JP5499814B2 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP5499814B2
JP5499814B2 JP2010066298A JP2010066298A JP5499814B2 JP 5499814 B2 JP5499814 B2 JP 5499814B2 JP 2010066298 A JP2010066298 A JP 2010066298A JP 2010066298 A JP2010066298 A JP 2010066298A JP 5499814 B2 JP5499814 B2 JP 5499814B2
Authority
JP
Japan
Prior art keywords
cage
ring
bearing
peripheral surface
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010066298A
Other languages
Japanese (ja)
Other versions
JP2011196513A (en
Inventor
美昭 勝野
敦司 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010066298A priority Critical patent/JP5499814B2/en
Publication of JP2011196513A publication Critical patent/JP2011196513A/en
Application granted granted Critical
Publication of JP5499814B2 publication Critical patent/JP5499814B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3837Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
    • F16C33/3843Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/3856Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • F16C33/4676Details of individual pockets, e.g. shape or roller retaining means of the stays separating adjacent cage pockets, e.g. guide means for the bearing-surface of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Description

本発明は、転がり軸受に関し、より詳細には、工作機械の主軸装置や高速モータに適用される転がり軸受に関する。   The present invention relates to a rolling bearing, and more particularly to a rolling bearing applied to a spindle device of a machine tool and a high-speed motor.

最近の工作機械の主軸においては、高効率加工のため高速化が進み、従来の歯車駆動やベルト駆動では、歯のかみ合い部での摩擦やベルトのスリップによる発熱など伝達効率がよくないため、カップリングによる駆動モータ直結タイプや主軸内部にモータを搭載したいわゆる、モータビルトインタイプが主流を占めている。これらの高速主軸の場合、主軸に使用される軸受のdmn値は50万以上がほとんどである。また、軸受の転動体に比重の小さい軽量のセラミック材料(例えば、窒化けい素など)を用いて高速回転時の玉の遠心力を抑えた軸受では、dmn値が100万以上を越えるケースもある。   With the recent spindles of machine tools, the speed has increased due to high-efficiency machining, and the conventional gear drive and belt drive have poor transmission efficiency such as friction at the tooth meshing part and heat generation due to belt slip. The direct drive motor type with a ring and the so-called motor built-in type in which a motor is mounted inside the main shaft dominate. In the case of these high-speed main shafts, the dmn value of the bearing used for the main shaft is almost 500,000 or more. In addition, there are cases where the dmn value exceeds 1 million or more in a bearing in which the centrifugal force of the ball during high-speed rotation is suppressed by using a lightweight ceramic material (for example, silicon nitride) having a small specific gravity for the rolling element of the bearing. .

このような高速回転用途の軸受に使用される保持器では、軽量、かつ耐摩耗性のある合成樹脂材料保持器として、例えば、フェノール、ポリアミド、ポリフェニレンサルファイド(略称:PPS)、ポリエーテルエーテルケトン(略称:PEEK)、ポリイミドなどが使用されており、さらには強化材として、ガラス繊維・カーボン繊維・アラミド繊維などが添加されている場合がある。   In a cage used for such a bearing for high-speed rotation applications, as a lightweight and wear-resistant synthetic resin material cage, for example, phenol, polyamide, polyphenylene sulfide (abbreviation: PPS), polyether ether ketone ( Abbreviation: PEEK), polyimide, and the like are used, and glass fiber, carbon fiber, aramid fiber, or the like may be added as a reinforcing material.

保持器は、円周方向に等間隔に形成されたポケットによって、転動体を円周方向に等間隔に配置させる。当然のことながら、転動体を円滑にポケット内で自転させるには、ポケット内径と転動体間に適正なすきま(ポケットすきま)を設ける必要がある。また、内外輪間で保持器は軸受の半径方向にもすきまを設けており、保持器の半径方向動き量は、外輪内周面と保持器外周面間、または、内輪外周面と保持器内周面間のいずれか小さい方のすきま(案内すきま)で規制される。また、転動体を玉として、玉案内とした場合には、保持器の半径方向動き量は、上述のように玉とポケット内部の半径方向のすきまで規制される。   The cage places the rolling elements at equal intervals in the circumferential direction by pockets formed at equal intervals in the circumferential direction. As a matter of course, in order to smoothly rotate the rolling element within the pocket, it is necessary to provide an appropriate clearance (pocket clearance) between the pocket inner diameter and the rolling element. The cage is also provided with a clearance in the radial direction of the bearing between the inner and outer rings, and the radial movement amount of the cage is between the inner peripheral surface of the outer ring and the outer peripheral surface of the cage or between the outer peripheral surface of the inner ring and the inner surface of the cage. Regulated by the smaller clearance (guide clearance) between the peripheral surfaces. Further, when the rolling element is a ball and a ball guide is used, the radial movement amount of the cage is restricted to the radial clearance between the ball and the pocket as described above.

このため、このような保持器を組み込んだ転がり軸受においては、転動体が転がって接する内輪軌道面と外輪軌道面の形状誤差、転動体自身の形状誤差、あるいは、軸受の内輪と外輪との中心軸の芯ずれや傾き等によって、転動体は、転動体ごとに微小の遅れや進みが発生し、保持器ポケットの内面と接触する。また、保持器自身も外内輪間で不規則な挙動を生じる。この結果、保持器音と呼ばれる騒音や振動が発生することがある。   For this reason, in a rolling bearing incorporating such a cage, the shape error of the inner ring raceway surface and the outer ring raceway surface on which the rolling element rolls in contact, the shape error of the rolling element itself, or the center between the inner ring and outer ring of the bearing Due to shaft misalignment, inclination, etc., the rolling elements are slightly delayed or advanced for each rolling element, and come into contact with the inner surface of the cage pocket. Also, the cage itself behaves irregularly between the outer and inner rings. As a result, noise and vibration called cage noise may occur.

例えば、図15(a)に示す玉軸受100のように、保持器101が案内すきま分振れ回ることによって、玉102とポケット面との摩擦力の方向が変化する。このため、図15(b)に示すように、保持器101の中心軸が何本かの円を描くという保持器101の不規則な挙動をまねき、保持器音が発生することもある。   For example, as in the ball bearing 100 shown in FIG. 15A, the direction of the frictional force between the ball 102 and the pocket surface changes when the cage 101 swings around the guide clearance. For this reason, as shown in FIG. 15B, the cage 101 may behave irregularly such that the central axis of the cage 101 draws several circles, and cage noise may be generated.

また、転がり軸受では通常グリース潤滑が使用される。グリース潤滑は、軸受取付の際に、あらかじめグリースを所定量封入するだけで長時間使用できるため、非常に簡単であり,最も一般的な潤滑方法として広く採用されている。   Also, grease lubrication is usually used for rolling bearings. Grease lubrication is very simple because it can be used for a long time just by pre-filling a predetermined amount of grease when mounting the bearing, and is widely used as the most common lubrication method.

グリース潤滑では、グリースを封入し、軸受を主軸に組み付けた後、通常の運転をさせる前に慎重なならし運転が必要である。これは、グリースを軸受内部全体に均一にゆきわたらせるとともに、徐々にグリースを転がり接触部から排除して、不必要な抵抗がかからないようにするためである。具体的なならし運転の方法の一つとしては、低速から回転を始め、軸受温度が安定したことを確認しながら、少しずつ回転数を上げていくようにする。ならし運転をせずに急に最高回転数まで立ち上げると、転走面及び転走面近傍の過剰グリースのかくはん抵抗により軸受内部温度が急激に上昇し、グリースの成分に悪影響を与える場合や異常昇温により焼付きをまねくこともある。   In grease lubrication, after applying grease and assembling the bearing to the main shaft, a careful leveling operation is required before normal operation. This is because the grease is uniformly distributed throughout the bearing, and the grease is gradually removed from the rolling contact portion so that unnecessary resistance is not applied. As a specific leveling operation method, the engine starts rotating at a low speed and gradually increases the rotation speed while confirming that the bearing temperature is stable. If the engine speed is suddenly increased to the maximum speed without running-in, the bearing internal temperature will rise rapidly due to the stirring resistance of excess grease on the rolling surface and in the vicinity of the rolling surface. Abnormal temperature rise may cause seizure.

また、これらならし運転の途中は、軸受各部の潤滑剤の量が不均一な状態であるため、転動体の回転挙動を不安定にする。このため、内輪軌道面と外輪軌道面の形状誤差、転動体自身の形状誤差、あるいは、軸受の内輪と外輪との中心軸の芯ずれや傾き等の前述した主因と相俟って、転動体ごとの微小の遅れや進みが生じやすくなったり、あるいは、保持器自身の外内輪間での不規則な挙動をまねく誘因となり、保持器音が発生しやすい。   Further, during these leveling operations, the amount of lubricant in each part of the bearing is in a non-uniform state, which makes the rotational behavior of the rolling element unstable. For this reason, in combination with the above-mentioned main factors such as the shape error of the inner ring raceway surface and the outer ring raceway surface, the shape error of the rolling element itself, or the misalignment and inclination of the center axis of the bearing inner ring and outer ring, the rolling element A small delay or advance is likely to occur, or it causes an irregular behavior between the outer and inner rings of the cage itself, and cage noise is likely to occur.

また、グリース潤滑ではなく、主に高速回転主軸に適用されるオイルエア潤滑や噴霧潤滑(オイルミスト潤滑とも呼ぶ)などでは、潤滑油の供給むらや軸受内に潤滑された油が速やかに排出されず軸受内部に停滞する場合があり、潤滑油の量が軸受内部で不均一となったり過剰になることで、グリース潤滑と同様の理由で保持器音が発生する。   Also, oil-air lubrication and spray lubrication (also referred to as oil mist lubrication), which are mainly applied to high-speed spindles, rather than grease lubrication, do not promptly discharge uneven lubrication oil or lubricated oil in the bearing. In some cases, the bearing stays in the bearing, and the amount of lubricating oil becomes non-uniform or excessive in the bearing, so that cage noise is generated for the same reason as that for grease lubrication.

保持器音が発生すると聴覚上で不快感があると共に、生じた振動によって加工精度に悪影響を与える場合もある。本保持器音は、上述の理由でならし運転中に発生しやすいが、粘性の高いグリース、あるいは、グリースの基油粘度が大きい銘柄を使用した場合、ならし後も断続的に発生する場合(特に冬季で、気温低下によりグリースの粘性が高くなり流動性が悪くなった時など)がある。保持器音の有無は、工作機械の主軸製造メーカーや工作機械製造メーカーで主軸を試運転して確認しているが、出荷後再びエンドユーザーで発生することもあり、非常にやっかいな異常音である。   When the cage sound is generated, there is an unpleasant sensation on hearing, and the generated vibration may adversely affect the processing accuracy. This cage noise is likely to occur during a running-in operation for the reasons described above, but may occur intermittently even after running-in when high-viscosity grease or a brand with a high base oil viscosity of grease is used. (Especially in winter, when the temperature of the grease decreases, the viscosity of the grease increases and its fluidity deteriorates.) The presence or absence of cage noise is confirmed by trial operation of the spindle at machine tool manufacturers and machine tool manufacturers, but it may occur again at the end user after shipment, which is very troublesome abnormal noise. .

また、高速回転で保持器音が発生すると、低速回転に比べて音響レベルや振動レベルが非常に高くなり、品質上の問題になり易い。   Further, when the cage sound is generated at a high speed rotation, the sound level and the vibration level are very high as compared with the low speed rotation, which is likely to cause a quality problem.

一方、保持器音を抑えるための方策として、時間をかけたならし運転、粘性の低い軟らかいグリースを選定する、玉とポケット間の接触位置や接触部の形状を変えるなどの対応策が行なわれている。また、他の保持器音への対策例として、保持器の一部に凹部を設けてアンバランスを故意に与える考案がある(例えば、特許文献1参照。)。特許文献1では、図16に示すように、保持器110の両リング部で、かつ軸方向位相ではポケット柱部位置の一部にくさび形状に凹部111を設けたり、図17に示すように、保持器120の外径面から内径面に向かって半径方向の貫通穴121、あるいは貫通せずに凹部を設けることで、アンバランスによりホワールを与えることで保持器の不規則な振動を抑えるようにしている。   On the other hand, measures to suppress the cage noise include countermeasures such as time-consuming operation, selecting soft grease with low viscosity, changing the contact position between the ball and pocket and the shape of the contact part. ing. As another example of measures against the cage sound, there is a device that intentionally provides unbalance by providing a recess in a part of the cage (see, for example, Patent Document 1). In Patent Document 1, as shown in FIG. 16, a concave portion 111 is provided in a wedge shape at a part of the pocket column portion at both ring portions of the retainer 110 and in the axial phase, or as shown in FIG. By providing a through hole 121 in the radial direction from the outer diameter surface to the inner diameter surface of the cage 120, or by providing a recess without penetrating the cage 120, irregular vibration of the cage is suppressed by giving a whirl by unbalance. ing.

さらに、保持器の一部に凹部を設け、円周方向の重量アンバランスを生じさせ、フレッチングを抑制するものも考案されている。   Further, a device has been devised in which a concave portion is provided in a part of the cage to cause a weight imbalance in the circumferential direction and suppress fretting.

特開2005−337315号公報JP 2005-337315 A 特開平9−292008号公報JP-A-9-292008

ところで、保持器音を抑えるため、時間をかけたならし運転、粘性の低い軟らかいグリースを選定する、玉とポケット間の接触位置や接触部の形状を変えるなどの対応策では、軸受の形式や保持器の形状等により対策案と効果が一律ではなく、必ずしも有効ではなかった。   By the way, in order to suppress cage noise, countermeasures such as time-consuming operation, selecting soft grease with low viscosity, changing the contact position between the ball and pocket and the shape of the contact part, etc. Depending on the shape of the cage, the measures and effects were not uniform and not always effective.

また、図16に示すようにな凹部111を形成した場合、該凹部111に応力集中が生じ、回転時、保持器110に加わる力(玉−ポケット間の干渉力・遠心力によりリング部に作用するフープテンションなど)により該凹部からクラックが発生したり破損する可能性がある。また、図17に示すような貫通穴121では、内輪案内、または外輪案内において、案内面と穴がラップしてしまうので、穴121のエッジ部で相手案内部材(内輪または外輪)と干渉するため、保持器120の不安定な挙動、穴121のエッジ部の摩耗や破損をまねいたり、トルク大・発熱大などの不具合が生じる場合がある。特に、工作機械の主軸やモータ軸のような高速回転で転がり軸受が使用される場合、上記の不具合が発生しやすい。   In addition, when the concave portion 111 as shown in FIG. 16 is formed, stress concentration occurs in the concave portion 111, and the force applied to the cage 110 during rotation (acting on the ring portion by the interference force / centrifugal force between the ball and the pocket). Cracks may be generated or damaged from the recesses. In addition, in the through hole 121 as shown in FIG. 17, the guide surface and the hole wrap in the inner ring guide or the outer ring guide, so that the edge portion of the hole 121 interferes with the other guide member (inner ring or outer ring). In some cases, the cage 120 may have unstable behavior, wear or breakage of the edge portion of the hole 121, or may have problems such as large torque and large heat generation. In particular, when a rolling bearing is used at a high speed rotation such as a main shaft or a motor shaft of a machine tool, the above-mentioned problems are likely to occur.

また、凹部を加工する場合、(特に内径側から外径側に向かう貫通していない穴の場合、)ドリルによる穴加工が困難であったり、射出成形にて製作する場合、凹部の部分の型がうまく離型(射出成形品を型から抜きずらい)できず、成形型構造が複雑になるなどの問題点がある。   Also, when machining recesses (especially in the case of holes that do not penetrate from the inner diameter side to the outer diameter side), when drilling is difficult, or when manufacturing by injection molding, the mold of the recess part However, there is a problem that mold release (it is difficult to remove an injection-molded product from the mold) and the structure of the mold becomes complicated.

また、特許文献1に記載の幾何学中心から質量中心までの偏心量を規定する式に関して、係数αは、許容される遠心力の係数と記載されているだけで、具体的な数値の開示がない。また、係数αは、軸受のサイズや潤滑剤の種類、保持器材料などで変化すると思われ、具体的に実施することは非常に困難である。
さらに、特許文献1は、数値シミュレーション解析によって、質量中心の軌跡を求めており、保持器の振動大小の差を明確にしているが、実際にどこまで振動値を下げれば保持器音の発生を解消できるのか、検証実験結果には開示されていない。
In addition, regarding the formula that defines the amount of eccentricity from the geometric center to the center of mass described in Patent Document 1, the coefficient α is merely described as a coefficient of an allowable centrifugal force, and specific numerical values are disclosed. Absent. In addition, the coefficient α is considered to vary depending on the size of the bearing, the type of lubricant, the cage material, and the like, and it is very difficult to carry out concretely.
Furthermore, Patent Document 1 obtains the locus of the center of mass by numerical simulation analysis, and clarifies the difference in the magnitude of vibration of the cage, but if the vibration value is actually lowered, the generation of the cage noise is eliminated. Whether it can be done is not disclosed in the verification experiment results.

本発明は、上記事情に鑑みてなされたものであり、その目的は、保持器に適切なアンバランス量を故意に与えて、保持器に一定方向の偏心運動を与えることで、保持器の不規則な挙動を抑制し、保持器音を防止する転がり軸受を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to deliberately give an appropriate unbalance amount to the cage and to give the cage an eccentric motion in a certain direction. An object of the present invention is to provide a rolling bearing that suppresses regular behavior and prevents cage noise.

本発明の上記目的は、下記の構成により達成される。
は、下記の構成により達成される。
(1) 外輪と、内輪と、前記外輪及び内輪との間に転動自在に配置される複数の転動体と、円周方向に所定の間隔で形成され、該複数の転動体をそれぞれ保持する複数のポケットを有する保持器と、を備え、該保持器の案内方式が外輪案内または転動体案内である転がり軸受であって、
前記転がり軸受の内径寸法は、30mm以上150mm以下であり、
前記保持器は、軸方向に並んで配置された一対のリング部と、前記一対のリング部間を繋ぐように、円周方向に所定の間隔で配置される複数の柱部と、を有し、
前記一対のリング部の外周面は、前記柱部の径方向外面よりも大径であり、
前記外輪に案内される前記リング部の外周面の円周方向の一部には、一様な曲率を有する円弧部と、該円弧部から前記リング部の外周面へ連続する湾曲した立ち上がり部と、を有する少なくとも一つの凹部が形成されており、
前記凹部は、前記円弧部と前記立ち上がり部の境界部分の円周方向位置が、軸方向から見て前記柱部とラップしないように形成され、
前記保持器は、アンバランス量が0.8g・cm以上4g・cm以下となるように非点対称に形成されていることを特徴とする転がり軸受。
(2) 前記凹部は、前記ポケットの円周方向幅の範囲内で形成されることを特徴とする(1)に記載の転がり軸受。
なお、本発明の外輪案内方式とは、保持器の外周面と外輪の内周面との間のすきまで、保持器が半径方向に位置決め案内される構造であり、転動体案内方式とは、転動体が玉である玉軸受において、保持器を半径方向に移動させた時の玉と保持器のポケット内部の接触点(凸部)との間の半径方向すきまで保持器が半径方向に位置決め案内される構造を意味する。
The above object of the present invention can be achieved by the following constitution.
Is achieved by the following configuration.
(1) An outer ring, an inner ring, a plurality of rolling elements that are freely rollable between the outer ring and the inner ring, and a plurality of rolling elements that are formed at predetermined intervals in the circumferential direction, and hold the plurality of rolling elements, respectively. A rolling bearing having a cage having a plurality of pockets, the guide system of the cage being an outer ring guide or a rolling element guide,
The inner diameter of the rolling bearing is 30 mm or more and 150 mm or less,
The cage includes a pair of ring portions arranged side by side in the axial direction, and a plurality of column portions arranged at predetermined intervals in the circumferential direction so as to connect the pair of ring portions. ,
The outer peripheral surfaces of the pair of ring portions are larger in diameter than the radially outer surfaces of the column portions,
A part of the outer peripheral surface of the ring portion guided by the outer ring in a circumferential direction includes an arc portion having a uniform curvature, and a curved rising portion continuous from the arc portion to the outer peripheral surface of the ring portion. , At least one recess is formed,
The concave portion is formed so that a circumferential position of a boundary portion between the arc portion and the rising portion does not wrap with the column portion when viewed from the axial direction,
The rolling bearing is characterized in that the cage is formed asymmetrically so as to have an unbalance amount of 0.8 g · cm to 4 g · cm.
(2) The rolling bearing according to (1), wherein the concave portion is formed within a range of a circumferential width of the pocket.
The outer ring guide method of the present invention is a structure in which the cage is positioned and guided in the radial direction up to the clearance between the outer peripheral surface of the cage and the inner peripheral surface of the outer ring. In ball bearings where the rolling elements are balls, the cage is positioned in the radial direction until the radial clearance between the ball and the contact point (convex part) inside the cage pocket when the cage is moved in the radial direction. Means a guided structure.

本発明の転がり軸受によれば、内径寸法を30mm以上150mm以下とし、保持器は、アンバランス量が0.8g・cm以上4g・cm以下となるように非点対称に形成されているので、保持器に適切なアンバランス量を故意に与えて、保持器に一定方向の偏心運動を与えることで、保持器の不規則な挙動を抑制し、保持器音を防止する。
特に、外輪に案内される保持器のリング部の外周面の円周方向の一部には、一様な曲率を有する円弧部と、該円弧部からリング部の外周面へ連続する湾曲した立ち上がり部と、を有する少なくとも一つの凹部が形成されており、凹部は、ポケットの円周方向幅の範囲内に形成されるとともに、円弧部と立ち上がり部の境界部分の円周方向位置が、軸方向から見て柱部とラップしないように形成されるので、急激な断面積の変化を避けて、柱部の付根部分の応力集中を防止することができる。
According to the rolling bearing of the present invention, the inner diameter is 30 mm or more and 150 mm or less, and the cage is formed asymmetrically so that the unbalance amount is 0.8 g · cm or more and 4 g · cm or less. By deliberately giving an appropriate unbalance amount to the cage and giving the cage eccentric motion in a certain direction, irregular behavior of the cage is suppressed and cage noise is prevented.
In particular, a part of the outer peripheral surface of the ring portion of the cage guided by the outer ring in the circumferential direction includes an arc portion having a uniform curvature and a curved rising that continues from the arc portion to the outer peripheral surface of the ring portion. At least one concave portion formed in the circumferential width of the pocket, and the circumferential position of the boundary portion between the arc portion and the rising portion in the axial direction. Since it is formed so as not to overlap with the column portion as viewed from the top, it is possible to avoid a sudden change in the cross-sectional area and to prevent stress concentration at the base portion of the column portion.

本発明の第1実施形態に係る転がり軸受を示す断面図である。It is sectional drawing which shows the rolling bearing which concerns on 1st Embodiment of this invention. 図1の転がり軸受の保持器の斜視図である。It is a perspective view of the holder | retainer of the rolling bearing of FIG. (a)は図2の保持器の側面図であり、(b)は(a)のIII部拡大図であり、(c)は(a)のIII´から見た部分上面図である。(A) is the side view of the holder | retainer of FIG. 2, (b) is the III section enlarged view of (a), (c) is the partial top view seen from III 'of (a). (a)は本発明の第2実施形態に係る保持器の側面図であり、(b)は(a)のIV部拡大図であり、(c)は(a)のIV´から見た部分上面図である。(A) is a side view of the retainer according to the second embodiment of the present invention, (b) is an enlarged view of the IV part of (a), and (c) is a portion viewed from IV ′ of (a). It is a top view. (a)は本発明の第3実施形態に係る保持器の側面図であり、(b)は(a)のV部拡大図であり、(c)は(a)のV´から見た部分上面図である。(A) is a side view of the retainer according to the third embodiment of the present invention, (b) is an enlarged view of a V portion of (a), and (c) is a portion viewed from V ′ of (a). It is a top view. (a)は本発明の第4実施形態に係る保持器の側面図であり、(b)は(a)のVI部拡大図であり、(c)は(a)のVI´から見た部分上面図であり、(d)は(a)のVI´´−VI´´線に沿った断面図である。(A) is a side view of a retainer according to a fourth embodiment of the present invention, (b) is an enlarged view of a VI part of (a), and (c) is a portion viewed from VI ′ of (a). It is a top view, (d) is sectional drawing along the VI "-VI" line of (a). 本発明の第5実施形態に係る転がり軸受を示す断面図である。It is sectional drawing which shows the rolling bearing which concerns on 5th Embodiment of this invention. (a)は図7の保持器の側面図であり、(b)は(a)のVIII部拡大図であり、(c)は(a)のVIII´から見た部分上面図である。(A) is a side view of the cage of FIG. 7, (b) is an enlarged view of the VIII portion of (a), and (c) is a partial top view as seen from VIII ′ of (a). 本発明の第5実施形態の変形例に係る転がり軸受を示す断面図である。It is sectional drawing which shows the rolling bearing which concerns on the modification of 5th Embodiment of this invention. (a)は本発明の第6実施形態に係る保持器の側面図であり、(b)は(a)のX部拡大図であり、(c)は(a)のX´から見た部分上面図であり、(d)は(a)のX´´部拡大図であり、(e)は(a)のX´´´から見た部分下面図である。(A) is a side view of a retainer according to a sixth embodiment of the present invention, (b) is an enlarged view of part X of (a), and (c) is a portion viewed from X ′ of (a). It is a top view, (d) is an X ″ portion enlarged view of (a), and (e) is a partial bottom view seen from X ″ of (a). 本発明の第6実施形態の変形例に係る転がり軸受を示す断面図である。It is sectional drawing which shows the rolling bearing which concerns on the modification of 6th Embodiment of this invention. 本発明の第7実施形態の変形例に係る転がり軸受を示す断面図である。It is sectional drawing which shows the rolling bearing which concerns on the modification of 7th Embodiment of this invention. (a)は本発明の第7実施形態に係る保持器の側面図であり、(b)は(a)のXIII部拡大図であり、(c)は(a)のXIII´から見た部分上面図である。(A) is a side view of a retainer according to a seventh embodiment of the present invention, (b) is an enlarged view of the XIII part of (a), and (c) is a portion viewed from XIII ′ of (a). It is a top view. 本発明の試験装置を示す断面図である。It is sectional drawing which shows the testing apparatus of this invention. (a)は、保持器の振れ回りによる摩擦力の方向の変化を示す図であり、(b)は、保持器音が確認されている時の保持器の中心軸の振れ回りを示す図である。(A) is a figure which shows the change of the direction of the frictional force by the whirling of a cage | basket, (b) is a figure which shows the whirling of the center axis | shaft of a cage | basket when the cage | basket sound is confirmed. is there. 従来の保持器を示す斜視図である。It is a perspective view which shows the conventional holder | retainer. 従来の他の保持器を示す斜視図である。It is a perspective view which shows the other conventional holder | retainer.

以下、本発明の各実施形態に係る転がり軸受について図面に基づいて詳細に説明する。   Hereinafter, the rolling bearing according to each embodiment of the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1〜図3に示すように、本発明の第1実施形態に係る円筒ころ軸受1は、内周面に外輪軌道面2aを有する外輪2と、外周面に内輪軌道面3aを有する内輪3と、外輪軌道面2a及び内輪軌道面3a間に転動自在に配置される複数のころ(転動体)4と、円周方向に所定の間隔で形成され、複数のころ4をそれぞれ保持する複数のポケット11を有する保持器10と、を備える。
(First embodiment)
As shown in FIGS. 1 to 3, a cylindrical roller bearing 1 according to the first embodiment of the present invention includes an outer ring 2 having an outer ring raceway surface 2a on an inner peripheral surface and an inner ring 3 having an inner ring raceway surface 3a on an outer peripheral surface. And a plurality of rollers (rolling elements) 4 that are arranged to freely roll between the outer ring raceway surface 2a and the inner ring raceway surface 3a, and a plurality of rollers that are formed at predetermined intervals in the circumferential direction and hold the plurality of rollers 4 respectively. And a cage 10 having a pocket 11.

保持器10は、軸方向に並んで配置された一対のリング部12と、両リング部12間を繋ぐように、円周方向に所定の間隔で配置された複数の柱部13と、を有し、一対のリング12と隣り合う柱部13によってポケット11を構成している。また、柱部13の円周方向両側の軸方向中間部には、柱部13の円周方向側面から連続した側面を有し、円筒ころ4を確実に保持するためのころ止め部14が柱部13の径方向外面から突出して設けられている。保持器10は、柱部13の径方向外面よりも大径の両リング部12の外周面12aが外輪軌道面2aによって案内される外輪案内方式である。   The cage 10 has a pair of ring portions 12 arranged side by side in the axial direction, and a plurality of column portions 13 arranged at predetermined intervals in the circumferential direction so as to connect both the ring portions 12. The pocket 11 is constituted by the column portion 13 adjacent to the pair of rings 12. Moreover, the axial intermediate part of the both sides in the circumferential direction of the column part 13 has a side surface continuous from the circumferential side surface of the column part 13, and a roller stopper 14 for securely holding the cylindrical roller 4 is provided in the column. It protrudes from the radially outer surface of the portion 13. The cage 10 is an outer ring guide system in which outer peripheral surfaces 12a of both ring portions 12 having a diameter larger than the radially outer surface of the column portion 13 are guided by the outer ring raceway surface 2a.

また、両リング部12の外周面12aの円周方向の一部には、アンバランスを与えるように、少なくとも一つの凹部15(本実施形態では、各リング部12に3つ)が軸方向に亘ってそれぞれ形成され、リング部12の外周面側でポケット11の内面とリング部12の軸方向外端面を繋いでいる。3つの凹部15は、3つのポケット11の開口位置と対応するようにポケット11の円周方向中間部に対して対称に形成され、3つのポケット11間の2つの柱部13の位置を除いて、それぞれ円周方向に所定の間隔をおいて断続的に形成されている。   In addition, at least one concave portion 15 (three in each ring portion 12 in the present embodiment) is provided in the axial direction so as to give unbalance to a part of the outer circumferential surface 12a of both ring portions 12 in the circumferential direction. The inner surface of the pocket portion 11 and the outer end surface in the axial direction of the ring portion 12 are connected to each other on the outer peripheral surface side of the ring portion 12. The three concave portions 15 are formed symmetrically with respect to the circumferential intermediate portion of the pocket 11 so as to correspond to the opening positions of the three pockets 11, except for the positions of the two column portions 13 between the three pockets 11. These are formed intermittently at predetermined intervals in the circumferential direction.

各凹部15は、リング部12を薄肉とする一様な曲率を有する円弧部16と、円弧部16からリング部12の外周面12aへ連続する曲率半径の大きな立ち上がり部17と、を有する。そして、円弧部16と立ち上がり部17の境界部分18の円周方向位置は、軸方向から見て柱部13とラップしないように、柱部13の付根部分13aの円周方向位置よりもポケット11の円周方向中間位置C寄りに形成されている。即ち、柱部13の付根部分13aは、円周方向において、円弧部16と立ち上がり部17との境界部分18と、凹部15とリング部12の外周面12aとの境界部分(立ち上がり部17とリング部12の外周面との境界部分)19との間に位置している。これにより、急激な断面積の変化を避けて、柱部13の付根部分13aでの応力集中を防止し、保持器10の強度を維持する。また、立ち上がり部17の曲率半径を大きくすることで、立ち上がり部17での応力集中を防止している。   Each concave portion 15 includes an arc portion 16 having a uniform curvature that makes the ring portion 12 thin, and a rising portion 17 having a large curvature radius that continues from the arc portion 16 to the outer peripheral surface 12 a of the ring portion 12. And the circumferential direction position of the boundary part 18 of the circular arc part 16 and the rising part 17 is pocket 11 more than the circumferential direction position of the root part 13a of the column part 13 so that it may not overlap with the column part 13 seeing from the axial direction. Is formed closer to the middle position C in the circumferential direction. In other words, the root portion 13a of the column portion 13 includes, in the circumferential direction, a boundary portion 18 between the arc portion 16 and the rising portion 17, and a boundary portion between the concave portion 15 and the outer peripheral surface 12a of the ring portion 12 (the rising portion 17 and the ring portion 12). (Between the outer peripheral surface of the portion 12 and the boundary portion) 19. Thereby, a sudden change in the cross-sectional area is avoided, stress concentration at the root portion 13a of the column portion 13 is prevented, and the strength of the cage 10 is maintained. Further, by increasing the radius of curvature of the rising portion 17, stress concentration at the rising portion 17 is prevented.

また、凹部15は、リング部12の軸方向に亘って形成されているので、グリースの排出性が良好となり、さらに、ならし運転時の保持器音を防止することができる。特に、封入されたグリースは、ころ4に付着しつつ軸受全体に行き渡る。また、凹部15は、ポケット11の開口位置に設けられているので、ころ4に付着した余剰グリースが軸受端面側にスムーズに移動排出できる。なお、本実施形態では、リング部12の軸方向内側部分に、柱部13の径方向外面と連続する幅狭の外周面が形成されているが、凹部15の円弧部16は、この外周面と略等しい深さまで凹ませている。   Moreover, since the recessed part 15 is formed over the axial direction of the ring part 12, it becomes easy to discharge | release grease, and also can prevent the cage | basket | tork sound at the time of a run-in operation. Particularly, the sealed grease spreads over the entire bearing while adhering to the roller 4. Moreover, since the recessed part 15 is provided in the opening position of the pocket 11, the excess grease adhering to the roller 4 can be smoothly moved and discharged to the bearing end surface side. In the present embodiment, a narrow outer peripheral surface that is continuous with the radially outer surface of the column portion 13 is formed in the axially inner portion of the ring portion 12, but the arc portion 16 of the recess 15 is formed on the outer peripheral surface. It is recessed to a depth approximately equal to.

ここで、回転中に保持器に作用するアンバランス力は、式(1)のように、保持器回転速度の二乗に比例するため、軸受の回転速度が増すほど大きくなり、不規則な挙動を抑制することが可能となる。   Here, since the unbalance force acting on the cage during rotation is proportional to the square of the cage rotation speed as shown in Equation (1), the unbalance force increases as the rotation speed of the bearing increases, resulting in irregular behavior. It becomes possible to suppress.

Fc=meω・・・・・式(1)
ここで、
Fc:アンバランスにより保持器に働く遠心力
m :偏芯質量
e :偏芯質量の回転中心からの距離
ω :角速度(2・π・n/60)
n :保持器回転速度(min−1
なお、SI単位で偏心質量を「kg」、偏心質量の回転中心からの距離を「m」に設定した場合、遠心力はN(ニュートン)で算出される。
Fc = meω 2 Equation (1)
here,
Fc: Centrifugal force acting on the cage due to imbalance m: Eccentric mass e: Distance from the center of rotation of the eccentric mass ω: Angular velocity (2 · π · n / 60)
n: Cage rotation speed (min −1 )
When the eccentric mass is set to “kg” and the distance from the rotation center of the eccentric mass is set to “m” in SI units, the centrifugal force is calculated by N (Newton).

汎用モータや家電モータ等では、軸受のdmn値が50万以下の場合が多いので、相当量のアンバランス量を付加しても、保持器自身の外内輪間で不規則な挙動にアンバランス力が打ち勝てず、回転中のランダムな偏芯運動を抑制することができない。しかし、工作機械において、dmn値が50万を超える場合、或いは、転動体にセラミック材料(たとえば、窒化けい素など)を使用すれば100万以上、120万以上の高速主軸が多くあり、より高速回転になるほど、保持器10は回転中にアンバランスの位相に偏芯方向が固定され、高速回転でよりその悪影響(音響や振動大)が出やすい保持器10の不規則な挙動を確実に抑制できる。これにより、保持器音が抑制され、軸受の良好な音響特性や振動特性を向上させる。   In general-purpose motors and household appliance motors, the dmn value of the bearing is often 500,000 or less, so even if a considerable amount of unbalance is added, the unbalanced force causes irregular behavior between the outer and inner rings of the cage itself. Cannot overcome the random eccentric motion during rotation. However, in a machine tool, if the dmn value exceeds 500,000, or if a ceramic material (for example, silicon nitride) is used for the rolling element, there are many high-speed spindles of 1 million or more and 1.2 million or more. As the rotation is increased, the eccentric direction of the retainer 10 is fixed to the unbalanced phase during the rotation, and the irregular behavior of the retainer 10 that is more likely to cause adverse effects (sound and vibration) is reliably suppressed at high speed rotation. it can. Thereby, a cage | basket | torney sound is suppressed and the favorable acoustic characteristic and vibration characteristic of a bearing are improved.

従って、保持器10は、適当なアンバランスを与えてアンバランスがある位相で(つまりアンバランス位置での法線方向一定で)保持器10を偏芯回転させる(いわゆるホワール運動)ように、軸受のdmn値や軸受の重量によって適正なアンバランス量に設定されればよい。30mm以上150mm以下の内径寸法を有する円筒ころ軸受1において、アンバランス量(=偏芯質量(単位:kg)×偏芯質量の回転中心からの距離(単位:m))は0.8g・cm以上4g・cm以下に設定される。   Accordingly, the cage 10 is provided with an appropriate unbalance so that the cage 10 is eccentrically rotated (so-called whirl motion) at a phase where the unbalance is present (that is, the normal direction is constant at the unbalance position). An appropriate unbalance amount may be set depending on the dmn value of the bearing and the weight of the bearing. In the cylindrical roller bearing 1 having an inner diameter of 30 mm or more and 150 mm or less, the unbalance amount (= eccentric mass (unit: kg) × the distance of the eccentric mass from the rotation center (unit: m)) is 0.8 g · cm. It is set to 4 g · cm or less.

アンバランス量が0.8g・cm未満の場合には、回転中の不規則な方向からの力に打ち勝てず、一方向のホワール運動ができないので、振動が大きくなり保持器音になってしまう。なお、保持器音が発生していない時(不規則な振動がなく、理想的に、一方向にホワールしている場合)は、図15(b)のような、何本の円ではなく、ほぼ一本の円しか表示されない。   When the unbalance amount is less than 0.8 g · cm, the force from an irregular direction during rotation cannot be overcome, and the unidirectional whirl movement cannot be performed, so that vibration increases and a cage sound is generated. In addition, when the cage sound is not generated (when there is no irregular vibration and ideally whirls in one direction), not the number of circles as shown in FIG. Only one circle is displayed.

一方、アンバランス量が4g・cmを越える場合には、遠心力作用でアンバランス方向に保持器10が楕円になってしまい(案内部を支点として、180°対称位置のアンバランス力で保持器10が引っ張られてしまい)、保持器自身が外内輪間で不規則な挙動を助長してしまうことや案内面との接触圧が増加し、該接触部分での摩擦変動により不規則な方向からの力が大きくなり、結果的に保持器10の振動を大きくする。   On the other hand, when the unbalance amount exceeds 4 g · cm, the cage 10 becomes elliptical in the unbalance direction due to the centrifugal force (the cage is held by the unbalance force at the 180 ° symmetrical position with the guide portion as a fulcrum). 10 is pulled), the cage itself promotes irregular behavior between the outer and inner rings, the contact pressure with the guide surface increases, and the frictional fluctuation at the contact portion causes the irregular direction. As a result, the vibration of the cage 10 is increased.

また、本実施形態の円筒ころ軸受1において、アンバランスを付与する保持器10の案内方式として、外輪案内方式を採用している。仮に、内輪案内方式の保持器においてアンバランスを付与した場合、保持器は、内輪外周面と接触して偏芯回転することになり、内輪には保持器の公転周期(=保持器の公転周波数)のアンバランス荷重が負荷される(荷重は、式(1)参照。)。保持器の公転周波数は、内輪回転周波数の約0.4〜0.45倍程度であり、このアンバランス荷重により発生する振れ回りも、NRRO成分(回転非同期振れ:内輪の回転に同期しない成分)として発生する。この結果、回転軸に負荷されたアンバランス力が大きくなると、回転軸のNRRO成分が大きくなり、加工物加工面の形状むらが生じ、引き目不良・光沢度の低下・真円度悪化などが生じる。   Moreover, in the cylindrical roller bearing 1 of the present embodiment, an outer ring guide system is adopted as a guide system for the cage 10 that imparts unbalance. If an imbalance is applied to the inner ring guide type cage, the cage will rotate eccentrically in contact with the outer circumferential surface of the inner ring, and the inner ring will have a revolving period of the cage (= revolution frequency of the cage). ) Unbalanced load is applied (see Equation (1) for the load). The revolution frequency of the cage is about 0.4 to 0.45 times the rotation speed of the inner ring, and the run-out generated by this unbalanced load is also an NRRO component (rotation asynchronous runout: a component that is not synchronized with the rotation of the inner ring). Occurs as. As a result, when the unbalance force applied to the rotating shaft increases, the NRRO component of the rotating shaft increases, resulting in uneven shape of the work surface of the workpiece, resulting in poor stitching, reduced glossiness, and reduced roundness. Arise.

しかし、外輪案内方式の場合、保持器は回転側である内輪(=回転軸)には接触しないので、アンバランス力が作用せず、軸のNRRO成分の振れ回り運動を生じさせない。   However, in the case of the outer ring guide system, the cage does not come into contact with the inner ring (= rotating shaft) on the rotating side, so that the unbalance force does not act and the NRRO component swinging motion of the shaft does not occur.

また、回転数増によるアンバランス荷重増加での、案内面の潤滑特性の低下を考慮した場合、保持器10は、グリース潤滑ではdmn値130万以下、オイルエア及び噴霧潤滑(オイルミスト潤滑)ではdmn値180万以下に採用するのが望ましい。   Further, in consideration of a decrease in the lubrication characteristics of the guide surface due to an increase in the unbalance load due to an increase in the rotational speed, the cage 10 has a dmn value of 1.3 million or less for grease lubrication, and dmn for oil air and spray lubrication (oil mist lubrication). It is desirable to adopt a value of 1.8 million or less.

以上にように、本実施形態の内径寸法が30mm以上150mm以下の円筒ころ軸受1において、外輪案内方式の保持器10は、アンバランス量が0.8g・cm以上4g・cm以下となるように凹部15によって非点対称に形成されているので、保持器10に適切なアンバランス量を故意に与えて、保持器10に一定方向の偏心運動を与えることで、保持器10の不規則な挙動を抑制し、保持器音を防止することができる。   As described above, in the cylindrical roller bearing 1 having an inner diameter of 30 mm or more and 150 mm or less according to this embodiment, the outer ring guide type cage 10 has an unbalance amount of 0.8 g · cm or more and 4 g · cm or less. Since the recess 15 is asymmetric with respect to the point, the irregular behavior of the cage 10 is obtained by intentionally giving an appropriate unbalance amount to the cage 10 and giving the cage 10 an eccentric motion in a certain direction. Can be suppressed and the cage noise can be prevented.

また、凹部15は、保持器10のリング部12の外周面の円周方向の一部に形成されているので、円筒ころ4が接触して円周方向に荷重が直接作用する柱部13を避けて形成することができる。   Moreover, since the recessed part 15 is formed in a part of the circumferential direction of the outer peripheral surface of the ring part 12 of the cage 10, the column part 13 on which the cylindrical roller 4 comes into contact and a load acts directly in the circumferential direction is provided. It can be avoided.

さらに、凹部15は、リング部12の外周面に、ポケット11の円周方向中間部に対して対称に軸方向に亘って形成されるので、円筒ころ4に付着した余剰グリースがリング部12の軸方向外端面側へスムーズに移動して排出することができる。従って、本実施形態の保持器10は、適切なアンバランスと良好なグリース排出特性を与えることができる。   Further, since the recess 15 is formed on the outer peripheral surface of the ring portion 12 in the axial direction symmetrically with respect to the intermediate portion in the circumferential direction of the pocket 11, the excess grease attached to the cylindrical roller 4 is removed from the ring portion 12. It can be smoothly moved to the axial outer end surface side and discharged. Accordingly, the cage 10 of the present embodiment can provide appropriate imbalance and good grease discharge characteristics.

また、凹部15の立ち上がり部17の境界部分18の円周方向位置が、柱部13の付根部分13aの円周方向位置よりもポケット11の円周方向中間位置寄りに形成されているので、急激な断面積の変化を避けて、柱部13の付根部分13aでの応力集中を防止し、保持器10の強度を維持することができる。   Further, since the circumferential position of the boundary portion 18 of the rising portion 17 of the recess 15 is formed closer to the intermediate position in the circumferential direction of the pocket 11 than the circumferential position of the root portion 13a of the pillar portion 13, It is possible to avoid a significant change in the cross-sectional area, prevent stress concentration at the root portion 13a of the column portion 13, and maintain the strength of the cage 10.

加えて、このような円筒ころ軸受1を、軸受のdmn値を50万以上とする工作機械用主軸に適用することで、主軸の回転精度を低下させることなくその効果を発揮することができる。   In addition, by applying such a cylindrical roller bearing 1 to a main spindle for a machine tool in which the dmn value of the bearing is 500,000 or more, the effect can be exhibited without reducing the rotational accuracy of the main spindle.

なお、凹部15の数は、所望のアンバランスを保持器10に与えるものであれば任意に設定することができる。また、凹部15は、一方のリング部12にのみ形成されてもよく、或いは、ポケット11の開口位置に対応して千鳥状に形成されてもよい。   In addition, the number of the recessed parts 15 can be arbitrarily set as long as a desired imbalance is given to the holder 10. Moreover, the recessed part 15 may be formed only in one ring part 12, or may be formed in zigzag form corresponding to the opening position of the pocket 11. FIG.

(第2実施形態)
図4は、本発明の第2実施形態に係る円筒ころ軸受の保持器10aを示している。この保持器10aのように、軸方向に亘って形成される凹部15aは、単一の円弧によって形成されてもよく、この場合にも、適切なアンバランスと良好なグリース排出特性を与えることができる。また、凹部15aとリング部12の外周面12aとの境界部分19は、柱部13の付根部分13aよりも円周方向においてポケット11寄りに位置しており、柱部13での応力集中をより防止することができる。
その他の構成及び作用については、第1実施形態のものと同様である。
(Second Embodiment)
FIG. 4 shows a cage 10a of a cylindrical roller bearing according to the second embodiment of the present invention. As in the cage 10a, the recess 15a formed in the axial direction may be formed by a single arc, and in this case as well, an appropriate imbalance and good grease discharge characteristics can be provided. it can. Further, the boundary portion 19 between the concave portion 15a and the outer peripheral surface 12a of the ring portion 12 is located closer to the pocket 11 in the circumferential direction than the root portion 13a of the column portion 13, and stress concentration at the column portion 13 is further increased. Can be prevented.
Other configurations and operations are the same as those in the first embodiment.

(第3実施形態)
図5は、本発明の第3実施形態に係る円筒ころ軸受の保持器10bを示している。この保持器10bのように、軸方向に亘って形成される凹部15bが曲率の異なる複数の円弧によって形成された場合にも、アンバランスの付与と良好なグリース排出性を与えることができる。この場合にも、凹部15bとリング部12の外周面12aとの境界部分19が柱部13と干渉しないため、柱部13での応力集中をより防止することができる。
その他の構成及び作用については、第1実施形態のものと同様である。
(Third embodiment)
FIG. 5 shows a cage 10b of a cylindrical roller bearing according to the third embodiment of the present invention. Even when the concave portion 15b formed in the axial direction is formed by a plurality of arcs having different curvatures like the cage 10b, it is possible to provide unbalance and provide excellent grease discharge performance. Also in this case, since the boundary portion 19 between the recess 15b and the outer peripheral surface 12a of the ring portion 12 does not interfere with the column portion 13, stress concentration at the column portion 13 can be further prevented.
Other configurations and operations are the same as those in the first embodiment.

(第4実施形態)
図6は、本発明の第4実施形態に係る円筒ころ軸受の保持器10cを示している。この保持器10cでは、一対の凹部15cが、両リング部12の軸方向外端面と外周面との境界部分を切り欠くようにして、両リング部12の円周方向の一部に複数のポケット11を跨いで連続して形成されている。また、凹部15cを形成する角度θは、アンバランス荷重を一方向に集中させるため、90°以内に設定されている。また、このような凹部15cの立ち上がり部17は、柱部13と円周方向において重ならない位置となるのが好ましく、また、応力集中を考慮して曲率半径が大きいほうがよい。
(Fourth embodiment)
FIG. 6 shows a cylindrical roller bearing retainer 10c according to a fourth embodiment of the present invention. In this cage 10c, a pair of recesses 15c cuts out a boundary portion between the axially outer end surface and the outer peripheral surface of both ring portions 12, and a plurality of pockets are formed in a part of the circumferential direction of both ring portions 12. 11 is formed continuously. Further, the angle θ for forming the recess 15c is set within 90 ° in order to concentrate the unbalance load in one direction. Moreover, it is preferable that the rising part 17 of such a recessed part 15c becomes a position which does not overlap with the pillar part 13 in the circumferential direction, and it is better that the radius of curvature is large in consideration of stress concentration.

また、保持器10cの案内面となるリング部12の外周面12aの軸方向案内幅は、凹部15cによって狭くなるので、グリースの排出特性は、凹部15cが無い場合に比べて良好となる。
その他の構成及び作用については、第1実施形態のものと同様である。
In addition, since the axial guide width of the outer peripheral surface 12a of the ring portion 12 serving as the guide surface of the cage 10c is narrowed by the recess 15c, the grease discharge characteristics are better than when the recess 15c is not provided.
Other configurations and operations are the same as those in the first embodiment.

(第5実施形態)
図7は、本発明の第5実施形態に係るアンギュラ玉軸受を示している。アンギュラ玉軸受30は、内周面に外輪軌道面32aを有する外輪32と、外周面に内輪軌道面33aを有する内輪33と、外輪軌道面32a及び内輪軌道面33a間に接触角αを持って転動自在に配置される複数の玉(転動体)34と、円周方向に所定の間隔で形成され、複数の玉34をそれぞれ保持する複数のポケット41を有する保持器40と、を備える。
(Fifth embodiment)
FIG. 7 shows an angular ball bearing according to a fifth embodiment of the present invention. The angular ball bearing 30 has a contact angle α between the outer ring 32 having the outer ring raceway surface 32a on the inner peripheral surface, the inner ring 33 having the inner ring raceway surface 33a on the outer peripheral surface, and the outer ring raceway surface 32a and the inner ring raceway surface 33a. A plurality of balls (rolling elements) 34 that are arranged to be freely rollable, and a cage 40 that is formed at a predetermined interval in the circumferential direction and has a plurality of pockets 41 that respectively hold the plurality of balls 34.

図8にも示すように、保持器40は、軸方向に並んで配置された一対のリング部42と、両リング部42間を繋ぐように、円周方向に所定の間隔で配置された複数の柱部43と、を有し、一対のリング部42と隣り合う柱部43によって円筒状のポケット41を画成している。保持器40は、柱部43の径方向外面よりも大径の両リング部42のうち、一方のリング部42の外周面42aが外輪32の反カウンターボアの内周面32bによって案内される外輪案内方式である。   As shown in FIG. 8, the cage 40 includes a pair of ring portions 42 arranged side by side in the axial direction, and a plurality of cage portions 40 arranged at predetermined intervals in the circumferential direction so as to connect the ring portions 42 to each other. The cylindrical pocket 41 is defined by the column portion 43 adjacent to the pair of ring portions 42. The retainer 40 is an outer ring in which an outer peripheral surface 42a of one ring portion 42 is guided by an inner peripheral surface 32b of the counter-bore of the outer ring 32 out of both ring portions 42 having a larger diameter than the outer surface in the radial direction of the column portion 43. It is a guidance method.

また、本実施形態においても、両リング部42の外周面42aの円周方向の一部には、アンバランスを与えるように、少なくとも一つの凹部45(本実施形態では、各リング部12に3つ)が軸方向に亘ってそれぞれ形成され、リング部42の外周面側でポケット41の内面とリング部42の軸方向外端面を繋いでいる。3つの凹部45は、3つのポケット41の開口位置と対応するようにポケット41の円周方向中間部Cに対して対称に形成され、3つのポケット41間の2つの柱部43の位置を除いて、それぞれ円周方向に所定の間隔をおいて断続的に形成されている。   Also in the present embodiment, at least one concave portion 45 (in this embodiment, each ring portion 12 has 3 in order to give unbalance to a part of the outer circumferential surface 42a of both ring portions 42 in the circumferential direction. Are formed in the axial direction, and the inner surface of the pocket 41 and the outer end surface in the axial direction of the ring portion 42 are connected on the outer peripheral surface side of the ring portion 42. The three concave portions 45 are formed symmetrically with respect to the circumferential middle portion C of the pocket 41 so as to correspond to the opening positions of the three pockets 41, except for the positions of the two column portions 43 between the three pockets 41. Thus, they are formed intermittently at predetermined intervals in the circumferential direction.

各凹部45は、リング部12を薄肉とする一様な曲率を有する円弧部45aと、円弧部45aからリング部12の外周面へ連続する湾曲した立ち上がり部45bと、を有する。また、凹部45の円周方向幅は、対応するポケット41の円周方向幅よりも狭く設定されており、急激な断面積の変化を避けて、柱部13の応力集中を防止している。また、凹部45は、リング部42の軸方向に亘って形成されているので、グリースの排出性は良好となる。   Each concave portion 45 includes an arc portion 45 a having a uniform curvature that makes the ring portion 12 thin, and a curved rising portion 45 b that continues from the arc portion 45 a to the outer peripheral surface of the ring portion 12. In addition, the circumferential width of the recess 45 is set to be narrower than the circumferential width of the corresponding pocket 41, and a sudden change in the cross-sectional area is avoided to prevent stress concentration in the column portion 13. Moreover, since the recessed part 45 is formed over the axial direction of the ring part 42, the discharge property of grease becomes favorable.

また、本実施形態においても、30mm以上150mm以下の内径寸法を有し、外輪案内方式の保持器40を備えるアンギュラ玉軸受30において、アンバランス量が0.8g・cm以上4g・cm以下となるように凹部45によって設定することで、第1実施形態と同様、適切なアンバランスを付与することができる。   Also in this embodiment, in the angular ball bearing 30 having an inner diameter of 30 mm or more and 150 mm or less and including the outer ring guide type retainer 40, the unbalance amount is 0.8 g · cm or more and 4 g · cm or less. Thus, by setting with the recessed part 45, an appropriate imbalance can be provided similarly to 1st Embodiment.

なお、本実施形態では、外輪案内方式の保持器40について説明したが、図9に示すように、ポケット41を球面形状とした玉案内方式の保持器40aが適用されてもよい。この玉案内方式の保持器40aにアンバランスを与えた場合にも、アンバランス方向の特定のポケット41と玉34間の接触によってホワール運動が与えられ、内輪案内方式のように保持器が回転側である内輪(=回転軸)には接触しないので、アンバランス力が作用せず、軸のNRRO成分の振れ回り運動を生じさせず、外輪案内方式の保持器40と同様の効果を奏することができる。   In this embodiment, the outer ring guide type retainer 40 has been described. However, as shown in FIG. 9, a ball guide type retainer 40a having a spherical pocket 41 may be applied. Even when the ball guide type cage 40a is unbalanced, a whirl motion is given by contact between the specific pocket 41 in the unbalance direction and the ball 34, and the cage is rotated on the rotating side as in the inner ring guide type. Since the inner ring (= rotating shaft) is not touched, the unbalance force does not act, the NRRO component swinging motion of the shaft does not occur, and the same effect as the outer ring guide type retainer 40 can be obtained. it can.

ただし、玉案内方式の保持器40aは、玉34とポケット41内の接触面積は小さいので、接触面圧が上昇しやすくdmn値50万〜130万程度の高速では問題がないが、130万を超える高速回転では摺動部分の摩耗の問題が懸念されるので、外輪案内方式の方が望ましい。外輪案内方式の場合、保持器40の外周面と外輪32の内周面は、所定の面積で接触するので接触面圧が小さく、摺動部分が摩耗しにくい。   However, since the ball guide type retainer 40a has a small contact area between the ball 34 and the pocket 41, the contact surface pressure is likely to increase, and there is no problem at a high speed of about 500,000 to 1.3 million dmn value. Since the problem of wear of the sliding portion is a concern at higher rotation speeds, the outer ring guide method is preferable. In the case of the outer ring guide method, the outer peripheral surface of the cage 40 and the inner peripheral surface of the outer ring 32 are in contact with each other with a predetermined area, so that the contact surface pressure is small and the sliding portion is not easily worn.

(第6実施形態)
図10は、本発明の第6実施形態に係るアンギュラ玉軸受の保持器40bを示している。この保持器40bでは、第5実施形態の保持器40に対して、凹部45と略180°反対側の位相で、柱部43のリング部42との繋ぎ部分に少なくとも一つの凸部46(本実施形態では、4つの柱部43の軸方向両側で、計8つ)が設けられている。
(Sixth embodiment)
FIG. 10 shows an angular ball bearing retainer 40b according to a sixth embodiment of the present invention. In this retainer 40b, at least one convex portion 46 (the main portion 46) is connected to the ring portion 42 of the pillar portion 43 at a phase substantially opposite to the concave portion 45 with respect to the retainer 40 of the fifth embodiment. In the embodiment, a total of eight) is provided on both sides in the axial direction of the four column portions 43.

これにより、凹部45だけでは、必要なアンバランス量を付加できないような場合であっても、凸部46を設けることで必要なアンバランス量を確保することができる。なお、凸部46は、柱部43の内周面に形成されてもよいが、射出成形時の型の離型が容易である点を考慮して、柱部43の外周面に形成されるのが好ましい。
また、本実施形態のように凸部46を形成する場合には、応力集中による保持器40bの強度低下の心配なくアンバランスを付与することができる。
その他の構成及び作用については、第5実施形態と同様である。
Thereby, even if it is a case where a required imbalance amount cannot be added only by the recessed part 45, the required unbalance amount can be ensured by providing the convex part 46. In addition, although the convex part 46 may be formed in the internal peripheral surface of the column part 43, it considers that the mold release at the time of injection molding is easy, and is formed in the outer peripheral surface of the column part 43. Is preferred.
Moreover, when forming the convex part 46 like this embodiment, unbalance can be provided without worrying about the strength fall of the holder | retainer 40b by stress concentration.
Other configurations and operations are the same as those in the fifth embodiment.

なお、図11に示すアンギュラ玉軸受30bのように、柱部43の外周面に形成される一対の凸部46は、柱部43の軸方向中間部寄り(図11において、玉34の断面部位内)に形成されることで、柱部43の外輪軌道面32aと回転時に接触することを確実に避けることができる。さらに、カウンターボアを有するアンギュラ玉軸受30bにおいては、凸部46が外輪32の内周面と干渉することなく、カウンターボア側の軸方向端面から保持器40を容易に挿入することができる。   11, the pair of convex portions 46 formed on the outer peripheral surface of the column portion 43 are close to the intermediate portion in the axial direction of the column portion 43 (in FIG. 11, the cross-sectional portion of the ball 34). It is possible to reliably avoid contact with the outer ring raceway surface 32a of the column portion 43 during rotation. Furthermore, in the angular ball bearing 30b having a counter bore, the retainer 40 can be easily inserted from the axial end surface on the counter bore side without the convex portion 46 interfering with the inner peripheral surface of the outer ring 32.

(第7実施形態)
図12は、本発明の第7実施形態に係るアンギュラ玉軸受30cを示している。このアンギュラ玉軸受30cに使用される玉案内方式の保持器40cは、カウンターボア側に位置する一方のリング部42の外周面42aの円周方向の一部に、凸部46aを有している。また、リング部42と柱部43の外周面は、凸部46aを除いて連続した一様外径をなしている。これにより、カウンターボア側のリング部42の外周面に凸部46aを設けることによって、アンバランスを付与することができる。
その他の構成及び作用については、第5実施形態のものと同様である。
(Seventh embodiment)
FIG. 12 shows an angular ball bearing 30c according to the seventh embodiment of the present invention. The ball guide type cage 40c used for the angular ball bearing 30c has a convex portion 46a on a part of the outer circumferential surface 42a of one ring portion 42 located on the counter bore side in the circumferential direction. . Further, the outer peripheral surfaces of the ring portion 42 and the column portion 43 have a continuous uniform outer diameter excluding the convex portion 46a. Thereby, imbalance can be given by providing the convex part 46a in the outer peripheral surface of the ring part 42 by the side of a counterbore.
Other configurations and operations are the same as those of the fifth embodiment.

なお、本発明は、上記実施形態に限定されるものでなく、適宜、変更、改良、等が可能である。また、上記実施形態の各構成は、実施可能な範囲において組み合わせて適用可能である。   In addition, this invention is not limited to the said embodiment, A change, improvement, etc. are possible suitably. Moreover, each structure of the said embodiment is applicable in combination in the range which can be implemented.

本発明の転がり軸受では、グリース潤滑の他、オイルエア潤滑や噴霧潤滑(オイルミスト)などいずれの潤滑方式であってもよいが、オイルエア潤滑や噴霧潤滑(オイルミスト)に比べて、潤滑剤の軸受内部での不均一性が出やすいグリース潤滑でより効果を発揮することができる。   In the rolling bearing of the present invention, any lubrication system such as oil-air lubrication or spray lubrication (oil mist) may be used in addition to grease lubrication, but a lubricant bearing compared to oil-air lubrication or spray lubrication (oil mist). Grease lubrication, which tends to cause unevenness inside, can be more effective.

また、上記実施形態では、円筒ころ軸受、アンギュラ玉軸受について説明したが、深みぞ玉軸受、円すいころ軸受など、他の転がり軸受にも適用することができる。
さらに、保持器は、一対のリング部を有するかご型保持器に限定されるものでなく、冠型保持器など他の形状であってもよい。
また、保持器材料としては、高速回転での使用を考慮すると、金属よりも軽量で、耐摩耗性に優れる合成樹脂が好ましく、フェノール、ポリアミド、PPS、PEEK、ポリイミドなどが良い。また、ガラス繊維・カーボン繊維・アラミド繊維などの強化剤を添加しても良い。
In the above embodiment, the cylindrical roller bearing and the angular ball bearing have been described. However, the present invention can also be applied to other rolling bearings such as a deep groove ball bearing and a tapered roller bearing.
Furthermore, the cage is not limited to a cage-type cage having a pair of ring portions, and may have other shapes such as a crown type cage.
Moreover, considering the use at high speed rotation, the cage material is preferably a synthetic resin that is lighter than metal and excellent in wear resistance, such as phenol, polyamide, PPS, PEEK, and polyimide. Further, reinforcing agents such as glass fiber, carbon fiber and aramid fiber may be added.

ここで、図1に示すような単列円筒ころ軸受1を用いて、保持器10のアンバランス量と保持器音との関係について試験を行った。図14は、本試験に使用される評価試験装置(バランス測定器EVD−3.1、株式会社島津製作所製)50の断面図であり、試験軸受としての円筒ころ軸受1は、ハウジング51に対して、回転軸52の一端側を支承する一対のアンギュラ玉軸受53と共に、回転軸52の他端側を支承するように組み込まれる。本試験の試験条件を以下に示し、試験結果を表1に示す。   Here, using a single row cylindrical roller bearing 1 as shown in FIG. 1, the relationship between the unbalance amount of the cage 10 and the cage sound was tested. FIG. 14 is a cross-sectional view of an evaluation test apparatus (balance measuring instrument EVD-3.1, manufactured by Shimadzu Corporation) 50 used in this test. A cylindrical roller bearing 1 as a test bearing is In addition, a pair of angular contact ball bearings 53 that support one end of the rotating shaft 52 are incorporated so as to support the other end of the rotating shaft 52. The test conditions of this test are shown below, and the test results are shown in Table 1.

・試験軸受:単列円筒ころ軸受:N1011(内径:55mm、外径:90mm、幅:18mm、保持器材料:強化繊維剤入り合成樹脂(カーボン繊維添加PEEK樹脂)
・アンバランス仕様:第1実施形態による
・試験回転数:12,000min-1(最高)
・潤滑方式:グリース潤滑(基油粘度:105cst)
Test bearing: Single-row cylindrical roller bearing: N1011 (inner diameter: 55 mm, outer diameter: 90 mm, width: 18 mm, cage material: synthetic resin containing reinforcing fiber agent (carbon fiber-added PEEK resin)
・ Unbalance specification: according to the first embodiment ・ Test rotation speed: 12,000 min −1 (maximum)
・ Lubrication method: Grease lubrication (Base oil viscosity: 105 cst)

Figure 0005499814
Figure 0005499814

表1の結果、アンバランス量が小さいと、保持器が不規則な挙動を生じ保持器音が発生しているが、適度なアンバランスを与えると保持器音の発生が抑制できた。
また、試験品Aのようにアンバランス量を大きくしすぎると、逆に保持器音の発生が認められた。この理由は、アンバランスによる遠心力の影響で保持器にいびつな変形が生じたり、案内面での接触圧が上昇し本部分でのすべり摩擦が増加するため、逆に保持器に不規則な挙動を与えているためと考えられる。
なお、試験品Gにおいて12,000min−1で保持器音が解消しているのは、遠心力が保持器に作用する不規則な力に打ち勝ったため、低速回転時に比べて一定位相でのホワール運動が可能になったことによるものと考えられる。
表1より、保持器音を確実に抑制できるアンバランス量は、0.8g・cm以上4g・cm以下であることがわかる。
As a result of Table 1, when the unbalance amount is small, the cage behaves irregularly and a cage noise is generated. However, when an appropriate imbalance is applied, the generation of the cage noise can be suppressed.
On the other hand, when the unbalance amount was too large as in the test product A, the generation of cage noise was recognized. This is because the cage is deformed due to the centrifugal force due to unbalance, or the contact pressure on the guide surface increases and the sliding friction at this part increases. This is thought to be due to the behavior.
In the test product G, the cage noise disappears at 12,000 min−1 because the centrifugal force overcomes the irregular force acting on the cage, and the whirl at a constant phase compared to the low-speed rotation. This is thought to be due to the fact that exercise became possible.
It can be seen from Table 1 that the amount of unbalance that can reliably suppress the cage noise is 0.8 g · cm or more and 4 g · cm or less.

1 円筒ころ軸受(転がり軸受)
10,10a,10b,10c,40,40a,40b,40c 保持器
11,41 ポケット
12,42 リング部
13,43 柱部
15,15a,15b,15c,45 凹部
46,46a 凸部
30,30a,30b,30c アンギュラ玉軸受(転がり軸受)
α 接触角
1 Cylindrical roller bearing (rolling bearing)
10, 10a, 10b, 10c, 40, 40a, 40b, 40c Cage 11, 41 Pocket 12, 42 Ring part 13, 43 Pillar part 15, 15a, 15b, 15c, 45 Concave part 46, 46a Convex part 30, 30a, 30b, 30c angular contact ball bearings (rolling bearings)
α Contact angle

Claims (2)

外輪と、内輪と、前記外輪及び内輪との間に転動自在に配置される複数の転動体と、円周方向に所定の間隔で形成され、該複数の転動体をそれぞれ保持する複数のポケットを有する保持器と、を備え、該保持器の案内方式が外輪案内である転がり軸受であって、
前記転がり軸受の内径寸法は、30mm以上150mm以下であり、
前記保持器は、軸方向に並んで配置された一対のリング部と、前記一対のリング部間を繋ぐように、円周方向に所定の間隔で配置される複数の柱部と、を有し、
前記一対のリング部の外周面は、前記柱部の径方向外面よりも大径であり、
前記外輪に案内される前記リング部の外周面の円周方向の一部には、一様な曲率を有する円弧部と、該円弧部から前記リング部の外周面へ連続する湾曲した立ち上がり部と、を有する少なくとも一つの凹部が形成されており、
前記凹部は、前記円弧部と前記立ち上がり部の境界部分の円周方向位置が、軸方向から見て前記柱部とラップしないように形成され、
前記保持器は、アンバランス量が0.8g・cm以上4g・cm以下となるように非点対称に形成されていることを特徴とする転がり軸受。
An outer ring, an inner ring, a plurality of rolling elements that are freely rollable between the outer ring and the inner ring, and a plurality of pockets that are formed at predetermined intervals in the circumferential direction and hold the plurality of rolling elements, respectively. and a retainer having a guide system of the cage is a rolling bearing is the outer ring proposal,
The inner diameter of the rolling bearing is 30 mm or more and 150 mm or less,
The cage includes a pair of ring portions arranged side by side in the axial direction, and a plurality of column portions arranged at predetermined intervals in the circumferential direction so as to connect the pair of ring portions. ,
The outer peripheral surfaces of the pair of ring portions are larger in diameter than the radially outer surfaces of the column portions,
A part of the outer peripheral surface of the ring portion guided by the outer ring in a circumferential direction includes an arc portion having a uniform curvature, and a curved rising portion continuous from the arc portion to the outer peripheral surface of the ring portion. , At least one recess is formed,
The concave portion is formed so that a circumferential position of a boundary portion between the arc portion and the rising portion does not wrap with the column portion when viewed from the axial direction,
The rolling bearing is characterized in that the cage is formed asymmetrically so as to have an unbalance amount of 0.8 g · cm to 4 g · cm.
前記凹部は、前記ポケットの円周方向幅の範囲内で形成されることを特徴とする請求項1に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the recess is formed within a circumferential width of the pocket.
JP2010066298A 2010-03-23 2010-03-23 Rolling bearing Expired - Fee Related JP5499814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010066298A JP5499814B2 (en) 2010-03-23 2010-03-23 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010066298A JP5499814B2 (en) 2010-03-23 2010-03-23 Rolling bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013239882A Division JP5804576B2 (en) 2013-11-20 2013-11-20 Rolling bearing

Publications (2)

Publication Number Publication Date
JP2011196513A JP2011196513A (en) 2011-10-06
JP5499814B2 true JP5499814B2 (en) 2014-05-21

Family

ID=44874992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066298A Expired - Fee Related JP5499814B2 (en) 2010-03-23 2010-03-23 Rolling bearing

Country Status (1)

Country Link
JP (1) JP5499814B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011102719B4 (en) * 2010-08-18 2022-08-25 Nsk Ltd. Rolling bearings and machine tool spindle apparatus
WO2013191238A1 (en) * 2012-06-21 2013-12-27 日本精工株式会社 Rolling bearing, and spindle device for machine tool
JP6065423B2 (en) * 2012-06-21 2017-01-25 日本精工株式会社 Rolling bearings and spindles for machine tools
JP5929543B2 (en) * 2012-06-21 2016-06-08 日本精工株式会社 Rolling bearings and spindles for machine tools
JP5929544B2 (en) * 2012-06-21 2016-06-08 日本精工株式会社 Rolling bearings and spindles for machine tools
DE102013226132B4 (en) * 2013-12-16 2019-02-14 Aktiebolaget Skf Cage for a rolling bearing and roller bearing with a cage
JP6340794B2 (en) * 2013-12-27 2018-06-13 日本精工株式会社 Cylindrical roller bearing
JP6686482B2 (en) * 2015-02-04 2020-04-22 日本精工株式会社 Rolling bearing cage, rolling bearing, and rolling bearing cage manufacturing method
TWI704298B (en) 2016-11-04 2020-09-11 日商日本精工股份有限公司 Cage and rolling bearing provided with it
EP4325073A1 (en) * 2022-08-19 2024-02-21 Apo-Gee Engineering S.r.l. Cage for a rolling element bearing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023860B2 (en) * 1996-02-28 2007-12-19 Ntn株式会社 Main shaft gear mechanism in automobile transmission
DE19824070A1 (en) * 1998-05-29 1999-12-02 Spinea S R O Kosice roller bearing
JP2000081042A (en) * 1998-07-10 2000-03-21 Nippon Seiko Kk Cylindrical roller bearing
JP2002323048A (en) * 2000-10-27 2002-11-08 Nsk Ltd Bearing device and main spindle of machine tool
JP2005090658A (en) * 2003-09-18 2005-04-07 Nsk Ltd Rolling bearing
JP4009962B2 (en) * 2004-05-25 2007-11-21 独立行政法人 宇宙航空研究開発機構 Ball bearing
JP5056394B2 (en) * 2007-12-18 2012-10-24 株式会社ジェイテクト Roller bearing cage and rolling bearing

Also Published As

Publication number Publication date
JP2011196513A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5499814B2 (en) Rolling bearing
JP6370026B2 (en) Cage and rolling bearing
JP5750901B2 (en) Rolling bearing
JP5129762B2 (en) Angular contact ball bearings
JP6481717B2 (en) Ball bearing, motor and spindle device using the same
CN107208698A (en) Rolling bearing
TWI691656B (en) Spindle device for ball bearing and machine tool
WO2018034240A1 (en) Ball bearing, ball bearing device, and machine tool
JP2006329233A (en) Rolling bearing and machine tool spindle device
CN203202013U (en) Angular-contact ball bearing
JP5845652B2 (en) Bearing device and spindle device for machine tool
JP5804576B2 (en) Rolling bearing
US8529134B2 (en) Rolling bearing apparatus
JP5982881B2 (en) Ball bearing, motor and spindle device using the same
TWI719234B (en) Ball bearing and spindle device for machine tool
JP2014025525A (en) Oil air lubrication type rolling bearing device
JP4322641B2 (en) Cylindrical roller bearing
TWI704299B (en) Ball bearing and spindle device for machine tool
CN106050930A (en) Rolling element bearing
JP2014005847A (en) Ball bearing and spindle device for machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees