JP5501986B2 - Wireless communication system, transmitting apparatus and receiving apparatus - Google Patents

Wireless communication system, transmitting apparatus and receiving apparatus Download PDF

Info

Publication number
JP5501986B2
JP5501986B2 JP2011006112A JP2011006112A JP5501986B2 JP 5501986 B2 JP5501986 B2 JP 5501986B2 JP 2011006112 A JP2011006112 A JP 2011006112A JP 2011006112 A JP2011006112 A JP 2011006112A JP 5501986 B2 JP5501986 B2 JP 5501986B2
Authority
JP
Japan
Prior art keywords
signal
frequency
time
band
single carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011006112A
Other languages
Japanese (ja)
Other versions
JP2012147390A (en
Inventor
義規 鈴木
聖 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011006112A priority Critical patent/JP5501986B2/en
Publication of JP2012147390A publication Critical patent/JP2012147390A/en
Application granted granted Critical
Publication of JP5501986B2 publication Critical patent/JP5501986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

本発明は、シングルキャリア伝送の無線通信における通信の秘匿性を向上させる無線通信システム、送信装置および受信装置に関する。   The present invention relates to a wireless communication system, a transmission apparatus, and a reception apparatus that improve communication confidentiality in single-carrier transmission wireless communication.

無線通信は電波の傍受が容易であり、通信の秘匿性を高めることが重要な課題になっている。この対処方法としては、情報を暗号化して伝送する方法がある。情報の暗号化としては、図12に示すようにスクランブラ/デスクランブラを用いることがよく知られている(非特許文献1)。   Wireless communication is easy to intercept radio waves, and increasing the confidentiality of communication is an important issue. As a coping method, there is a method of transmitting information after encryption. As information encryption, it is well known to use a scrambler / descrambler as shown in FIG. 12 (Non-Patent Document 1).

図12において、送信装置50は、スクランブラ51、擬似ランダムパターン発生器52、変調手段53を備える。受信装置60は、復調手段61、デスクランブラ62、擬似ランダムパターン発生器63を備える。   In FIG. 12, the transmission device 50 includes a scrambler 51, a pseudo random pattern generator 52, and modulation means 53. The receiving device 60 includes a demodulating means 61, a descrambler 62, and a pseudo random pattern generator 63.

スクランブラ51は送信データを入力し、疑似ランダムパターン発生器52が発生した特定のスクランブルパターンによりスクランブルする。スクランブルされたデータは変調手段53で変調され、送信信号が生成される。受信装置の受信信号は復調手段61で復調され、デスクランブラ62に入力する。デスクランブラ62は、復調信号を疑似ランダムパターン発生器63が発生するスクランブルパターンによりデスクランブルし、受信データを出力する。ここで、送信装置の擬似ランダムパターン発生器52と、受信装置の擬似ランダムパターン発生器63において、共通のスクランブルパターンを用いることにより、受信装置では送信装置から送信された送信データを復元することができる。すなわち、従来の無線通信システムでは、疑似ランダムパターン発生器52,63が発生するスクランブルパターンを知っている者のみが、送信装置から送信された送信データを復元することができる。   The scrambler 51 receives the transmission data and scrambles with a specific scramble pattern generated by the pseudo random pattern generator 52. The scrambled data is modulated by the modulation means 53, and a transmission signal is generated. The received signal of the receiving device is demodulated by the demodulating means 61 and input to the descrambler 62. The descrambler 62 descrambles the demodulated signal with the scramble pattern generated by the pseudo random pattern generator 63, and outputs received data. Here, in the pseudo random pattern generator 52 of the transmission device and the pseudo random pattern generator 63 of the reception device, the reception device can restore the transmission data transmitted from the transmission device by using a common scramble pattern. it can. That is, in the conventional wireless communication system, only the person who knows the scramble pattern generated by the pseudo random pattern generators 52 and 63 can restore the transmission data transmitted from the transmission apparatus.

宮憲一監修、衛星通信技術、電子通信学会、株式会社コロナ社、pp.226-227、1985年Supervised by Kenichi Miyamoto, Satellite Communication Technology, IEICE, Corona Co., pp.226-227, 1985 阿部他、スペクトラム編集型帯域分散伝送における位相補償に関する一検討、2010年電子情報通信学会総合大会、B-3-11、p.324Abe et al., A Study on Phase Compensation for Spectrum Editing Type Band Dispersion Transmission, 2010 IEICE General Conference, B-3-11, p.324 小松他、シングルキャリア伝送用周波数領域等化器のLSI実装、2008年電子情報通信学会技術報告、ソフトウエア無線研究会、2008-SR43 、pp.37-42Komatsu et al., LSI implementation of frequency domain equalizer for single carrier transmission, 2008 IEICE Technical Report, Software Radio Study Group, 2008-SR43, pp.37-42 ゴールドスミス著、小林訳、ワイヤレス通信工学、11章8節「適用等化器:トレーニングとトラッキング」、丸善株式会社、平成19年Goldsmith, Kobayashi Translation, Wireless Communication Engineering, Chapter 11, Section 8, “Applicable Equalizer: Training and Tracking”, Maruzen Co., Ltd., 2007

従来の無線通信システムでは、不正に傍受を試みるものが、送信装置および受信装置で共通に用いるスクランブルパターンを取得すると、傍受したデータを元データに復元することができるので、十分な秘匿性が得られない問題があった。   In a conventional wireless communication system, a person who attempts unauthorized interception can acquire sufficient confidentiality because the intercepted data can be restored to the original data by acquiring a scramble pattern that is commonly used by the transmission apparatus and the reception apparatus. There was a problem that was not possible.

本発明は、周波数領域での信号処理により通信の秘匿性を向上させることができる無線通信システム、送信装置および受信装置を提供することを目的とする。   An object of this invention is to provide the radio | wireless communications system, the transmitter, and the receiver which can improve the secrecy of communication by the signal processing in a frequency domain.

第1の発明は、シングルキャリアの無線信号を送受信する送信装置および受信装置により構成される無線通信システムであって、送信装置は、データ信号を変調してシングルキャリアの変調信号を出力する変調手段と、シングルキャリアの変調信号を第1の周波数領域の信号に変換する第1の時間−周波数変換手段と、第1の周波数領域の信号のデータ帯域を所定の帯域に分割し、分割した帯域ごとに異なる所定の重み係数を乗算し、該データ帯域内に不連続な位相変化を与える第1の周波数処理手段と、第1の周波数処理手段の出力信号を第1の時間領域の信号に変換して出力する第1の周波数−時間変換手段とを備え、第1の時間領域の信号をシングルキャリアの無線信号として送信する構成であり、受信装置は、送信装置と共有する所定の重み係数を有し、受信したシングルキャリアの無線信号を第2の周波数領域の信号に変換する第2の時間−周波数変換手段と、第2の周波数領域の信号のデータ帯域を所定の帯域に分割し、分割した帯域ごとに異なる所定の重み係数の逆数を乗算し、データ帯域内の不連続な位相変化を打ち消す第2の周波数処理手段と、第2の周波数処理手段の出力信号を第2の時間領域の信号に変換して出力する第2の周波数−時間変換手段とを備え、第2の時間領域の信号を復調して送信装置から送信されたデータ信号を復元する構成である。 A first aspect of the present invention is a wireless communication system including a transmission device and a reception device that transmit and receive a single carrier radio signal, wherein the transmission device modulates a data signal and outputs a single carrier modulation signal. And a first time-frequency conversion means for converting a single carrier modulation signal into a first frequency domain signal, and dividing the data band of the first frequency domain signal into a predetermined band for each divided band. Are multiplied by different predetermined weighting factors to give discontinuous phase changes within the data band, and the output signal of the first frequency processing means is converted to a first time domain signal. first frequency output Te - a time conversion unit, the signal of the first time domain is configured to transmit a radio signal of a single carrier, the receiving device, where shared with the transmitting device Has a weighting factor, the second time to convert the radio signal of a single carrier received signal of the second frequency range - a frequency conversion unit, a predetermined band data bandwidth of the signal of the second frequency range A second frequency processing unit that divides and multiplies a reciprocal of a predetermined weighting factor that is different for each divided band, and cancels a discontinuous phase change in the data band; and an output signal of the second frequency processing unit is a second And a second frequency-time conversion means for converting the signal into the time domain signal and outputting it, and demodulating the second time domain signal to restore the data signal transmitted from the transmission apparatus.

第2の発明は、シングルキャリアの無線信号を送受信する送信装置および受信装置により構成される無線通信システムの送信装置において、受信装置と共有する所定の重み係数を有し、データ信号を変調してシングルキャリアの変調信号を出力する変調手段と、シングルキャリアの変調信号を第1の周波数領域の信号に変換する第1の時間−周波数変換手段と、第1の周波数領域の信号のデータ帯域を所定の帯域に分割し、分割した帯域ごとに異なる所定の重み係数を乗算し、該データ帯域内に不連続な位相変化を与える第1の周波数処理手段と、第1の周波数処理手段の出力信号を第1の時間領域の信号に変換して出力する第1の周波数−時間変換手段とを備え、第1の時間領域の信号をシングルキャリアの無線信号として送信する構成である。 According to a second aspect of the present invention, in a transmission apparatus of a wireless communication system including a transmission apparatus that transmits and receives a single carrier radio signal and a reception apparatus, the transmission apparatus has a predetermined weighting factor shared with the reception apparatus and modulates a data signal. predetermined frequency converting means, the data bandwidth of the first frequency region of the signal - and modulating means for outputting a modulation signal of a single carrier, a first time required for converting the modulated signal of a single carrier to a signal in the first frequency range A first frequency processing means for giving a discontinuous phase change within the data band, and an output signal of the first frequency processing means. first frequency for converting the signal of the first time domain - a time conversion unit, a configuration of transmitting a signal in a first time domain as a radio signal of a single carrier That.

第3の発明は、第2の発明の送信装置から送信されたシングルキャリアの無線信号を受信する受信装置において、送信装置と共有する所定の重み係数を有し、受信したシングルキャリアの無線信号を第2の周波数領域の信号に変換する第2の時間−周波数変換手段と、第2の周波数領域の信号のデータ帯域を所定の帯域に分割し、分割した帯域ごとに異なる所定の重み係数の逆数を乗算し、データ帯域内の不連続な位相変化を打ち消す第2の周波数処理手段と、第2の周波数処理手段の出力信号を第2の時間領域の信号に変換して出力する第2の周波数−時間変換手段とを備え、第2の時間領域の信号を復調して送信装置から送信されたデータ信号を復元する構成である。 The third invention is a receiving apparatus for receiving radio signals of a single carrier transmitted from the transmitting apparatus of the second aspect of the invention, having a predetermined weighting factor to be shared with the transmitting apparatus, a radio signal of a single carrier received Second time-frequency conversion means for converting to a signal in the second frequency domain, a data band of the signal in the second frequency domain is divided into predetermined bands, and a reciprocal of a predetermined weight coefficient that is different for each divided band And a second frequency processing means for canceling the discontinuous phase change in the data band, and a second frequency for converting the output signal of the second frequency processing means into a signal in the second time domain and outputting it. A time conversion means for demodulating the signal in the second time domain and restoring the data signal transmitted from the transmission device;

本発明の無線通信システムは、送信装置で変調信号を周波数領域に変換した信号に対して、送受信装置間で共有する所定の周波数特性を用い、周波数領域で位相変化が急峻になる重み付け処理/フィルタリング処理を行い、再度時間領域の信号に戻して送信し、受信装置で受信信号を周波数領域に変換した信号に対して、送受信装置間で共有する所定の周波数特性の逆特性の周波数特性を用いて重み付け処理/フィルタリング処理を行い、再度時間領域の信号に戻して復調する構成である。   The radio communication system of the present invention uses a predetermined frequency characteristic shared between transmitting and receiving apparatuses for a signal obtained by converting a modulated signal into a frequency domain by a transmitting apparatus, and weighting processing / filtering in which a phase change is sharp in the frequency domain Perform processing, send back to the time domain signal again, and use the frequency characteristics that are the inverse of the predetermined frequency characteristics shared between the transmitting and receiving apparatuses for the signals that have been converted into the frequency domain by the receiving apparatus In this configuration, the weighting process / filtering process is performed, and the signal is demodulated again by returning to the signal in the time domain.

このように、送受信装置間で伝送される変調信号に対して、送受信装置間で共有する既知の周波数特性で処理することにより、既知の周波数特性を持たない一般の受信装置には周波数フェージングのある伝搬路のように見え、受信特性が劣化して信号を復調することができない。一方、既知の周波数特性をもつ正規の受信装置では、受信信号の周波数特性を補正して処理し、受信特性を元に戻すことによって高い確率で復調に成功することができる。すなわち、正規の受信装置のみが正常に受信でき、他の受信装置に対しては信号の復調に必要な所用C/Nを大幅に高め、あるいは復調を困難とし、スクランブラ単体で用いる場合よりも秘匿性を高めることができる。   In this way, a general reception apparatus having no known frequency characteristic has frequency fading by processing a modulated signal transmitted between the transmission / reception apparatuses with a known frequency characteristic shared between the transmission / reception apparatuses. It looks like a propagation path, and the reception characteristics deteriorate and the signal cannot be demodulated. On the other hand, a regular receiving apparatus having a known frequency characteristic can correct the frequency characteristic of the received signal, process the signal, and restore the original reception characteristic, thereby succeeding in demodulation with high probability. That is, only a regular receiving device can receive normally, and for other receiving devices, the required C / N required for signal demodulation is greatly increased, or demodulation is difficult, compared to the case where a scrambler is used alone. Confidentiality can be increased.

また、本発明の無線通信システムでは、変調信号の通過位相特性が変わるだけで、送信スペクトラムの状態に顕著な差がない。また、本発明の無線通信システムは、シングルキャリア伝送をベースとしたSC−FDMAや帯域分散伝送方式と組み合わせることが可能である。   Further, in the wireless communication system of the present invention, there is no significant difference in the state of the transmission spectrum only by changing the passing phase characteristic of the modulation signal. In addition, the wireless communication system of the present invention can be combined with SC-FDMA based on single carrier transmission or a band dispersion transmission system.

本発明の無線通信システムの送信装置および受信装置の実施例1を示す図である。It is a figure which shows Example 1 of the transmitter of the radio | wireless communications system of this invention, and a receiver. 本発明による重み係数(通過位相特性)の制御例を示す図である。It is a figure which shows the example of control of the weighting coefficient (passage phase characteristic) by this invention. 本発明による重み係数(通過位相特性)の付与例を示す図である。It is a figure which shows the example of provision of the weighting coefficient (passage phase characteristic) by this invention. 2分割の重み係数が伝送信号に与える影響の評価結果を示す図である。It is a figure which shows the evaluation result of the influence which the weighting coefficient of 2 division has on a transmission signal. 位相段差60度の重み係数が伝送信号に与える影響の評価結果を示す図である。It is a figure which shows the evaluation result of the influence which the weighting coefficient of 60 degrees of phase steps has on a transmission signal. 送信スペクトルにおける重み係数の影響を示す図である。It is a figure which shows the influence of the weighting coefficient in a transmission spectrum. 従来の受信装置の構成例を示す図である。It is a figure which shows the structural example of the conventional receiver. 本発明の無線通信システムの送信装置および受信装置の実施例2を示す図である。It is a figure which shows Example 2 of the transmitter of the radio | wireless communications system of this invention, and a receiver. 本発明の無線通信システムの送信装置および受信装置の実施例3を示す図である。It is a figure which shows Example 3 of the transmitter of the radio | wireless communications system of this invention, and a receiver. 本発明の無線通信システムの送信装置および受信装置の実施例4を示す図である。It is a figure which shows Example 4 of the transmitter of the radio | wireless communications system of this invention, and a receiver. 本発明の無線通信システムの送信装置および受信装置の実施例4の変形を示す図である。It is a figure which shows the deformation | transformation of Example 4 of the transmitter of the radio | wireless communications system of this invention, and a receiver. 従来の無線通信システムの送信装置および受信装置の構成例を示す図である。It is a figure which shows the structural example of the transmitter of a conventional radio | wireless communications system, and a receiver.

図1は、本発明の無線通信システムの送信装置および受信装置の実施例1を示す。
図1において、送信装置10は、変調手段11、フーリエ変換回路(DFT)12、乗算回路13、重み係数設定回路14、逆フーリエ変換回路(IDFT)15により構成される。
FIG. 1 shows a first embodiment of a transmitter and a receiver of a wireless communication system according to the present invention.
In FIG. 1, the transmission device 10 includes a modulation unit 11, a Fourier transform circuit (DFT) 12, a multiplication circuit 13, a weighting factor setting circuit 14, and an inverse Fourier transform circuit (IDFT) 15.

変調手段11は、送信データを変調した変調信号xを出力する。フーリエ変換回路12は、変調信号xを周波数軸上の信号Xに変換して乗算回路13に入力する。乗算回路13は、フーリエ変換の各周波数ポイントN(Nは自然数) に対して、重み係数設定回路14から入力する重み係数wi (iは1〜N)を乗算して重み付けを行う。逆フーリエ変換回路15は、周波数軸上で重み付けされた信号X′を時間軸上の送信信号x′に変換して送信する。 The modulation means 11 outputs a modulated signal x obtained by modulating transmission data. The Fourier transform circuit 12 converts the modulation signal x into a signal X on the frequency axis and inputs it to the multiplication circuit 13. The multiplication circuit 13 performs weighting by multiplying each frequency point N (N is a natural number) of the Fourier transform by a weighting factor w i (i is 1 to N) input from the weighting factor setting circuit 14. The inverse Fourier transform circuit 15 converts the signal X ′ weighted on the frequency axis into a transmission signal x ′ on the time axis and transmits it.

受信装置20は、フーリエ変換回路(DFT)21、乗算回路22、重み係数設定回路23、逆フーリエ変換回路(IDFT)24、復調手段25により構成される。   The receiving device 20 includes a Fourier transform circuit (DFT) 21, a multiplier circuit 22, a weighting factor setting circuit 23, an inverse Fourier transform circuit (IDFT) 24, and a demodulation unit 25.

フーリエ変換回路21は、受信信号x′を周波数軸上の信号X′に変換して乗算回路22に入力する。重み係数設定回路23には、送信装置10の重み係数設定回路14が設定する重み係数wi の逆数である重み係数wi -1 が設定される。乗算回路22は、フーリエ変換の各周波数ポイントNに対して、重み係数設定回路23から入力する重み係数wi -1を乗算して重み付けを行う。逆フーリエ変換回路24は、周波数軸上で重み付けされた信号Xを時間軸上の変調信号xに変換して復調手段25に入力し、復調手段25で受信データを復調する。 The Fourier transform circuit 21 converts the received signal x ′ into a signal X ′ on the frequency axis and inputs it to the multiplication circuit 22. The weighting coefficient setting circuit 23, the weighting factor w i -1 is the inverse of the weighting coefficients w i of the weight coefficient setting circuit 14 sets the transmitter 10 is set. The multiplication circuit 22 performs weighting by multiplying each frequency point N of the Fourier transform by a weighting coefficient w i −1 input from the weighting coefficient setting circuit 23. The inverse Fourier transform circuit 24 converts the signal X weighted on the frequency axis into a modulation signal x on the time axis and inputs it to the demodulation means 25, and the demodulation means 25 demodulates the received data.

ここで、送信装置10の送信信号x′は、周波数軸上で重み係数wi が乗算されているため、位相および振幅が歪んだ信号であり、不正な傍受者が復調しても誤りが発生する可能性が高くなる。受信装置20で正確に受信するためには、受信信号に対して送信装置10で付与した重み係数wi の逆数の重み係数wi -1 を乗算する必要がある。なお、受信装置20において、受信信号を送信装置10で付与した重み係数wi で除算する構成でもよい。 Here, the transmission signal x ′ of the transmission device 10 is a signal with a distorted phase and amplitude because the weighting factor w i is multiplied on the frequency axis, and an error occurs even if an unauthorized eavesdropper demodulates. Is more likely to do. To correctly received by the receiving apparatus 20, it is necessary to multiply the weight coefficient w i -1 of the reciprocal of the weighting coefficient w i which is applied in the transmission device 10 to the receiving signal. Note that the receiving device 20 may be configured to divide the received signal by the weighting coefficient w i given by the transmitting device 10.

本実施例の動作原理について図2を参照して説明する。
上記の説明では、フーリエ変換した周波数軸上の信号に対して重み付け演算を行う構成を示したが、同様の処理をフィルタの通過位相の周波数特性(通過位相特性)が急峻な位相変化をもつように制御する構成でも実現できる。この場合、送信側と受信側で逆特性の通過位相特性を有するフィルタを用いるか、通過位相特性が可変のフィルタに対して、送信側と受信側で逆特性の通過位相特性を設定する構成をとる。
The operation principle of this embodiment will be described with reference to FIG.
In the above description, a configuration is shown in which weighting is performed on a signal on the frequency axis that has been subjected to Fourier transform, but the same processing is performed so that the frequency characteristic (pass phase characteristic) of the filter pass phase has a steep phase change. This can also be realized with a configuration in which the control is performed. In this case, a configuration is used in which a filter having a reverse pass phase characteristic is used on the transmission side and the reception side, or a reverse pass phase characteristic is set on the transmission side and the reception side for a filter having a variable pass phase characteristic. Take.

一般的な送信装置では、フィルタを用いて帯域外スプリアス等の不要信号成分を除去して送信する。フィルタの周波数特性は通過域において利得(損失)は一定であり、位相は図2(a) に示すように傾きはあるものの連続的である。本実施例は、変調信号を周波数軸上の信号に変換して重み付けを行い、再度時間領域の信号に戻すことで、無線装置における通過位相特性を図2(b) に示すように不連続または急峻な位相変化をもたせることができる。このような位相変化が急峻な通過位相特性をもつ信号を受信すると、非特許文献2に報告されるように周波数フェージングと同様にC/Nが劣化する。そのため、本実施例の受信装置20では、送信装置10で与えた重み係数(フィルタの通過位相特性)を打ち消すように信号処理を行って復調することで、C/Nの劣化を補償する。このとき、送信時に付与した通過位相特性によるC/N劣化分に比例して秘匿性が高まる。すなわち、重み係数wi -1 を有する受信装置と比較して、それを知らない第三者は受信信号の復調に失敗する確率が高くなるため、秘匿性が高まる。 In a general transmission device, unnecessary signal components such as out-of-band spurious are removed using a filter and transmitted. In the frequency characteristics of the filter, the gain (loss) is constant in the pass band, and the phase is continuous with a slope as shown in FIG. In the present embodiment, the modulation signal is converted into a signal on the frequency axis, weighted, and returned to the time domain signal again, so that the passing phase characteristic in the radio apparatus is discontinuous or as shown in FIG. A steep phase change can be provided. When a signal having such a passing phase characteristic with a steep phase change is received, C / N deteriorates as in frequency fading as reported in Non-Patent Document 2. Therefore, in the receiving apparatus 20 of the present embodiment, the signal processing is performed so as to cancel the weighting factor (filter pass phase characteristic) given by the transmitting apparatus 10 to demodulate the C / N deterioration. At this time, the secrecy is increased in proportion to the C / N degradation due to the passing phase characteristic given at the time of transmission. That is, as compared with a receiving apparatus having a weighting factor w i −1 , a third party who does not know it has a higher probability of failing to demodulate the received signal, so that confidentiality is improved.

また、変調信号の位相特性に変化を持たせる代わりに、利得について変化を与えてもよい。また、変調手段11に入力する送信データは、従来の無線通信システムの技術であるスクランブル処理された信号であってもよい。   Further, instead of changing the phase characteristic of the modulation signal, a change may be given to the gain. The transmission data input to the modulation means 11 may be a scrambled signal that is a technique of a conventional wireless communication system.

ここで、付与する重み係数(フィルタの通過位相特性)が伝送信号に与える影響について、QPSK変調信号(ターボプロダクト符号使用)を用いて評価した結果を示す。評価システムでは、図3に示すようにデータ帯域をM等分(Mは2以上の自然数) し、データ帯域内に階段状の位相段差を有する通過位相特性を実現するため、変調信号をフーリエ変換した各周波数ポイントに、付与する位相段差θに応じてcosθ+jsinθを乗算した。復調側では、逆特性の重み付けを与えずに復調してビット誤り率(BER)を測定した。重み係数が伝送信号に与える影響の評価結果を図4および図5に示す。   Here, the result of evaluating the influence of the weighting factor to be applied (pass phase characteristic of the filter) on the transmission signal using a QPSK modulation signal (using turbo product code) is shown. In the evaluation system, as shown in FIG. 3, the data band is divided into M equal parts (M is a natural number of 2 or more), and the modulation signal is subjected to Fourier transform in order to realize a pass phase characteristic having a stepped phase step in the data band. Each frequency point was multiplied by cos θ + jsin θ according to the phase step θ to be applied. On the demodulating side, the bit error rate (BER) was measured by demodulating without weighting the inverse characteristics. The evaluation results of the influence of the weighting factor on the transmission signal are shown in FIGS.

図4は、簡易な評価として位相段差を信号の中心周波数において1段付与したとき(2分割)に対するBERであり、付与する位相段差が大きいほどBER特性が劣化することが確認でき、 120度ではエラーフリーとならなかった。なお、さらなる位相段差を付与すると、変復調装置間の同期確立が不能となった。一方、図5は付与する位相段差数(帯域の分割数)に対するBERであり、位相段差は60度を与えた時の結果である。この結果、分割数が増えるほど、BER特性が劣化することが確認でき、16分割ではエラーフリーとならなかった。   FIG. 4 is a BER for a simple evaluation when a phase step is given by one step at the center frequency of the signal (2 divisions). It can be confirmed that the larger the applied phase step, the more the BER characteristics deteriorate. It was not error free. When a further phase step is added, synchronization between the modems cannot be established. On the other hand, FIG. 5 shows the BER with respect to the number of phase steps to be applied (number of divisions of the band), and is the result when the phase steps are given 60 degrees. As a result, it was confirmed that as the number of divisions increased, the BER characteristics deteriorated, and error division was not achieved with 16 divisions.

図6は、送信スペクトルにおける重み係数の影響を示す。図6(a) は位相段差数が0(重み係数wが1)、図6(b) は位相段差数が2、図6(c) は位相段差数が多数の場合を示す。ここに示すように、送信スペクトルの形状は、位相段差数(帯域の分割数)に応じてほとんど変化せず、比帯域の増加は僅か0.15%程度で測定誤差程度の範囲と言え、顕著な影響はないと言える。なお、ここでの評価では通過位相特性に階段状の変化を与える例を示したが、これによらず任意の形状の通過位相特性を与え、受信側でその逆特性を用いる構成でもよい。   FIG. 6 shows the influence of the weighting factor on the transmission spectrum. 6A shows a case where the number of phase steps is 0 (weight coefficient w is 1), FIG. 6B shows a case where the number of phase steps is 2, and FIG. 6C shows a case where the number of phase steps is large. As shown here, the shape of the transmission spectrum hardly changes according to the number of phase steps (number of band divisions), and the increase of the ratio band is only about 0.15%, which can be said to be in the range of measurement error. I can't say that. In this example, a stepwise change is given to the pass phase characteristic. However, a configuration in which a pass phase characteristic having an arbitrary shape is given and the reverse characteristic is used on the reception side may be used.

ところで、送信信号に付与する通過位相特性は、周波数選択性フェージングと見ることも可能である。その場合、図7に示す従来の受信装置(非特許文献3)において、受信信号を周波数領域の信号に変換し、周波数領域等化回路において伝搬路推定回路で推定した伝搬路係数を用いて補償し、さらに時間領域の信号に変換して復調することができる。このような受信装置を用いることにより、送信側で付与した通過位相特性を推定して傍受が可能となる。そこで、このような受信装置において復調を不能にするための構成を実施例2として示す。   By the way, the pass phase characteristic added to the transmission signal can be regarded as frequency selective fading. In that case, in the conventional receiver shown in FIG. 7 (Non-patent Document 3), the received signal is converted into a frequency domain signal and compensated by using the channel coefficient estimated by the channel estimation circuit in the frequency domain equalization circuit. Further, it can be demodulated by converting to a signal in the time domain. By using such a receiving device, it is possible to intercept by estimating the passing phase characteristic given on the transmission side. Therefore, a configuration for disabling demodulation in such a receiving apparatus is shown as a second embodiment.

図8は、本発明の無線通信システムの送信装置および受信装置の実施例2を示す。
図8において、実施例2の送信装置は、図1に示す実施例1の送信装置の重み係数設定回路14に代えて、重み係数wi を動的に可変設定する重み係数可変設定回路16を用いる。実施例2の受信装置は、図1に示す実施例1の受信装置の重み係数設定回路23に代えて、重み係数wi の逆数である重み係数wi -1 を動的に可変設定する重み係数可変設定回路26を用いる。重み係数可変設定回路16の重み係数wi および重み係数可変設定回路26の重み係数wi -1 は、送信装置と受信装置でタイミングを合せて変更する。
FIG. 8 shows a second embodiment of the transmission device and the reception device of the wireless communication system of the present invention.
In FIG. 8, the transmission apparatus of the second embodiment includes a weight coefficient variable setting circuit 16 that dynamically variably sets the weight coefficient w i instead of the weight coefficient setting circuit 14 of the transmission apparatus of the first embodiment shown in FIG. Use. The receiving apparatus of the second embodiment, instead of the weighting coefficient setting circuit 23 of the receiving apparatus of the first embodiment shown in FIG. 1, for dynamically variably set the weight coefficient w i -1 is the inverse of the weighting factor w i weight A coefficient variable setting circuit 26 is used. The weighting factor w i of the weighting factor variable setting circuit 16 and the weighting factor w i −1 of the weighting factor variable setting circuit 26 are changed at the same timing in the transmitting device and the receiving device.

図7に示す周波数領域等化回路の解の収束には、非特許文献4にあるように、一定の時間を要するとされている。そのため、重み係数の変更間隔を収束時間以下とすることで、重み係数wi を適切に同定することができなくなる。なお、変更前の重み係数と変更後の重み係数は、相関が小さいことが好ましい。また、本実施例は、所定の間隔で重み係数を更新する場合に限らず、連続的に変化させてもよい。 It is said that a certain time is required for convergence of the solution of the frequency domain equalization circuit shown in FIG. For this reason, the weight coefficient w i cannot be appropriately identified by setting the change interval of the weight coefficient to the convergence time or less. In addition, it is preferable that the weight coefficient before change and the weight coefficient after change have a small correlation. Further, the present embodiment is not limited to updating the weighting coefficient at a predetermined interval, and may be continuously changed.

図9は、本発明の無線通信システムの送信装置の実施例3を示す。
図9において、実施例3の送信装置は、図1に示す実施例1の送信装置の変調手段11とフーリエ変換回路(DFT)12との間に雑音付加回路17を挿入し、変調信号に所定の雑音を付与してフーリエ変換回路12に入力する。以下の処理は、実施例1と同様である。これにより送信信号のC/Nを下げ、傍受者がアンテナ利得の向上等により受信性能を上げても所定のC/Nを得られなくする。受信装置は実施例1の構成で対応可能である。また、本実施例は、図8に示す実施例2に構成にも適用することができる。
FIG. 9 shows a third embodiment of the transmission apparatus of the wireless communication system of the present invention.
In FIG. 9, the transmission apparatus of the third embodiment inserts a noise adding circuit 17 between the modulation means 11 and the Fourier transform circuit (DFT) 12 of the transmission apparatus of the first embodiment shown in FIG. Are input to the Fourier transform circuit 12. The following processing is the same as in the first embodiment. As a result, the C / N of the transmission signal is lowered, and even if the eavesdropper increases the reception performance by improving the antenna gain or the like, the predetermined C / N cannot be obtained. The receiving apparatus can cope with the configuration of the first embodiment. Further, the present embodiment can also be applied to the configuration of the second embodiment shown in FIG.

本発明は、シングルキャリア伝送における秘匿性向上に効果があるため、シングルキャリア伝送を基本とするSC−FDMA(Single Carrier-Frequency Division Multiple Access)や、非特許文献2に記載される帯域分散伝送方式に適用することができる。   Since the present invention is effective in improving secrecy in single carrier transmission, SC-FDMA (Single Carrier-Frequency Division Multiple Access) based on single carrier transmission and a band distributed transmission method described in Non-Patent Document 2 Can be applied to.

図10,図11は、本発明の無線通信システムの送信装置および受信装置の実施例4を示す。図10の実施例はSC−FDMA方式に対応し、図11の実施例は帯域分散伝送方式に対応する構成である。送信装置では、変調信号を周波数領域に変換して重み付けを行った信号を周波数マッピング回路18あるいは帯域分割処理部19に入力し、さらに時間領域の信号に変換して送信する。受信装置では、受信信号を周波数領域に変換して周波数デマッピング回路27あるいは帯域合成処理部28に入力し、さらに逆特性の重み付けを行った信号を時間領域の信号に変換して復調する。   10 and 11 show a fourth embodiment of the transmission device and the reception device of the wireless communication system of the present invention. The embodiment of FIG. 10 corresponds to the SC-FDMA scheme, and the embodiment of FIG. 11 has a configuration corresponding to the band dispersion transmission scheme. In the transmission device, the modulated signal is converted into the frequency domain, and the weighted signal is input to the frequency mapping circuit 18 or the band division processing unit 19 and further converted into a time domain signal and transmitted. In the receiving apparatus, the received signal is converted into the frequency domain and input to the frequency demapping circuit 27 or the band synthesizing processing unit 28, and the inverse weighted signal is converted into a time domain signal and demodulated.

10 送信装置
11 変調手段
12 フーリエ変換回路(DFT)
13 乗算回路
14 重み係数設定回路
15 逆フーリエ変換回路(IDFT)
16 重み係数可変設定回路
17 雑音付加回路
18 周波数マッピング回路
19 帯域分割処理部
20 受信装置
21 フーリエ変換回路(DFT)
22 乗算回路
23 重み係数設定回路
24 逆フーリエ変換回路(IDFT)
25 復調手段
26 重み係数可変設定回路
27 周波数デマッピング回路
28 帯域合成処理部
DESCRIPTION OF SYMBOLS 10 Transmitter 11 Modulation means 12 Fourier transform circuit (DFT)
13 Multiplier Circuit 14 Weighting Factor Setting Circuit 15 Inverse Fourier Transform Circuit (IDFT)
16 Weight coefficient variable setting circuit 17 Noise adding circuit 18 Frequency mapping circuit 19 Band division processing unit 20 Receiver 21 Fourier transform circuit (DFT)
22 Multiplier circuit 23 Weight coefficient setting circuit 24 Inverse Fourier transform circuit (IDFT)
25 Demodulating means 26 Weight coefficient variable setting circuit 27 Frequency demapping circuit 28 Band synthesis processor

Claims (3)

シングルキャリアの無線信号を送受信する送信装置および受信装置により構成される無線通信システムであって、
前記送信装置は、
データ信号を変調してシングルキャリアの変調信号を出力する変調手段と、
前記シングルキャリアの変調信号を第1の周波数領域の信号に変換する第1の時間−周波数変換手段と、
前記第1の周波数領域の信号のデータ帯域を所定の帯域に分割し、分割した帯域ごとに異なる所定の重み係数を乗算し、該データ帯域内に不連続な位相変化を与える第1の周波数処理手段と、
前記第1の周波数処理手段の出力信号を第1の時間領域の信号に変換して出力する第1の周波数−時間変換手段と
を備え、前記第1の時間領域の信号をシングルキャリアの無線信号として送信する構成であり、
前記受信装置は、
前記送信装置と共有する前記所定の重み係数を有し、
受信した前記シングルキャリアの無線信号を第2の周波数領域の信号に変換する第2の時間−周波数変換手段と、
前記第2の周波数領域の信号のデータ帯域を前記所定の帯域に分割し、分割した帯域ごとに異なる前記所定の重み係数の逆数を乗算し、前記データ帯域内の不連続な位相変化を打ち消す第2の周波数処理手段と、
前記第2の周波数処理手段の出力信号を第2の時間領域の信号に変換して出力する第2の周波数−時間変換手段と
を備え、第2の時間領域の信号を復調して前記送信装置から送信されたデータ信号を復元する構成である
ことを特徴とする無線通信システム。
A wireless communication system including a transmission device and a reception device that transmit and receive a single carrier wireless signal,
The transmitter is
Modulation means for modulating a data signal and outputting a single carrier modulation signal;
First time-frequency conversion means for converting the single carrier modulation signal into a first frequency domain signal;
First frequency processing for dividing a data band of the signal in the first frequency domain into predetermined bands, multiplying the divided bands by different predetermined weighting factors, and providing a discontinuous phase change in the data band Means,
First frequency-time conversion means for converting the output signal of the first frequency processing means into a first time-domain signal and outputting the first time-domain signal, and the first time-domain signal is converted to a single carrier radio signal. And send as
The receiving device is:
Having the predetermined weighting factor shared with the transmitting device;
Second time-frequency conversion means for converting the received single carrier radio signal into a second frequency domain signal;
Dividing the data band of the signal in the second frequency domain into the predetermined band, multiplying the divided frequency band by a reciprocal of the predetermined weighting factor, and canceling the discontinuous phase change in the data band; Two frequency processing means;
Second frequency-time conversion means for converting the output signal of the second frequency processing means into a second time-domain signal and outputting the signal, and demodulating the second time-domain signal to transmit the transmitter A wireless communication system, characterized in that the data signal transmitted from is restored.
シングルキャリアの無線信号を送受信する送信装置および受信装置により構成される無線通信システムの送信装置において、
前記受信装置と共有する所定の重み係数を有し、
データ信号を変調してシングルキャリアの変調信号を出力する変調手段と、
前記シングルキャリアの変調信号を第1の周波数領域の信号に変換する第1の時間−周波数変換手段と、
前記第1の周波数領域の信号のデータ帯域を所定の帯域に分割し、分割した帯域ごとに異なる前記所定の重み係数を乗算し、該データ帯域内に不連続な位相変化を与える第1の周波数処理手段と、
前記第1の周波数処理手段の出力信号を第1の時間領域の信号に変換して出力する第1の周波数−時間変換手段と
を備え、前記第1の時間領域の信号をシングルキャリアの無線信号として送信する構成である
ことを特徴とする送信装置。
In a transmission device of a wireless communication system including a transmission device and a reception device that transmit and receive a single carrier radio signal,
Having a predetermined weighting factor shared with the receiving device;
Modulation means for modulating a data signal and outputting a single carrier modulation signal;
First time-frequency conversion means for converting the single carrier modulation signal into a first frequency domain signal;
A first frequency that divides a data band of a signal in the first frequency domain into a predetermined band, multiplies the divided band by the predetermined weighting factor, and gives a discontinuous phase change in the data band; Processing means;
First frequency-time conversion means for converting the output signal of the first frequency processing means into a first time-domain signal and outputting the first time-domain signal, and the first time-domain signal is converted to a single carrier radio signal. A transmission apparatus characterized by being configured to transmit as:
請求項2に記載の送信装置から送信されたシングルキャリアの無線信号を受信する受信装置において、
前記送信装置と共有する所定の重み係数を有し、
受信した前記シングルキャリアの無線信号を第2の周波数領域の信号に変換する第2の時間−周波数変換手段と、
前記第2の周波数領域の信号のデータ帯域を前記所定の帯域に分割し、分割した帯域ごとに異なる前記所定の重み係数の逆数を乗算し、前記データ帯域内の不連続な位相変化を打ち消す第2の周波数処理手段と、
前記第2の周波数処理手段の出力信号を第2の時間領域の信号に変換して出力する第2の周波数−時間変換手段と
を備え、第2の時間領域の信号を復調して前記送信装置から送信されたデータ信号を復元する構成である
ことを特徴とする受信装置。
In the receiving apparatus which receives the radio signal of the single carrier transmitted from the transmitting apparatus of Claim 2 ,
Having a predetermined weighting factor shared with the transmitting device;
Second time-frequency conversion means for converting the received single carrier radio signal into a second frequency domain signal;
Dividing the data band of the signal in the second frequency domain into the predetermined band, multiplying the divided frequency band by a reciprocal of the predetermined weighting factor, and canceling the discontinuous phase change in the data band; Two frequency processing means;
Second frequency-time conversion means for converting the output signal of the second frequency processing means into a second time-domain signal and outputting the signal, and demodulating the second time-domain signal to transmit the transmitter A receiving apparatus, wherein the data signal transmitted from the terminal is restored.
JP2011006112A 2011-01-14 2011-01-14 Wireless communication system, transmitting apparatus and receiving apparatus Expired - Fee Related JP5501986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011006112A JP5501986B2 (en) 2011-01-14 2011-01-14 Wireless communication system, transmitting apparatus and receiving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011006112A JP5501986B2 (en) 2011-01-14 2011-01-14 Wireless communication system, transmitting apparatus and receiving apparatus

Publications (2)

Publication Number Publication Date
JP2012147390A JP2012147390A (en) 2012-08-02
JP5501986B2 true JP5501986B2 (en) 2014-05-28

Family

ID=46790466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011006112A Expired - Fee Related JP5501986B2 (en) 2011-01-14 2011-01-14 Wireless communication system, transmitting apparatus and receiving apparatus

Country Status (1)

Country Link
JP (1) JP5501986B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822360A (en) * 1995-09-06 1998-10-13 Solana Technology Development Corporation Method and apparatus for transporting auxiliary data in audio signals
US7751488B2 (en) * 2006-08-16 2010-07-06 Harris Corporation System and method for communicating data using symbol-based randomized orthogonal frequency division multiplexing (OFDM)
JP5388682B2 (en) * 2009-05-12 2014-01-15 三菱電機株式会社 Transmitter, receiver and communication device

Also Published As

Publication number Publication date
JP2012147390A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
US11363468B2 (en) Sharing resources between wireless networks
US11038636B2 (en) Modulation and equalization in an orthonormal time-frequency shifting communications system
US10637697B2 (en) Modulation and equalization in an orthonormal time-frequency shifting communications system
US10341155B2 (en) Modulation and equalization in an orthonormal time-frequency shifting communications system
EP2865153B1 (en) Modulation and equalization in an orthonormal time-frequency shifting communications system
US20230412444A1 (en) Modulation and equalization in an orthonormal time-shifting communications system
JP5501986B2 (en) Wireless communication system, transmitting apparatus and receiving apparatus
Labade et al. Spectral efficiency enhancement through Wavelet Transform (WT) for 5G
Hussein Al-Delfi et al. Hybrid Ciphering and Frequency Domain Scrambling for Secure Speech Transmission through MIMO-OFDM System.
CN114884616B (en) Anti-eavesdrop uplink transmission method and device for satellite communication system based on artificial noise
Hashir et al. Pilot-aided semi-blind channel estimation utilizing intrinsic interference for MIMO-FBMC/OQAM systems
Kumar et al. International Journal of Smart Sensor and Adhoc Network
Popescu et al. Sub-band precoded OFDM for enhanced physical layer resiliency in wireless communication systems
Dhanya et al. Secure speech communication using improved OFDM scrambler for next generation mobile communication systems
Popescu et al. On the performance of precoded OFDM systems in the presence of jamming
Petrov Efficient algorithm of well-localized bases construction for oftdm systems
CN111327550A (en) Frequency division multiple access communication method and system with approximate constant envelope waveform
Liu Frequency domain independent component analysis applied to wireless communications over frequency-selective channels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140312

R150 Certificate of patent or registration of utility model

Ref document number: 5501986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees