JP5504509B2 - Method of measuring the two-dimensional distribution of absorbed radiation dose using a 3D phantom - Google Patents

Method of measuring the two-dimensional distribution of absorbed radiation dose using a 3D phantom Download PDF

Info

Publication number
JP5504509B2
JP5504509B2 JP2011551814A JP2011551814A JP5504509B2 JP 5504509 B2 JP5504509 B2 JP 5504509B2 JP 2011551814 A JP2011551814 A JP 2011551814A JP 2011551814 A JP2011551814 A JP 2011551814A JP 5504509 B2 JP5504509 B2 JP 5504509B2
Authority
JP
Japan
Prior art keywords
phantom
radiation
measuring
radiation dose
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011551814A
Other languages
Japanese (ja)
Other versions
JPWO2011093183A1 (en
Inventor
修一 小澤
智久 古谷
基敬 川嶋
千恵 黒河
久美子 唐澤
啓資 笹井
宏 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juntendo University
Original Assignee
Juntendo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juntendo University filed Critical Juntendo University
Priority to JP2011551814A priority Critical patent/JP5504509B2/en
Publication of JPWO2011093183A1 publication Critical patent/JPWO2011093183A1/en
Application granted granted Critical
Publication of JP5504509B2 publication Critical patent/JP5504509B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/169Exploration, location of contaminated surface areas

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は、放射線治療分野において実施される3Dファントムを用いた放射線吸収線量の2次元分布測定方法に関する。   The present invention relates to a method for measuring a two-dimensional distribution of radiation absorbed dose using a 3D phantom implemented in the field of radiation therapy.

強度変調放射線治療(IMRT)や強度変調回転放射線治療(VMAT)などの高精度放射線治療では、治療計画で得られた結果が正しいのかを検証するため、3Dファントム(立体模型)を用いた吸収線量の2次元分布の実測と計算結果を比較する。通常、コロナル面とサジタル面の2面の測定を行い、計算結果と比較する。従来、コロナル面の測定では、第2図(1)に示すように、積み上げた3Dファントム50の間にX線フィルム等の放射線量測定体20を挟み、照射を行い、その後、第2図(2)に示すように、当該放射線量測定体20を挟んだ3Dファントム50を90°回転させて、照射を行い、サジタル面の線量分布を測定していた(例えば、非特許文献1参照)。   In high-precision radiotherapy such as intensity-modulated radiotherapy (IMRT) and intensity-modulated rotational radiotherapy (VMAT), the absorbed dose using a 3D phantom (three-dimensional model) is used to verify whether the results obtained in the treatment plan are correct. Compare the measured and calculated results of the two-dimensional distribution. Usually, the coronal plane and the sagittal plane are measured and compared with the calculation results. Conventionally, in the measurement of the coronal surface, as shown in FIG. 2 (1), a radiation dose measuring body 20 such as an X-ray film is sandwiched between the stacked 3D phantoms 50 and irradiated, and then FIG. As shown in 2), the 3D phantom 50 sandwiching the radiation dose measuring body 20 is rotated by 90 ° to perform irradiation, and the dose distribution on the sagittal surface is measured (for example, see Non-Patent Document 1).

当該コロナル面の測定では、3Dファントム50の自重によって3Dファントム50と放射線量測定体20の密着度が高くなり、設置の手間もかからないため、測定精度も高く、測定の再現性も高い。しかし、サジタル面での測定では3Dファントム50の自重で密着度を上げることができなくなるため、測定精度の低下を生み、再現性を悪化させると云う問題があった。そのため、従来はクランプ60等で3Dファントム50を挟むなどして密着度を上げることも行われていたが、コロナル面での測定を比較して手間がかかり再現性悪化は避けられないのが実状であった。   In the measurement of the coronal surface, the degree of adhesion between the 3D phantom 50 and the radiation dose measuring body 20 is increased due to the weight of the 3D phantom 50, and the installation is not troublesome. However, in the measurement on the sagittal plane, the degree of adhesion cannot be increased due to the weight of the 3D phantom 50, which causes a problem that the measurement accuracy is lowered and the reproducibility is deteriorated. For this reason, conventionally, the 3D phantom 50 is sandwiched with a clamp 60 or the like to increase the degree of adhesion. However, it is troublesome to compare the measurements on the coronal surface, and deterioration of reproducibility is unavoidable. Met.

日本放射線技術学会 放射線治療分科会誌 Vol.23、No.1、2009年3月Journal of Japanese Society of Radiological Technology Vol. 23, no. 1. March 2009

本発明は、上記の如き従来の問題と実状に鑑みてなされたものであり、3Dファントムを用いた放射線吸収線量の2次元分布測定を、効率的にかつ精度良く、しかも再現性高く行なうことができる方法を提供することを課題としている。   The present invention has been made in view of the above-described conventional problems and actual situations, and can perform two-dimensional distribution measurement of a radiation absorbed dose using a 3D phantom efficiently and accurately with high reproducibility. The challenge is to provide a method that can do this.

本発明者は、上記の課題を解決すべく、種々検討を重ねた結果、サジタル面の線量分布測定を、3Dファントムを90°回転させるのではなく、90°回転対称の断面形状を有する3Dファントムを用い、放射線治療装置のガントリを90°回転させて放射線を照射すれば、サジタル面での測定においてもコロナル面での測定と同様に測定精度が高く、再現性の良い結果が得られることを見い出し、本発明を完成した。   As a result of various studies to solve the above-mentioned problems, the present inventor conducted a 3D phantom having a 90 ° rotationally symmetric sectional shape instead of rotating the 3D phantom by 90 ° for dose distribution measurement on the sagittal surface. If the gantry of the radiation therapy device is rotated 90 ° and irradiated with radiation, the measurement accuracy on the sagittal surface will be as high as that on the coronal surface, and results with good reproducibility will be obtained. As a result, the present invention has been completed.

すなわち、本発明は、90°回転対称の断面形状を有する上下2分割体から成る3Dファントムの間に、放射線量測定体を水平状態に挾持せしめるステップと;当該放射線量測定体を水平状態に挾持した3Dファントムに、放射線治療装置のガントリにて放射線を照射してコロナル面の線量分布を測定するステップと;当該3Dファントムの位置を変えることなく、ガントリを90°回転させ、その状態で当該3Dファントムに放射線を照射してサジタル面の線量分布を測定するステップとを有することを特徴とする3Dファントムを用いた放射線吸収線量の2次元分布測定方法により上記課題を解決したものである。   That is, the present invention includes a step of holding a radiation dose measuring body in a horizontal state between a 3D phantom composed of two upper and lower divided bodies having a 90 ° rotationally symmetric sectional shape; and holding the radiation dose measuring body in a horizontal state. Irradiating the 3D phantom with radiation from the gantry of the radiotherapy device and measuring the dose distribution on the coronal surface; rotating the gantry by 90 ° without changing the position of the 3D phantom, and in that state the 3D The above-mentioned problem is solved by a method for measuring a two-dimensional distribution of radiation absorbed dose using a 3D phantom, characterized by comprising a step of irradiating a phantom with radiation and measuring a dose distribution on a sagittal surface.

本発明によれば、コロナル面のみならずサジタル面の測定においても、放射線量測定体が3Dファントムの間に水平状態に挾持されているので、3Dファントムの自重で放射線量測定体との密着度を上げることができるため、精度良く放射線量の2次元分布を測定することが可能となる。   According to the present invention, in measuring not only the coronal plane but also the sagittal plane, the radiation dose measuring body is held horizontally between the 3D phantoms. Therefore, the degree of adhesion with the radiation dose measuring body by the weight of the 3D phantom. Therefore, the two-dimensional distribution of radiation dose can be measured with high accuracy.

また、ガントリの回転は放射線治療装置(リニアック)のコントローラで容易に操作し得るので、従来のクランプ等による3Dファントムの回転操作に比し効率的に、しかも再現性の高い測定が可能となる。   In addition, since the rotation of the gantry can be easily operated by a controller of a radiotherapy apparatus (linac), it is possible to perform measurement more efficiently and with higher reproducibility than the rotation operation of a 3D phantom by a conventional clamp or the like.

本発明方法を示す概略模式説明図。The schematic model explanatory drawing which shows this invention method. 従来方法を示す概略模式説明図。Schematic explanatory drawing which shows a conventional method.

以下本発明方法を図面と共に説明する。   The method of the present invention will be described below with reference to the drawings.

図1において、10は3Dファントムで、上部ファントム部10aと下部ファントム部10bの2分割体から構成されていると共に、例えば正方形や八角形等のように、90°回転させたときに対称となる断面形状を有している。   In FIG. 1, 10 is a 3D phantom, which is composed of two divided parts of an upper phantom part 10a and a lower phantom part 10b, and becomes symmetric when rotated by 90 °, such as a square or an octagon. It has a cross-sectional shape.

本発明においては、まず斯かる3Dファントム10の上部ファントム部10aと下部ファントム部10bとの間に放射線量測定体20をセットアップし、当該放射線量測定体20を水平状態に挾持せしめる。尚、ここに放射線量測定体20としては、放射線量を測定し得るものであれば、その種類の如何を問わないが、例えばX線フィルム,イメージングプレート,2次元ダイオード検出器,2次元電離箱検出器等が用いられる。   In the present invention, first, the radiation dose measuring body 20 is set up between the upper phantom portion 10a and the lower phantom portion 10b of the 3D phantom 10, and the radiation dose measuring body 20 is held in a horizontal state. Here, the radiation dose measuring body 20 may be any type as long as it can measure the radiation dose. For example, an X-ray film, an imaging plate, a two-dimensional diode detector, a two-dimensional ionization chamber. A detector or the like is used.

次いで、当該放射線量測定体20を水平状態に挾持した3Dファントム10に、放射線治療装置(リニアック)のガントリ30a,30b,30c,30d,30eにて放射線を照射してコロナル面の線量分布を測定する(図1(1)参照)。   Next, the dose distribution on the coronal surface is measured by irradiating the 3D phantom 10 holding the radiation dose measuring body 20 in a horizontal state with the gantry 30a, 30b, 30c, 30d, 30e of the radiotherapy device (linac). (See FIG. 1 (1)).

次いで、当該3Dファントムの位置を変えることなく、コントローラ(図示省略)でガントリ30a,30b,30c,30d,30eを90°回転させ、その状態で当該3Dファントム10に放射線を照射してサジタル面の線量分布を測定する(図1(2)参照)。尚、90°回転方向は右回り、左回りの如何を問わず、またフィルムを挟む位置はファントムの中央でなくても構わない。   Next, without changing the position of the 3D phantom, the controller (not shown) rotates the gantry 30a, 30b, 30c, 30d, 30e by 90 °, and in that state, the 3D phantom 10 is irradiated with radiation to irradiate the sagittal surface. The dose distribution is measured (see FIG. 1 (2)). Note that the 90 ° rotation direction may be clockwise or counterclockwise, and the position where the film is sandwiched may not be the center of the phantom.

因に、得られた実測値は、通常法と同様の手順で得られたコロナル面とサジタル面での計算値と比較することにより、治療計画で得られた結果が正しいか否か検証される。   By the way, the actual measurement value obtained is verified by comparing with the calculated value on the coronal surface and sagittal surface obtained by the same procedure as the normal method, whether the result obtained in the treatment plan is correct. .

10:3Dファントム
10a:上部ファントム部
10b:下部ファントム部
20:放射線量測定体
30a,30b,30c,30d,30e:ガントリ
50:従来の3Dファントム
60:クランプ
10: 3D phantom 10a: Upper phantom part 10b: Lower phantom part 20: Radiation dose measuring body 30a, 30b, 30c, 30d, 30e: Gantry 50: Conventional 3D phantom 60: Clamp

Claims (1)

90°回転対称の断面形状を有する上下2分割体から成る3Dファントムの間に、放射線量測定体を水平状態に挾持せしめるステップと;当該放射線量測定体を水平状態に挾持した3Dファントムに、放射線治療装置のガントリにて放射線を照射してコロナル面の線量分布を測定するステップと;当該3Dファントムの位置を変えることなく、ガントリを90°回転させ、その状態で当該3Dファントムに放射線を照射してサジタル面の線量分布を測定するステップとを有することを特徴とする3Dファントムを用いた放射線吸収線量の2次元分布測定方法。   A step of holding the radiation dose measuring body in a horizontal state between a 3D phantom composed of an upper and lower divided body having a 90 ° rotationally symmetric cross-sectional shape; a 3D phantom holding the radiation dose measuring body in a horizontal state; Irradiating radiation with the gantry of the treatment apparatus to measure the dose distribution on the coronal plane; rotating the gantry 90 ° without changing the position of the 3D phantom, and irradiating the 3D phantom with radiation in that state And measuring the dose distribution on the sagittal surface. A method for measuring a two-dimensional distribution of radiation absorbed dose using a 3D phantom.
JP2011551814A 2010-01-28 2011-01-19 Method of measuring the two-dimensional distribution of absorbed radiation dose using a 3D phantom Expired - Fee Related JP5504509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011551814A JP5504509B2 (en) 2010-01-28 2011-01-19 Method of measuring the two-dimensional distribution of absorbed radiation dose using a 3D phantom

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010016205 2010-01-28
JP2010016205 2010-01-28
JP2011551814A JP5504509B2 (en) 2010-01-28 2011-01-19 Method of measuring the two-dimensional distribution of absorbed radiation dose using a 3D phantom
PCT/JP2011/050841 WO2011093183A1 (en) 2010-01-28 2011-01-19 Method of measuring two-dimensional distribution of radiological dose using 3d phantom

Publications (2)

Publication Number Publication Date
JPWO2011093183A1 JPWO2011093183A1 (en) 2013-06-06
JP5504509B2 true JP5504509B2 (en) 2014-05-28

Family

ID=44319173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011551814A Expired - Fee Related JP5504509B2 (en) 2010-01-28 2011-01-19 Method of measuring the two-dimensional distribution of absorbed radiation dose using a 3D phantom

Country Status (2)

Country Link
JP (1) JP5504509B2 (en)
WO (1) WO2011093183A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997992B (en) * 2012-11-26 2015-03-04 复旦大学 Optical dosimeter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087952A1 (en) * 2007-01-16 2008-07-24 National University Corporation Okayama University Dose measuring method and phantom, and x-ray image picking-up device used for the dose measuring method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087952A1 (en) * 2007-01-16 2008-07-24 National University Corporation Okayama University Dose measuring method and phantom, and x-ray image picking-up device used for the dose measuring method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7014000557; 小島徹: '「3.線量検証の実際」' 日本放射線技術学会放射線治療分科会誌 第23巻第1号, 200904, (社)日本放射線技術学会 *

Also Published As

Publication number Publication date
WO2011093183A1 (en) 2011-08-04
JPWO2011093183A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
Feygelman et al. Evaluation of a new VMAT QA device, or the “X” and “O” array geometries
Du et al. Quantifying the gantry sag on linear accelerators and introducing an MLC‐based compensation strategy
US9550076B2 (en) EPID dosimetry method and system for radiation therapy
Kim et al. Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT
Rowshanfarzad et al. An EPID-based method for comprehensive verification of gantry, EPID and the MLC carriage positional accuracy in Varian linacs during arc treatments
Wen et al. Characteristics of a novel treatment system for linear accelerator–based stereotactic radiosurgery
Yan et al. Calibration of a novel four‐dimensional diode array
Nobah et al. Radiochromic film based dosimetry of image‐guidance procedures on different radiotherapy modalities
Parent et al. Amorphous silicon EPID calibration for dosimetric applications: comparison of a method based on Monte Carlo prediction of response with existing techniques
Cilla et al. An in-vivo dosimetry procedure for Elekta step and shoot IMRT
Harms et al. Nuclear halo measurements for accurate prediction of field size factor in a Varian ProBeam proton PBS system
Lárraga‐Gutiérrez et al. Evaluation of the Gafchromic® EBT2 film for the dosimetry of radiosurgical beams
Alhujaili et al. Quality assurance of Cyberknife robotic stereotactic radiosurgery using an angularly independent silicon detector
Anvari et al. Online dose delivery verification in small animal image‐guided radiotherapy
Nakaguchi et al. Validation of a method for in vivo 3D dose reconstruction in SBRT using a new transmission detector
Stevens et al. Validation of MLC‐based linac radiosurgery for trigeminal neuralgia
Na et al. Dosimetric and geometric characteristics of a small animal image‐guided irradiator using 3D dosimetry/optical CT scanner
Mao et al. Initial application of a geometric QA tool for integrated MV and kV imaging systems on three image guided radiotherapy systems
Kuenzler et al. Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams
JP5504509B2 (en) Method of measuring the two-dimensional distribution of absorbed radiation dose using a 3D phantom
Stelczer et al. Measurement of dose exposure of image guidance in external beam accelerated partial breast irradiation: evaluation of different techniques and linear accelerators
Kawata et al. Evaluation of newly implemented dose calculation algorithms for multileaf collimator‐based CyberKnife tumor‐tracking radiotherapy
Grofsmid et al. Dosimetric validation of a commercial Monte Carlo based IMRT planning system
García‐Garduño et al. Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery
Huang et al. Evaluating dosimetric accuracy of the 6 MV calibration on EBT3 film in the use of Ir‐192 high dose rate brachytherapy

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140226

R150 Certificate of patent or registration of utility model

Ref document number: 5504509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees