JP5500850B2 - Method for producing carbon nanotube - Google Patents
Method for producing carbon nanotube Download PDFInfo
- Publication number
- JP5500850B2 JP5500850B2 JP2009085809A JP2009085809A JP5500850B2 JP 5500850 B2 JP5500850 B2 JP 5500850B2 JP 2009085809 A JP2009085809 A JP 2009085809A JP 2009085809 A JP2009085809 A JP 2009085809A JP 5500850 B2 JP5500850 B2 JP 5500850B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon nanotubes
- substrate
- heating
- atmosphere
- minutes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 74
- 239000002041 carbon nanotube Substances 0.000 title claims description 64
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims description 64
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000002184 metal Substances 0.000 claims description 41
- 229910052751 metal Inorganic materials 0.000 claims description 41
- 238000010438 heat treatment Methods 0.000 claims description 38
- 239000000758 substrate Substances 0.000 claims description 38
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 32
- 239000001301 oxygen Substances 0.000 claims description 32
- 229910052760 oxygen Inorganic materials 0.000 claims description 32
- 239000003054 catalyst Substances 0.000 claims description 27
- 239000010409 thin film Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 239000010419 fine particle Substances 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 20
- 239000007789 gas Substances 0.000 description 14
- 230000003197 catalytic effect Effects 0.000 description 13
- 239000010410 layer Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229940087654 iron carbonyl Drugs 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Description
本発明は、所定の長さおよび重量(密度)を有するカーボンナノチューブ(CNT)を安定的に製造することができるカーボンナノチューブの製造方法に関するものである。 The present invention relates to a carbon nanotube production method capable of stably producing carbon nanotubes (CNT) having a predetermined length and weight (density).
カーボンナノチューブは、炭素原子が六角網目状に配列したグラフェンシートを筒状に丸めた立体構造を持つ。種類は1枚のグラフェンシートから成る単層カーボンナノチューブや、複数枚のグラフェンシートから成る多層カーボンナノチューブがあり、いずれも通常、カーボンナノチューブの先端は半球状のグラファイト層で閉じられた構造となっている。 The carbon nanotube has a three-dimensional structure in which a graphene sheet in which carbon atoms are arranged in a hexagonal network is rounded into a cylindrical shape. There are single-walled carbon nanotubes composed of a single graphene sheet and multi-walled carbon nanotubes composed of multiple graphene sheets, both of which usually have a structure in which the tip of the carbon nanotube is closed with a hemispherical graphite layer. Yes.
カーボンナノチューブの特徴は、nmオーダーの直径と、μmオーダーの長さを有しており、アスペクト比が極めて大きい点である。またカーボンナノチューブは機械的にも強靭であり、化学的・熱的安定性に優れ、円筒部の螺旋構造に応じて金属にも半導体にもなるという特長がある。それゆえ、LSIに代表される半導体装置や加速度センサ等の各種センサ、電子デバイスや放熱デバイス等、幅広い分野への適用が期待されている。そのためには、必要な所定の長さおよび重量(密度)を有するカーボンナノチューブを安定的に作成することが重要となる。 The feature of the carbon nanotube is that it has a diameter on the order of nm and a length on the order of μm, and has an extremely large aspect ratio. Carbon nanotubes are mechanically tough, have excellent chemical and thermal stability, and can be used as either metal or semiconductor depending on the helical structure of the cylindrical portion. Therefore, it is expected to be applied to a wide range of fields such as semiconductor devices typified by LSIs, various sensors such as acceleration sensors, electronic devices and heat dissipation devices. For that purpose, it is important to stably produce carbon nanotubes having a required predetermined length and weight (density).
所定の長さおよび重量(密度)を有するカーボンナノチューブの製造方法としては、例えば、基板に2次元規則配列した開口部を設け、基板と対向電極間にバイアス電圧を印加した状態で基体表面に炭素含有化合物ガスを供給し、前記炭素含有化合物ガスを熱分解させることで、基板表面に対してカーボンナノチューブをほぼ垂直に配向して成長させ、かつ、カーボンナノチューブの直径、層数及び数密度を制御することが可能なカーボンナノチューブの製造する方法が知られている(特許文献1)。 As a method for producing a carbon nanotube having a predetermined length and weight (density), for example, a two-dimensional regular array of openings is provided in the substrate, and a bias voltage is applied between the substrate and the counter electrode, and carbon is applied to the substrate surface. By supplying the compound gas and thermally decomposing the carbon-containing compound gas, the carbon nanotubes are grown almost perpendicularly to the substrate surface, and the diameter, number of layers, and number density of the carbon nanotubes are controlled. A method for producing carbon nanotubes that can be used is known (Patent Document 1).
また、基板表面に触媒金属薄膜を形成し、該薄膜を空気雰囲気で加熱することで、基板表面に分散したナノ粒子を形成し、該粒子を核として均一かつ制御されたカーボンナノチューブを製造する方法が知られている(特許文献2)。 Also, a method of forming a catalytic metal thin film on a substrate surface, heating the thin film in an air atmosphere to form nanoparticles dispersed on the substrate surface, and producing uniform and controlled carbon nanotubes using the particles as nuclei Is known (Patent Document 2).
しかしながら、前記のようなカーボンナノチューブの製造方法においては、所定の長さおよび重量(密度)を有するカーボンナノチューブを安定的に製造することは困難であった。これは、触媒金属として基板表面に蒸着した鉄などの金属からなる触媒金属薄膜の一部が酸化されるため、触媒金属薄膜の状態を均一に保つことができず、基板の表面状態が一定しないことが主な要因と考えられる。この触媒金属薄膜の状態のわずかな違いが、カーボンナノチューブ生成のためのカーボンと触媒の反応度へのばらつきとなって影響を及ぼし、長さおよび重量(密度)の安定したカーボンナノチューブの生成が困難となっている。この解決のためには、触媒金属薄膜をカーボンナノチューブ形成のための化学気相蒸着(CVD)直前まで一定の状態に保つように触媒金属蒸着後からCVD直前まで真空下で保管する必要があり、それに係る手間と費用が大きくなるという問題があった。 However, in the method for producing carbon nanotubes as described above, it has been difficult to stably produce carbon nanotubes having a predetermined length and weight (density). This is because a part of the catalyst metal thin film made of metal such as iron deposited on the substrate surface as the catalyst metal is oxidized, so the state of the catalyst metal thin film cannot be kept uniform and the surface state of the substrate is not constant. This is considered to be the main factor. This slight difference in the state of the catalytic metal thin film affects the reactivity of carbon and the catalyst to produce carbon nanotubes, and it is difficult to produce carbon nanotubes with stable length and weight (density). It has become. In order to solve this problem, it is necessary to store the catalyst metal thin film under vacuum from after the catalyst metal deposition to just before the CVD so as to maintain a constant state until just before chemical vapor deposition (CVD) for carbon nanotube formation, There has been a problem that the labor and cost associated with this increase.
そこで、本発明では前記のような手間や費用を掛けずに、所定の長さおよび重量(密度)を有するカーボンナノチューブを安定的に製造することができるカーボンナノチューブの製造方法を提供するものである。 Therefore, the present invention provides a method for producing carbon nanotubes, which can stably produce carbon nanotubes having a predetermined length and weight (density) without taking the labor and cost as described above. .
本発明は、
基板上にFeからなる触媒金属薄膜を形成する工程と、
前記触媒金属薄膜の金属を微粒化する工程と、
前記触媒金属の微粒子を核として基板上にカーボンナノチューブを形成する工程を含むカーボンナノチューブの生成方法において、
前記触媒金属薄膜の金属を微粒化する工程を、5〜15%の酸素雰囲気中で700℃以上〜900℃未満での10〜60分間の加熱により行うことを特徴とする
カーボンナノチューブの生成方法である。
The present invention
Forming a catalyst metals thin film composed of Fe on a substrate,
Atomizing the metal of the catalyst metal thin film;
In the method for producing carbon nanotubes, comprising the step of forming carbon nanotubes on a substrate with the catalyst metal fine particles as nuclei,
In the method for producing carbon nanotubes, the step of atomizing the metal of the catalyst metal thin film is performed by heating at 700 ° C. to less than 900 ° C. for 10 to 60 minutes in a 5 to 15% oxygen atmosphere. is there.
本発明によれば、基板上に触媒金属薄膜を形成後、5〜15%の酸素雰囲気中で700℃以上〜900℃未満で加熱したのち、CVD法などの方法でカーボンナノチューブを製造することにより、基板表面に蒸着によって形成した触媒金属薄膜が大気中に曝されるなどして生じた被覆層が除去されるとともに、触媒金属を基板全面に均一に分布させ準安定的状態(例えば、Fe触媒を酸化鉄に)とすることにより、触媒金属と原料ガス中のカーボンとの反応のばらつきが抑制されるため、原料ガスの濃度やCVDの温度等の条件に応じて基板全面に渡って均一な長さおよび重量のカーボンナノチューブが生成され、さらに前記方法を繰り返すことで、前記均一な長さおよび重量のカーボンナノチューブが安定的に製造される。 According to the present invention, after forming a catalytic metal thin film on a substrate, heating at 700 ° C. or more and less than 900 ° C. in a 5 to 15% oxygen atmosphere, and then producing carbon nanotubes by a method such as a CVD method In addition, a coating layer formed by exposing the catalytic metal thin film formed on the substrate surface by vapor deposition to the atmosphere is removed, and the catalytic metal is uniformly distributed over the entire surface of the substrate so as to be in a metastable state (for example, Fe catalyst). Variation of the reaction between the catalyst metal and the carbon in the source gas is suppressed, so that it is uniform over the entire surface of the substrate according to the conditions such as the concentration of the source gas and the CVD temperature. Carbon nanotubes having a length and a weight are generated, and the above-described method is repeated to stably produce the carbon nanotubes having a uniform length and a weight.
以下、本発明によるカーボンナノチューブの製造方法について、詳しく説明をする。 Hereinafter, the carbon nanotube production method according to the present invention will be described in detail.
基板上に触媒金属からなる薄膜を形成する工程において、基板は、例えばシリコン製やガラス製のものであってよい。基板の厚さは0.7mm程度ないしはそれ以下であってよい。 In the step of forming a thin film made of a catalytic metal on the substrate, the substrate may be made of, for example, silicon or glass. The thickness of the substrate may be about 0.7 mm or less.
基板上に触媒金属粒子からなる薄膜を形成するには、EB(電子ビーム蒸着法)、触媒金属の化合物を含む液を超音波振動によりまたは超音波を伴ったスプレーにより基板表面に噴霧し、形成された噴霧層を加熱する方法などが好ましい。それ以外の方法として、触媒金属の化合物を含む液をスプレーや刷毛で基板に塗布した後、プラズマ照射または加熱する方法、同触媒をクラスター銃で打ち付け、乾燥させ、必要であれば加熱する方法、金属を化学蒸着させる方法、金属を基板に電子ビーム蒸着しその後この塗膜または蒸着膜を加熱方法等が採用できる。触媒金属は、鉄、コバルト、ニッケルなどであってよく、触媒金属の化合物は例えば鉄カルボニル錯体(ペンタカルボニル鉄等)のような錯体の形態、金属アルコキシド(Fe(OEt)3等)の形態をとっていてもよい。溶媒はアセトン、アルコール等であってよい。溶液中の金属錯体や金属アルコキシドの濃度は例えば1〜5重量%であってよい。薄膜の厚みは、厚過ぎると加熱による金属粒子化が困難になるので、好ましくは1〜100nmである。 To form a thin film made of catalytic metal particles on a substrate, EB (electron beam evaporation method), a liquid containing a catalyst metal compound is sprayed onto the substrate surface by ultrasonic vibration or spraying with ultrasonic waves. A method of heating the sprayed layer is preferable. As other methods, after applying a liquid containing a catalyst metal compound to the substrate with a spray or brush, a method of plasma irradiation or heating, a method of striking the catalyst with a cluster gun, drying, and heating if necessary, A method of chemical vapor deposition of metal, a method of heating the coating film or vapor deposition film after the metal is deposited on the substrate by electron beam can be employed. The catalytic metal may be iron, cobalt, nickel, etc., and the catalytic metal compound may be in the form of a complex such as an iron carbonyl complex (pentacarbonyliron or the like) or a metal alkoxide (Fe (OEt) 3 or the like). It may be taken. The solvent may be acetone, alcohol or the like. The concentration of the metal complex or metal alkoxide in the solution may be, for example, 1 to 5% by weight. The thickness of the thin film is preferably 1 to 100 nm because it is difficult to form metal particles by heating if it is too thick.
つぎに、前記触媒金属薄膜の金属を微粒化する工程では、5〜15%の酸素雰囲気中で700℃以上〜900℃未満で10〜60分間加熱を行う。 Next, in the step of atomizing the metal of the catalytic metal thin film, heating is performed at 700 ° C. or more and less than 900 ° C. for 10 to 60 minutes in a 5 to 15% oxygen atmosphere.
この工程において、酸素雰囲気中の酸素濃度が5%未満であると、被覆化合物層を完全に除去することができず、触媒金属と原料ガス中のカーボンとの反応のばらつきが生じ、均一な長さおよび重量のカーボンナノチューブを安定的に製造することができず、15%を超えると、被覆化合物層は完全に除去することができるものの、新たな金属酸化物層の形成を引き起こし、触媒作用の阻害原因となり、均一な長さおよび重量のカーボンナノチューブを安定的に製造することができないので好ましくない。 In this step, if the oxygen concentration in the oxygen atmosphere is less than 5%, the coating compound layer cannot be completely removed, resulting in variations in the reaction between the catalyst metal and the carbon in the source gas, resulting in a uniform length. In this case, when the carbon nanotubes cannot be stably produced, the coating compound layer can be completely removed, but the formation of a new metal oxide layer is caused. This is a cause of inhibition, and it is not preferable because a carbon nanotube having a uniform length and weight cannot be stably produced.
加熱温度は700℃以上〜900℃未満が好ましい。加熱温度は700℃未満であるとカーボンナノチューブの長さおよび重量のバラツキが大きく、900℃以上では触媒金属であるFeと下層のSiが化合物を形成してしまい、Feの触媒機能が損なわれるので、いずれも好ましくない。 The heating temperature is preferably 700 ° C. or higher and lower than 900 ° C. When the heating temperature is less than 700 ° C., the length and weight of the carbon nanotubes vary greatly. When the heating temperature is 900 ° C. or more, Fe, which is the catalytic metal, forms a compound, and the catalytic function of Fe is impaired. Neither is preferred.
加熱時間は加熱温度とも関係するが、10分以上が好ましい。加熱温度が10分未満であるとカーボンナノチューブの長さおよび重量のバラツキが大きく好ましくない。 Although heating time is related also with heating temperature, 10 minutes or more are preferable. When the heating temperature is less than 10 minutes, variations in length and weight of the carbon nanotubes are large, which is not preferable.
前記酸素雰囲気中とは、酸素濃度が大気中より低い場合又は高い場合は、例えば容器中(後段で熱CVD装置[反応炉]内で行っても良い)に触媒金属薄膜が形成された基板を設置し、容器中に酸素濃度を変化させたボンベにガスを導入する方法や、容器内を窒素などで置換し、次いで所定濃度の酸素を添加する方法などが用いられる。酸素以外の物質は特に限定しないが、カーボンナノチューブの生成に影響の少ない不活性ガス(窒素、ヘリウム、アルゴン、キセノンなど)を用いるが好ましい。 In the oxygen atmosphere, when the oxygen concentration is lower or higher than that in the atmosphere, for example, a substrate on which a catalytic metal thin film is formed in a container (may be performed in a thermal CVD apparatus [reactor] at a later stage). For example, a method of introducing gas into a cylinder whose oxygen concentration is changed in the container, a method of replacing the inside of the container with nitrogen or the like, and then adding oxygen of a predetermined concentration are used. The substance other than oxygen is not particularly limited, but it is preferable to use an inert gas (nitrogen, helium, argon, xenon, etc.) that has little influence on the formation of carbon nanotubes.
前記加熱処理により、基板上の触媒金属薄膜は一様に酸化され、微粒化され、直径1〜50nm程度の金属触媒粒子が形成される。 By the heat treatment, the catalyst metal thin film on the substrate is uniformly oxidized and atomized to form metal catalyst particles having a diameter of about 1 to 50 nm.
次に、前記触媒金属の微粒子を核として基板上にカーボンナノチューブを形成する工程では、CVD法を行う。原料ガスは通常はアセチレン(C2H2)ガスであるが、炭素を含有するものであれば特に限定されず、たとえば、メタン、エタン、プロパン、ヘキサンなどのアルカン類、エチレン、プロピレンの不飽和有機化合物、ベンゼン、トルエンなどの芳香族化合物なども用いることができる。
Next, in the step of forming carbon nanotubes on the substrate using the fine particles of the catalyst metal as nuclei, a CVD method is performed. The source gas is usually acetylene (C 2 H 2 ) gas, but is not particularly limited as long as it contains carbon. For example, alkanes such as methane, ethane, propane and hexane, ethylene and propylene unsaturated Organic compounds, aromatic compounds such as benzene and toluene can also be used.
アセチレンの場合、多層構造で太さ12〜38nmのカーボンナノチューブが基板表面にブラシ毛状に形成される。原料ガスはヘリウムやアルゴン、キセノン、窒素のような不活性ガスで希釈された状態で原料ガス供給管を経て反応ゾーンに供給してもよい。ガス供給は連続的に行っても断続的に行ってもよい。CVD法の操作条件は、好ましくは、大気圧下で、温度700〜900℃、加熱時間10〜15分が好ましい。 In the case of acetylene, carbon nanotubes having a multilayer structure and a thickness of 12 to 38 nm are formed in the shape of brush hairs on the substrate surface. The source gas may be supplied to the reaction zone through a source gas supply pipe in a state diluted with an inert gas such as helium, argon, xenon, or nitrogen. The gas supply may be performed continuously or intermittently. The operating conditions of the CVD method are preferably a temperature of 700 to 900 ° C. and a heating time of 10 to 15 minutes under atmospheric pressure.
カーボンナノチューブの長さは好ましくは1〜10μm、直径は好ましくは20〜30nm、カーボンナノチューブ相互間の間隔は好ましくは100〜150nmである。 The length of the carbon nanotube is preferably 1 to 10 μm, the diameter is preferably 20 to 30 nm, and the distance between the carbon nanotubes is preferably 100 to 150 nm.
つぎに、本発明を具体的に説明するために、本発明の実施例およびこれとの比較を示すための比較例をいくつか挙げる。 Next, in order to specifically explain the present invention, some examples of the present invention and comparative examples for showing comparison with the examples will be given.
実施例1
(1)シリコン基板(50×50×0.7mm)の表面にカーボンナノチューブ生成用の触媒としてEB(電子ビーム蒸着法)によりFeを蒸着させ、厚さ5nmのFe蒸着層を形成した。
Example 1
(1) Fe was vapor-deposited on the surface of a silicon substrate (50 × 50 × 0.7 mm) by EB (electron beam vapor deposition) as a catalyst for producing carbon nanotubes to form a 5 nm thick Fe vapor deposition layer.
次いで、Fe蒸着層を有する基板(7枚)をそれぞれ以下の条件で加熱処理した。 Subsequently, the board | substrate (7 sheets) which has Fe vapor deposition layer was heat-processed on the following conditions, respectively.
・処理条件1:未処理すなわちEBによるFe蒸着後の状態のまま加熱せず
・処理条件2:酸素濃度5%の雰囲気中で500℃で10分加熱
・処理条件3:酸素濃度5%の雰囲気中で600℃で10分加熱
・処理条件4:酸素濃度5%の雰囲気中で700℃で10分加熱
・処理条件5:酸素濃度5%の雰囲気中で800℃で10分加熱
・処理条件6:酸素濃度5%の雰囲気中で880℃で10分加熱
・処理条件7:酸素濃度5%の雰囲気中で900℃で10分加熱
・ Processing condition 1: Untreated, that is, not heated in the state after Fe deposition by EB ・ Processing condition 2: Heated at 500 ° C. for 10 minutes in an atmosphere with an oxygen concentration of 5%. ・ Processing condition 3: An atmosphere with an oxygen concentration of 5% Heating at 600 ° C. for 10 minutes / Processing condition 4: Heating at 700 ° C. for 10 minutes in an atmosphere having an oxygen concentration of 5% / Processing condition 5: Heating /
加熱処理後のFe蒸着層を有する基板(7枚)をそれぞれ反応管内に設置し、CVD法を10回実施し,触媒金属の微粒子を核として基板上にカーボンナノチューブを形成した。CVD装置の構成を図1に示す。CVD条件は、温度700℃、時間15分、原料ガスにはアセチレンガスを用い、不活性ガスには窒素ガスを用い、アセチレンガスの濃度を15%とした。
Substrates (7 sheets) each having an Fe vapor-deposited layer after heat treatment were placed in a reaction tube, and the CVD method was carried out 10 times to form carbon nanotubes on the substrate with catalyst metal fine particles as nuclei. The structure of the CVD apparatus is shown in FIG. The CVD conditions were
CVD法の実施回数毎に得られたカーボンナノチューブの長さを走査型電子顕微鏡(SEM)により測定した。カーボンナノチューブの長さ測定は、図11に示すように、正方形の基板において各辺に沿って5mm内側に設けられた4辺で形成される正方形の四隅部で実施し、得られた値の平均値を求めた。 The length of the carbon nanotube obtained for each execution of the CVD method was measured with a scanning electron microscope (SEM). As shown in FIG. 11, the length of the carbon nanotubes was measured at the four corners of a square formed by four sides provided 5 mm inside along each side in a square substrate, and the average of the obtained values The value was determined.
カーボンナノチューブの重量はCVD前後に測定した重量の差から求めた。ばらつきは、長さ、重量共に平均値を求めた後、算出した。 The weight of the carbon nanotube was obtained from the difference in weight measured before and after the CVD. The variation was calculated after obtaining an average value for both length and weight.
これらの測定結果を図2〜4に示す。図4より、酸素濃度5%の雰囲気中で700℃以上の加熱処理を行うと、カーボンナノチューブ長さおお重量のばらつきは10%以下まで抑えることが可能であることがわかった。ただし900℃では蒸着したFeが基板のシリコンと反応してシリサイドを形成するため、垂直配向カーボンナノチューブは生成しなかった(上記処理条件1、2、3および7は比較のためのものであり本発明には相当しない)。
These measurement results are shown in FIGS. From FIG. 4, it was found that when the heat treatment at 700 ° C. or higher is performed in an atmosphere having an oxygen concentration of 5%, the variation in length and weight of the carbon nanotubes can be suppressed to 10% or less. However, at 900 ° C., the deposited Fe reacts with the silicon of the substrate to form silicide, so that vertically aligned carbon nanotubes were not generated (the
実施例2
実施例1と同様の操作で得られた、Fe蒸着層を有する基板(50×50×0.7mm、Fe蒸着層の厚さ5nm、7枚)をそれぞれ以下の条件で加熱処理した。
Example 2
Substrates (50 × 50 × 0.7 mm, Fe deposited
・処理条件1:酸素濃度0.5%の雰囲気中700℃で10分加熱
・処理条件2:酸素濃度1%の雰囲気中700℃で10分加熱
・処理条件3:酸素濃度5%の雰囲気中700℃で10分加熱
・処理条件4:酸素濃度10%の雰囲気中700℃で10分加熱
・処理条件5:酸素濃度15%の雰囲気中700℃で10分加熱
・処理条件6:酸素濃度30%の雰囲気中700℃で10分加熱
・処理条件7:酸素濃度40%の雰囲気中700℃で10分加熱
Treatment condition 1: Heating at 700 ° C. for 10 minutes in an atmosphere with an oxygen concentration of 0.5% Treatment condition 2: Heating at 700 ° C. for 10 minutes in an atmosphere with an oxygen concentration of 1% Treatment condition 3: In an atmosphere with an oxygen concentration of 5% Heating at 700 ° C. for 10 minutes and treatment condition 4: Heating at 700 ° C. for 10 minutes in an atmosphere having an oxygen concentration of 10% Treatment condition 5: Heating at 700 ° C. in an atmosphere at an oxygen concentration of 15% and treatment condition 6:
実施例1と同様の操作および条件でCVD法を10回実施し、触媒金属の微粒子を核として基板上にカーボンナノチューブを形成した。 The CVD method was carried out 10 times under the same operation and conditions as in Example 1, and carbon nanotubes were formed on the substrate with catalyst metal fine particles as nuclei.
CVD法の実施回数毎に得られたカーボンナノチューブの長さ、重量およびこれらのばらつきを実施例1と同様の方法で求めた。これらの測定結果を図5〜7に示す。図7より、酸素濃度5〜15%の雰囲気中では、カーボンナノチューブの長さおよび重量のばらつきは10%以下まで抑えることがわかる。なお、図5〜7には記載していないが、酸素濃度が30%を超えると蒸着したFeが基板から剥離したため、カーボンナノチューブは生成しなかった(上記処理条件1、2、6、7は比較のためのものであり本発明には相当しない)。
The length and weight of the carbon nanotubes obtained each time the CVD method was performed and variations thereof were determined in the same manner as in Example 1. These measurement results are shown in FIGS. From FIG. 7, it can be seen that the variation in length and weight of the carbon nanotubes is suppressed to 10% or less in an atmosphere having an oxygen concentration of 5 to 15%. Although not shown in FIGS. 5 to 7, when the oxygen concentration exceeded 30%, the deposited Fe was peeled off from the substrate, so that carbon nanotubes were not generated (the
実施例3
実施例1と同様の操作で得られた、Fe蒸着層を有する基板(50×50×0.7mm、Fe蒸着層の厚さ5nm、4枚)をそれぞれ以下の条件で加熱処理した。
Example 3
The substrate (50 × 50 × 0.7 mm, the thickness of the Fe deposited
・処理条件1:酸素濃度5%の雰囲気中700℃で5分加熱
・処理条件2:酸素濃度5%の雰囲気中700℃で10分加熱
・処理条件3:酸素濃度5%の雰囲気中700℃で30分加熱
・処理条件4:酸素濃度5%の雰囲気中700℃で40分加熱
Treatment condition 1: Heating at 700 ° C. for 5 minutes in an atmosphere with an oxygen concentration of 5% Treatment condition 2: Heating at 700 ° C. for 10 minutes in an atmosphere with an oxygen concentration of 5% Treatment condition 3: 700 ° C. in an atmosphere with an oxygen concentration of 5% Heating for 30 minutes and treatment conditions 4: Heating at 700 ° C. for 40 minutes in an atmosphere with an oxygen concentration of 5%
実施例1と同様の操作および条件でCVD法を10回実施し、触媒金属の微粒子を核として基板上にカーボンナノチューブを形成した。 The CVD method was carried out 10 times under the same operation and conditions as in Example 1, and carbon nanotubes were formed on the substrate with catalyst metal fine particles as nuclei.
CVD法の実施回数毎に得られたカーボンナノチューブの長さ、重量およびこれらのばらつきを実施例1と同様の方法で求めた。これらの測定結果を図8〜10に示す。図10より、加熱処理時間10分以上において、カーボンナノチューブ長さおよび重量のばらつきは10%以下まで抑えることができることがわかる。また、図10から明らかなように、加熱時間を60分としてもばらつきの程度は小さいままであるが、コストの点から長時間加熱をする必要はない(上記処理条件1は比較のためのものであり本発明には相当しない)。
The length and weight of the carbon nanotubes obtained each time the CVD method was performed and variations thereof were determined in the same manner as in Example 1. These measurement results are shown in FIGS. FIG. 10 shows that the variation in the length and weight of the carbon nanotube can be suppressed to 10% or less when the heat treatment time is 10 minutes or more. As is apparent from FIG. 10, even when the heating time is 60 minutes, the degree of variation remains small, but it is not necessary to heat for a long time from the viewpoint of cost (the
Claims (1)
前記触媒金属薄膜の金属を微粒化する工程と、
前記触媒金属の微粒子を核として基板上にカーボンナノチューブを形成する工程を含むカーボンナノチューブの生成方法において、
前記触媒金属薄膜の金属を微粒化する工程を、5〜15%の酸素雰囲気中で700℃以上〜900℃未満での10〜60分間の加熱により行うことを特徴とする
カーボンナノチューブの生成方法。 Forming a catalyst metals thin film composed of Fe on a substrate,
Atomizing the metal of the catalyst metal thin film;
In the method for producing carbon nanotubes, comprising the step of forming carbon nanotubes on a substrate with the catalyst metal fine particles as nuclei,
A method of producing carbon nanotubes, wherein the step of atomizing the metal of the catalyst metal thin film is performed by heating at 700 ° C. or more and less than 900 ° C. for 10 to 60 minutes in a 5 to 15% oxygen atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009085809A JP5500850B2 (en) | 2009-03-31 | 2009-03-31 | Method for producing carbon nanotube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009085809A JP5500850B2 (en) | 2009-03-31 | 2009-03-31 | Method for producing carbon nanotube |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010235401A JP2010235401A (en) | 2010-10-21 |
JP5500850B2 true JP5500850B2 (en) | 2014-05-21 |
Family
ID=43090108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009085809A Active JP5500850B2 (en) | 2009-03-31 | 2009-03-31 | Method for producing carbon nanotube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5500850B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010056572B4 (en) | 2010-12-30 | 2018-12-27 | Snaptrack, Inc. | Electronic component and method for producing the electronic component |
DE102010056562B4 (en) | 2010-12-30 | 2018-10-11 | Snaptrack, Inc. | Electroacoustic component and method for producing the electroacoustic component |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2017985A1 (en) * | 1989-06-16 | 1990-12-16 | Otto Immel | Process for the preparation of an iron catalyst and a process for the preparation of primary amines by the hydrogenation of nitriles using said iron catalyst |
JP3432447B2 (en) * | 1999-03-31 | 2003-08-04 | 株式会社東芝 | Method for producing structure comprising carbon fiber and its support |
JP3463092B2 (en) * | 2001-03-27 | 2003-11-05 | 独立行政法人産業技術総合研究所 | Catalyst pattern for carbon nanotube production |
WO2005033001A2 (en) * | 2003-09-03 | 2005-04-14 | Honda Motor Co., Ltd. | Methods for preparation of one-dimensional carbon nanostructures |
JP2007051041A (en) * | 2005-08-19 | 2007-03-01 | Kansai Electric Power Co Inc:The | Method for production of carbon nanotube, carbon nanotube produced thereby, and catalyst for carbon nanotube production |
JP4678687B2 (en) * | 2006-02-24 | 2011-04-27 | 公立大学法人大阪府立大学 | Method and apparatus for producing carbon nanostructure |
-
2009
- 2009-03-31 JP JP2009085809A patent/JP5500850B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010235401A (en) | 2010-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7235159B2 (en) | Methods for producing and using catalytic substrates for carbon nanotube growth | |
US7824649B2 (en) | Apparatus and method for synthesizing a single-wall carbon nanotube array | |
US20090297846A1 (en) | Double-Walled Carbon Nanotube, Aligned Double-Walled Carbon Nanotube Bulk Structure and Process for Producing the Same | |
US20050214197A1 (en) | Methods for producing and using catalytic substrates for carbon nanotube growth | |
Baddour et al. | Direct and repetitive growth cycles of carbon nanotubes on stainless steel particles by chemical vapor deposition in a fluidized bed | |
Baro et al. | Pulsed PECVD for Low‐temperature Growth of Vertically Aligned Carbon Nanotubes | |
Terrado et al. | Aligned carbon nanotubes grown on alumina and quartz substrates by a simple thermal CVD process | |
Chang et al. | Iron and cobalt silicide catalysts-assisted carbon nanostructures on the patterned Si substrates | |
KR101313753B1 (en) | Method for growth of carbon nanoflakes and carbon nanoflakes structure | |
Kim et al. | Synthesis of high-density carbon nanotube films by microwave plasma chemical vapor deposition | |
JP5500850B2 (en) | Method for producing carbon nanotube | |
Yamamoto et al. | Modification of surface energy, dry etching, and organic film removal using atmospheric-pressure pulsed-corona plasma | |
US9346679B2 (en) | Method for enhancing growth of carbon nanotubes | |
JP2010077007A (en) | Base material for forming carbon nanotube, carbon nanotube orientedly grown on the base material and their production method | |
Hesamzadeh et al. | PECVD-growth of carbon nanotubes using a modified tip-plate configuration | |
Mahmoodi et al. | Various temperature effects on the growth of carbon nanotubes (CNTs) by thermal chemical vapor deposition (TCVD) method | |
Yang et al. | Effects of oxygen and nitrogen on carbon nanotube growth using a microwave plasma chemical vapor deposition technique | |
JP6476759B2 (en) | Method of manufacturing aligned carbon nanotube assembly | |
JP6623512B2 (en) | Carbon nanostructure aggregate and method for producing the same | |
JP2012140268A (en) | Determination method of substrate for producing carbon nanotube, and production method of carbon nanotube | |
Chang et al. | Low-temperature process in growing carbon nanotube | |
Paredez et al. | Growth of nitrogenated fullerene-like carbon on Ni islands by ion beam sputtering | |
Sato et al. | Growth control of carbon nanotubes by plasma enhanced chemical vapor deposition | |
Cheraghali et al. | Etching of 316L Stainless Steel by Different Chemical Etchant Solutions for the Growth of Carbon Nanotubes by Thermal Chemical Vapour Deposition | |
KR101055111B1 (en) | Carbon nanotube forming method using metal precursor layer, and field emission device manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130611 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130808 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131015 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140311 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5500850 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |