JP5504638B2 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP5504638B2
JP5504638B2 JP2009026796A JP2009026796A JP5504638B2 JP 5504638 B2 JP5504638 B2 JP 5504638B2 JP 2009026796 A JP2009026796 A JP 2009026796A JP 2009026796 A JP2009026796 A JP 2009026796A JP 5504638 B2 JP5504638 B2 JP 5504638B2
Authority
JP
Japan
Prior art keywords
light
light source
planar
optical path
cylindrical optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009026796A
Other languages
Japanese (ja)
Other versions
JP2009212087A (en
Inventor
有美 羽生田
直人 徳原
宏一 本多
淳哉 村田
孝雄 北田
剛 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2009026796A priority Critical patent/JP5504638B2/en
Publication of JP2009212087A publication Critical patent/JP2009212087A/en
Application granted granted Critical
Publication of JP5504638B2 publication Critical patent/JP5504638B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は半導体発光素子を用いる照明装置に関する。   The present invention relates to a lighting device using a semiconductor light emitting element.

一般に、劇場やテレビスタジオ等の照明用に使用される照明装置としてスポットライトがある。このスポットライトの光源には、ハロゲン電球や放電ランプが使用されている。また、光源として半導体発光素子であるLEDを用いたスポットライトも開発されている。曲面に多数のLEDを光源として配置し、各LEDの照射ビームを一点に集光させて仮想の単一点光源ユニットを構成し、この光源ユニットとレンズとの位置関係を可変にして被照射面の照度及び照度分布を変化させるようにしたスポットライトがある(例えば、特許文献1参照)。   Generally, there is a spotlight as an illumination device used for illumination in a theater or a television studio. A halogen light bulb or a discharge lamp is used as the light source of the spotlight. In addition, spotlights using LEDs, which are semiconductor light emitting elements, as light sources have been developed. A large number of LEDs are arranged as a light source on a curved surface, and the irradiation beam of each LED is condensed at one point to constitute a virtual single point light source unit, and the positional relationship between the light source unit and the lens is made variable to change the irradiation surface. There is a spotlight in which the illuminance and the illuminance distribution are changed (see, for example, Patent Document 1).

また、所望の色を得るために白色以外に補色として青緑、橙、赤などの光と混色させ、各LEDの照射ビームを集中させた投光開口の輪郭(エッジ)をぼかすとともに色むらを抑制するために拡散フィルタを設けたり、フォーカスハンドル及びズームハンドルを設けて、ピントが合っていないところやぼかした場合でも照射ずれが生じないようにしたものがある(例えば、特許文献2参照)。   Also, in order to obtain a desired color, colors such as blue green, orange, and red are mixed as colors other than white, and the contour (edge) of the projection aperture that concentrates the irradiation beam of each LED is blurred and color unevenness is achieved. In order to suppress this, a diffusion filter is provided, or a focus handle and a zoom handle are provided so that an irradiation shift does not occur even when the subject is out of focus or is blurred (for example, see Patent Document 2).

図6は従来のLEDを光源とする照明装置の構成図である。照明装置は、光源ユニット11と投影ユニット12とから構成され、光源ユニット11はLED光源部13を収納した光源部筐体14と、LED光源部13の発熱を放熱するための放熱器15とから構成される。光源部筐体14には疑似光源部となるアパーチャ16が形成され、LED光源部13は、そのアパーチャ16に光ビームが向くように複数個のLED17を配置して構成されている。これにより、LED光源部13の複数のLED17からの光の集光点がアパーチャ16の位置となり、これによりアパーチャ16で疑似光源を形成している。   FIG. 6 is a configuration diagram of an illumination device using a conventional LED as a light source. The illumination device includes a light source unit 11 and a projection unit 12, and the light source unit 11 includes a light source unit housing 14 that houses an LED light source unit 13, and a radiator 15 that radiates heat generated by the LED light source unit 13. Composed. An aperture 16 serving as a pseudo light source unit is formed in the light source unit housing 14, and the LED light source unit 13 is configured by arranging a plurality of LEDs 17 so that a light beam is directed to the aperture 16. Thereby, the condensing point of the light from the plurality of LEDs 17 of the LED light source unit 13 becomes the position of the aperture 16, thereby forming a pseudo light source by the aperture 16.

また、LED光源部13に点灯電源を供給する電源ユニット18やLED光源部13を点灯制御する制御回路ユニット19は、光源部筐体14の両側面に分散して配置され、照明装置の点灯操作を行う操作ユニット20は光源部筐体14の側面に設けられている。また、アパーチャ16にはカッターユニット21が設けられ、このカッターユニット21を操作することによりアパーチャ16の形状、つまり疑似光源の形状を変化させることができるようになっている。   The power source unit 18 that supplies the lighting power to the LED light source unit 13 and the control circuit unit 19 that controls the lighting of the LED light source unit 13 are arranged on both side surfaces of the light source unit housing 14 so as to operate the lighting device. The operation unit 20 is provided on the side surface of the light source unit housing 14. Further, the aperture 16 is provided with a cutter unit 21, and by operating the cutter unit 21, the shape of the aperture 16, that is, the shape of the pseudo light source can be changed.

一方、投影ユニット12には、光源ユニット11からの光を集光して外部に出射する投影レンズ22a、22bが設けられ、調整ハンドル23a、23bで位置調整されて外部に光が照射される。   On the other hand, the projection unit 12 is provided with projection lenses 22a and 22b that condense the light from the light source unit 11 and emit the light to the outside.

特開2001−307502号公報JP 2001-307502 A 特開2005−158699号公報JP 2005-158699 A

しかし、従来の照明装置では、LED光源部13はアパーチャ16に光ビームが向くように複数個のLED17を配置して構成されているので、LED光源部13とアパーチャ16との間に所定の距離を保つ必要がある。照明装置では、投影レンズ22a、22bのピント位置(ピントが合う位置)の明るさにより外部に出射する光の照射照度が決まり、LED光源部13は投影レンズ22a、22bのピント位置のなるべく近くに配置した方がピント位置の明るさは増すが、LED光源部13とアパーチャ16との間に所定の距離を保つ必要があるので、照射照度を高めるには限界がある。   However, in the conventional illumination device, the LED light source unit 13 is configured by arranging a plurality of LEDs 17 so that the light beam is directed to the aperture 16, and therefore, a predetermined distance between the LED light source unit 13 and the aperture 16. Need to keep. In the illumination device, the illumination illuminance of light emitted to the outside is determined by the brightness of the focus positions (focus positions) of the projection lenses 22a and 22b, and the LED light source unit 13 is as close as possible to the focus positions of the projection lenses 22a and 22b. Although the brightness at the focus position increases with the arrangement, it is necessary to maintain a predetermined distance between the LED light source unit 13 and the aperture 16, so there is a limit to increasing the illumination intensity.

LED光源部13を投影レンズ22a、22bのピント位置に近づけると、ピント位置へのLED光源部13からの光入射角が大きくなるため、投影レンズ22a、22bへの入射光率が下がる。光源であるLEDは、ハロゲン電球などと比べ光量がなく、また、多色のLEDを配合することにより照射光の色の調整を行うので照射光に色ムラが生じることがあった。また、色調整を行わない場合には単色のLEDとなるが、単色の場合においても複数のLEDの輝度のバラツキが照射光のムラを発生させてしまうことがあった。   When the LED light source unit 13 is brought close to the focus position of the projection lenses 22a and 22b, the light incident angle from the LED light source unit 13 to the focus position is increased, so that the incident light rate to the projection lenses 22a and 22b is decreased. The LED, which is a light source, does not have a light amount as compared with a halogen bulb or the like, and the color of the irradiated light is adjusted by blending multicolored LEDs, so that color unevenness may occur in the irradiated light. Further, when color adjustment is not performed, a single-color LED is obtained. However, even in the case of a single color, unevenness in the brightness of the plurality of LEDs may cause unevenness in irradiation light.

本発明の目的は、装置全体の小型化を図り、照射光の光量を確保でき色ムラの発生を少なくできる照明装置を提供することである。   An object of the present invention is to provide an illuminating device that can reduce the size of the entire device, ensure the amount of irradiation light, and reduce the occurrence of color unevenness.

請求項1の発明に係わる照明装置は、複数個の半導体発光素子が平面的に配設された面状光源と;内部が反射特性を有し前記面状光源からの光を導光する筒状光路と;前記筒状光路から出射される光を投影し照射光を制御するための投影レンズと;前記投影レンズと前記筒状光路との間に配置され前記筒状光路から出射される光の形状を制御するカッター部と;前記筒状光路内に配置され前記面状光源からの光を拡散させる拡散フィルタとを備え、前記面状光源は前記投影レンズの被写界深度外に配置され、前記拡散フィルタは前記投影レンズの被写界深度外の位置に設けられ、前記筒状光路の開口端に疑似的な面光源が形成されることを特徴とする。 A lighting device according to a first aspect of the present invention is a planar light source in which a plurality of semiconductor light emitting elements are arranged in a plane; and a cylindrical shape that has a reflection characteristic inside and guides light from the planar light source An optical path; a projection lens for projecting light emitted from the cylindrical optical path and controlling irradiation light; and disposed between the projection lens and the cylindrical optical path, for light emitted from the cylindrical optical path A cutter unit that controls the shape; and a diffusion filter that is disposed in the cylindrical optical path and diffuses light from the planar light source, and the planar light source is disposed outside the depth of field of the projection lens, The diffusion filter is provided at a position outside the depth of field of the projection lens, and a pseudo surface light source is formed at an opening end of the cylindrical optical path .

本発明及び以下の発明において、特に指定しない限り用語の定義及び技術的意味は以下による。   In the present invention and the following inventions, definitions and technical meanings of terms are as follows unless otherwise specified.

面状光源とは、例えば平面の絶縁材上に半導体発光素子が単数または複数個配設されて形成された光源をいう。半導体発光素子とは、例えば、LEDや有機EL等である。筒状光路とは、面状光源からの光を導光する光路をいう。筒状光路の内部には反射手段が設けられており、この反射手段の反射特性により、面状光源の出射光のほとんどを筒状光路の開口端部から出射する。これにより、筒状光路の出射光の明るさは面状光源の出射光の明るさとほぼ等しくなり、筒状光路の開口端部には擬似的な面状光源が配設されていることとなる。なお、反射手段の反射面としては、鏡面状の反射面の他、拡散反射面であってもよい。   A planar light source refers to a light source formed by arranging one or more semiconductor light emitting elements on a planar insulating material, for example. The semiconductor light emitting element is, for example, an LED or an organic EL. The cylindrical optical path refers to an optical path that guides light from a planar light source. Reflecting means is provided inside the cylindrical optical path, and most of the emitted light from the planar light source is emitted from the opening end of the cylindrical optical path due to the reflection characteristics of the reflecting means. As a result, the brightness of the emitted light from the cylindrical optical path is substantially equal to the brightness of the emitted light from the planar light source, and a pseudo planar light source is provided at the opening end of the cylindrical optical path. . The reflecting surface of the reflecting means may be a diffuse reflecting surface in addition to a mirror-like reflecting surface.

投影レンズとは、筒状光路から出射される光を制御するレンズをいう。レンズは1個以上からなる複数レンズの組合せも含む。投影レンズの位置を調整することにより、例えば、筒状光路から出射される光を、拡大、縮小、フォーカシングさせて外部に照射する。カッター部とは、筒状光路から出射される光の形状を制御するものをいい、例えば、カッター部は、筒状光路から出射される光の形状を丸、四角、三角などの任意の形状に制御する。投影レンズのピント位置とは、投影レンズの照射面の位置に点光源があると想定したとき、その点光源から放たれた光が一点に集中する位置をいう。   A projection lens refers to a lens that controls light emitted from a cylindrical optical path. The lens includes a combination of one or more lenses. By adjusting the position of the projection lens, for example, the light emitted from the cylindrical optical path is irradiated to the outside after being enlarged, reduced or focused. The cutter unit refers to one that controls the shape of the light emitted from the cylindrical optical path.For example, the cutter unit changes the shape of the light emitted from the cylindrical optical path to an arbitrary shape such as a circle, square, or triangle. Control. The focus position of the projection lens refers to a position where the light emitted from the point light source is concentrated at one point when it is assumed that the point light source is located at the irradiation surface of the projection lens.

拡散フィルタとは、面状光源の半導体発光素子から放射された光が透過する際に光を拡散させ、色ムラや照射ムラの発生を抑制するように機能するフィルタをいう。   The diffusion filter refers to a filter that functions to diffuse light when the light emitted from the semiconductor light emitting element of the planar light source is transmitted and suppress the occurrence of color unevenness and irradiation unevenness.

被写界深度とは、ある一点にピントを合わせたとき、その前後の鮮明な像の得られる範囲のことをいう。   The depth of field refers to a range in which clear images before and after a certain point can be obtained.

請求項の発明に係わる照明装置は、請求項1の発明において、前記面状光源の複数個の半導体発光素子を挿入する複数の孔を有し、各々の孔の側面に形成された反射面により前記半導体発光素子の配光特性を制御して前記半導体発光素子からの光を前方に出射するための面状多孔リフレクタを設けたことを特徴とする。 According to a second aspect of the present invention, there is provided a lighting device according to the first aspect of the present invention, wherein the lighting device has a plurality of holes into which the plurality of semiconductor light emitting elements of the planar light source are inserted, and is formed on a side surface of each hole. A planar porous reflector is provided for controlling the light distribution characteristics of the semiconductor light emitting device to emit light from the semiconductor light emitting device forward.

面状多孔リフレクタとは、半導体発光素子の配光特性を制御して半導体発光素子からの光を前方に出射する反射板をいい、半導体発光素子の熱に耐え得る素材で形成される。そして、例えば、複数の孔の1つ1つに対し、半導体発光素子が一つずつ挿入され、半導体発光素子からの光を前方に直接的に出射するとともに、半導体発光素子からの光の一部を孔の側面に形成された光の反射面で反射して前方に直接的に出射する。   The planar porous reflector is a reflector that controls the light distribution characteristics of the semiconductor light emitting element and emits light from the semiconductor light emitting element forward, and is formed of a material that can withstand the heat of the semiconductor light emitting element. For example, one semiconductor light emitting element is inserted into each of the plurality of holes, and light from the semiconductor light emitting element is directly emitted forward, and a part of the light from the semiconductor light emitting element is emitted. Is reflected by the light reflecting surface formed on the side surface of the hole and directly emitted forward.

請求項1の発明によれば、投影する光を放射する光源を平面状の面状光源としたので、装置全体の小型化を図ることができ、かつ、面状光源の半導体発光素子からの光が筒状光路からカッター部に出射されるので、面状光源の出射光量の減衰を抑制できる。また、面状光源からの光を拡散させる拡散フィルタを筒状光路内に設けたので光を拡散できる。従って、さらに、ボツボツ感、色ムラや照射ムラの発生を抑えることができる。また、面状光源を投影レンズの被写界深度外に配置するので、面状光源の半導体発光素子の1つ1つのボツボツ感を減少させることができ、色ムラや照射ムラを減少させることができ、拡散フィルタを投影レンズの被写界深度外に配置するので、拡散フィルタの影像を照射光に含むことを減少できる。すなわち、筒状光路の開口端に疑似的な面光源が形成されるので、光出力の低下を伴うことなく、面状光源の半導体発光素子の1つ1つのボツボツ感が照射領域に現れにくくなり、また拡散フィルタの本体の影像が映し出されることを防止でき、照明装置の効率を向上させながら色ムラや照射ムラを減少させることができる。 According to the invention of claim 1, since the light source that emits the light to be projected is a planar surface light source, the entire apparatus can be reduced in size, and light from the semiconductor light emitting element of the surface light source can be achieved. Is emitted from the cylindrical optical path to the cutter unit, so that attenuation of the amount of light emitted from the planar light source can be suppressed. Moreover, since the diffusion filter for diffusing the light from the planar light source is provided in the cylindrical optical path, the light can be diffused. Accordingly, it is possible to further suppress the crispy, color unevenness and irradiation unevenness. In addition, since the planar light source is disposed outside the depth of field of the projection lens, it is possible to reduce the sensation of each of the semiconductor light emitting elements of the planar light source, thereby reducing color unevenness and irradiation unevenness. In addition, since the diffusion filter is disposed outside the depth of field of the projection lens, it is possible to reduce the inclusion of the image of the diffusion filter in the irradiation light. In other words, since a pseudo surface light source is formed at the opening end of the cylindrical light path, the sensation of each of the semiconductor light emitting elements of the surface light source is less likely to appear in the irradiation region without a decrease in light output. Moreover, it is possible to prevent the image of the main body of the diffusion filter from being projected, and to reduce color unevenness and irradiation unevenness while improving the efficiency of the illumination device.

請求項の発明によれば、面状光源の複数個の半導体発光素子を挿入する複数の孔を有し、各々の孔の側面に形成された反射面により半導体発光素子の配光特性を制御して半導体発光素子からの光を前方に出射するための面状多孔リフレクタを設けたので、複数の半導体発光素子の光を拡散フィルタよりも面状光源側の筒状光路内で混色でき、色ムラが生じることをより防止できる。
According to the second aspect of the present invention, the light distribution characteristics of the semiconductor light emitting device are controlled by the reflecting surface formed on the side surface of each of the holes. Since the planar porous reflector for emitting the light from the semiconductor light emitting element forward is provided, the light from the plurality of semiconductor light emitting elements can be mixed in the cylindrical light path on the planar light source side with respect to the diffusion filter. Unevenness can be further prevented.

本発明の実施の形態に係わる照明装置の構成図。The block diagram of the illuminating device concerning embodiment of this invention. 本発明の実施の形態における面状光源の平面図。The top view of the planar light source in embodiment of this invention. 本発明の実施の形態における面状多孔リフレクタの説明図。Explanatory drawing of the planar porous reflector in embodiment of this invention. 本発明の実施の形態における筒状光路の斜視図。The perspective view of the cylindrical optical path in embodiment of this invention. 本発明の実施の形態における面光源の配置位置の説明図。Explanatory drawing of the arrangement position of the surface light source in embodiment of this invention. 従来のLEDを光源とする照明装置の構成図。The block diagram of the illuminating device which uses conventional LED as a light source.

図1は本発明の実施の形態に係わる照明装置の構成図である。以下の説明では、半導体発光素子として発光ダイオード(LED)を用いた場合について説明する。本発明の実施の形態に係わる照明装置は、図6に示した従来例に対し、光源ユニット11のLED光源部13を面状光源24とし、面状光源24に点灯電源を供給する電源ユニット18及び面状光源24を点灯制御する制御回路ユニット19を光源ユニット11の両側面に設けるとともに、面状光源24の点灯操作を行う操作ユニット20を電源ユニット18の反対側側面に設けたものである。   FIG. 1 is a configuration diagram of a lighting apparatus according to an embodiment of the present invention. In the following description, a case where a light emitting diode (LED) is used as the semiconductor light emitting element will be described. The illumination device according to the embodiment of the present invention is a power supply unit 18 that supplies a lighting power to the planar light source 24 using the LED light source unit 13 of the light source unit 11 as a planar light source 24 in contrast to the conventional example shown in FIG. In addition, a control circuit unit 19 that controls lighting of the planar light source 24 is provided on both side surfaces of the light source unit 11, and an operation unit 20 that performs lighting operation of the planar light source 24 is provided on the opposite side surface of the power supply unit 18. .

図1に示すように、光源ユニット11の面状光源24は複数個の半導体発光素子であるLED17が平面的に配列され光を出射する。以下、半導体発光素子がLEDである場合について説明する。面状光源24には面状多孔リフレクタ25が装着され、面状多孔リフレクタ25により、LED17の配光特性を制御してLED17からの光を前方に出射する。面状光源24及び面状多孔リフレクタ25の詳細については後述する。   As shown in FIG. 1, the planar light source 24 of the light source unit 11 emits light with a plurality of LEDs 17 which are semiconductor light emitting elements arranged in a plane. Hereinafter, a case where the semiconductor light emitting element is an LED will be described. A planar porous reflector 25 is attached to the planar light source 24, and the light distribution characteristic of the LED 17 is controlled by the planar porous reflector 25 to emit light from the LED 17 forward. Details of the planar light source 24 and the planar porous reflector 25 will be described later.

面状光源24の背面は放熱器15に直接的に取り付けられ、面状光源24での発熱は、放熱器15の放熱フィン16から放熱される。また、面状多孔リフレクタ25に近接して筒状光路26が設けられており、この筒状光路26は、面状多孔リフレクタ25により配光特性が制御されたLED17の光を投影ユニット12に導光する。筒状光路26の内面には、鏡面状の反射特性を有する反射手段が設けられている。また、筒状光路26の内部には、面状多孔リフレクタ25で配光制御された面状光源24からの光を拡散させる拡散フィルタ27が設けられている。   The back surface of the planar light source 24 is directly attached to the radiator 15, and heat generated by the planar light source 24 is radiated from the radiation fins 16 of the radiator 15. In addition, a cylindrical optical path 26 is provided in the vicinity of the planar porous reflector 25, and the cylindrical optical path 26 guides the light of the LED 17 whose light distribution characteristics are controlled by the planar porous reflector 25 to the projection unit 12. Shine. Reflecting means having a mirror-like reflection characteristic is provided on the inner surface of the cylindrical optical path 26. In addition, a diffusion filter 27 that diffuses light from the planar light source 24 whose light distribution is controlled by the planar porous reflector 25 is provided inside the cylindrical optical path 26.

そして、筒状光路26と投影ユニット12との間の位置であって筒状光路26の開口端部近傍にはカッター部28が設けられる。このため、カッター部28には面状光源24から出射された光のほとんどが到達することになり、光漏れや光損失が抑制されるの効率が向上する。 A cutter unit 28 is provided at a position between the cylindrical optical path 26 and the projection unit 12 and in the vicinity of the opening end of the cylindrical optical path 26. Therefore, the cutter unit 28 will be most of the light emitted from the planar light source 24 reaches the light leakage and light loss is improved efficiency being suppressed.

このカッター部28により、筒状光路26から出射される光の形状が制御され、カッター部28で光の形状が制御された光は、投影ユニット12の拡散シート34を介して投影レンズ22a、22bに出射される。投影レンズ22a、22bは、カッター部28を通った光を、拡大、縮小、フォーカシングさせて外部に照射する。拡散シート34はカッター部28でカットした光の形状のエッジ部分をぼかすために設けられている。光の形状のエッジ部分を鮮明にする場合には拡散シート34を設ける必要はない。   The shape of the light emitted from the cylindrical optical path 26 is controlled by the cutter unit 28, and the light whose shape is controlled by the cutter unit 28 is projected to the projection lenses 22 a and 22 b via the diffusion sheet 34 of the projection unit 12. Is emitted. The projection lenses 22a and 22b irradiate the light that has passed through the cutter unit 28 with enlargement, reduction, and focusing. The diffusion sheet 34 is provided in order to blur the edge portion of the light shape cut by the cutter unit 28. When the edge portion of the light shape is clear, it is not necessary to provide the diffusion sheet 34.

また、光源ユニット11は投影ユニット12に支持棒35により着脱可能に取り付けられるように形成されている。支持棒35は投影ユニット12に差し込み式にて着脱可能に取り付けられる。   The light source unit 11 is formed to be detachably attached to the projection unit 12 by a support bar 35. The support bar 35 is detachably attached to the projection unit 12 by insertion.

図2は面状光源24の平面図である。プリント基板29は平板状の絶縁材に銅箔で配線をプリントして形成され、そのプリント基板29に複数個のLED17が取り付けられる。図2では、45個のLED17を取り付けた場合を示しており、白色LED17wに加え、補色として3個の青色LED17b及び6個の赤色LED17rを設けた場合を示している。   FIG. 2 is a plan view of the planar light source 24. The printed board 29 is formed by printing wiring with a copper foil on a flat insulating material, and a plurality of LEDs 17 are attached to the printed board 29. FIG. 2 shows a case where 45 LEDs 17 are attached, and shows a case where three blue LEDs 17b and six red LEDs 17r are provided as complementary colors in addition to the white LEDs 17w.

図3は面状多孔リフレクタ25の説明図であり、図3(a)は面状多孔リフレクタ25の斜視図、図3(b)は面状多孔リフレクタ25の断面図、図3(c)は面状多孔リフレクタ25に挿入された半導体発光素子の光の配光特性の説明図である。図3(a)に示すように、面状多孔リフレクタ25のリフレクタ本体29は白色耐熱素材によって構成される。これは、面状多孔リフレクタ25はLED17の照射側に光を配光制御し、LED17の照射側の反対側は面状光源24のプリント基板29に接しLED17の発熱の影響を受けるからである。   FIG. 3 is an explanatory view of the planar porous reflector 25. FIG. 3 (a) is a perspective view of the planar porous reflector 25, FIG. 3 (b) is a cross-sectional view of the planar porous reflector 25, and FIG. It is explanatory drawing of the light distribution characteristic of the light of the semiconductor light-emitting device inserted in the planar porous reflector 25. FIG. As shown in FIG. 3A, the reflector body 29 of the planar porous reflector 25 is made of a white heat-resistant material. This is because the planar porous reflector 25 controls the light distribution to the irradiation side of the LED 17, and the opposite side of the irradiation side of the LED 17 is in contact with the printed circuit board 29 of the planar light source 24 and is affected by the heat generation of the LED 17.

面状多孔リフレクタ25は、面状光源24の個々のLED17を一つずつ挿入するための複数の孔30を有しており、各々の孔30の側面には反射面31が形成されている。図3(b)に示すように、各々の孔30には一つずつLED17が挿入され、孔30の側面に形成された反射面31は、LED17からの光出射方向に対して広角となる形状に構成されている。また、各々の孔30の奥行き(面状多孔リフレクタ25の厚さ)hは、LED17の発光部の先端が孔30の開口先端部にほぼ一致する大きさに形成されている。これは、孔30の奥行きを大きくすると孔30の反射面31が長くなり、LED17からの光が反射面31で減衰するので、面状多孔リフレクタ25の孔30から出射するLED17からの光のロスを軽減するためである。   The planar porous reflector 25 has a plurality of holes 30 into which the individual LEDs 17 of the planar light source 24 are inserted one by one, and a reflective surface 31 is formed on the side surface of each hole 30. As shown in FIG. 3B, one LED 17 is inserted into each hole 30, and the reflection surface 31 formed on the side surface of the hole 30 has a wide angle with respect to the direction of light emission from the LED 17. It is configured. Further, the depth (thickness of the planar porous reflector 25) h of each hole 30 is formed such that the tip of the light emitting part of the LED 17 substantially coincides with the opening tip of the hole 30. This is because when the depth of the hole 30 is increased, the reflection surface 31 of the hole 30 becomes longer and the light from the LED 17 is attenuated by the reflection surface 31, so that the loss of light from the LED 17 emitted from the hole 30 of the planar porous reflector 25 is lost. This is to alleviate the problem.

このように、面状多孔リフレクタ25は、各々のLED17をそれぞれ孔30に挿入し、LED17からの光を直接的に出射するとともに孔30の反射面31で反射して前方に出射する。これにより、図3(c)の点線で示す配光特性L1が得られ、個々のLED17の発光部分が拡大されて、面状光源24のLED17のボツボツ感を減らし照射光の色ムラを緩和する。   As described above, the planar porous reflector 25 inserts each LED 17 into the hole 30 and directly emits the light from the LED 17 and reflects the light at the reflecting surface 31 of the hole 30 and emits it forward. As a result, the light distribution characteristic L1 indicated by the dotted line in FIG. 3C is obtained, and the light emitting portions of the individual LEDs 17 are enlarged to reduce the sensation of the LEDs 17 of the planar light source 24 and to reduce the uneven color of the irradiated light. .

また、孔30の反射面31を鏡面あるいは白色とし、反射率が大きな拡散反射面とした場合には、図3(c)の実線で示す配光特性L2ように、点線で示す配光特性L1よりも拡散した配光特性L2が得られる。これにより、複数の色のLED17の色を適切に混色でき、色ムラが生じることを防止できる。 Further, the reflecting surface 31 of the hole 30 is a mirror or white, if the reflectance is a major diffuse reflective surface as the light distribution characteristic L2 shown by the solid line in FIG. 3 (c), the light distribution characteristic shown by the dotted line A light distribution characteristic L2 diffused more than L1 is obtained. Thereby, the color of LED17 of several colors can be mixed appropriately, and it can prevent that a color nonuniformity arises.

図4は筒状光路26の斜視図である。筒状光路26は筒部32と鍔部33とから構成され、筒部32の内面は反射特性を有する反射面で形成されている。また、筒部32の内部には光を拡散させる拡散フィルタ27を有している。筒状光路26は面状光源24とカッター部28までの間の距離を保つものである。   FIG. 4 is a perspective view of the cylindrical optical path 26. The cylindrical optical path 26 includes a cylindrical portion 32 and a flange portion 33, and the inner surface of the cylindrical portion 32 is formed of a reflective surface having reflection characteristics. In addition, a diffusion filter 27 that diffuses light is provided inside the cylindrical portion 32. The cylindrical optical path 26 maintains a distance between the planar light source 24 and the cutter unit 28.

面状光源24とカッター部28までの間は、なるべく短い方が照射光が明るくなるが、その間を短くすると、カッター部28を通った光を投影する投影レンズ22a、22bにより面状光源24のLED17のボツボツ感がそのまま投影される。従って、面状光源24のLED17の輝度のバラツキやLED17の色がそのままムラとなり照射光に投影されることとなる。   The shorter the distance between the planar light source 24 and the cutter unit 28, the brighter the irradiated light. However, if the interval is shortened, the projection lenses 22a and 22b that project the light that has passed through the cutter unit 28 are used. The sensation of the LED 17 is projected as it is. Therefore, the variation in luminance of the LED 17 of the planar light source 24 and the color of the LED 17 become uneven as they are and are projected onto the irradiation light.

逆に、面状光源24とカッター部28までの間が長いと照射光が暗くなるが、内部が反射面となっている筒状光路26とすることで、面状光源24の光を効率よくカッター部28へ照射することが可能となり、筒状光路26の長さをある程度確保し、また、筒状光路26内に反射フィルム27を入れることで、照射光のムラの軽減を行うようにしている。   On the contrary, if the distance between the planar light source 24 and the cutter unit 28 is long, the irradiation light becomes dark. However, by using the cylindrical optical path 26 in which the inside is a reflective surface, the light from the planar light source 24 can be efficiently used. It becomes possible to irradiate the cutter unit 28, and the length of the cylindrical optical path 26 is secured to some extent, and a reflection film 27 is placed in the cylindrical optical path 26 so as to reduce unevenness of irradiation light. Yes.

図5は本発明の実施の形態における面光源の配置位置の説明図である。図5では、照射光を最大限に絞った状態での投影レンズ22a、22bの位置と被写界深度36の範囲が最も大きくなった状態を示している。 FIG. 5 is an explanatory diagram of the arrangement position of the planar light source in the embodiment of the present invention. FIG. 5 shows a state where the positions of the projection lenses 22a and 22b and the range of the depth of field 36 are maximized in a state where the irradiation light is maximally reduced.

図5に示すように、投影レンズ22a、22bは、そのピント位置37がカッター部28の近傍に位置するように配置される。そして、調整ハンドル23a、23bにより投影レンズ22a、22bの位置を調整し、照射光を最大限に絞った状態にしたときは、被写界深度36の範囲が大きくなる。この状態において、面状光源24及び拡散フィルタ27は投影レンズ22a、22bの被写界深度36の範囲外に位置するように配置されている。また、調整ハンドル23a、23bにより投影レンズ22a、22bの位置を調整し、照射光を最大限に拡げた状態にしたときは、ピント位置37は変わらずに被写界深度36の範囲がピント位置37に向かう方向に小さくなる。この状態においても、面状光源24及び拡散フィルタ27は投影レンズ22a、22bの被写界深度36の範囲外に位置する。   As shown in FIG. 5, the projection lenses 22 a and 22 b are arranged such that the focus position 37 is located in the vicinity of the cutter unit 28. Then, when the positions of the projection lenses 22a and 22b are adjusted by the adjustment handles 23a and 23b to reduce the irradiation light to the maximum, the range of the depth of field 36 is increased. In this state, the planar light source 24 and the diffusion filter 27 are disposed so as to be located outside the range of the depth of field 36 of the projection lenses 22a and 22b. In addition, when the positions of the projection lenses 22a and 22b are adjusted by the adjustment handles 23a and 23b to maximize the irradiation light, the focus position 37 does not change and the range of the depth of field 36 does not change. It becomes small in the direction toward 37. Even in this state, the planar light source 24 and the diffusion filter 27 are located outside the range of the depth of field 36 of the projection lenses 22a and 22b.

このように、面状光源24及び拡散フィルタ27は投影レンズ22a、22bの被写界深度36の範囲外に位置するように配置されているが、筒状光路26の開口端には内部の反射手段によって擬似的な面状光源が配設されることになるので、光出力の低下を伴うことなく、面状光源24の半導体発光素子の1つ1つのボツボツ感が照射領域に現れにくくなり、また拡散フィルタ27の本体の影像が映し出されることを防止でき、照明装置の効率を向上させながら色ムラや照射ムラを減少させることができる。   As described above, the planar light source 24 and the diffusion filter 27 are disposed so as to be located outside the range of the depth of field 36 of the projection lenses 22a and 22b. Since a pseudo planar light source is disposed by the means, it is difficult for the sensation of each of the semiconductor light emitting elements of the planar light source 24 to appear in the irradiation region without a decrease in light output, Further, it is possible to prevent the shadow image of the main body of the diffusion filter 27 from being displayed, and it is possible to reduce color unevenness and irradiation unevenness while improving the efficiency of the illumination device.

本発明の実施の形態によれば、同一平面状に複数個のLED17を配置して面状光源24を構成し、面状光源24の照射側の反対側に放熱器15を直接的に取り付けるので、小型化が可能となる。また、面状光源を投影レンズの被写界深度外に配置するので、面状光源の半導体発光素子の1つ1つのボツボツ感を減少させることができ、色ムラや照射ムラを減少させることができる。   According to the embodiment of the present invention, the planar light source 24 is configured by arranging a plurality of LEDs 17 on the same plane, and the radiator 15 is directly attached to the side opposite to the irradiation side of the planar light source 24. It is possible to reduce the size. In addition, since the planar light source is disposed outside the depth of field of the projection lens, it is possible to reduce the sensation of each of the semiconductor light emitting elements of the planar light source, thereby reducing color unevenness and irradiation unevenness. it can.

また、内部は反射特性を有し拡散フィルタ27を有した筒状光路26により、面状光源26とカッター部28までの間を照射光のムラが生じない長さに確保するので、面状光源24からの光量の減衰を抑制しつつLED17のボツボツ感を緩和し、色ムラや照射ムラを生じないようにすることができる。さらには、面状光源からの光を拡散させる拡散フィルタを筒状光路内に設けたので光を拡散でき、これにより、さらに、ボツボツ感、色ムラや照射ムラを生じないようにできる。   In addition, the cylindrical light path 26 having a reflection characteristic and having a diffusion filter 27 in the interior secures a length between the surface light source 26 and the cutter portion 28 so that unevenness of irradiation light does not occur. It is possible to relieve the sensation of the LED 17 while suppressing the attenuation of the amount of light from 24, and to prevent color unevenness and irradiation unevenness from occurring. Furthermore, the diffusion filter for diffusing the light from the planar light source is provided in the cylindrical optical path, so that the light can be diffused, and further, the crispness, color unevenness and irradiation unevenness can be prevented.

また、面状光源24のLED17からの光を制御するための面状多孔リフレクタ25を設け、面状多孔リフレクタ25の孔30の反射面31により、各々のLED17からの光を反射して前方に出射するので、色ムラや照射ムラを生じないようにすることができる。   Further, a planar porous reflector 25 for controlling the light from the LED 17 of the planar light source 24 is provided, and the light from each LED 17 is reflected forward by the reflecting surface 31 of the hole 30 of the planar porous reflector 25. Since the light is emitted, color unevenness and irradiation unevenness can be prevented.

11…光源ユニット、12…投影ユニット、13…LED光源部、14…光源部筐体、15…放熱器、16…放熱フィン、17…LED、18…電源ユニット、19…制御回路ユニット、20…操作ユニット、21…カッターユニット、22…投影レンズ、23…調整ハンドル、24…面状光源、25…面状多孔リフレクタ、26…筒状光路、27…拡散フィルタ、28…カッター部、29…プリント基板、30…孔、31…反射面、32…筒部、33…鍔部、34…拡散シート、35…支持棒、36…被写界深度、37…ピント位置 DESCRIPTION OF SYMBOLS 11 ... Light source unit, 12 ... Projection unit, 13 ... LED light source part, 14 ... Light source part housing | casing, 15 ... Radiator, 16 ... Radiation fin, 17 ... LED, 18 ... Power supply unit, 19 ... Control circuit unit, 20 ... Operation unit, 21 ... cutter unit, 22 ... projection lens, 23 ... adjustment handle, 24 ... planar light source, 25 ... planar porous reflector, 26 ... cylindrical optical path, 27 ... diffusion filter, 28 ... cutter unit, 29 ... print Substrate, 30 ... hole, 31 ... reflecting surface, 32 ... cylindrical part, 33 ... trench, 34 ... diffusion sheet, 35 ... support bar, 36 ... depth of field, 37 ... focus position

Claims (2)

複数個の半導体発光素子が平面的に配設された面状光源と;
内部が反射特性を有し前記面状光源からの光を導光する筒状光路と;
前記筒状光路から出射される光を投影し照射光を制御するための投影レンズと;
前記投影レンズと前記筒状光路との間に配置され前記筒状光路から出射される光の形状を制御するカッター部と;
前記筒状光路内に配置され前記面状光源からの光を拡散させる拡散フィルタとを備え、
前記面状光源は前記投影レンズの被写界深度外に配置され、
前記拡散フィルタは前記投影レンズの被写界深度外の位置に設けられ、
前記筒状光路の開口端に疑似的な面光源が形成されることを特徴とする照明装置。
A planar light source in which a plurality of semiconductor light emitting elements are arranged in a plane;
A cylindrical optical path that has internal reflection characteristics and guides light from the planar light source;
A projection lens for projecting light emitted from the cylindrical optical path and controlling irradiation light;
A cutter unit disposed between the projection lens and the cylindrical optical path for controlling the shape of light emitted from the cylindrical optical path;
A diffusion filter disposed in the cylindrical optical path and diffusing light from the planar light source ;
The planar light source is disposed outside the depth of field of the projection lens;
The diffusion filter is provided at a position outside the depth of field of the projection lens;
A lighting device, wherein a pseudo surface light source is formed at an opening end of the cylindrical optical path .
前記面状光源の複数個の半導体発光素子を挿入する複数の孔を有し、各々の孔の側面に形成された反射面により前記半導体発光素子の配光特性を制御して前記半導体発光素子からの光を前方に出射するための面状多孔リフレクタを設けたことを特徴とする請求項1記載の照明装置。 A plurality of holes for inserting a plurality of semiconductor light emitting elements of the planar light source are provided, and a light distribution characteristic of the semiconductor light emitting element is controlled by a reflecting surface formed on a side surface of each hole to remove light from the semiconductor light emitting element. The illumination device according to claim 1, further comprising a planar porous reflector for emitting forward light.
JP2009026796A 2008-02-08 2009-02-06 Lighting device Expired - Fee Related JP5504638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009026796A JP5504638B2 (en) 2008-02-08 2009-02-06 Lighting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008028583 2008-02-08
JP2008028583 2008-02-08
JP2009026796A JP5504638B2 (en) 2008-02-08 2009-02-06 Lighting device

Publications (2)

Publication Number Publication Date
JP2009212087A JP2009212087A (en) 2009-09-17
JP5504638B2 true JP5504638B2 (en) 2014-05-28

Family

ID=41185001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009026796A Expired - Fee Related JP5504638B2 (en) 2008-02-08 2009-02-06 Lighting device

Country Status (1)

Country Link
JP (1) JP5504638B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075176A (en) * 2010-09-16 2014-04-24 Brintz Technologie Co Ltd Led lighting device
KR101613780B1 (en) 2014-03-28 2016-04-20 김덕휴 LED spotlight apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116096A (en) * 1994-10-14 1996-05-07 Hamamatsu Photonics Kk Light emitting device
JP2001307502A (en) * 2000-04-25 2001-11-02 R D S Kk Spot-light and light source unit
JP2004355934A (en) * 2003-05-28 2004-12-16 Toshiba Lighting & Technology Corp Light emitting diode lighting system
JP4431438B2 (en) * 2004-04-30 2010-03-17 大光電機株式会社 Spotlight
JP2008091305A (en) * 2006-10-05 2008-04-17 Nippon Hoso Kyokai <Nhk> Spotlight

Also Published As

Publication number Publication date
JP2009212087A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP5451629B2 (en) Light source and illumination system having a predetermined appearance
JP4792459B2 (en) Lamp and reflector configuration for color mixing
JP6648430B2 (en) Vehicle lighting
TW201020467A (en) Colour mixing method for consistent colour quality
JP2006269182A (en) Lighting system and spot light
JP2009004276A (en) Spotlight
US9441803B2 (en) Vehicular headlamp
JP6446202B2 (en) Wide-angle diffusion optical system and illumination device using the same
JP2017228490A (en) Vehicular lighting fixture
JP4397314B2 (en) LED lighting device and spotlight.
JP2006310549A (en) Lighting apparatus and imaging apparatus
CN108292085B (en) Projector apparatus
JP5504638B2 (en) Lighting device
JP2020035702A (en) Vehicular lighting fixture
JP4331077B2 (en) LED light source device and spotlight
JP2023144138A (en) Portable light
JP4600761B2 (en) Lighting device
JP2010170805A (en) Optical module for illumination and lighting fixture
JP2007294370A (en) Spotlight
JP2010217881A (en) Device for illuminating document, method for illuminating document, and device for reading image
JP2005142005A (en) Light emitting diode spotlight
JP2007294379A (en) Lighting system
TWI557369B (en) Cover for illumination and illumination apparatus
CN221303782U (en) Photographic lamp
JP2010192394A (en) Lighting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

LAPS Cancellation because of no payment of annual fees