X線照射野の調整のレスポンスが低下するという問題が生ずる。   For this reason, it is not impossible to accurately calculate the actual position of the shielding plate, that is, the actual X-ray irradiation field using a function such as a trigonometric function or a square root. However, the X-ray irradiation field is changed not only by the position of the shielding plate but also by the distance between the X-ray tube and the X-ray detector, which is the distance between the source image and the image (SID / Source Image Distance). Therefore, in order to calculate this accurately, time is required for the calculation, and there arises a problem that the response of adjustment of the X-ray irradiation field is lowered.

この発明は上記課題を解決するためになされたものであり、X線照射野を正確かつ迅速に調整することが可能なコリメータ機構におけるX線照射野制御方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an X-ray irradiation field control method in a collimator mechanism capable of accurately and quickly adjusting an X-ray irradiation field.

請求項1に記載の発明は、X線を遮蔽する一対の遮蔽板を備え、軸を中心に揺動することによりX線照射野を調整する4個の移動部材と、前記各移動部材の移動指令を送信する制御部とを備えたコリメータ機構におけるX線照射野制御方法において、前記制御部の指令により移動部材を移動させたときのX線照射野を測定することにより、前記制御部による前記移動部材の移動量の指令値から前記遮蔽板の解放位置と遮蔽位置の間の位置計算を直線近似により計算して得た照射野と、そのときのX線照射野との差を示す複数の誤差データを得る誤差測定工程と、前記誤差測定工程で得た複数の誤差データを移動量の指令値を変数として多項式近似することにより、前記制御部による前記移動部材の移動量の指令値から前記遮蔽板の解放位置と遮蔽位置の間の位置計算を直線近似により計算して得た照射野と、とそのときのX線照射野との差との関係を示す第1関係式を作成する第1関係式作成工程と、前記誤差測定工程と前記第1関係式作成工程とを線源受像画間距離を変更して複数回繰り返すことにより、線源受像画間距離と前記第1関係式における係数との関係を示す複数の係数データを得る係数測定工程と、前記係数測定工程で得た複数の係数データを線源受像画間距離zを変数として多項式近似することにより、線源受像画間距離とそのときの前記第1関係式における係数との関係を示す第2関係式を作成する第2関係式作成工程と、X線撮影時における線源受像画間距離と、前記第1関係式および前記第2関係式とから、前記移動部材の移動量を演算する移動量演算工程とを備えたことを特徴とする。 The invention according to claim 1 includes a pair of shielding plates that shield X-rays, and includes four moving members that adjust the X-ray irradiation field by swinging about an axis, and movement of each of the moving members. In an X-ray irradiation field control method in a collimator mechanism including a control unit that transmits a command, by measuring the X-ray irradiation field when the moving member is moved according to the command of the control unit, the control unit performs the A plurality of values indicating a difference between an irradiation field obtained by calculating a position calculation between the release position and the shielding position of the shielding plate from the command value of the moving amount of the moving member by linear approximation, and an X-ray irradiation field at that time an error measuring step of obtaining the error data, by polynomial approximation the command value of the movement amount as a variable a plurality of error data obtained by the error measuring step, from said command value of the movement amount of the movable member by the controller Shield release position and A radiation field obtained by calculating by linear approximation position calculation between蔽position, and the first relational expression generation step of generating a first relation formula showing a relationship between a difference between the X-ray irradiation field at that time The relationship between the distance between the source image and the coefficient in the first relational expression is shown by repeating the error measurement step and the first relational expression creating step a plurality of times while changing the distance between the source image and the image. A coefficient measuring step for obtaining a plurality of coefficient data, and by approximating a plurality of coefficient data obtained in the coefficient measuring step by polynomial approximation using a distance z between the source image and the image as a variable, the distance between the source image and the image at that time A second relational expression creating step for creating a second relational expression showing a relation with a coefficient in the first relational expression, a distance between the source image images at the time of X-ray imaging, the first relational expression and the second relational expression; And a moving amount calculating step for calculating a moving amount of the moving member. Characterized by comprising a.

請求項2に記載の発明は、前記移動量演算工程は、X線撮影時における線源受像画間距離と、前記第1関係式および前記第2関係式を利用して、その線源受像画間距離における前記制御部による前記移動部材の移動量の指令値から前記遮蔽板の解放位置と遮蔽位置の間の位置計算を直線近似により計算して得た照射野と、そのときのX線照射野との差を演算する誤差演算工程と、X線撮影時に前記制御部による前記移動部材の移動量の指令値を前記誤差演算工程で演算した差により補正する誤差補正工程とから構成される。 According to a second aspect of the present invention, the movement amount calculating step uses the distance between the source image images at the time of X-ray imaging and the first relational expression and the second relational expression to obtain the source image. The irradiation field obtained by calculating the position calculation between the release position of the shielding plate and the shielding position by linear approximation from the command value of the movement amount of the moving member by the control unit at the distance between the X-rays and the X-ray irradiation at that time composed of an error calculation step of calculating a difference between the field, the error correcting step of correcting the difference of the command value computed by the error calculation step of moving amount of the moving member by the control unit at the time of X-ray imaging .

請求項3に記載の発明は、X線を遮蔽する一対の遮蔽板を備え、軸を中心に揺動することによりX線照射野を調整する4個の移動部材と、前記各移動部材の移動指令を送信する制御部とを備えたコリメータ機構におけるX線照射野制御方法において、前記制御部の指令により移動部材を移動させたときのX線照射野を測定することにより、前記制御部による前記移動部材の移動量の指令値xから前記遮蔽板の解放位置と遮蔽位置の間の位置計算を直線近似により計算して得た照射野と、そのときのX線照射野との差yを示す複数の誤差データを得る誤差測定工程と、前記誤差測定工程で得た複数の誤差データを移動量の指令値xを変数として多項式近似することにより、a、b、c、dを係数としたときに、前記制御部による前記移動部材の移動量の指令値xから前記遮蔽板の解放位置と遮蔽位置の間の位置計算を直線近似により計算して得た照射野と、そのときのX線照射野との差yとの関係を示す下記の第1関係式(1)を作成する第1関係式作成工程と、前記誤差測定工程と前記第1関係式作成工程とを線源受像画間距離zを変更して複数回繰り返すことにより、線源受像画間距離zと前記第1関係式(1)における係数a、b、c、dとの関係を示す複数の係数データを得る係数測定工程と、前記係数測定工程で得た複数の係数データを線源受像画間距離zを変数として多項式近似することにより、線源受像画間距離zとそのときの前記第1関係式(1)における係数a、b、c、dとの関係を示す下記の第2関係式(2)(3)(4)(5)を作成する第2関係式作成工程と、X線撮影時における線源受像画間距離zを前記第2関係式(2)(3)(4)(5)に代入することにより、係数a、b、c、dを求めると共に、この係数a、b、c、dと前記移動部材の移動量の指令値xとを前記第1関係式(1)に代入することにより、その線源受像画間距離zにおける前記制御部による前記移動部材の移動量の指令値xから前記遮蔽板の解放位置と遮蔽位置の間の位置計算を直線近似により計算して得た照射野と、そのときのX線照射野との差yを演算する誤差演算工程と、X線撮影時に前記制御部による前記移動部材の移動量の指令値xを前記誤差演算工程で演算した差yにより補正する誤差補正工程とを備えたことを特徴とする。 The invention described in claim 3 includes a pair of shielding plates that shield X-rays, and includes four moving members that adjust the X-ray irradiation field by swinging about an axis, and movement of each of the moving members. In an X-ray irradiation field control method in a collimator mechanism including a control unit that transmits a command, by measuring the X-ray irradiation field when the moving member is moved according to the command of the control unit, the control unit performs the A difference y between an irradiation field obtained by calculating a position calculation between the release position of the shielding plate and the shielding position from the command value x of the moving amount of the moving member by linear approximation and the X-ray irradiation field at that time is shown. An error measurement step for obtaining a plurality of error data, and a plurality of error data obtained in the error measurement step are approximated by polynomials using a movement amount command value x as a variable so that a, b, c, and d are coefficients. Further, the moving member is controlled by the control unit. Below showing the irradiation field obtained by calculating by linear approximation position calculation between the command value x of the moving amount of the blocking position and a release position of the shielding plate, the relationship between the difference y between the X-ray irradiation field at that time By repeating the first relational expression creating step for creating the first relational expression (1), the error measurement step and the first relational expression creating step a plurality of times while changing the distance z between the source image images, A coefficient measurement step for obtaining a plurality of coefficient data indicating the relationship between the distance z between the source image and the coefficients a, b, c, and d in the first relational expression (1), and a plurality of coefficients obtained in the coefficient measurement step The coefficient data is approximated by a polynomial equation with the distance z between the source image and the image as a variable , whereby the relationship between the distance z between the source image and the image and the coefficients a, b, c, d in the first relational expression (1) at that time. The second relational expression creation work for creating the following second relational expression (2) (3) (4) (5) By substituting the distance z between the source image and the received image at the time of X-ray imaging into the second relational expressions (2), (3), (4), and (5), the coefficients a, b, c, and d are obtained, By substituting the coefficient a, b, c, d and the command value x of the moving amount of the moving member into the first relational expression (1), the control unit by the control unit at the distance z between the source image and the image is received. The difference y between the irradiation field obtained by calculating the position calculation between the release position of the shielding plate and the shielding position by linear approximation from the command value x of the moving amount of the moving member and the X-ray irradiation field at that time is calculated. And an error correction step of correcting the command value x of the movement amount of the moving member by the control unit by the difference y calculated in the error calculation step during X-ray imaging. .

但し、e、f、g、h、i、j、k、l、m、n、o、p、q、r、s、tは係数である。   However, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, and t are coefficients.

y=ax+bx+cx+d (1)
a=ez+fz+gz+h (2)
b=iz+jz+kz+l (3)
c=mz+nz+oz+p (4)
d=qz+rz+sz+t (5)
y = ax 3 + bx 2 + cx + d (1)
a = ez 3 + fz 2 + gz + h (2)
b = iz 3 + jz 2 + kz + 1 (3)
c = mz 3 + nz 2 + oz + p (4)
d = qz 3 + rz 2 + sz + t (5)

請求項1乃至請求項3に記載の発明によれば、遮蔽板が揺動する場合においても、X線照射野を正確かつ迅速に調整することが可能となる。 According to the invention described in claims 1 to 3, even when the shielding蔽板swings, it is possible to adjust the X-ray irradiation field accurately and quickly.

この発明を適用するコリメータ機構5を備えたX線撮影装置の概要図である。It is a schematic diagram of the X-ray imaging apparatus provided with the collimator mechanism 5 to which this invention is applied. この発明を適用するコリメータ機構5の斜視図である。It is a perspective view of the collimator mechanism 5 to which this invention is applied. コリメータ機構5の内部構造をX線管1等と共に示す概要図である。It is a schematic diagram which shows the internal structure of the collimator mechanism 5 with X-ray tube 1 grade | etc.,. コリメータ機構5の遮蔽板11によりX線照射野Eを調整する状態を示す説明図である。It is explanatory drawing which shows the state which adjusts the X-ray irradiation field E with the shielding board 11 of the collimator mechanism. この発明に係るコリメータ機構5における移動量の制御方法を示すフローチャートである。It is a flowchart which shows the control method of the movement amount in the collimator mechanism 5 which concerns on this invention. コリメータ機構5における入力照視野サイズ(指令値x)と、実際の遮蔽板11等の開き量との関係を示すグラフである。It is a graph which shows the relationship between the input illumination visual field size (command value x) in the collimator mechanism 5, and the actual opening amount of the shielding board 11 grade | etc.,. 第1関係式(1)を示すグラフである。It is a graph which shows the 1st relational expression (1). 第2関係式(2)(3)(4)(5)を示すグラフである。It is a graph which shows 2nd relational expression (2) (3) (4) (5).

以下、この発明の実施の形態を図面に基づいて説明する。最初にこの発明を適用するコリメータ機構を備えたX線撮影装置の構成について説明する。図1は、この発明を適用するコリメータ機構5を備えたX線撮影装置の概要図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the configuration of an X-ray imaging apparatus provided with a collimator mechanism to which the present invention is applied will be described. FIG. 1 is a schematic diagram of an X-ray imaging apparatus provided with a collimator mechanism 5 to which the present invention is applied.

このX線撮影装置は、被検体である患者4を載置するテーブル3と、患者4に向けてX線を照射するX線管1と、X線検出部としてのフラットパネルディテクタ2と、この発明を適用するコリメータ機構5と、装置全体を制御する制御部8とを備える。X線管1から照射されたX線は、患者4を透過してフラットパネルディテクタ2に入射する。フラットパネルディテクタ2は、入射したX線に対応した画像信号を出力する。   The X-ray imaging apparatus includes a table 3 on which a patient 4 as a subject is placed, an X-ray tube 1 that emits X-rays toward the patient 4, a flat panel detector 2 as an X-ray detection unit, A collimator mechanism 5 to which the invention is applied and a control unit 8 that controls the entire apparatus are provided. X-rays irradiated from the X-ray tube 1 pass through the patient 4 and enter the flat panel detector 2. The flat panel detector 2 outputs an image signal corresponding to the incident X-ray.

図2は、この発明を適用するコリメータ機構5の斜視図である。   FIG. 2 is a perspective view of a collimator mechanism 5 to which the present invention is applied.

このコリメータ機構5は、後述する照視野ランプ6を点灯させるための照射野ランプボタン21と、後述する4個の移動部材13のうち互いに対向する移動部材13を揺動させてX線照射野を調整するための一対の絞り調節器22と、多目的ボタン23と、液晶表示部24とを備える。また、このコリメータ機構5には、付加フィルターを挿入するための付加フィルター挿入口が形成されている。   The collimator mechanism 5 swings an irradiation field lamp button 21 for turning on an illumination field lamp 6 to be described later and a moving member 13 that faces each other among four moving members 13 to be described later, thereby moving an X-ray irradiation field. A pair of aperture adjusters 22 for adjustment, a multipurpose button 23, and a liquid crystal display unit 24 are provided. The collimator mechanism 5 is formed with an additional filter insertion port for inserting an additional filter.

図3は、コリメータ機構5の内部構造をX線管1等と共に示す概要図である。また、図4は、コリメータ機構5の遮蔽板11によりX線照射野Eを調整する状態を示す説明図である。   FIG. 3 is a schematic diagram showing the internal structure of the collimator mechanism 5 together with the X-ray tube 1 and the like. FIG. 4 is an explanatory diagram showing a state in which the X-ray irradiation field E is adjusted by the shielding plate 11 of the collimator mechanism 5.

このコリメータ機構5は、軸15と連結部材14を介して連結され、この軸15を中心に揺動可能な4個の移動部材13(図3においては対向する2個のみを図示)を備える。この移動部材13の上端には遮蔽内板12が付設されており、移動部材13の下端には遮蔽板(コリメータリーフ)11が付設されている。これらの移動部材13は、対向配置された一対が互いに直交する方向に配置され、図4に示すように、遮蔽板11により矩形状の領域が形成される状態で配置される。   The collimator mechanism 5 includes four moving members 13 (only two facing each other are shown in FIG. 3) that are connected to a shaft 15 via a connecting member 14 and can swing around the shaft 15. A shield inner plate 12 is attached to the upper end of the moving member 13, and a shield plate (collimator leaf) 11 is attached to the lower end of the moving member 13. These moving members 13 are arranged in a direction in which a pair of opposed members are orthogonal to each other, and are arranged in a state where a rectangular region is formed by the shielding plate 11 as shown in FIG.

X線管1から照射されたX線は、遮蔽内板12によりその照射領域を制限された後、さらに、遮蔽板11によりその照射領域を制限され、患者4に照射されるときには、図4に示すように矩形状のX線照射野Eを形成する。このように、遮蔽内板12と遮蔽板11との両方でX線を遮蔽してX線照射野を形成することから、X線の漏洩を確実に防止して、X線照射野を適正に形成することが可能となる。   The X-ray irradiated from the X-ray tube 1 is limited in its irradiation area by the shielding inner plate 12, and further, when the irradiation area is limited by the shielding plate 11 and irradiated to the patient 4, FIG. As shown, a rectangular X-ray irradiation field E is formed. In this way, since the X-ray is shielded by both the shielding inner plate 12 and the shielding plate 11 to form the X-ray irradiation field, the X-ray leakage is surely prevented and the X-ray irradiation field is appropriately set. It becomes possible to form.

また、X線の照射領域には、ミラー7が配設されており、このミラー7に対向する位置には照視野ランプ6が配設されている。照視野ランプ6を点灯させた場合には、照視野ランプ6からの光がミラー7を介して遮蔽板11方向に照射され、X線照射野Eに相当する光照射野が形成される。X線撮影前にこの光照射野を利用して、X線照射野Eが適切に形成されているか否かを確認することが可能となる。   A mirror 7 is disposed in the X-ray irradiation area, and an illumination field lamp 6 is disposed at a position facing the mirror 7. When the illumination field lamp 6 is turned on, the light from the illumination field lamp 6 is irradiated in the direction of the shielding plate 11 through the mirror 7, and a light irradiation field corresponding to the X-ray irradiation field E is formed. It is possible to confirm whether or not the X-ray irradiation field E is appropriately formed by using this light irradiation field before X-ray imaging.

各移動部材13は、図1に示す制御部8の指令を受けて回転する図示しないモータの駆動により、軸15を中心に揺動する。そして、この移動部材13の揺動に対応して遮蔽内板12と遮蔽板11とが同期して移動し、X線照射野Eの大きさが変更される。このときの制御部8による移動部材13の移動量の指令値xは、遮蔽板の解放位置と閉鎖位置の間において直線近似を利用して計算したデータが使用される。そして、この発明においては、この指令値xをテイラー展開を利用して補正することにより、より正確なものとしている。   Each moving member 13 swings about a shaft 15 by driving a motor (not shown) that rotates in response to a command from the control unit 8 shown in FIG. Then, the shielding inner plate 12 and the shielding plate 11 move in synchronization with the swing of the moving member 13, and the size of the X-ray irradiation field E is changed. As the command value x of the movement amount of the moving member 13 by the control unit 8 at this time, data calculated using linear approximation between the release position and the closing position of the shielding plate is used. In the present invention, the command value x is corrected by using Taylor expansion to make it more accurate.

次に、上述したコリメータ機構5の移動量制御方法について説明する。図5は、この発明に係るコリメータ機構5における移動量の制御方法を示すフローチャートである。   Next, the movement amount control method of the collimator mechanism 5 described above will be described. FIG. 5 is a flowchart showing a movement amount control method in the collimator mechanism 5 according to the present invention.

最初に、制御部8の指令により遮蔽板11と遮蔽内板12とを移動部材13と共に移動させたときのX線照射野を測定することにより、制御部8による移動部材13の移動量の指令値xとそのときのX線照射野の誤差yとの関係を示す複数の誤差データを得る誤差測定工程を実行する(ステップS1)。このときには、制御部8の指令により遮蔽板11と遮蔽内板12とを移動部材13と共に移動させた後に停止させ、そのときのX線照射野を、光照射野を利用することにより測定する動作を、移動部材13の位置を順次変更して複数回実行する。これにより、移動部材13の移動量の指令値xとそのときのX線照射野の誤差yとの関係を示す複数の誤差データを得ることができる。   First, by measuring the X-ray irradiation field when the shielding plate 11 and the shielding inner plate 12 are moved together with the moving member 13 according to a command from the control unit 8, a command for the amount of movement of the moving member 13 by the control unit 8. An error measurement process is performed to obtain a plurality of error data indicating the relationship between the value x and the error y of the X-ray irradiation field at that time (step S1). At this time, the shielding plate 11 and the shielding inner plate 12 are moved together with the moving member 13 according to a command from the control unit 8 and then stopped, and the X-ray irradiation field at that time is measured by using the light irradiation field. Are executed a plurality of times by sequentially changing the position of the moving member 13. Thereby, a plurality of error data indicating the relationship between the command value x of the moving amount of the moving member 13 and the error y of the X-ray irradiation field at that time can be obtained.

図6は、コリメータ機構5における入力照視野サイズ(指令値x)と、実際の遮蔽板11等の開き量との関係を示すグラフである。   FIG. 6 is a graph showing the relationship between the input illumination field size (command value x) in the collimator mechanism 5 and the actual opening amount of the shielding plate 11 and the like.

この図に示すように、入力照視野サイズ(指令値x)と実際の遮蔽板11等の開き量とは、これらの図6(a)において実線で示すように、直線近似により決定されている。このため、図6(a)に示すように、開き量の理論値と直線近似に基づく開き量との間では差異が生じる。このため、図6(b)に示すように、入力照視野サイズ(指令値x)と実際の照視野サイズとの間で誤差が生じ、X線照射野を正確に設定することができないという問題が生ずる。   As shown in this figure, the input illumination field size (command value x) and the actual opening amount of the shielding plate 11 and the like are determined by linear approximation as shown by a solid line in FIG. 6 (a). . For this reason, as shown in FIG. 6A, there is a difference between the theoretical value of the opening amount and the opening amount based on the linear approximation. For this reason, as shown in FIG. 6B, an error occurs between the input illumination field size (command value x) and the actual illumination field size, and the X-ray irradiation field cannot be set accurately. Will occur.

このため、この発明においては、次に、誤差測定工程(ステップS1)で得た複数の誤差データをテイラー展開することにより、a、b、c、dを係数としたときに、制御部8による入力照視野サイズ、すなわち、移動部材13の移動量の指令値xとそのときのX線照射野の誤差yとの関係を示す第1関係式を作成する第1関係式作成工程を実行する(ステップS2)。この第1関係式作成工程においては、移動部材13の移動量の指令値xとそのときのX線照射野の誤差yとの関係を示す複数の誤差データをもとにテイラー展開を実行し、指令値xと誤差yとの関係を示す三次式よりなる下記の第1関係式(1)を作成する。
y=ax+bx+cx+d (1)
For this reason, in the present invention, the controller 8 performs the Taylor expansion on a plurality of error data obtained in the error measurement step (step S1), and sets a, b, c, and d as coefficients. A first relational expression creating step for creating a first relational expression indicating a relation between the input illumination field size, that is, the command value x of the moving amount of the moving member 13 and the error y of the X-ray irradiation field at that time is executed ( Step S2). In this first relational expression creating step, Taylor expansion is executed based on a plurality of error data indicating the relationship between the command value x of the moving amount of the moving member 13 and the error y of the X-ray irradiation field at that time, The following first relational expression (1) consisting of a cubic expression indicating the relation between the command value x and the error y is created.
y = ax 3 + bx 2 + cx + d (1)

図7は、第1関係式(1)を示すグラフである。この図に示すように、X線照射野の誤差yは、制御部8による入力照視野サイズ、すなわち、移動部材13の移動量の指令値xに応じてその値が変化している。  FIG. 7 is a graph showing the first relational expression (1). As shown in this figure, the error y of the X-ray irradiation field changes in accordance with the input illumination field size by the control unit 8, that is, the command value x of the movement amount of the moving member 13.

引き続き、この誤差測定工程(ステップS1)と第1関係式作成工程(ステップS2)とを、線源受像画間距離(SID/Sourse Image Distance)を変更して(ステップS3)複数回繰り返す(ステップS4)。これにより、線源受像画間距離zと第1関係式(1)における係数a、b、c、dとの関係を示す複数の係数データを得ることができる。   Subsequently, the error measuring step (step S1) and the first relational expression creating step (step S2) are repeated a plurality of times (step S3) by changing the distance between the source image and the received image (SID / Source Image Distance) (step S3). S4). Thereby, a plurality of coefficient data indicating the relationship between the distance z between the source image and the coefficients a, b, c, d in the first relational expression (1) can be obtained.

誤差測定工程(ステップS1)と第1関係式作成工程(ステップS2)とを、線源受像画間距離を変更して複数回繰り返すことにより、線源受像画間距離zと係数a、b、c、dとの関係を示す複数の係数データを得る係数測定工程が終了すれば、係数測定工程で得られた複数の係数データをテイラー展開することにより、e、f、g、h、i、j、k、l、m、n、o、p、q、r、s、tを係数としたときに、線源受像画間距離zとそのときの第1関係式(1)における係数a、b、c、dとの関係を示す三次式よりなる下記の第2関係式(2)(3)(4)(5)を作成する第2関係式作成工程を実行する(ステップS5)。   By repeating the error measurement process (step S1) and the first relational expression creating process (step S2) a plurality of times while changing the distance between the source image and the image, the distance z between the source image and the coefficients a, b, When the coefficient measurement process for obtaining a plurality of coefficient data indicating the relationship with c and d is completed, the plurality of coefficient data obtained in the coefficient measurement process is Taylor-expanded to obtain e, f, g, h, i, When j, k, l, m, n, o, p, q, r, s, and t are coefficients, the distance z between the source image and the coefficient a in the first relational expression (1), A second relational expression creating step for creating the following second relational expressions (2), (3), (4), and (5) consisting of cubic expressions indicating the relations with b, c, and d is executed (step S5).

a=ez+fz+gz+h (2)
b=iz+jz+kz+l (3)
c=mz+nz+oz+p (4)
d=qz+rz+sz+t (5)
図8は、第2関係式(2)(3)(4)(5)を示すグラフである。この図に示すように、係数a、b、c、dのそれぞれは、線源受像画間距離zに応じてその値が変化している。
a = ez 3 + fz 2 + gz + h (2)
b = iz 3 + jz 2 + kz + 1 (3)
c = mz 3 + nz 2 + oz + p (4)
d = qz 3 + rz 2 + sz + t (5)
FIG. 8 is a graph showing the second relational expressions (2), (3), (4), and (5). As shown in this figure, the values of the coefficients a, b, c, and d change in accordance with the distance z between the source image images.

次に、X線撮影時における線源受像画間距離zを第2関係式(2)(3)(4)(5)に代入することにより、係数a、b、c、dを求めると共に、この係数a、b、c、dと移動部材13の移動量の指令値xとを第1関係式(1)に代入することにより、その線源受像画間距離zにおける移動部材13の移動量の指令値xに対するX線照射野の誤差yを演算する誤差演算工程を実行する(ステップS6)。これにより、X線撮影時における線源受像画間距離zが決定すれば、移動部材13の移動量の指令値xとそのときのX線照射野の誤差yが演算されることになる。   Next, the coefficients a, b, c, and d are obtained by substituting the distance z between the source image and the received image at the time of X-ray imaging into the second relational expressions (2), (3), (4), and (5), By substituting the coefficient a, b, c, d and the command value x of the moving amount of the moving member 13 into the first relational expression (1), the moving amount of the moving member 13 at the distance z between the source image reception images. An error calculation step of calculating an error y of the X-ray irradiation field with respect to the command value x is executed (step S6). Thus, if the distance z between the source image and the image at the time of X-ray imaging is determined, the command value x of the moving amount of the moving member 13 and the error y of the X-ray irradiation field at that time are calculated.

そして、X線撮影時には、制御部8による移動部材13の移動量の指令値xを、演算された誤差yにより補正する誤差補正工程(ステップS7)を実行する。このように移動量の指令値xを、誤差演算工程で演算された誤差yにより補正することにより、線源受像画間距離と、第1関係式および第2関係式とから、移動部材13の移動量が演算されることになる。これにより、移動部材13の移動量を必要なX線照射野Eに対応して正確に設定することが可能となる。このとき、誤差の計算は上述した式(1)(2)(3)(4)(5)に必要な数値を代入する簡単なものであることから、その演算を迅速に実行することができ、X線照射野Eを迅速に調整することが可能となる。さらに、ステップS1〜S5においては、指令値xに対する実際の照射野サイズの関係が一定の場合、第2関係式(2)〜(5)の係数、e、f、g、h、i、j、k、l、m、n、o、p、q、r、s、tは一定値に決定することから、予め決定したこれらの値を用いる手段を取れば、照射野を設定するときに実行する必要なステップは、ステップS6およびステップS7のみとなるため、X線照射野Eをさらに迅速に調整することが可能となる。   During X-ray imaging, an error correction step (step S7) is performed in which the command value x of the movement amount of the moving member 13 by the control unit 8 is corrected by the calculated error y. In this way, by correcting the command value x of the movement amount by the error y calculated in the error calculation step, the distance between the source image and the first relational expression and the second relational expression can be used to calculate the moving member 13. The amount of movement is calculated. As a result, the amount of movement of the moving member 13 can be accurately set corresponding to the necessary X-ray irradiation field E. At this time, since the calculation of the error is a simple one that substitutes the necessary numerical values into the above-described equations (1), (2), (3), (4), and (5), the calculation can be performed quickly. The X-ray irradiation field E can be adjusted quickly. Furthermore, in steps S1 to S5, when the relationship between the actual irradiation field size and the command value x is constant, the coefficients of the second relational expressions (2) to (5), e, f, g, h, i, j , K, l, m, n, o, p, q, r, s, and t are determined to be constant values. Therefore, if a means that uses these predetermined values is taken, it is executed when the irradiation field is set. Since the only necessary steps are step S6 and step S7, the X-ray irradiation field E can be adjusted more quickly.

なお、上述した実施形態においては、第1関係式(1)および第2関係式(2)(3)(4)(5)として三次式を利用しているが、より高精度に演算を行うためにさらに高次の演算式を用いてもよく、さらには、その他の関数を用いた演算式を利用するようにしてもよい。   In the above-described embodiment, a cubic expression is used as the first relational expression (1) and the second relational expression (2) (3) (4) (5), but the calculation is performed with higher accuracy. Therefore, a higher-order arithmetic expression may be used, and an arithmetic expression using other functions may be used.

また、上述した実施形態においては、移動部材13の移動量の指令値xを演算された誤差yにより補正する構成を採用しているが、第1関係式と第2関係式とを利用して、線源受像画間距離zと指令値xとから直接、移動部材13の移動量を演算するようにしてもよい。   In the above-described embodiment, the configuration in which the command value x of the moving amount of the moving member 13 is corrected by the calculated error y is employed. However, the first relational expression and the second relational expression are used. The moving amount of the moving member 13 may be calculated directly from the distance z between the source image and the command value x.

さらに、X線が斜めに入射する場合においても、角度に対する第2関係式の係数を求める処理をステップS5とステップS6との間に加えれば、正確な照射野を設定するために三角関数や平方根を多数用いた複雑な計算を行うよりも演算を迅速に実行することができる。すなわち、X線の入射角度をAとし、aa、ab、ac・・・を係数とした場合、下記の第3関係式(11)(12)(13)(14)・・・を作成して補正を行うことにより、X線照射野Eを迅速に調整することが可能となる。   Further, even when X-rays are incident obliquely, if a process for obtaining the coefficient of the second relational expression for the angle is added between step S5 and step S6, a trigonometric function or a square root is set to set an accurate irradiation field The calculation can be performed more quickly than a complicated calculation using a large number of. That is, when the incident angle of X-ray is A and aa, ab, ac... Are coefficients, the following third relational expressions (11) (12) (13) (14). By performing the correction, the X-ray irradiation field E can be quickly adjusted.

e=aaA+abA+acA+ad (11)
f=aeA+afA+agA+ah (12)
g=aiA+ajA+akA+al (13)
h=amA+anA+aoA+ap (14)
なお、上記の第3関係式においては係数eを求める式(11)から係数hを求める式(14)までを記載しているが、係数i〜係数tを求める式も、これらの式と同様に作成されるものとする。
この場合においても、指令値xに対する実際の照射野サイズの関係が一定の場合、係数aa、ab、ac・・・を予め決定すれば、その係数を用いて第3関係式、第2関係式、第1関係式の順に適用することで、照射野を設定するときに実行する必要なステップは、ステップS6およびステップS7のみとなるため、X線照射野Eをさらに迅速に調整することが可能となる。
e = aaA 3 + abA 2 + acA + ad (11)
f = aeA 3 + afA 2 + agA + ah (12)
g = aiA 3 + ajA 2 + akA + al (13)
h = amA 3 + anA 2 + aoA + ap (14)
In the third relational expression, the expression (11) for obtaining the coefficient e to the expression (14) for obtaining the coefficient h are described, but the expressions for obtaining the coefficient i to the coefficient t are the same as these expressions. Shall be created.
Even in this case, if the relationship between the actual irradiation field size and the command value x is constant, if the coefficients aa, ab, ac... Are determined in advance, the third relational expression and the second relational expression are used using the coefficients. By applying in the order of the first relational expression, the only necessary steps to be executed when setting the irradiation field are step S6 and step S7, so that the X-ray irradiation field E can be adjusted more quickly. It becomes.

1 X線管
2 フラットパネルディテクタ
3 テーブル
4 患者
5 コリメータ機構
6 照射野ランプ
7 ミラー
8 制御部
11 遮蔽板
12 遮蔽内板
13 移動部材
14 連結部材
15 軸
E X線照射野
DESCRIPTION OF SYMBOLS 1 X-ray tube 2 Flat panel detector 3 Table 4 Patient 5 Collimator mechanism 6 Irradiation field lamp 7 Mirror 8 Control part 11 Shielding plate 12 Shielding inner plate 13 Moving member 14 Connecting member 15 Axis E X-ray irradiation field

Claims (3)

X線を遮蔽する一対の遮蔽板を備え、軸を中心に揺動することによりX線照射野を調整する4個の移動部材と、前記各移動部材の移動指令を送信する制御部とを備えたコリメータ機構におけるX線照射野制御方法において、
前記制御部の指令により移動部材を移動させたときのX線照射野を測定することにより、前記制御部による前記移動部材の移動量の指令値から前記遮蔽板の解放位置と遮蔽位置の間の位置計算を直線近似により計算して得た照射野と、そのときのX線照射野との差を示す複数の誤差データを得る誤差測定工程と、
前記誤差測定工程で得た複数の誤差データを移動量の指令値を変数として多項式近似することにより、前記制御部による前記移動部材の移動量の指令値から前記遮蔽板の解放位置と遮蔽位置の間の位置計算を直線近似により計算して得た照射野と、とそのときのX線照射野との差との関係を示す第1関係式を作成する第1関係式作成工程と、
前記誤差測定工程と前記第1関係式作成工程とを線源受像画間距離を変更して複数回繰り返すことにより、線源受像画間距離と前記第1関係式における係数との関係を示す複数の係数データを得る係数測定工程と、
前記係数測定工程で得た複数の係数データを線源受像画間距離zを変数として多項式近似することにより、線源受像画間距離とそのときの前記第1関係式における係数との関係を示す第2関係式を作成する第2関係式作成工程と、
X線撮影時における線源受像画間距離と、前記第1関係式および前記第2関係式とから、前記移動部材の移動量を演算する移動量演算工程と、
を備えたことを特徴とするコリメータ機構におけるX線照射野制御方法。
Provided with a pair of shielding plates that shield X-rays, four moving members that adjust the X-ray irradiation field by swinging about an axis, and a control unit that transmits a movement command for each of the moving members. In the X-ray field control method in the collimator mechanism,
By measuring the X-ray irradiation field when the moving member is moved according to the command of the control unit, it is determined between the release position of the shielding plate and the shielding position from the command value of the moving amount of the moving member by the control unit . An error measurement step for obtaining a plurality of error data indicating the difference between the irradiation field obtained by calculating the position calculation by linear approximation and the X-ray irradiation field at that time;
By approximating a plurality of error data obtained in the error measurement step using a movement amount command value as a variable, a polynomial approximation using the movement amount command value as a variable allows the release position and shielding position of the shielding plate to be determined from the movement amount command value of the moving member by the control unit . A first relational expression creating step for creating a first relational expression showing a relation between an irradiation field obtained by calculating a position between the linear field approximation and an X-ray irradiation field at that time;
A plurality of the relationship between the distance between the source image and the coefficient in the first relational expression are obtained by repeating the error measurement step and the first relational expression creating step a plurality of times while changing the distance between the source image and the image. A coefficient measurement process for obtaining coefficient data of
The relationship between the distance between the source image and the image and the coefficient in the first relational expression at that time is shown by polynomial approximation of the plurality of coefficient data obtained in the coefficient measurement step using the distance z between the source image and the image as a variable. A second relational expression creating step for creating a second relational expression;
A moving amount calculating step of calculating a moving amount of the moving member from the distance between the source image at the time of X-ray imaging and the first relational expression and the second relational expression;
An X-ray irradiation field control method in a collimator mechanism characterized by comprising:
請求項1に記載のコリメータ機構におけるX線照射野制御方法において、
前記移動量演算工程は、
X線撮影時における線源受像画間距離と、前記第1関係式および前記第2関係式を利用して、その線源受像画間距離における前記制御部による前記移動部材の移動量の指令値から前記遮蔽板の解放位置と遮蔽位置の間の位置計算を直線近似により計算して得た照射野と、そのときのX線照射野との差を演算する誤差演算工程と、
X線撮影時に前記制御部による前記移動部材の移動量の指令値を前記誤差演算工程で演算した差により補正する誤差補正工程と、
から構成されるコリメータ機構におけるX線照射野制御方法。
In the X-ray irradiation field control method in the collimator mechanism according to claim 1,
The movement amount calculating step includes:
A command value of the amount of movement of the moving member by the control unit at the distance between the source image images using the distance between the source image images at the time of X-ray imaging and the first relational expression and the second relational expression. An error calculation step for calculating the difference between the irradiation field obtained by calculating the position calculation between the release position of the shielding plate and the shielding position by linear approximation and the X-ray irradiation field at that time ;
An error correction step of correcting the command value of the movement amount of the moving member by the control unit at the time of X-ray imaging based on the difference calculated in the error calculation step;
X-ray irradiation field control method in a collimator mechanism constituted by:
X線を遮蔽する一対の遮蔽板を備え、軸を中心に揺動することによりX線照射野を調整する4個の移動部材と、前記各移動部材の移動指令を送信する制御部とを備えたコリメータ機構におけるX線照射野制御方法において、
前記制御部の指令により移動部材を移動させたときのX線照射野を測定することにより、前記制御部による前記移動部材の移動量の指令値xから前記遮蔽板の解放位置と遮蔽位置の間の位置計算を直線近似により計算して得た照射野と、そのときのX線照射野との差yを示す複数の誤差データを得る誤差測定工程と、
前記誤差測定工程で得た複数の誤差データを移動量の指令値xを変数として多項式近似することにより、a、b、c、dを係数としたときに、前記制御部による前記移動部材の移動量の指令値xから前記遮蔽板の解放位置と遮蔽位置の間の位置計算を直線近似により計算して得た照射野と、そのときのX線照射野との差yとの関係を示す下記の第1関係式(1)を作成する第1関係式作成工程と、
前記誤差測定工程と前記第1関係式作成工程とを線源受像画間距離zを変更して複数回繰り返すことにより、線源受像画間距離zと前記第1関係式(1)における係数a、b、c、dとの関係を示す複数の係数データを得る係数測定工程と、
前記係数測定工程で得た複数の係数データを線源受像画間距離zを変数として多項式近似することにより、線源受像画間距離zとそのときの前記第1関係式(1)における係数a、b、c、dとの関係を示す下記の第2関係式(2)(3)(4)(5)を作成する第2関係式作成工程と、
X線撮影時における線源受像画間距離zを前記第2関係式(2)(3)(4)(5)に代入することにより、係数a、b、c、dを求めると共に、この係数a、b、c、dと前記移動部材の移動量の指令値xとを前記第1関係式(1)に代入することにより、その線源受像画間距離zにおける前記制御部による前記移動部材の移動量の指令値xから前記遮蔽板の解放位置と遮蔽位置の間の位置計算を直線近似により計算して得た照射野と、そのときのX線照射野との差yを演算する誤差演算工程と、
X線撮影時に前記制御部による前記移動部材の移動量の指令値xを前記誤差演算工程で演算した差yにより補正する誤差補正工程と、
を備えたことを特徴とするコリメータ機構におけるX線照射野制御方法。
但し、e、f、g、h、i、j、k、l、m、n、o、p、q、r、s、tは係数である。
y=ax3 +bx2 +cx+d (1)
a=ez3 +fz2 +gz+h (2)
b=iz3 +jz2 +kz+l (3)
c=mz3 +nz2 +oz+p (4)
d=qz3 +rz2 +sz+t (5)
Provided with a pair of shielding plates that shield X-rays, four moving members that adjust the X-ray irradiation field by swinging about an axis, and a control unit that transmits a movement command for each of the moving members. In the X-ray field control method in the collimator mechanism,
By measuring the X-ray irradiation field when the moving member is moved according to the command of the control unit, the command value x of the moving amount of the moving member by the control unit is determined between the release position and the shielding position of the shielding plate. An error measurement step of obtaining a plurality of error data indicating the difference y between the irradiation field obtained by calculating the position calculation of the position by linear approximation and the X-ray irradiation field at that time;
A plurality of error data obtained in the error measurement step is approximated by a polynomial expression using a movement amount command value x as a variable , and when a, b, c, and d are coefficients, the movement of the moving member by the control unit is performed. The following shows the relationship between the irradiation field obtained by calculating the position calculation between the release position of the shielding plate and the shielding position from the command value x of the amount by linear approximation and the difference y between the X-ray irradiation field at that time A first relational expression creating step for creating the first relational expression (1) of
By repeating the error measuring step and the first relational expression creating step a plurality of times while changing the distance z between the source image and the received image, the distance a between the source image and the image a in the first relational expression (1) is obtained. , B, c, d to obtain a plurality of coefficient data indicating the relationship,
A plurality of coefficient data obtained in the coefficient measurement step is approximated by a polynomial expression using the distance z between the source image and the image as a variable, so that the distance z between the source image and the image and the coefficient a in the first relational expression (1) at that time , B, c, d, a second relational expression creating step for creating the following second relational expressions (2), (3), (4) and (5),
The coefficients a, b, c and d are obtained by substituting the distance z between the source image and the received image at the time of X-ray imaging into the second relational expressions (2), (3), (4) and (5). By substituting a, b, c, d and the command value x of the moving amount of the moving member into the first relational expression (1), the moving member by the control unit at the distance z between the source image receiving images Of calculating the difference y between the irradiation field obtained by calculating the position calculation between the release position of the shielding plate and the shielding position by linear approximation from the command value x of the movement amount of the X-ray and the X-ray irradiation field at that time A calculation process;
An error correction step of correcting the command value x of the movement amount of the moving member by the control unit by the difference y calculated in the error calculation step during X-ray imaging;
An X-ray irradiation field control method in a collimator mechanism characterized by comprising:
However, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, and t are coefficients.
y = ax3 + bx2 + cx + d (1)
a = ez3 + fz2 + gz + h (2)
b = iz3 + jz2 + kz + 1 (3)
c = mz3 + nz2 + oz + p (4)
d = qz3 + rz2 + sz + t (5)
JP2010229448A 2010-10-12 2010-10-12 X-ray irradiation field control method in collimator mechanism Active JP5505245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010229448A JP5505245B2 (en) 2010-10-12 2010-10-12 X-ray irradiation field control method in collimator mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010229448A JP5505245B2 (en) 2010-10-12 2010-10-12 X-ray irradiation field control method in collimator mechanism

Publications (2)

Publication Number Publication Date
JP2012081043A JP2012081043A (en) 2012-04-26
JP5505245B2 true JP5505245B2 (en) 2014-05-28

Family

ID=46240559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229448A Active JP5505245B2 (en) 2010-10-12 2010-10-12 X-ray irradiation field control method in collimator mechanism

Country Status (1)

Country Link
JP (1) JP5505245B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4119835B2 (en) * 2003-12-26 2008-07-16 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Exposure dose calculation method and X-ray imaging apparatus
JP4834315B2 (en) * 2005-03-07 2011-12-14 株式会社東芝 Radiation diaphragm device and radiotherapy apparatus having the diaphragm device
JP2007143982A (en) * 2005-11-29 2007-06-14 Hitachi Medical Corp Radiographic apparatus

Also Published As

Publication number Publication date
JP2012081043A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP2011019707A (en) X-ray imaging device, control method for x-ray imaging device, and program
US9541509B2 (en) Radiation imaging apparatus, radiation imaging method, body movement measuring method, and body movement measuring program
RU2607079C2 (en) Method and device for mechanical and radiation quality guarantee measurement in real time in radiation therapy
JP5980481B2 (en) X-ray generator of CT apparatus, position calibration apparatus of detector, calibration method of calibration apparatus, and calibration method of CT apparatus
JP5455935B2 (en) X-ray CT apparatus and method
JP2015518765A5 (en)
US10545103B2 (en) Talbot imaging apparatus
JP2012152466A (en) X-ray imaging device and control method
JP5505245B2 (en) X-ray irradiation field control method in collimator mechanism
JP5600271B2 (en) Radiation imaging apparatus and method, and program
JP5447526B2 (en) Radiation imaging apparatus and image acquisition method
JP6394082B2 (en) X-ray inspection equipment
JP2011045588A (en) X-ray ct apparatus
JP5345409B2 (en) X-ray equipment
JP2011229559A (en) Radiation imaging apparatus
JP2006122488A (en) Fluoroscopic photographing apparatus
EP2527822A1 (en) Method for correcting inspecting apparatus using correcting jig, and inspecting apparatus having correcting jig mounted thereon
JP2006230843A (en) X-ray rotary photographing apparatus
JPH06217310A (en) Method and device for measuring angle
JP6601230B2 (en) Radiography equipment
EP3254623B1 (en) Method and system for correcting geometric misalignment during image reconstruction in chest tomosynthesis
JP6307639B1 (en) X-ray imaging apparatus and X-ray imaging method
JP2012010892A (en) Radiographic apparatus and method and program
JP2022191670A (en) X-ray ct device and image generating method
WO2023012871A1 (en) Dose display device and dose display program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R151 Written notification of patent or utility model registration

Ref document number: 5505245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151