JP5504533B2 - Piezoelectric body and piezoelectric element - Google Patents

Piezoelectric body and piezoelectric element Download PDF

Info

Publication number
JP5504533B2
JP5504533B2 JP2009268854A JP2009268854A JP5504533B2 JP 5504533 B2 JP5504533 B2 JP 5504533B2 JP 2009268854 A JP2009268854 A JP 2009268854A JP 2009268854 A JP2009268854 A JP 2009268854A JP 5504533 B2 JP5504533 B2 JP 5504533B2
Authority
JP
Japan
Prior art keywords
lead
piezoelectric
piezoelectric body
ferroelectric film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009268854A
Other languages
Japanese (ja)
Other versions
JP2011114141A (en
Inventor
健 木島
祐二 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Youtec Co Ltd
Original Assignee
Youtec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youtec Co Ltd filed Critical Youtec Co Ltd
Priority to JP2009268854A priority Critical patent/JP5504533B2/en
Priority to PCT/JP2010/069628 priority patent/WO2011065197A1/en
Publication of JP2011114141A publication Critical patent/JP2011114141A/en
Application granted granted Critical
Publication of JP5504533B2 publication Critical patent/JP5504533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • H10N30/078Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition by sol-gel deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、圧電体及びそれを用いた圧電素子に関する。   The present invention relates to a piezoelectric body and a piezoelectric element using the piezoelectric body.

従来の鉛系強誘電体膜としてはPb(Zr、Ti、Nb)Oが挙げられる(例えば特許文献1参照)。この特許文献1には、Pb:Zr:Ti:Nb=1:0.2:0.6:0.2としたPb(Zr、Ti、Nb)Oが角型性の良好なヒステリシス特性を有することが開示されている。 An example of a conventional lead-based ferroelectric film is Pb (Zr, Ti, Nb) O 3 (see, for example, Patent Document 1). In this Patent Document 1, Pb (Zr, Ti, Nb) O 3 with Pb: Zr: Ti: Nb = 1: 0.2: 0.6: 0.2 has a good hysteresis characteristic with squareness. It is disclosed to have.

上記従来の鉛系強誘電体膜は圧電素子に用いることができる。しかし、圧電素子に用いる場合、角型性の良好なヒステリシス特性を有することが信頼性を低下させる原因となる。その理由は、圧電素子の動作時に強誘電体膜が分極反転する時間が必要となり、その時間だけ動作に遅れが生じるからである。   The conventional lead-based ferroelectric film can be used for a piezoelectric element. However, when used in a piezoelectric element, having a good hysteresis characteristic with squareness causes a decrease in reliability. The reason is that a time for the polarization inversion of the ferroelectric film is required during the operation of the piezoelectric element, and the operation is delayed by that time.

特開2005−333105号公報(段落0077〜0086)JP-A-2005-333105 (paragraphs 0077 to 0086)

本発明の一態様は、角型性の良好なヒステリシス特性を有しないことで信頼性を向上させた圧電体及びそれを用いた圧電素子を提供することを課題とする。   An object of one embodiment of the present invention is to provide a piezoelectric body in which reliability is improved by not having hysteresis characteristics with favorable squareness and a piezoelectric element using the piezoelectric body.

本発明の一態様は、抗電界Ecは25kV/cm以下、残留分極値Prは10μC/cm2以下、かつ比誘電率400以上(好ましくは1000以上)であることを特徴とする圧電体である。 One embodiment of the present invention is a piezoelectric body characterized in that the coercive electric field Ec is 25 kV / cm or less, the remanent polarization value Pr is 10 μC / cm 2 or less, and the relative dielectric constant is 400 or more (preferably 1000 or more). .

また、本発明の一態様に係る圧電体において、
前記圧電体は、P-Eヒステリシス曲線を殆ど有しておらず、電界印加時のヒステリシスカーブ描写時の時間的ロスが殆どないことを特徴とする圧電体である。
In the piezoelectric body according to one aspect of the present invention,
The piezoelectric body has a PE hysteresis curve and has little time loss when a hysteresis curve is drawn when an electric field is applied.

また、本発明の一態様に係る圧電体において、
前記圧電体は、強誘電体材料を含むアモルファス薄膜を加熱して結晶化することにより形成されるものであり、
前記強誘電体材料は、
ABOあるいは(Bi2+(Am−13m+12−(式中、AはLi、Na、K、Rb、Pb、Ca、Sr、Ba、Bi、La及びHfからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種、mは5以下の自然数である。)で表されるペロブスカイト及びビスマス層状構造酸化物、
LanBaCu、TrmBaCan−1Cu2n+4又はTrmBaCan−1Cu2n+3(式中、LanはY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも1種、TrmはBi、Tl及びHgからなる群から選択される少なくとも1種、nは5以下の自然数である。)で表される超伝導酸化物、
0.5BO(正方ブロンズ構造)又はA0.3BO(六方ブロンズ構造)(式中、AはLi、Na、K、Rb、Cs、Pb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種である。)で表されるタングステンブロンズ構造酸化物、
CaO、BaO、PbO、ZnO、MgO、B、Al、Y、La、Cr、Bi、Ga、ZrO、TiO、HfO、NbO、MoO、WO及びVからなる群から選択される少なくとも1種の材料、
前記少なくとも1種の材料にSiOを含む材料、及び、
前記少なくとも1種の材料にSiO及びGeOを含む材料の少なくとも1つからなることも可能である。
In the piezoelectric body according to one aspect of the present invention,
The piezoelectric body is formed by heating and crystallizing an amorphous thin film containing a ferroelectric material,
The ferroelectric material is:
ABO 3 or (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2− (where A is Li, Na, K, Rb, Pb, Ca, Sr, Ba, Bi, La and Hf) At least one selected from the group consisting of B, B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W and Mo, and m is a natural number of 5 or less.) Perovskite and bismuth layered structure oxide represented by
LanBa 2 Cu 3 O 7, Trm 2 Ba 2 Ca n-1 Cu n O 2n + 4 or TrmBa 2 Ca n-1 Cu n O 2n + 3 ( wherein, Lan is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and at least one selected from the group consisting of Lu, Trm is at least one selected from the group consisting of Bi, Tl and Hg, and n is 5 or less A superconducting oxide represented by
A 0.5 BO 3 (tetragonal bronze structure) or A 0.3 BO 3 (hexagonal bronze structure) (wherein A is Li, Na, K, Rb, Cs, Pb, Ca, Sr, Ba, Bi, and La) At least one selected from the group consisting of, and B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W, and Mo.) Structural oxides,
CaO, BaO, PbO, ZnO, MgO, B 2 O 3, Al 2 O 3, Y 2 O 3, La 2 O 3, Cr 2 O 3, Bi 2 O 3, Ga 2 O 3, ZrO 2, TiO 2 At least one material selected from the group consisting of HfO 2 , NbO 2 , MoO 3 , WO 3 and V 2 O 5 ;
A material comprising SiO 2 in the at least one material; and
The at least one material may be made of at least one material including SiO 2 and GeO 2 .

本発明の一態様は、Pb(ZrTiNb)Oで示され、以下の関係、
X+Y+Z=1
0≦Y≦0.25
0.05≦Z≦0.25
が成立することを特徴とする圧電体である。
One aspect of the present invention is shown by Pb (Zr X Ti Y Nb Z ) O 3, the following relationship,
X + Y + Z = 1
0 ≦ Y ≦ 0.25
0.05 ≦ Z ≦ 0.25
This is a piezoelectric body characterized in that

また、本発明の一態様に係る圧電素子は、上記のいずれかの圧電体を有することを特徴とする。   A piezoelectric element according to one embodiment of the present invention includes any one of the above piezoelectric bodies.

本発明の一態様は、下電極と、
前記下電極上に形成された鉛系圧電体と、
前記鉛系圧電体上に形成された上電極と、
を具備し、
前記鉛系圧電体は、Pb(ZrTiNb)Oで示され、以下の関係、
X+Y+Z=1
0≦Y≦0.25
0.05≦Z≦0.25
が成立することを特徴とする圧電素子である。
One embodiment of the present invention includes a lower electrode,
A lead-based piezoelectric body formed on the lower electrode;
An upper electrode formed on the lead-based piezoelectric body;
Comprising
The lead-based piezoelectric material is shown by Pb (Zr X Ti Y Nb Z ) O 3, the following relationship,
X + Y + Z = 1
0 ≦ Y ≦ 0.25
0.05 ≦ Z ≦ 0.25
Is a piezoelectric element characterized in that

本発明の一態様によれば、角型性の良好なヒステリシス特性を有しないことで信頼性を向上させた圧電体及びそれを用いた圧電素子を提供することができる。   According to one embodiment of the present invention, it is possible to provide a piezoelectric body in which reliability is improved by not having a hysteresis characteristic with good squareness and a piezoelectric element using the piezoelectric body.

実施形態2におけるPZTN膜をスピンコート法で形成するためのフローチャートを示す図である。It is a figure which shows the flowchart for forming the PZTN film | membrane in Embodiment 2 by a spin coat method. (A)〜(C)は、PZNのP[μC/cm]−E[kV/cm]ヒステリシス曲線を示す図である。(A)-(C) is a figure which shows the P [(micro | micron | mu) C / cm < 2 >]-E [kV / cm] hysteresis curve of PZN. 実施形態3によるSAWフィルタを説明するための斜視図である。6 is a perspective view for explaining a SAW filter according to Embodiment 3. FIG.

以下では、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.

(実施形態1)
本実施形態による圧電体は、P-Eヒステリシス曲線を殆ど有していない為、電界印加時のヒステリシスカーブ描写時の時間的ロスが殆どないものである。この圧電体の製造方法について以下に説明する。
(Embodiment 1)
Since the piezoelectric body according to the present embodiment has almost no PE hysteresis curve, there is almost no time loss when drawing the hysteresis curve when an electric field is applied. A method for manufacturing this piezoelectric body will be described below.

基板上に所定の結晶面に配向した下地膜を形成する。この下地膜には、例えば(111)配向させたPt膜が用いられる。   A base film oriented in a predetermined crystal plane is formed on the substrate. For example, a (111) -oriented Pt film is used as the base film.

次いで、この下地膜上に強誘電体材料を含むアモルファス薄膜を形成する。この強誘電体材料には下記の(1)〜(6)のいずれかが用いられる。
(1)ABOあるいは(Bi2+(Am−13m+12−(式中、AはLi、Na、K、Rb、Pb、Ca、Sr、Ba、Bi、La及びHfからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種、mは5以下の自然数である。)で表されるペロブスカイト及びビスマス層状構造酸化物
(2)LanBaCu、TrmBaCan−1Cu2n+4又はTrmBaCan−1Cu2n+3(式中、LanはY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも1種、TrmはBi、Tl及びHgからなる群から選択される少なくとも1種、nは5以下の自然数である。)で表される超伝導酸化物
(3)A0.5BO(正方ブロンズ構造)又はA0.3BO(六方ブロンズ構造)(式中、AはLi、Na、K、Rb、Cs、Pb、Ca、Sr、Ba、Bi及びLaからなる群から選択される少なくとも1種、BはRu、Fe、Ti、Zr、Nb、Ta、V、W及びMoからなる群から選択される少なくとも1種である。)で表されるタングステンブロンズ構造酸化物
(4)CaO、BaO、PbO、ZnO、MgO、B、Al、Y、La、Cr、Bi、Ga、ZrO、TiO、HfO、NbO、MoO、WO及びVからなる群から選択される少なくとも1種の材料、
(5)前記少なくとも1種の材料にSiOを含む材料
(6)前記少なくとも1種の材料にSiO及びGeOを含む材料
Next, an amorphous thin film containing a ferroelectric material is formed on the base film. One of the following (1) to (6) is used for this ferroelectric material.
(1) ABO 3 or (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2− (where A is Li, Na, K, Rb, Pb, Ca, Sr, Ba, Bi, La) And at least one selected from the group consisting of Hf, B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W and Mo, and m is a natural number of 5 or less. And perovskite and bismuth layered structure oxides
(2) LanBa 2 Cu 3 O 7, Trm 2 Ba 2 Ca n-1 Cu n O 2n + 4 or TrmBa 2 Ca n-1 Cu n O 2n + 3 ( wherein, Lan is Y, La, Ce, Pr, Nd, Pm , Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, at least one selected from the group consisting of Bi, Tl and Hg, n Is a natural number of 5 or less.)
(3) A 0.5 BO 3 (tetragonal bronze structure) or A 0.3 BO 3 (hexagonal bronze structure) (wherein A is Li, Na, K, Rb, Cs, Pb, Ca, Sr, Ba, At least one selected from the group consisting of Bi and La, and B is at least one selected from the group consisting of Ru, Fe, Ti, Zr, Nb, Ta, V, W, and Mo. Tungsten bronze structure oxide
(4) CaO, BaO, PbO , ZnO, MgO, B 2 O 3, Al 2 O 3, Y 2 O 3, La 2 O 3, Cr 2 O 3, Bi 2 O 3, Ga 2 O 3, ZrO 2 At least one material selected from the group consisting of TiO 2 , HfO 2 , NbO 2 , MoO 3 , WO 3 and V 2 O 5 ,
(5) Material containing SiO 2 in the at least one material
(6) A material containing SiO 2 and GeO 2 in the at least one material.

次に、前記アモルファス薄膜を加熱して結晶化することにより、下地膜上には圧電体が形成される。この圧電体は、P-Eヒステリシス曲線を殆ど有していない為、電界印加時のヒステリシスカーブ描写時の時間的ロスが殆どないものである。   Next, the amorphous thin film is heated and crystallized to form a piezoelectric body on the base film. Since this piezoelectric body has almost no P-E hysteresis curve, there is almost no time loss when drawing a hysteresis curve when an electric field is applied.

上記実施形態1によれば、角型性の良好なヒステリシス特性を有しない圧電体を形成することで信頼性を向上させることができる。   According to Embodiment 1 described above, the reliability can be improved by forming a piezoelectric body that does not have a good hysteresis characteristic of squareness.

(実施形態2)
まず、本実施形態による鉛系強誘電体膜(鉛系圧電体)について説明する。
鉛系強誘電体膜は、Pb(ZrTiNb)Oで示され、以下の関係、
X+Y+Z=1
0≦Y≦0.25
0.05≦Z≦0.25
が成立する鉛系セラミックスからなるものである。
なお、この組成範囲は、特許文献1に記載されているPb(Zr、Ti、Nb)Oの強誘電体膜の組成範囲と重複しない。
(Embodiment 2)
First, the lead-based ferroelectric film (lead-based piezoelectric material) according to the present embodiment will be described.
Lead-based ferroelectric film is shown by Pb (Zr X Ti Y Nb Z ) O 3, the following relationship,
X + Y + Z = 1
0 ≦ Y ≦ 0.25
0.05 ≦ Z ≦ 0.25
It is made of lead-based ceramics that holds
This composition range does not overlap with the composition range of the Pb (Zr, Ti, Nb) O 3 ferroelectric film described in Patent Document 1.

次に、本実施形態による圧電素子に適用される鉛系強誘電体膜の成膜方法の一例について説明する。   Next, an example of a method for forming a lead-based ferroelectric film applied to the piezoelectric element according to the present embodiment will be described.

鉛系強誘電体膜は、Pb、Zr、Ti、およびNbの少なくともいずれかを含む第1〜第3の原料溶液からなる混合溶液を用意し、これらの混合溶液に含まれる酸化物を熱処理等により結晶化させて得ることができる。   For the lead-based ferroelectric film, a mixed solution composed of first to third raw material solutions containing at least one of Pb, Zr, Ti, and Nb is prepared, and the oxide contained in these mixed solutions is subjected to a heat treatment or the like. Can be obtained by crystallization.

第1の原料溶液としては、鉛系強誘電体膜の構成金属元素のうち、PbおよびZrによるPbZrOペロブスカイト結晶を形成するため縮重合体をn−ブタノール等の溶媒に無水状態で溶解した溶液が例示できる。 As the first raw material solution, a solution in which a polycondensation polymer is dissolved in a solvent such as n-butanol in an anhydrous state to form a PbZrO 3 perovskite crystal of Pb and Zr among the constituent metal elements of the lead-based ferroelectric film. Can be illustrated.

第2の原料溶液としては、鉛系強誘電体膜の構成金属元素のうち、PbおよびTiによるPbTiOペロブスカイト結晶を形成するため縮重合体をn−ブタノール等の溶媒に無水状態で溶解した溶液が例示できる。 The second raw material solution is a solution in which a polycondensation polymer is dissolved in a solvent such as n-butanol in an anhydrous state in order to form a PbTiO 3 perovskite crystal of Pb and Ti among the constituent metal elements of the lead-based ferroelectric film. Can be illustrated.

第3の原料溶液としては、鉛系強誘電体膜の構成金属元素のうち、PbおよびNbによるPbNbOペロブスカイト結晶を形成するため縮重合体をn−ブタノール等の溶媒に無水状態で溶解した溶液が例示できる。 As the third raw material solution, among the constituent metal elements of the lead-based ferroelectric film, a solution obtained by dissolving a condensation polymer in an anhydrous state in a solvent such as n-butanol in order to form a PbNbO 3 perovskite crystal with Pb and Nb Can be illustrated.

上記第1、第2および第3の原料溶液を用いて、例えば、PbZr0.75Ti0.05Nb0.2(PZTN)からなる鉛系強誘電体膜を形成する場合、(第1の原料溶液):(第2の原料溶液):(第3の原料溶液)=7.5:0.5:2の比で混合することになるが、この混合溶液をそのまま結晶化させようとしても、鉛系強誘電体膜を作製するには、高い結晶化温度を必要とする。すなわち、Nbを混合すると、結晶化温度が急激に上昇してしまい、700℃以下の素子化可能な温度範囲では結晶化が不可能なため、従来では5モル%以上のNbはTiの置換元素としては用いられていなかった。 When forming a lead-based ferroelectric film made of, for example, PbZr 0.75 Ti 0.05 Nb 0.2 O 3 (PZTN) using the first, second, and third raw material solutions, 1 raw material solution) :( second raw material solution) :( third raw material solution) = 7.5: 0.5: 2 is mixed, but this mixed solution will be crystallized as it is. Even so, a high crystallization temperature is required to produce a lead-based ferroelectric film. That is, when Nb is mixed, the crystallization temperature rises rapidly, and crystallization is impossible in the temperature range where the element can be formed at 700 ° C. or less. It was not used as.

そこで、本実施形態では、上記課題を、第4の原料溶液としての、PbSiO結晶を形成するため縮重合体をn−ブタノール等の溶媒に無水状態で溶解した溶液を例えば、1モル%以上5モル%以下で上記混合溶液中に更に添加することで解決することができる。 Therefore, in the present embodiment, the above problem is solved by, for example, using a solution obtained by dissolving a condensation polymer in a solvent such as n-butanol in an anhydrous state to form PbSiO 3 crystals as a fourth raw material solution, for example, 1 mol% or more. It can be solved by further adding 5 mol% or less into the mixed solution.

すなわち、上記第1、第2、第3および第4の原料溶液の混合溶液を用いることで、PZTNの結晶化温度を700℃以下の素子化可能な温度範囲で結晶化させることが可能となる。   That is, by using the mixed solution of the first, second, third, and fourth raw material solutions, it becomes possible to crystallize the crystallization temperature of PZTN within a temperature range in which an element can be formed at 700 ° C. or less. .

具体的には、図1に示したフローチャートに従い鉛系強誘電体膜を成膜する。混合溶液塗布工程(ステップST11)、アルコール除去工程〜乾燥熱処理工程〜脱脂熱処理工程(ステップST12,ステップST13)の一連の工程を所望の回数行い、その後に結晶化アニール(ステップST14)により焼成して鉛系強誘電体膜を形成する。   Specifically, a lead-based ferroelectric film is formed according to the flowchart shown in FIG. A series of steps of a mixed solution coating step (step ST11), an alcohol removal step, a drying heat treatment step, a degreasing heat treatment step (steps ST12 and ST13) are performed a desired number of times, and then baked by crystallization annealing (step ST14) A lead-based ferroelectric film is formed.

各工程における条件の例を下記に示す。   Examples of conditions in each step are shown below.

初めにSi基板上にPt等の電極用貴金属を被覆して下電極を成膜する(ステップST10)。次に、混合溶液の塗布をスピンコートなどの塗布法で行う(ステップST11)。具体的には、Pt被覆基板上に混合溶液を滴下する。滴下された溶液を基板全面に行き渡らせる目的で500rpm程度でスピンを行った後、50rpm以下に回転数を低下させて10秒ほど回転させる。乾燥熱処理工程は150℃〜180℃で行う(ステップST13)。乾燥熱処理は大気雰囲気下でホットプレート等を用いて行う。同様に脱脂熱処理工程では300℃〜350℃に保持されたホットプレート上で、大気雰囲気下で行う(ステップST13)。結晶化のための焼成は、酸素雰囲気中でラピッドサーマルアニール(RTA)等を用いて行う(ステップST14)。   First, a lower electrode is formed by coating a noble metal for electrodes such as Pt on a Si substrate (step ST10). Next, the mixed solution is applied by a coating method such as spin coating (step ST11). Specifically, the mixed solution is dropped on the Pt-coated substrate. For the purpose of spreading the dropped solution over the entire surface of the substrate, spinning is performed at about 500 rpm, and then the number of rotations is reduced to 50 rpm or less and the rotation is performed for about 10 seconds. The drying heat treatment step is performed at 150 ° C. to 180 ° C. (step ST13). The drying heat treatment is performed using a hot plate or the like in an air atmosphere. Similarly, the degreasing heat treatment step is performed in an air atmosphere on a hot plate maintained at 300 ° C. to 350 ° C. (step ST13). Firing for crystallization is performed using rapid thermal annealing (RTA) or the like in an oxygen atmosphere (step ST14).

また焼成後の膜厚は100〜200nm程度とすることができる。次に、上電極をスパッタ法等により形成した後に(ステップST15)、上電極と鉛系強誘電体膜との界面形成、および鉛系強誘電体膜の結晶性改善を目的としてポストアニールを、焼成時と同様に、酸素雰囲気中でRTA(rapid thermal anneal)等を用いて行い(ステップST16)、鉛系強誘電体膜を得る。なお、下電極及び上電極は、Pt、Ir、Ru等の白金族元素の単体または白金族元素を主体とした複合材料によって形成されていても良い。   Moreover, the film thickness after baking can be about 100-200 nm. Next, after forming the upper electrode by sputtering or the like (step ST15), post-annealing is performed for the purpose of forming the interface between the upper electrode and the lead-based ferroelectric film and improving the crystallinity of the lead-based ferroelectric film. Similarly to the firing, RTA (rapid thermal anneal) or the like is performed in an oxygen atmosphere (step ST16) to obtain a lead-based ferroelectric film. Note that the lower electrode and the upper electrode may be formed of a simple substance of a platinum group element such as Pt, Ir, Ru, or a composite material mainly composed of the platinum group element.

次に、上記成膜方法を用いて成膜された鉛系強誘電体膜のサンプルA〜Cを作製し、それらのサンプルA〜Cのヒステリシス曲線及び圧電効果を評価した結果を図2(A)〜(C)に示す。   Next, samples A to C of the lead-based ferroelectric film formed by using the film forming method described above were prepared, and the hysteresis curves and the piezoelectric effect of these samples A to C were evaluated. ) To (C).

サンプルAは、Si基板上にスパッタ法を用いてPtからなる金属膜(電極)を形成し、その電極上にPb(Zr0.7Ti0.1Nb0.2)Oの組成となる鉛系強誘電体膜を作製した。サンプルBは、Si基板上にスパッタ法を用いてPtからなる金属膜(電極)を形成し、その電極上にPb(Zr0.75Ti0.05Nb0.2)Oの組成となる鉛系強誘電体膜を作製した。サンプルCは、Si基板上にスパッタ法を用いてPtからなる金属膜(電極)を形成し、その電極上にPb(Zr0.8Nb0.2)Oの組成となる鉛系強誘電体膜を作製した。全てのサンプルにおいてPbSiOシリケートを5モル%添加している。また、膜形成のための原料となる強誘電体膜形成用ゾルゲル溶液には、コハク酸ジメチルを添加してpHを6とした。成膜フローは全て前述の図1を用いている。 In sample A, a metal film (electrode) made of Pt is formed on a Si substrate by sputtering, and the composition of Pb (Zr 0.7 Ti 0.1 Nb 0.2 ) O 3 is formed on the electrode. A lead-based ferroelectric film was prepared. In sample B, a metal film (electrode) made of Pt is formed on a Si substrate by sputtering, and the composition of Pb (Zr 0.75 Ti 0.05 Nb 0.2 ) O 3 is formed on the electrode. A lead-based ferroelectric film was prepared. In sample C, a metal film (electrode) made of Pt is formed on a Si substrate by sputtering, and lead-based ferroelectric having a composition of Pb (Zr 0.8 Nb 0.2 ) O 3 is formed on the electrode. A body membrane was prepared. In all samples, 5 mol% of PbSiO 3 silicate is added. Further, dimethyl succinate was added to a sol-gel solution for forming a ferroelectric film as a raw material for film formation to adjust the pH to 6. The above-described FIG. 1 is used for all film forming flows.

図2(A)〜(C)によれば、サンプルA〜Cはすべてヒステリシス特性を有しないが圧電効果のあることが確認された。また、Tiの量は少ないほうがヒステリシスが発生しにくくて良いことも確認された。従って、鉛系強誘電体膜のより好ましい組成範囲は、Pb(ZrTiNb)Oで示され、以下の関係、
X+Y+Z=1
0≦Y≦0.1
0.05≦Z≦0.25
が成立することである。
2A to 2C, it was confirmed that the samples A to C did not have hysteresis characteristics but had a piezoelectric effect. It was also confirmed that hysteresis is less likely to occur when the amount of Ti is smaller. Therefore, a more preferred composition range of the lead-based ferroelectric film is shown by Pb (Zr X Ti Y Nb Z ) O 3, the following relationship,
X + Y + Z = 1
0 ≦ Y ≦ 0.1
0.05 ≦ Z ≦ 0.25
Is established.

サンプルCでは、図2(C)に示すように、抗電界Ecは25kV/cm以下、残留分極値Prは10μC/cm2以下、かつ比誘電率400以上(好ましくは1000以上)であることが分かる。このようにサンプルCでは、P-Eヒステリシス曲線を殆ど有していない為、電界印加時のヒステリシスカーブ描写時の時間的ロスが殆どない。従って、このような鉛系強誘電体膜を用いた圧電素子では、圧電素子の動作時に強誘電体膜が分極反転する時間が必要ないため、その時間だけ動作に遅れることがない。よって、圧電素子の信頼性を向上させることができる。 In the sample C, as shown in FIG. 2C, the coercive electric field Ec is 25 kV / cm or less, the remanent polarization value Pr is 10 μC / cm 2 or less, and the relative dielectric constant is 400 or more (preferably 1000 or more). I understand. Thus, since sample C has almost no PE hysteresis curve, there is almost no time loss when drawing the hysteresis curve when an electric field is applied. Accordingly, in such a piezoelectric element using a lead-based ferroelectric film, there is no need for time for the ferroelectric film to undergo polarization reversal during the operation of the piezoelectric element, so that the operation is not delayed by that time. Therefore, the reliability of the piezoelectric element can be improved.

(実施形態3)
図3は、実施形態3によるSAW(surface acoustic wave)フィルタを説明するための斜視図である。このSAWフィルタは、必要な信号以外の他の周波数を雑音としてカットし、必要な信号だけを取り出すものである。
(Embodiment 3)
FIG. 3 is a perspective view for explaining a surface acoustic wave (SAW) filter according to the third embodiment. This SAW filter cuts out frequencies other than necessary signals as noise and extracts only necessary signals.

実施形態1又は2による圧電体を用いた圧電体基板1を用意する。この圧電体基板1の上に、規則性のあるくし型電極2a,2bを形成する。くし型電極2a,2bは、取り出したい必要な信号である電波と同じ波長の長さに電極を作ったものである。電波の入口から入った電波は、圧電体基板1上のくし型電極2a,2bを通る際に、くし型電極と同じ長さの波長しか電波の出口に到達することができない。つまり、雑音になる電波は圧電体の表面の波と異なっているため打ち消され、必要な信号のみを出口から取り出すことができる。   A piezoelectric substrate 1 using the piezoelectric body according to Embodiment 1 or 2 is prepared. On the piezoelectric substrate 1, regular comb-shaped electrodes 2a and 2b are formed. The comb-shaped electrodes 2a and 2b are electrodes having the same wavelength as the radio wave that is a necessary signal to be extracted. When the radio wave entered from the radio wave entrance passes through the comb electrodes 2a and 2b on the piezoelectric substrate 1, only a wavelength having the same length as that of the comb electrode can reach the radio wave exit. That is, since the radio wave that becomes noise is different from the wave on the surface of the piezoelectric body, it is canceled out and only a necessary signal can be taken out from the outlet.

上記実施形態3によれば、SAWフィルタの圧電体基板1を、実施形態1又は2によるヒステリシス特性を有していない圧電体を用いて形成しているため、SAWフィルタの動作時に圧電体が分極反転することがない。従って、信頼性の高いSAWフィルタを得ることができる。   According to the third embodiment, since the piezoelectric substrate 1 of the SAW filter is formed using the piezoelectric body that does not have the hysteresis characteristics according to the first or second embodiment, the piezoelectric body is polarized during the operation of the SAW filter. There is no inversion. Therefore, a highly reliable SAW filter can be obtained.

1…圧電体基板
2a,2b…くし型電極
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric substrate 2a, 2b ... Comb-type electrode

Claims (3)

Pb(Zr Ti Nb )O で示され、以下の関係、
X+Y+Z=1
0≦Y≦0.25
0.05≦Z≦0.25
が成立する圧電体であり、
前記圧電体は、抗電界Ecは25kV/cm以下、残留分極値Prは10μC/cm2以下、かつ比誘電率400以上であることを特徴とする圧電体。
Shown by Pb (Zr X Ti Y Nb Z ) O 3, the following relationship,
X + Y + Z = 1
0 ≦ Y ≦ 0.25
0.05 ≦ Z ≦ 0.25
Is a piezoelectric body, and
The piezoelectric body is characterized in that the coercive electric field Ec is 25 kV / cm or less, the remanent polarization value Pr is 10 μC / cm 2 or less, and the relative dielectric constant is 400 or more.
請求項1に記載の圧電体を有することを特徴とする圧電素子。 A piezoelectric element comprising the piezoelectric body according to claim 1 . 下電極と、
前記下電極上に形成された鉛系圧電体と、
前記鉛系圧電体上に形成された上電極と、
を具備し、
前記鉛系圧電体は、Pb(Zr Ti Nb )O で示され、以下の関係、
X+Y+Z=1
0≦Y≦0.25
0.05≦Z≦0.25
が成立し、
前記鉛系圧電体は、抗電界Ecは25kV/cm以下、残留分極値Prは10μC/cm2以下、かつ比誘電率400以上であることを特徴とする圧電素子。
A lower electrode;
A lead-based piezoelectric body formed on the lower electrode;
An upper electrode formed on the lead-based piezoelectric body;
Comprising
The lead-based piezoelectric material is shown by Pb (Zr X Ti Y Nb Z ) O 3, the following relationship,
X + Y + Z = 1
0 ≦ Y ≦ 0.25
0.05 ≦ Z ≦ 0.25
Is established,
The lead-based piezoelectric element has a coercive electric field Ec of 25 kV / cm or less, a remanent polarization value Pr of 10 μC / cm 2 or less, and a relative dielectric constant of 400 or more.
JP2009268854A 2009-11-26 2009-11-26 Piezoelectric body and piezoelectric element Active JP5504533B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009268854A JP5504533B2 (en) 2009-11-26 2009-11-26 Piezoelectric body and piezoelectric element
PCT/JP2010/069628 WO2011065197A1 (en) 2009-11-26 2010-11-04 Piezoelectric material and piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268854A JP5504533B2 (en) 2009-11-26 2009-11-26 Piezoelectric body and piezoelectric element

Publications (2)

Publication Number Publication Date
JP2011114141A JP2011114141A (en) 2011-06-09
JP5504533B2 true JP5504533B2 (en) 2014-05-28

Family

ID=44066300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268854A Active JP5504533B2 (en) 2009-11-26 2009-11-26 Piezoelectric body and piezoelectric element

Country Status (2)

Country Link
JP (1) JP5504533B2 (en)
WO (1) WO2011065197A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347084B2 (en) * 2014-02-18 2018-06-27 アドバンストマテリアルテクノロジーズ株式会社 Ferroelectric ceramics and method for producing the same
DE102018132904B4 (en) * 2018-12-19 2020-10-29 RF360 Europe GmbH Piezoelectric material and piezoelectric device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720969B2 (en) * 2003-03-28 2011-07-13 セイコーエプソン株式会社 Ferroelectric film, piezoelectric film, ferroelectric memory, and piezoelectric element
JP4803401B2 (en) * 2004-05-31 2011-10-26 セイコーエプソン株式会社 Method for manufacturing ferroelectric film
JP4741309B2 (en) * 2004-08-27 2011-08-03 京セラ株式会社 Surface acoustic wave device and manufacturing method thereof
JP4217906B2 (en) * 2004-09-17 2009-02-04 セイコーエプソン株式会社 Method for producing precursor solution

Also Published As

Publication number Publication date
JP2011114141A (en) 2011-06-09
WO2011065197A1 (en) 2011-06-03

Similar Documents

Publication Publication Date Title
KR100570576B1 (en) Oxide Material, Method for Preparing Oxide Thin Film and Element Using Said Material
JP5509419B2 (en) Ferroelectric film, electronic component, and method for manufacturing ferroelectric film
JP5253895B2 (en) Ferroelectric film, piezoelectric element, and liquid ejection device
TWI706581B (en) Ferroelectric memory and its manufacturing method, ferroelectric film and its manufacturing method
US8075795B2 (en) Piezoelectrics, piezoelectric element, and piezoelectric actuator
US7906889B2 (en) Metal oxide, piezoelectric material and piezoelectric element
US20130106242A1 (en) Piezoelectric film element and piezoelectric film device
JP2005005450A (en) Film multilayer structure and actuator element using it, capacitive element and filter element
JP5556966B2 (en) Piezoelectric element
JP2001002469A (en) Piezoelectric paste, piezoelectric film using the same and piezoelectric part
JP2008537724A (en) High power piezoelectric ceramic composition
JP6347084B2 (en) Ferroelectric ceramics and method for producing the same
US7229662B2 (en) Heterolayered ferroelectric thin films and methods of forming same
CN104944942B (en) Piezoelectric composition and piezoelectric element
US20150028444A1 (en) Infrared detection element
JP4401300B2 (en) Method for forming (001) oriented perovskite film and apparatus having such perovskite film
JP5504533B2 (en) Piezoelectric body and piezoelectric element
CN104628380B (en) Piezoelectric composition and piezoelectric element
JPWO2003021615A1 (en) Composition for thin film capacitor, high dielectric constant insulating film, thin film capacitor and thin film multilayer capacitor
JP5398131B2 (en) Piezoelectric element, method for manufacturing piezoelectric body, and liquid jet head
Jang et al. Dielectric and piezoelectric properties of the thermally annealed Pb (Zn, Mg) 1/3Nb2/3O3–PbTiO3 system across the rhombohedral/tetragonal morphotropic phase boundary
CN104817320B (en) Piezoelectric composition and piezoelectric element
KR100803440B1 (en) Complex metal oxide raw material composition
JP6149222B2 (en) Ferroelectric film manufacturing apparatus and ferroelectric film manufacturing method
JPH0695443B2 (en) Method of manufacturing ferroelectric thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140228

R150 Certificate of patent or registration of utility model

Ref document number: 5504533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250