JP5499782B2 - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP5499782B2
JP5499782B2 JP2010048244A JP2010048244A JP5499782B2 JP 5499782 B2 JP5499782 B2 JP 5499782B2 JP 2010048244 A JP2010048244 A JP 2010048244A JP 2010048244 A JP2010048244 A JP 2010048244A JP 5499782 B2 JP5499782 B2 JP 5499782B2
Authority
JP
Japan
Prior art keywords
image
voltage
charging
image carrier
image formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010048244A
Other languages
Japanese (ja)
Other versions
JP2011186000A (en
Inventor
聡哉 杉浦
成人 橋場
一浩 小関
健太 井手
富由樹 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2010048244A priority Critical patent/JP5499782B2/en
Publication of JP2011186000A publication Critical patent/JP2011186000A/en
Application granted granted Critical
Publication of JP5499782B2 publication Critical patent/JP5499782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

本発明は、画像形成装置に関する。   The present invention relates to an image forming apparatus.

特許文献1には、専用の除電装置を設置せずに画像形成装置の像保持体の除電を行なう方式として、導電性の支持体上に有機キャリア発生物質及び有機キャリア輸送物質を含む感光体を設けて、感光体の回転の線速を250mm/sec以上とし、帯電前0.2秒以上離れた位置で感光体表面を露光して除電を行なうことが提案されている。   In Patent Document 1, as a method for eliminating the charge of an image carrier of an image forming apparatus without installing a dedicated neutralization apparatus, a photoconductor including an organic carrier generating substance and an organic carrier transporting substance on a conductive support is disclosed. It is proposed that the linear velocity of rotation of the photosensitive member is 250 mm / sec or more, and the surface of the photosensitive member is exposed at a position separated by 0.2 seconds or more before charging to perform static elimination.

特開平8−6450号公報JP-A-8-6450

本発明は、画像形成から非画像形成へ切り替えた時に、直前の画像形成時に印加されていた転写電圧を少なくとも第1の期間継続して転写部材へ印加せず、且つ直前の画像形成時に印加されていた現像電圧を前記第1の期間の間0Vに向かって段階的に変化させて現像部材へ印加しない場合に比べて、像保持体の表面の電位ムラの抑制された画像形成装置を提供することを目的とする。   In the present invention, when switching from image formation to non-image formation, the transfer voltage applied during the previous image formation is not continuously applied to the transfer member for at least the first period, and is applied during the previous image formation. An image forming apparatus in which potential unevenness on the surface of an image carrier is suppressed as compared with a case where the developed voltage is changed stepwise toward 0 V during the first period and is not applied to the developing member. For the purpose.

請求項1に係る発明は、像保持体と、前記像保持体を帯電させる帯電部材と、前記帯電部材が所定の帯電電位となるように該帯電部材に帯電電圧を印加する第1の印加装置と、前記帯電部材によって帯電された前記像保持体に静電潜像を形成する潜像形成装置と、前記像保持体上に形成された前記静電潜像をトナーによって現像する現像部材と、前記現像部材が所定の現像電位となるように該現像部材に現像電圧を印加する第2の印加装置と、前記現像部材によって前記像保持体上に形成されたトナー像を被転写体へ転写し、且つ前記像保持体を除電する転写部材と、前記転写部材が所定の転写電位となるように該転写部材に転写電圧を印加する第3の印加装置と、画像形成から非画像形成へ切り替えた時に、直前の画像形成時に印加されていた転写電圧をなくとも第1の期間継続して前記転写部材へ印加し、直前の画像形成時に印加されていた現像電圧を前記第1の期間の間0Vに向かって段階的に変化させて前記現像部材へ印加し、且つ前記帯電部材への帯電電圧の印加を解除するように、前記第1の印加装置、前記第2の印加装置、及び前記第3の印加装置を制御する制御装置と、を備えた画像形成装置である。   The invention according to claim 1 is an image holding member, a charging member for charging the image holding member, and a first application device that applies a charging voltage to the charging member so that the charging member has a predetermined charging potential. A latent image forming apparatus that forms an electrostatic latent image on the image carrier charged by the charging member; a developing member that develops the electrostatic latent image formed on the image carrier with toner; A second applying device that applies a developing voltage to the developing member so that the developing member has a predetermined developing potential; and a toner image formed on the image holding member by the developing member is transferred to the transfer target. And a transfer member that neutralizes the image carrier, a third application device that applies a transfer voltage to the transfer member so that the transfer member has a predetermined transfer potential, and switching from image formation to non-image formation. Sometimes applied during previous image formation Even if the transfer voltage is not applied, it is continuously applied to the transfer member for the first period, and the development voltage applied at the time of the previous image formation is changed stepwise toward 0 V during the first period. A control device for controlling the first application device, the second application device, and the third application device so as to apply to the developing member and release the application of the charging voltage to the charging member; An image forming apparatus.

請求項2に係る発明は、前記像保持体が、支持体上に、電荷発生層及び電荷輸送層をこの順に有し、前記電荷輸送層が、結着樹脂と、下記一般式(1)で表される構造を有する電荷輸送性材料を含む請求項1に記載の画像形成装置である。 According to a second aspect of the invention, the image carrier has a charge generation layer and a charge transport layer in this order on a support, and the charge transport layer comprises a binder resin and the following general formula (1). The image forming apparatus according to claim 1, comprising a charge transporting material having a structure represented.

一般式(1)中、R、R、R、R、R、及びRはそれぞれ独立して水素原子、ハロゲン原子、炭素数1以上20以下のアルキル基、炭素数1以上20以下のアルコキシ基、又は、置換もしくは未置換の炭素数6以上30以下のアリール基を表し、隣接する2つの置換基同士が結合して炭化水素環構造を形成してもよい。n及びmはそれぞれ独立して0又は1を表す。 In General Formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 or more carbon atoms. It represents an alkoxy group having 20 or less, or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, and two adjacent substituents may be bonded to form a hydrocarbon ring structure. n and m each independently represents 0 or 1.

請求項3に係る発明は、前記結着樹脂が、下記一般式(2)で表される構造単位を含む請求項2に記載の画像形成装置である。 The invention according to claim 3 is the image forming apparatus according to claim 2, wherein the binder resin includes a structural unit represented by the following general formula (2).

一般式(2)中、R及びRは、各々独立にハロゲン原子、炭素数1以上6以下のアルキル基、炭素数5以上7以下のシクロアルキル基、又は炭素数6以上12以下のアリール基であり、e,fは、各々独立に0以上4以下の整数を表す。 In General Formula (2), R 7 and R 8 are each independently a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 7 carbon atoms, or an aryl having 6 to 12 carbon atoms. E and f each independently represents an integer of 0 or more and 4 or less.

請求項4に係る発明は、前記結着樹脂が、上記一般式(2)で表される構造単位と、下記一般式(3)で表される構造単位と、の共重合体を含む請求項3に記載の画像形成装置である。 According to a fourth aspect of the present invention, the binder resin includes a copolymer of a structural unit represented by the general formula (2) and a structural unit represented by the following general formula (3). 3. The image forming apparatus according to 3.

一般式(3)中、R及びR10は、各々独立にハロゲン原子、炭素数1以上6以下のアルキル基、炭素数5以上7以下のシクロアルキル基、又は炭素数6以上12以下のアリール基であり、g,hは、各々独立に0以上4以下の整数を表す。Xは、−CR1112−(但し、R11及びR12は、各々独立に水素原子、トリフルオロメチル基、炭素数1以上6以下のアルキル基、又は炭素数6以上12以下のアリール基のいずれかを表す。)、炭素数5以上11以下の1,1−シクロアルキレン基、炭素数2以上10以下のα,ω−アルキレン基、−O−、−S−、−SO−、または−SO−を表す。 In general formula (3), R 9 and R 10 are each independently a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 7 carbon atoms, or an aryl having 6 to 12 carbon atoms. And g and h each independently represent an integer of 0 or more and 4 or less. X is —CR 11 R 12 — (wherein R 11 and R 12 are each independently a hydrogen atom, a trifluoromethyl group, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms) Or a 1,1-cycloalkylene group having 5 to 11 carbon atoms, an α, ω-alkylene group having 2 to 10 carbon atoms, —O—, —S—, —SO—, or -SO 2 - represents a.

請求項5に係る発明は、前記制御装置は、画像形成から非画像形成へ切り替えた時に、直前の画像形成時に印加されていた帯電電圧を前記像保持体の一回転毎に0Vに向かって段階的に変化させて前記帯電部材へ印加するように前記第1の印加装置を制御することによって、前記帯電部材への帯電電圧の印加を解除するように制御する請求項1〜請求項4の何れか1項に記載の画像形成装置である。 According to a fifth aspect of the present invention, when the control device switches from image formation to non-image formation, the control device steps the charging voltage applied at the time of the previous image formation toward 0 V for each rotation of the image carrier. 5. Any one of claims 1 to 4, wherein the first application device is controlled so as to be applied to the charging member with a change in the electric power, thereby controlling the application of the charging voltage to the charging member. The image forming apparatus according to claim 1.

請求項6に係る発明は、前記帯電部材は、前記像保持体の表面に接触して配置され、前記第1の印加装置は、前記帯電電圧として前記帯電部材へ直流電圧を印加する請求項1〜請求項4の何れか1項に記載の画像形成装置である。 According to a sixth aspect of the present invention, the charging member is disposed in contact with the surface of the image carrier, and the first application device applies a DC voltage to the charging member as the charging voltage. 5. The image forming apparatus according to claim 4.

請求項1に係る発明によれば、画像形成から非画像形成へ切り替えた時に、直前の画像形成時に印加されていた転写電圧を少なくとも第1の期間継続して転写部材へ印加せず、且つ直前の画像形成時に印加されていた現像電圧を第1の期間の間0Vに向かって段階的に変化させて現像部材へ印加しない場合に比べて、像保持体の表面の電位ムラが抑制される、という効果を奏する。   According to the first aspect of the present invention, when switching from image formation to non-image formation, the transfer voltage applied during the immediately preceding image formation is not continuously applied to the transfer member for at least the first period, and immediately before In comparison with the case where the developing voltage applied during the image formation is changed stepwise toward 0 V during the first period and is not applied to the developing member, potential unevenness on the surface of the image carrier is suppressed. There is an effect.

請求項2に係る発明によれば、電荷輸送層が上記一般式(1)で表される構造を有する電荷輸送性材料を含まない場合に比べて、像保持体の除電が効果的に行われる、という効果を奏する。   According to the second aspect of the invention, the charge-carrying of the image carrier is effectively performed as compared with the case where the charge-transporting layer does not include the charge-transporting material having the structure represented by the general formula (1). , Has the effect.

請求項3に係る発明によれば、結着樹脂が上記一般式(2)で表される構造単位を含まない場合に比べて、像保持体の除電が効果的に行われる、という効果を奏する。   According to the invention of claim 3, there is an effect that neutralization of the image carrier is effectively performed as compared with the case where the binder resin does not include the structural unit represented by the general formula (2). .

請求項4に係る発明によれば、結着樹脂が、上記一般式(2)で表される構造単位と、上記一般式(3)で表される構造単位と、の共重合体を含まない場合に比べて、像保持体の除電が更に効果的に行われる、という効果を奏する。   According to the invention of claim 4, the binder resin does not contain a copolymer of the structural unit represented by the general formula (2) and the structural unit represented by the general formula (3). Compared to the case, there is an effect that neutralization of the image carrier is more effectively performed.

請求項5に係る発明によれば、画像形成から非画像形成へ切り替えた時に、直前の画像形成時に印加されていた耐電電圧を像保持体の一回転毎に0Vに向かって段階的に変化させて帯電部材へ印加しない場合に比べて、像保持体の表面の電位ムラが更に抑制される、という効果を奏する。   According to the fifth aspect of the present invention, when switching from image formation to non-image formation, the withstand voltage applied at the time of the previous image formation is changed stepwise toward 0 V for each rotation of the image carrier. As compared with the case where no voltage is applied to the charging member, there is an effect that the potential unevenness on the surface of the image carrier is further suppressed.

請求項6に係る発明によれば、帯電部材を像保持体の表面に接触して配置し、帯電電圧が直流電圧であっても、像保持体の表面の電位ムラが抑制される、という効果を奏する。   According to the invention of claim 6, the charging member is arranged in contact with the surface of the image carrier, and even when the charging voltage is a direct current voltage, the potential unevenness on the surface of the image carrier is suppressed. Play.

本実施の形態に係る画像形成装置の一例を示す模式図である。1 is a schematic diagram illustrating an example of an image forming apparatus according to an exemplary embodiment. 像保持体の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of an image holding body. 従来の画像形成装置における、非画像形成時の転写電圧、現像電圧、及び帯電電圧の変化の一例を示す線図である。It is a diagram showing an example of changes in transfer voltage, development voltage, and charging voltage during non-image formation in a conventional image forming apparatus. 本実施の形態に係る画像形成装置における、非画像形成時の転写電圧、現像電圧、及び帯電電圧の変化の一例を示す線図である。FIG. 6 is a diagram illustrating an example of changes in transfer voltage, development voltage, and charging voltage during non-image formation in the image forming apparatus according to the present exemplary embodiment. 本実施の形態に係る画像形成装置における、非画像形成時の転写電圧、現像電圧、及び帯電電圧の変化の一例を示す線図である。FIG. 6 is a diagram illustrating an example of changes in transfer voltage, development voltage, and charging voltage during non-image formation in the image forming apparatus according to the present exemplary embodiment. 本実施の形態の画像形成装置の制御装置で行われる処理を示すフローチャートである。4 is a flowchart illustrating processing performed by the control device of the image forming apparatus according to the present embodiment.

以下、図面を参照して本実施の形態の画像形成装置の一の形態を詳細に説明する。
図1に示すように、本実施の形態に係る画像形成装置10には、像保持体12が設けられている。像保持体12は、円柱状とされ、図示を省略するモータにより、回転駆動(図1中の矢印A方向)される。
Hereinafter, an embodiment of the image forming apparatus of the present embodiment will be described in detail with reference to the drawings.
As shown in FIG. 1, an image carrier 12 is provided in the image forming apparatus 10 according to the present exemplary embodiment. The image carrier 12 has a cylindrical shape, and is rotationally driven (in the direction of arrow A in FIG. 1) by a motor (not shown).

像保持体12は、図2に示すように、支持体60と、この支持体60上に形成された下引層62と、この下引層62の上に形成された感光層63と、から構成されている。この感光層63は、電荷発生層65と電荷輸送層66との2層構造であってもよい。また、感光層63は、最表面に保護層64を設けた構成であってもよい。像保持体12の詳細な構成については、後述する。   As shown in FIG. 2, the image carrier 12 includes a support 60, an undercoat layer 62 formed on the support 60, and a photosensitive layer 63 formed on the undercoat layer 62. It is configured. The photosensitive layer 63 may have a two-layer structure including a charge generation layer 65 and a charge transport layer 66. The photosensitive layer 63 may have a configuration in which a protective layer 64 is provided on the outermost surface. The detailed configuration of the image carrier 12 will be described later.

像保持体12の周辺には、帯電装置15、潜像形成装置16、現像装置18、転写装置31、及び清掃装置22が、像保持体12の回転方向に沿って順に配設されている。   Around the image carrier 12, a charging device 15, a latent image forming device 16, a developing device 18, a transfer device 31, and a cleaning device 22 are sequentially arranged along the rotation direction of the image carrier 12.

帯電装置15は、像保持体12表面を帯電する。帯電装置15は、像保持体12表面に接触または非接触で設けられ、像保持体12の表面を帯電する帯電部材14、及び帯電部材14に帯電電圧を印加する電源28を含んで構成されている。電源28は、帯電部材14に電気的に接続されている。   The charging device 15 charges the surface of the image carrier 12. The charging device 15 is provided in contact or non-contact with the surface of the image carrier 12, and includes a charging member 14 that charges the surface of the image carrier 12, and a power supply 28 that applies a charging voltage to the charging member 14. Yes. The power source 28 is electrically connected to the charging member 14.

また、電源28は、画像形成装置10に設けられた制御部36に電気的に接続されており、制御部36の制御によって、帯電部材14に帯電電圧を印加する。帯電部材14から帯電電圧を印加された帯電部材14は、印加された帯電電圧に応じた帯電電位に、像保持体12を帯電させる。このため、電源28から印加される帯電電圧が調整されることで、像保持体12は、異なる帯電電位に帯電される。   The power source 28 is electrically connected to a control unit 36 provided in the image forming apparatus 10, and applies a charging voltage to the charging member 14 under the control of the control unit 36. The charging member 14 to which the charging voltage is applied from the charging member 14 charges the image carrier 12 to a charging potential corresponding to the applied charging voltage. Therefore, the image holding body 12 is charged to a different charging potential by adjusting the charging voltage applied from the power source 28.

潜像形成装置16は、帯電部材14により帯電された像保持体12の表面に、形成する対象となる画像の画像情報に基づいて変調した光Lを照射して、像保持体12上に画像情報の画像に応じた静電潜像を形成する。   The latent image forming device 16 irradiates the surface of the image carrier 12 charged by the charging member 14 with the light L modulated based on the image information of the image to be formed, and the image on the image carrier 12. An electrostatic latent image corresponding to the information image is formed.

現像装置18内には、トナーを含む公知の現像剤が貯留されている。トナーは、現像装置18内で帯電された状態で貯留されている。現像剤に含まれるトナーとしては、例えば、重合法により得られる体積平均粒子径3μm以上9μm以下のトナーが挙げられる。   A known developer containing toner is stored in the developing device 18. The toner is stored in a charged state in the developing device 18. Examples of the toner contained in the developer include a toner having a volume average particle diameter of 3 μm or more and 9 μm or less obtained by a polymerization method.

また、現像装置18は、像保持体12上に形成された静電潜像を現像剤に含まれるトナーにより現像する現像部材18Aと、電源32と、を含んで構成されている。この現像部材18Aには、電源32が電気的に接続されている。この電源32は、画像形成装置10に設けられた制御部36にも電気的に接続されており、制御部36の制御によって電源32から現像部材18Aに現像電圧が印加される。現像電圧を印加された現像部材18Aは、該現像電圧に応じた現像電位に帯電される。   The developing device 18 includes a developing member 18A that develops the electrostatic latent image formed on the image carrier 12 with toner contained in the developer, and a power source 32. A power source 32 is electrically connected to the developing member 18A. The power source 32 is also electrically connected to a control unit 36 provided in the image forming apparatus 10, and a development voltage is applied from the power source 32 to the developing member 18 </ b> A under the control of the control unit 36. The developing member 18A to which the developing voltage is applied is charged to a developing potential corresponding to the developing voltage.

現像電位に帯電された現像部材18Aは、現像装置18内に貯留された現像剤を表面に保持して、該現像剤に含まれるトナーを現像装置18内から像保持体12表面へと供給する。像保持体12上に供給されたトナーは、像保持体12上の静電潜像に静電力により付着する。詳細には、像保持体12と現像部材18Aとの向かい合う領域における電位差、すなわち、該領域における像保持体12の表面の電位と現像部材18Aの現像電位との電位差によって、現像剤に含まれるトナーが像保持体12の静電潜像の形成された領域に供給され、現像剤にキャリアが含まれている場合には、該キャリアは現像部材18Aに保持されたまま現像装置18内に戻る。これにより、像保持体12上の静電潜像は、現像部材18Aから供給されたトナーによって現像されて、像保持体12上には、静電潜像に応じたトナー像が形成される。   The developing member 18A charged to the developing potential holds the developer stored in the developing device 18 on the surface, and supplies the toner contained in the developer from the developing device 18 to the surface of the image carrier 12. . The toner supplied onto the image carrier 12 adheres to the electrostatic latent image on the image carrier 12 by electrostatic force. Specifically, the toner contained in the developer is determined by the potential difference in the area where the image carrier 12 and the developing member 18A face each other, that is, the potential difference between the surface potential of the image carrier 12 and the developing potential of the developing member 18A in the area. Is supplied to the area where the electrostatic latent image is formed on the image carrier 12, and the carrier is contained in the developer, the carrier returns to the developing device 18 while being held by the developing member 18A. As a result, the electrostatic latent image on the image carrier 12 is developed by the toner supplied from the developing member 18 </ b> A, and a toner image corresponding to the electrostatic latent image is formed on the image carrier 12.

像保持体12周辺の、現像部材18Aの配設位置より像保持体12の回転方向下流側には、転写装置31が設けられている。転写装置31は、転写部材20と電源30とを含んで構成されている。転写部材20は、円柱状とされており、像保持体12との間で記録媒体30Aを挟んで搬送する。転写部材20には、転写部材20に転写電圧を印加する電源30が電気的に接続されている。この電源30は、制御部36にも電気的に接続されている。   A transfer device 31 is provided around the image carrier 12 and downstream of the position where the developing member 18 </ b> A is disposed in the rotation direction of the image carrier 12. The transfer device 31 includes a transfer member 20 and a power supply 30. The transfer member 20 has a cylindrical shape, and is conveyed with the recording medium 30 </ b> A interposed between the transfer member 20 and the image carrier 12. A power supply 30 that applies a transfer voltage to the transfer member 20 is electrically connected to the transfer member 20. The power supply 30 is also electrically connected to the control unit 36.

電源30から転写部材20に、像保持体12上に形成されたトナー像を構成するトナーとは逆極性の転写電圧が印加されると、像保持体12と転写部材20との向かい合う領域(図1中、転写領域32A参照)には、像保持体12上のトナー像を構成する各トナーを静電力により像保持体12から転写部材20側へと移動させる電界強度の電界が形成される。   When a transfer voltage having a polarity opposite to that of the toner constituting the toner image formed on the image carrier 12 is applied from the power supply 30 to the transfer member 20, a region where the image carrier 12 and the transfer member 20 face each other (see FIG. 1 (see the transfer region 32A), an electric field having an electric field strength is formed to move each toner constituting the toner image on the image carrier 12 from the image carrier 12 to the transfer member 20 side by electrostatic force.

記録媒体30Aは、図示を省略する貯留部に貯留されており、この貯留部から図示を省略する複数の搬送部材によって搬送経路34にそって搬送(図1中矢印B方向)され、像保持体12と転写部材20との向かい合う領域である転写領域32Aに到る。該転写領域32Aに到った記録媒体30Aには、転写部材20に転写電圧が印加されることにより該領域に形成された電界によって、像保持体12上のトナー像を構成するトナーが転写される。すなわち、像保持体12表面から記録媒体30Aへのトナーの移動により、記録媒体30A上にトナー像が転写される。   The recording medium 30A is stored in a storage unit (not shown), and is transported (in the direction of arrow B in FIG. 1) along the transport path 34 by a plurality of transport members (not shown) from the storage unit. 12 reaches a transfer region 32 </ b> A which is a region where the transfer member 20 faces the transfer member 20. The toner constituting the toner image on the image carrier 12 is transferred to the recording medium 30A reaching the transfer area 32A by an electric field formed in the area when a transfer voltage is applied to the transfer member 20. The That is, the toner image is transferred onto the recording medium 30A by the movement of the toner from the surface of the image carrier 12 to the recording medium 30A.

また、この転写部材20から、上述のようにトナー像を構成するトナーとは逆極性の転写電圧が印加されることで、像保持体12の表面が除電されて除電電位(例えば、0V)とされる。   Further, the transfer member 20 is applied with a transfer voltage having a polarity opposite to that of the toner constituting the toner image as described above, so that the surface of the image carrier 12 is neutralized and a neutralization potential (for example, 0 V) is obtained. Is done.

記録媒体30Aの搬送経路34の、上記転写領域32Aより搬送方向下流側には、定着装置26が設けられている。定着装置26は、記録媒体30A上に転写されたトナー像を熱または熱及び圧力によって記録媒体30Aに定着させる。
搬送経路34にそって搬送されて像保持体12と転写部材20との向かい合う領域(転写領域32A)を通過することによりトナー像を転写された記録媒体30Aは、図示を省略する搬送部材によってさらに搬送経路34に沿って定着装置26の設置位置に到り、記録媒体30A上のトナー像の定着が行われる。トナー像の定着によって画像形成された記録媒体30Aは、図示を省略する複数の搬送部材によって画像形成装置10の外部へと排出される。
A fixing device 26 is provided on the conveyance path 34 of the recording medium 30A downstream of the transfer area 32A in the conveyance direction. The fixing device 26 fixes the toner image transferred onto the recording medium 30A to the recording medium 30A by heat or heat and pressure.
The recording medium 30 </ b> A to which the toner image is transferred by being conveyed along the conveyance path 34 and passing through the area (transfer area 32 </ b> A) where the image carrier 12 and the transfer member 20 face each other is further transferred by a conveyance member (not shown). The fixing device 26 is reached along the conveyance path 34, and the toner image on the recording medium 30A is fixed. The recording medium 30A on which the image is formed by fixing the toner image is discharged to the outside of the image forming apparatus 10 by a plurality of conveyance members (not shown).

像保持体12の回転方向(図1中矢印A方向)の、転写領域32Aより像保持体12の回転方向下流側には、清掃装置22が配設されている。   A cleaning device 22 is disposed downstream of the transfer region 32A in the rotation direction of the image carrier 12 in the rotation direction of the image carrier 12 (in the direction of arrow A in FIG. 1).

清掃装置22は、像保持体12上の残留トナーや紙粉等の付着物を除去する。清掃装置22としては、像保持体12に対して線圧10g/cm以上150g/cm以下で接触する板状部材を有する構成が挙げられる。   The cleaning device 22 removes deposits such as residual toner and paper dust on the image carrier 12. Examples of the cleaning device 22 include a configuration having a plate-like member that comes into contact with the image carrier 12 at a linear pressure of 10 g / cm to 150 g / cm.

トナー像を記録媒体30Aに転写すると共に除電電位とされた像保持体12は、清掃装置22によって付着物を除去された後に、再度、帯電装置15によって帯電電位に帯電される。   The image carrier 12 that has transferred the toner image to the recording medium 30 </ b> A and has been set to the charge removal potential is again charged to the charge potential by the charging device 15 after the adhering matter is removed by the cleaning device 22.

上述のようにして、画像形成装置10では、記録媒体30Aに画像が形成される。   As described above, in the image forming apparatus 10, an image is formed on the recording medium 30A.

なお、本実施の形態の画像形成装置10が、本発明の画像形成装置に相当し、帯電部材14が、本発明の画像形成装置における帯電部材に相当し、電源28が、本発明の画像形成装置における第1の印加装置に相当し、潜像形成装置16が、本発明の画像形成装置における潜像形成装置に相当し、現像部材18Aが、本発明の画像形成装置における現像部材に相当する。また、本実施の形態の現像部材18Aに現像電圧を印加する電源32が、本発明の画像形成装置の第2の印加装置に相当する。また、転写部材20が本発明の画像形成装置の転写部材に相当し、電源30が本発明の画像形成装置の第3の印加装置に相当する。また、制御部36が、本発明の画像形成装置の制御装置に相当する。   The image forming apparatus 10 of the present embodiment corresponds to the image forming apparatus of the present invention, the charging member 14 corresponds to the charging member in the image forming apparatus of the present invention, and the power source 28 forms the image forming apparatus of the present invention. The latent image forming device 16 corresponds to the first applying device in the apparatus, the latent image forming device in the image forming apparatus of the present invention, and the developing member 18A corresponds to the developing member in the image forming apparatus of the present invention. . Further, the power source 32 for applying a developing voltage to the developing member 18A of the present embodiment corresponds to the second applying device of the image forming apparatus of the present invention. The transfer member 20 corresponds to the transfer member of the image forming apparatus of the present invention, and the power source 30 corresponds to the third application device of the image forming apparatus of the present invention. The control unit 36 corresponds to a control device of the image forming apparatus of the present invention.

ここで、画像形成装置10において、記録媒体30Aに画像の形成される画像形成時には、上述のように、像保持体12は、回転(図1中、矢印A方向)によって、帯電部材14による帯電電位への帯電、潜像形成装置16による露光(静電潜像の形成)、静電潜像のトナーによる現像、及び転写部材20によるトナー像の転写及び除電が行われ、記録媒体30Aに画像が形成される。   Here, in the image forming apparatus 10, when an image is formed on the recording medium 30A, as described above, the image carrier 12 is charged by the charging member 14 by rotation (in the direction of arrow A in FIG. 1). Charging to a potential, exposure by the latent image forming device 16 (formation of an electrostatic latent image), development of the electrostatic latent image by toner, transfer of the toner image by the transfer member 20, and charge removal are performed, and an image is recorded on the recording medium 30A. Is formed.

詳細には、本実施の形態の画像形成装置10の制御部36は、画像形成時には、像保持体12を所定の帯電電位VH1に帯電させるように帯電装置15の電源28を制御し、現像部材18Aを該帯電電位VH1との電位差が現像部材18A側のトナーが像保持体12側へ移行する最小電位差P以上となる現像電位Vdeve1に帯電させるように電源32を制御する。さらに、制御部36は、像保持体12と転写部材20との向かい合う領域(転写領域32A)に、像保持体12上に保持されたトナーが記録媒体30A側へ移動する電界が形成され、且つ該電界によって像保持体12の表面が除電されるような転写電位とされた転写部材20となるように、電源30から転写部材20へ印加する転写電圧を制御する。これによって、像保持体12は、帯電部材14によって帯電電位VH1に帯電され、潜像形成装置16によって静電潜像が形成されて、この静電潜像が現像部材18Aに保持されたトナーによって現像されて、トナー像が記録媒体30Aに転写され、像保持体12が転写部材20によって除電される。   Specifically, the control unit 36 of the image forming apparatus 10 according to the present embodiment controls the power supply 28 of the charging device 15 so as to charge the image carrier 12 to a predetermined charging potential VH1 during image formation, thereby developing the developing member. The power source 32 is controlled so that the potential difference between the charging potential 18A and the charging potential VH1 is equal to or greater than the minimum potential difference P at which the toner on the developing member 18A side moves to the image holding member 12 side. Further, the control unit 36 forms an electric field in which the toner held on the image carrier 12 moves to the recording medium 30A side in a region (transfer region 32A) where the image carrier 12 and the transfer member 20 face each other. The transfer voltage applied from the power supply 30 to the transfer member 20 is controlled so that the transfer member 20 has a transfer potential that eliminates the surface of the image carrier 12 by the electric field. As a result, the image carrier 12 is charged to the charging potential VH1 by the charging member 14, an electrostatic latent image is formed by the latent image forming device 16, and the electrostatic latent image is formed by the toner held on the developing member 18A. The toner image is developed and transferred to the recording medium 30 </ b> A, and the image carrier 12 is neutralized by the transfer member 20.

このように、本実施の形態の画像形成装置10では、画像形成時における像保持体12の表面の除電を、トナー像を記録媒体30Aへ転写する転写部材20によって行っており、像保持体12の表面を除電する専用の除電装置を備えない構成とされている。   As described above, in the image forming apparatus 10 of the present embodiment, the surface of the image carrier 12 is neutralized at the time of image formation by the transfer member 20 that transfers the toner image to the recording medium 30A. It is set as the structure which is not equipped with the exclusive static elimination apparatus which neutralizes the surface of this.

この画像形成時においては、転写部材20によって像保持体12の除電が行われるので、転写部材20によって除電された後の像保持体12の表面には、電位ムラの生じていない状態が理想的である。しかし、この転写部材20の抵抗値の変動等によって、転写部材20による像保持体12の除電が不均一となり、像保持体12の表面の電位ムラが抑制されない場合があった。そして、この転写部材20の抵抗値の変動は、温度や湿度等の環境変化によって特に発生しやすかった。   At the time of image formation, the image carrier 12 is neutralized by the transfer member 20, and therefore, it is ideal that the surface of the image carrier 12 after being neutralized by the transfer member 20 has no potential unevenness. It is. However, due to variations in the resistance value of the transfer member 20 and the like, the charge removal of the image carrier 12 by the transfer member 20 becomes non-uniform, and potential unevenness on the surface of the image carrier 12 may not be suppressed. The fluctuation of the resistance value of the transfer member 20 was particularly likely to occur due to environmental changes such as temperature and humidity.

また、従来の画像形成装置10では、記録媒体30Aに画像の形成されない非画像形成時には、図3の線図51A、線図51B、及び線図51Cに示すように、帯電部材14への帯電電圧の印加、現像部材18Aへの現像電圧の印加、及び転写部材20への転写電圧の印加を解除(非画像形成時は全て0Vとする)することが行われており、画像形成から非画像形成へ切り替えた後に画像形成が再開された時においても、前回の画像形成時における像保持体12の電位ムラが残存している場合があった。   Further, in the conventional image forming apparatus 10, when non-image formation is not performed on the recording medium 30 </ b> A, the charging voltage applied to the charging member 14 as shown in the diagrams 51 </ b> A, 51 </ b> B, and 51 </ b> C in FIG. 3. Application, development voltage application to the developing member 18A, and transfer voltage application to the transfer member 20 are canceled (all at 0 V during non-image formation). Even when image formation is resumed after switching to, potential unevenness of the image carrier 12 at the time of previous image formation may remain.

なお、画像形成から非画像形成へ切り替えた時とは、画像形成終了から非画像形成へ切り替えた時から連続した非画像形成の期間であって、記録媒体30Aへの画像形成の行われない期間を示している。この「画像形成から非画像形成へ切り替えられた時」には、潜像形成装置16による画像情報に基づいた光の照射は行われず、記録媒体30Aには画像は形成されない。具体的には、画像形成から非画像形成へ切り替えられた時には、前回の画像形成の期間(画像形成)が終了してから、次の画像形成の期間(画像形成)が始まるまでの期間に相当する。例えば、「画像形成から非画像形成へ切り替えられた時」は、制御部36に入力された印刷ジョブに基づいて画像を記録媒体30Aに形成する画像形成が終了してから、異なる印刷ジョブに基づいて画像を記録媒体30Aに形成する画像形成が開始されるまでの間の期間に相当する。
なお、以下では、この「画像形成から非画像形成へ切り替えた時」を、簡略化して「非画像形成時」と称して説明する。
Note that the time when switching from image formation to non-image formation is a period of non-image formation that has continued since the time of switching from the end of image formation to non-image formation, and no image formation is performed on the recording medium 30A. Is shown. At this “when switching from image formation to non-image formation”, the latent image forming device 16 does not irradiate light based on the image information, and no image is formed on the recording medium 30A. Specifically, when switching from image formation to non-image formation, this corresponds to the period from the end of the previous image formation period (image formation) to the start of the next image formation period (image formation). To do. For example, “when switching from image formation to non-image formation” is based on a different print job after the image formation for forming the image on the recording medium 30A is completed based on the print job input to the control unit 36. This corresponds to a period until image formation for forming an image on the recording medium 30A is started.
In the following description, “when switching from image formation to non-image formation” is simplified and referred to as “non-image formation”.

本実施の形態の画像形成装置10では、非画像形成時には、制御部36が、直前の画像形成時に印加されていた極性及び電圧値の転写電圧を、少なくとも第1の期間継続して転写部材20に印加するように電源30を制御し、直前の画像形成時に印加されていた極性及び電圧値の現像電圧を像保持体12の一回転ごとに0Vに向かって段階的に変化させて現像部材18Aに印加するように電源32を制御し、且つ帯電部材14への帯電電圧の印加を解除するように電源28を制御する。   In the image forming apparatus 10 of the present embodiment, at the time of non-image formation, the control unit 36 continues the transfer voltage of the polarity and voltage value applied at the time of the previous image formation for at least the first period. The power source 30 is controlled so as to be applied to the developing member 18A, and the developing voltage of the polarity and voltage value applied at the time of the previous image formation is changed stepwise toward 0V for each rotation of the image carrier 12 to develop the developing member 18A. The power source 32 is controlled so as to be applied to the charging member 14, and the power source 28 is controlled so as to cancel the application of the charging voltage to the charging member 14.

非画像形成時における制御部36の上記の制御によって、図4の線図50Aに示されるように、非画像形成時42には、電源30から転写部材20に、直前の画像形成時40に印加されていた電圧値及び極性の転写電圧が、該画像形成時40から連続して第1の期間44継続して印加される。なお、この第1の期間44は、非画像形成時42の期間内で、且つ直前の画像形成時40に連続する期間であり、少なくとも像保持体12の1回転に要する時間以上、または像保持体12の1回転に要する時間の倍数であればよい。なお、この第1の期間44は、非画像形成時42と同じ期間であってもよいし、非画像形成時42より短い期間であってもよい。   By the above control of the control unit 36 at the time of non-image formation, as shown in a diagram 50A of FIG. 4, the non-image formation 42 is applied from the power source 30 to the transfer member 20 at the time of the previous image formation 40. The transfer voltage having the voltage value and the polarity that have been applied is continuously applied for the first period 44 from the time of image formation 40. Note that the first period 44 is a period that is within the period of the non-image formation 42 and is continuous with the immediately preceding image formation 40, and at least the time required for one rotation of the image carrier 12, or the image retention. Any multiple of the time required for one rotation of the body 12 may be used. The first period 44 may be the same as the non-image forming period 42 or may be shorter than the non-image forming period 42.

なお、この第1の期間44が、非画像形成時42より短い期間である場合には、図4の線図50Aに示されるように、直前の画像形成時40に印加されていた極性及び電圧値の転写電圧を、第1の期間44継続して転写部材20に印加するように電源30を制御した後に、該転写電圧の印加を解除(0V)にすればよい。
また、この第1の期間44が、非画像形成時42と同じ期間である場合には、電源30から転写部材20へ、直前の画像形成時40に印加されていた極性及び電圧値の転写電圧が、非画像形成時42の期間中、継続して印加されることとなる。
When the first period 44 is shorter than the non-image forming time period 42, the polarity and voltage applied at the previous image forming time 40 as shown in the diagram 50A of FIG. After the power supply 30 is controlled so that the value transfer voltage is continuously applied to the transfer member 20 in the first period 44, the application of the transfer voltage may be canceled (0 V).
If the first period 44 is the same period as the non-image forming period 42, the transfer voltage of the polarity and voltage value applied from the power source 30 to the transfer member 20 at the previous image forming period 40 is used. However, it is continuously applied during the non-image forming period 42.

また、非画像形成時42には、制御部36の制御によって、図4の線図50Bに示されるように、電源32から現像部材18Aに、直前の画像形成時40に印加されていた電圧値及び極性の現像電圧を像保持体12の1回転毎に0Vに向かって段階的に変化させて現像部材18Aへ印加するように、電源32が制御される。   Further, during the non-image formation 42, the voltage value applied to the developing member 18A from the power source 32 to the developing member 18A by the control of the control unit 36 as shown in the diagram 50B of FIG. In addition, the power source 32 is controlled so as to apply the developing voltage having a polarity to the developing member 18A in a stepwise manner toward 0 V every rotation of the image holding body 12.

なお、図4中、期間46は、像保持体12が1回転に要する時間を示している。このため、図4に示す例では、非画像形成時42には、現像電圧は、直前の画像形成時40に印加されていた現像電圧の電圧値から、像保持体12の1回転毎に0Vに向かって変化量48ずつ段階的に変化して、最終的には0Vとされる。   In FIG. 4, a period 46 indicates the time required for one rotation of the image carrier 12. For this reason, in the example shown in FIG. 4, at the time of non-image formation 42, the development voltage is 0 V for each rotation of the image carrier 12 from the voltage value of the development voltage applied at the previous image formation 40. Gradually changes by 48, and finally becomes 0V.

この非画像形成時に、像保持体12の1回転毎に0Vに向かって変化するときの現像電圧の変化量48は、現像部材18Aの現像電位と、像保持体12の現像部材18Aと向かい合う領域における表面電位と、の電位差が、現像部材18A上に保持されたトナー(現像剤が1成分現像剤である場合にはトナー、現像剤が2成分現像材である場合にはトナー及びキャリア)が像保持体12側に移行するために必要な最小電位差P未満となるように、非画像形成時の像保持体12の現像部材18Aと向かい合う領域における表面電位に応じて定めればよい。   During this non-image formation, the change amount 48 of the development voltage when changing toward 0 V for each rotation of the image carrier 12 is a region where the development potential of the development member 18A and the development member 18A of the image carrier 12 face each other. The difference in potential from the surface potential of the toner is the toner held on the developing member 18A (toner when the developer is a one-component developer, toner and carrier when the developer is a two-component developer). What is necessary is just to determine according to the surface potential in the area | region facing the developing member 18A of the image holding body 12 at the time of non-image formation so that it may become less than the minimum electric potential difference P required in order to transfer to the image holding body 12 side.

この非画像形成時において、現像部材18Aの現像電位と、像保持体12の現像部材18Aと向かい合う領域における表面電位と、の電位差が、現像部材18A上に保持されたトナーが像保持体12側に移行するために必要な最小電位差P未満となるように、現像電圧の変化量48を調整することで、非画像形成時における現像部材18Aから像保持体12側へのトナー(またはトナー及びキャリア)の移行が抑制される。   During this non-image formation, the difference in potential between the developing potential of the developing member 18A and the surface potential in the region of the image holding member 12 facing the developing member 18A is determined by the fact that the toner held on the developing member 18A is on the image holding member 12 side. The toner (or toner and carrier) from the developing member 18A to the image carrier 12 side during non-image formation is adjusted by adjusting the change amount 48 of the development voltage so as to be less than the minimum potential difference P required for shifting to ) Is suppressed.

なお、図4に示す例では、非画像形成時には、現像電圧が像保持体12の1回転毎に0Vに向かって段階的に変化して、像保持体12が2回転したときに現像電圧が0Vとされる場合を示しているが、非画像形成時の現像電圧は、この非画像形成時の現像電圧の変化量48が上記関係を維持しつつ、0Vに向かって段階的に変化すればよいことから、2回転に限られない。   In the example shown in FIG. 4, during non-image formation, the development voltage changes stepwise toward 0 V for each rotation of the image carrier 12, and the development voltage is changed when the image carrier 12 rotates twice. Although the case where the voltage is set to 0 V is shown, the development voltage at the time of non-image formation is changed in a stepwise manner toward 0 V while the development voltage change amount 48 at the time of non-image formation maintains the above relationship. It is not limited to two rotations because it is good.

また、図4に示す例では、非画像形成時において、現像電圧が最終的に0Vとされる時期は、転写電圧が0Vとされる時期と一致している場合を示したが、現像電圧は、上述のように、この非画像形成時の現像電圧の変化量48が上記関係を維持しつつ0Vに向かって段階的に変化すればよく、現像電圧が0Vとされる時期は転写電圧が0Vとされる時期と一致していても一致していなくてもよい。   In the example shown in FIG. 4, the case where the development voltage is finally set to 0 V during non-image formation is shown to coincide with the time when the transfer voltage is set to 0 V. As described above, the change amount 48 of the development voltage at the time of non-image formation may be changed stepwise toward 0V while maintaining the above relationship. When the development voltage is set to 0V, the transfer voltage is 0V. It may or may not coincide with the time when it is assumed.

なお、この最小電位差Pは、例えば、像保持体12を備えた画像形成装置10において、像保持体12側に移行するために必要な像保持体12の表面電位と現像部材18Aの表面電位との電位差の最小値(最小電位差P)を予め求めて、制御部36の図示を省略する記憶部に記憶しておけばよい。そして、非画像形成時42には、制御部36は、この最小電位差P未満の変化量48ずつ像保持体12の一回転ごとに現像電圧を0Vに向かって段階的に低下させるように、電源28を制御すればよい。   The minimum potential difference P is, for example, the surface potential of the image carrier 12 and the surface potential of the developing member 18A necessary for moving to the image carrier 12 side in the image forming apparatus 10 including the image carrier 12. The minimum value of the potential difference (minimum potential difference P) may be obtained in advance and stored in a storage unit (not shown) of the control unit 36. At the time of non-image formation 42, the control unit 36 supplies power so as to gradually decrease the development voltage toward 0 V for each rotation of the image carrier 12 by a change amount 48 less than the minimum potential difference P. 28 may be controlled.

なお、この現像電圧の変化量48は、例えば、画像形成装置10において、予め上記最小電位差Pを求めておく。そして、画像形成装置10において、非画像形成時に帯電電圧や転写電圧を図4に示す線図50Aや線図50C、または後述する図5に示す線図50Aや線図50Dで示されるように変化させたときに、該非画像形成時に、像保持体12の全領域のうちの現像部材18Aに向かい合う領域の表面電位がどのような値を示すかを予め測定しておいて、該測定結果に応じて、上記関係を満たす変化量48を予め定めておけばよい。
また、像保持体12の表面の、現像部材18Aに向かい合う領域の表面電位を測定する装置を別途設けて、該装置を制御部36に電気的に接続しておいて、該装置から入力された像保持体12の表面電位を示す信号に応じて、上記関係を満たす変化量48を動的に算出して用いてもよい。この表面電位を測定する装置としては、特に限定されないが、例えば、表面電位計トレック334(トレック社製)等が挙げられる。
As for the change amount 48 of the development voltage, for example, the minimum potential difference P is obtained in advance in the image forming apparatus 10. In the image forming apparatus 10, the charging voltage and the transfer voltage change during non-image formation as shown in a diagram 50A and a diagram 50C shown in FIG. 4 or a diagram 50A and a diagram 50D shown in FIG. 5 described later. Then, during the non-image formation, it is measured in advance what value the surface potential of the region facing the developing member 18A out of the entire region of the image carrier 12 shows, Thus, the amount of change 48 that satisfies the above relationship may be determined in advance.
Further, a device for measuring the surface potential of the surface of the image carrier 12 facing the developing member 18A is separately provided, and the device is electrically connected to the control unit 36 and input from the device. Depending on the signal indicating the surface potential of the image carrier 12, a change amount 48 that satisfies the above relationship may be dynamically calculated and used. The apparatus for measuring the surface potential is not particularly limited, and examples thereof include a surface potential meter Trek 334 (manufactured by Trek).

なお、図3、図4、及び後述する図5は、本実施の形態の画像形成装置10においてトナーがマイナス極性を有するものとして説明したものである。   3 and 4 and FIG. 5 described later are described assuming that the toner has a negative polarity in the image forming apparatus 10 of the present embodiment.

また、非画像形成時42には、制御部36の制御によって、図4の線図50Cに示されるように、電源28から帯電部材14への帯電電圧の印加が解除(0V)される。   Further, at the time of non-image formation 42, the application of the charging voltage from the power supply 28 to the charging member 14 is canceled (0 V) as shown by a line 50C in FIG.

このため、画像形成装置10では、非画像形成時42には、帯電電圧の印加が解除されて像保持体12の帯電電位への帯電が行われず、潜像形成装置16による静電潜像の形成も行われず(露光電位とされず)、現像部材18Aの現像電位が像保持体12との電位差を最小電位差P未満に維持されながら0Vに向かって像保持体12の一回転毎に段階的に変化し、且つ転写部材20が直前の画像形成時40における転写電位を第1の期間44維持することとなる。   Therefore, in the image forming apparatus 10, during the non-image formation 42, the application of the charging voltage is canceled and the charging to the charging potential of the image holding body 12 is not performed, and the electrostatic latent image is formed by the latent image forming apparatus 16. No formation is performed (the exposure potential is not set), and the development potential of the developing member 18A is stepwise for each rotation of the image holding body 12 toward 0 V while the potential difference from the image holding body 12 is maintained below the minimum potential difference P. In addition, the transfer member 20 maintains the transfer potential at the time 40 immediately before the image formation 40 in the first period 44.

このため、非画像形成時に、直前の画像形成時に印加されていた転写電圧を少なくとも第1の期間継続して転写部材20へ印加せず、且つ直前の画像形成時に印加されていた現像電圧を像保持体12の1回転毎に0Vに向かって段階的に変化させて現像部材18Aへ印加しない場合に比べて、非画像形成時には、現像部材18Aによって電位ムラが抑制された状態で、転写部材20によって更に像保持体12の表面の除電が行われることとなり、像保持体12の表面の電位ムラが抑制されると考えられる。   For this reason, at the time of non-image formation, the transfer voltage applied at the previous image formation is not continuously applied to the transfer member 20 for at least the first period, and the development voltage applied at the previous image formation is used as the image. Compared to the case where the holding member 12 is changed stepwise toward 0 V for each rotation and is not applied to the developing member 18A, the transfer member 20 has a potential unevenness suppressed by the developing member 18A during non-image formation. As a result, the surface of the image carrier 12 is further neutralized, and the potential unevenness of the surface of the image carrier 12 is considered to be suppressed.

なお、図4に示す例では、線図50Cに示すように、非画像形成時42には、非画像形成時42の全期間に渡って帯電電圧の印加を解除する(0Vとする)場合を説明したが、帯電電圧についても、現像電圧と同様に、直前の画像形成時に帯電部材14へ印加されていた極性及び電圧値の帯電電圧を像保持体12の1回転毎に0Vに向かって変化させることで、最終的に帯電電圧の印加を解除することが、像保持体12の更なる電位ムラの抑制の観点から、望ましい。   In the example shown in FIG. 4, as shown in a diagram 50 </ b> C, in the non-image formation 42, the application of the charging voltage is canceled (set to 0 V) over the entire period of the non-image formation 42. As described above, with respect to the charging voltage as well as the developing voltage, the charging voltage of the polarity and the voltage value applied to the charging member 14 at the time of the previous image formation changes toward 0 V for each rotation of the image holding body 12. Thus, it is desirable to finally cancel the application of the charging voltage from the viewpoint of further suppressing potential unevenness of the image carrier 12.

この場合には、具体的には、非画像形成時42には、制御部36の制御によって、図5の線図50Dに示されるように、電源28から帯電部材14に、直前の画像形成時40に印加されていた電圧値及び極性の帯電電圧を像保持体12の1回転毎に0Vに向かって段階的に変化させて帯電部材14へ印加するように、電源28が制御される。   In this case, specifically, at the time of non-image formation 42, the control unit 36 controls the power supply 28 to the charging member 14 as shown in the diagram 50D of FIG. The power supply 28 is controlled so that the voltage value and the polarity charging voltage applied to 40 are applied to the charging member 14 in a stepwise manner toward 0 V for each rotation of the image carrier 12.

なお、図5中、期間46は、像保持体12が1回転に要する時間を示している。このため、図5に示す例では、非画像形成時42には、帯電電圧は、直前の画像形成時40に印加されていた帯電電圧の電圧値から、像保持体12の1回転毎に0Vに向かって変化量49ずつ段階的に変化して、最終的には0Vとされる。   In FIG. 5, a period 46 indicates the time required for one rotation of the image carrier 12. For this reason, in the example shown in FIG. 5, at the time of non-image formation 42, the charging voltage is 0 V for each rotation of the image carrier 12 from the voltage value of the charging voltage applied at the previous image formation 40. Gradually changes by 49, and finally becomes 0V.

この非画像形成時に、像保持体12の1回転毎に0Vに向かって変化するときの帯電電圧の変化量49は、像保持体12の帯電部材14と向かい合う領域における表面電位に対する、帯電部材14の帯電電位の値が、1倍以上1.9倍以下の範囲を維持する量であればよい。すなわち、非画像形成時には、非画像形成時の帯電部材14の帯電電位が、像保持体12の帯電部材14に向かい合う領域における表面電位と同じ、または該表面電位の1.9倍以下の範囲で該表面電位の絶対値より高い値となるように、帯電部材14に印加される帯電電圧及び変化量49を調整することが望ましい。   During this non-image formation, the amount 49 of change in the charging voltage when changing to 0 V for each rotation of the image carrier 12 is the charging member 14 with respect to the surface potential in the region facing the charging member 14 of the image carrier 12. As long as the value of the charging potential is within the range of 1 to 1.9 times, it is sufficient. That is, at the time of non-image formation, the charging potential of the charging member 14 at the time of non-image formation is the same as the surface potential in the region facing the charging member 14 of the image carrier 12 or 1.9 times or less of the surface potential. It is desirable to adjust the charging voltage applied to the charging member 14 and the amount of change 49 so as to be higher than the absolute value of the surface potential.

この変化量49は、非画像形成時42の、像保持体12の帯電部材14に向かい合う領域における表面電位に応じて定めればよい。   The amount of change 49 may be determined according to the surface potential in the region facing the charging member 14 of the image carrier 12 during non-image formation 42.

なお、図5に示す例では、非画像形成時には、帯電電圧が像保持体12の1回転毎に0Vに向かって段階的に変化して、像保持体12が2回転したときに帯電電圧が0Vとされて帯電電圧の印加が解除される場合を示したが、非画像形成時の帯電電圧は、この非画像形成時の帯電電圧の変化量49が上記関係を維持しつつ、0Vに向かって段階的に変化すればよいことから、2回転に限られない。   In the example shown in FIG. 5, during non-image formation, the charging voltage changes stepwise toward 0 V for each rotation of the image carrier 12, and the charging voltage is changed when the image carrier 12 rotates twice. Although the case where the application of the charging voltage is canceled due to 0 V is shown, the charging voltage at the time of non-image formation is directed toward 0 V while the change amount 49 of the charging voltage at the time of non-image formation maintains the above relationship. Therefore, the rotation is not limited to two rotations.

また、図5に示す例では、非画像形成時において、帯電電圧が最終的に0Vとされる時期は、転写電圧や現像電圧が0Vとされる時期と一致している場合を説明するが、帯電電圧は、上述のように、この非画像形成時の帯電電圧の変化量49が上記関係を維持しつつ、0Vに向かって段階的に変化すればよく、0Vとされる時期は一致していても、転写電圧や現像電圧が0Vとされる時期と一致していなくてもよい。   In the example shown in FIG. 5, a case where the timing when the charging voltage is finally set to 0V coincides with the timing when the transfer voltage and the development voltage are set to 0V during non-image formation will be described. As described above, the charging voltage may be changed stepwise toward 0V while maintaining the above-mentioned relationship, and the timing when the charging voltage is set to 0V coincides. However, it does not have to coincide with the timing when the transfer voltage and the development voltage are set to 0V.

なお、この帯電電圧の変化量49は、例えば、画像形成装置10において、非画像形成時に転写電圧や現像電圧を図5に示す線図50Aや線図50Bで示されるように変化させたときに、該非画像形成時に、像保持体12の全領域のうちの帯電部材14に向かい合う領域の表面電位がどのような値を示すかを予め測定しておいて、該測定結果に応じて、上記関係を満たす変化量49を予め定めておけばよい。
また、像保持体12の表面の、帯電部材14に向かい合う領域の表面電位を測定する装置を別途設けて、該装置を制御部36に電気的に接続しておいて、該装置から入力された像保持体12の表面電位を示す信号に応じて、上記関係を満たす変化量49を動的に算出して用いてもよい。
The charging voltage change amount 49 is, for example, when the image forming apparatus 10 changes the transfer voltage and the development voltage during non-image formation as shown in the diagrams 50A and 50B shown in FIG. In the non-image formation, the value of the surface potential of the region facing the charging member 14 in the entire region of the image carrier 12 is measured in advance, and the above relationship is determined according to the measurement result. A change amount 49 that satisfies the above may be determined in advance.
Further, a device for measuring the surface potential of the surface of the image carrier 12 facing the charging member 14 is separately provided, and the device is electrically connected to the control unit 36 and input from the device. Depending on the signal indicating the surface potential of the image carrier 12, a change amount 49 that satisfies the above relationship may be dynamically calculated and used.

次に、本実施の形態の画像形成装置10の制御部36で行われる処理ルーチンを説明する。   Next, a processing routine performed by the control unit 36 of the image forming apparatus 10 of the present embodiment will be described.

図6に示すように画像形成装置10における図示を省略する電源スイッチが操作されて画像形成装置10の装置各部に電力が供給されると、制御部36では、図6に示す処理ルーチンを実行するためのプログラムを読取り、該処理ルーチンを実行する。   As shown in FIG. 6, when a power switch (not shown) in the image forming apparatus 10 is operated to supply power to each part of the image forming apparatus 10, the control unit 36 executes the processing routine shown in FIG. 6. The program for reading is read and the processing routine is executed.

ステップ100では、画像形成指示を示す信号が入力されたか否かを判断し、否定されると本ルーチンを終了し、肯定されるとステップ102へ進む。この画像形成指示を示す信号が入力されたか否かの判断は、例えば、図示を省略する操作パネルが操作されて画像形成指示を示す信号が入力されたことを判別することによって行ってもよいし、図示を省略する入出力装置を介して外部から印刷ジョブが入力されたことを判別することによって行ってもよい。なお、操作パネルや入出力装置は、制御部36に電気的に接続されていればよい。   In step 100, it is determined whether or not a signal indicating an image formation instruction has been input. If the determination is negative, this routine is terminated. If the determination is positive, the routine proceeds to step 102. The determination as to whether or not a signal indicating an image formation instruction has been input may be performed, for example, by determining that a signal indicating an image formation instruction has been input by operating an operation panel (not shown). Alternatively, it may be performed by determining that a print job is input from the outside via an input / output device (not shown). Note that the operation panel and the input / output device may be electrically connected to the control unit 36.

ステップ102では、画像形成処理を実行する。画像形成処理は、上記に説明した画像形成時に行われる処理である。ステップ102の処理が実行されることによって、記録媒体30Aに画像が形成される。   In step 102, an image forming process is executed. The image forming process is a process performed during the image formation described above. By executing the processing of step 102, an image is formed on the recording medium 30A.

次のステップ104では、画像形成終了を示す信号が入力されたか否かを判断し、否定されると上記ステップ102へ戻り、肯定されるとステップ106へ進む。このステップ104の判断は、例えば、図示を省略する操作パネルが操作されて画像形成終了を示す信号が入力されたことを判別することによって行ってもよいし、上記ステップ102で画像形成処理する印刷ジョブに含まれる印刷対象の画像の全ての印刷処理が終了したことを判別することによって行ってもよい。   In the next step 104, it is determined whether or not a signal indicating the end of image formation has been input. If the signal is negative, the process returns to step 102. The determination in step 104 may be performed by, for example, determining that an operation panel (not shown) is operated and a signal indicating the end of image formation is input, or printing that performs image formation processing in step 102 described above. The determination may be made by determining that all the printing processes for the image to be printed included in the job have been completed.

ステップ106では、非画像形成処理を実行した後に、本ルーチンを終了する。非画像形成処理は、上記に説明した非画像形成時に行われる処理である(図4及び図5参照)。ステップ106の処理が実行されることによって、非画像形成時に、像保持体12の表面の電位ムラが抑制される。   In step 106, after executing the non-image forming process, this routine is finished. The non-image forming process is a process performed during the non-image forming described above (see FIGS. 4 and 5). By executing the processing of step 106, potential unevenness on the surface of the image carrier 12 is suppressed during non-image formation.

以上説明したように、本実施の形態の画像形成装置10では、上記の非画像形成時における処理が実行されることによって、像保持体12の表面の電位ムラが抑制される。   As described above, in the image forming apparatus 10 according to the present embodiment, the unevenness of the potential on the surface of the image carrier 12 is suppressed by executing the above processing during non-image formation.

なお、像保持体12の構成材料は、公知の材料を用いればよく、支持体60、感光層63、保護層64の構成材料としては、例えば、特願2007−333308に記載の基体、下引層、感光層、及び保護層に用いられる材料が挙げられるが、この感光層63を構成する電荷輸送層66は、結着樹脂と、下記一般式(1)で表される構造を有する電荷輸送性材料を含んだ構成であることが望ましい。   A known material may be used as the constituent material of the image carrier 12, and examples of constituent materials of the support 60, the photosensitive layer 63, and the protective layer 64 include a substrate described in Japanese Patent Application No. 2007-333308, and an undercoat. Examples of the material used for the layer, the photosensitive layer, and the protective layer include a charge transporting layer 66 that constitutes the photosensitive layer 63. It is desirable that the structure includes a functional material.

電荷輸送層66が、結着樹脂と、下記一般式(1)で表される構造を有する電荷輸送性材料を含んだ構成とされていることで、電荷輸送層66の電荷の移動度が該材料を用いない場合に比べて大きくなり、転写部材20により除電された後の像保持体12の表面の電位ムラが更に抑制される、と考えられる。
また、電荷輸送層66が、結着樹脂と、下記一般式(1)で表される構造を有する電荷輸送性材料を含んだ構成とされていることで、非画像形成時42において現像電圧を0Vとするまでの像保持体12の回転数(図4及び図5参照)や、非画像形成時において帯電電圧を0Vとするまでの像保持体12の回転数(図5参照)が抑えられ、像保持体12の少ない回転数で効果的に除電が行われ、電位ムラが抑制されると考えられる。
Since the charge transport layer 66 includes a binder resin and a charge transport material having a structure represented by the following general formula (1), the charge mobility of the charge transport layer 66 is increased. This is considered to be larger than when no material is used, and the potential unevenness on the surface of the image carrier 12 after being neutralized by the transfer member 20 is further suppressed.
In addition, the charge transport layer 66 is configured to include a binder resin and a charge transport material having a structure represented by the following general formula (1), so that a developing voltage can be applied during non-image formation 42. The number of rotations of the image carrier 12 up to 0V (see FIGS. 4 and 5) and the number of rotations of the image carrier 12 up to 0V during non-image formation (see FIG. 5) can be suppressed. It is considered that neutralization is effectively performed with a small number of rotations of the image carrier 12 and potential unevenness is suppressed.

一般式(1)中、R、R、R、R、R、及びRはそれぞれ独立して水素原子、ハロゲン原子、炭素数1以上20以下のアルキル基、炭素数1以上20以下のアルコキシ基、又は、置換もしくは未置換の炭素数6以上30以下のアリール基を表し、隣接する2つの置換基同士が結合して炭化水素環構造を形成してもよい。n及びmはそれぞれ独立して0又は1を表す。 In General Formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 or more carbon atoms. It represents an alkoxy group having 20 or less, or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, and two adjacent substituents may be bonded to form a hydrocarbon ring structure. n and m each independently represents 0 or 1.

なお、機能を損ねない範囲で、上記一般式(1)で表される電荷輸送性材料以外の他の電荷輸送性材料を用いても良い。この他の電荷輸送性材料としては、例えば、2,5−ビス(p−ジエチルアミノフェニル)−1,3,4−オキサジアゾール等のオキサジアゾール誘導体、1,3,5−トリフェニル−ピラゾリン、1−[ピリジル−(2)]−3−(p−ジエチルアミノスチリル)−5−(p−ジエチルアミノスチリル)ピラゾリン等のピラゾリン誘導体、トリフェニルアミン、トリ(p−メチルフェニル)アミニル−4−アミン、ジベンジルアニリン等の芳香族第3級アミノ化合物、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニルベンジジン等の芳香族第3級ジアミノ化合物、3−(4’−ジメチルアミノフェニル)−5,6−ジ−(4’−メトキシフェニル)−1,2,4−トリアジン等の1,2,4−トリアジン誘導体、4−ジエチルアミノベンズアルデヒド−1,1−ジフェニルヒドラゾン等のヒドラゾン誘導体、2−フェニル−4−スチリル−キナゾリン等のキナゾリン誘導体、6−ヒドロキシ−2,3−ジ(p−メトキシフェニル)ベンゾフラン等のベンゾフラン誘導体、p−(2,2−ジフェニルビニル)−N,N−ジフェニルアニリン等のα−スチルベン誘導体、エナミン誘導体、ブタジエン化合物、N−エチルカルバゾール等のカルバゾール誘導体、ポリ−N−ビニルカルバゾールおよびその誘導体などの正孔輸送物質、クロラニル、ブロアントラキノン等のキノン系化合物、テトラアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン等のフルオレノン化合物、キサントン系化合物、チオフェン化合物等の電子輸送物質、および上記した化合物からなる基を主鎖または側鎖に有する重合体などが挙げられる。これらの電荷輸送材料は、1種を単独で又は2種以上を組み合わせて使用すればよい。なお、電荷輸送層66における電荷輸送材料と結着樹脂との含有量の比(質量比)は10:1以上1:5以下が挙げられる。   It should be noted that other charge transport materials other than the charge transport material represented by the general formula (1) may be used as long as the function is not impaired. Other charge transport materials include, for example, oxadiazole derivatives such as 2,5-bis (p-diethylaminophenyl) -1,3,4-oxadiazole, 1,3,5-triphenyl-pyrazoline 1- [pyridyl- (2)]-3- (p-diethylaminostyryl) -5- (p-diethylaminostyryl) pyrazoline and other pyrazoline derivatives, triphenylamine, tri (p-methylphenyl) aminyl-4-amine Aromatic tertiary amino compounds such as dibenzylaniline, aromatic tertiary diamino compounds such as N, N′-bis (3-methylphenyl) -N, N′-diphenylbenzidine, 3- (4′- 1,2,4-triazine derivatives such as dimethylaminophenyl) -5,6-di- (4′-methoxyphenyl) -1,2,4-triazine, 4-diethy Hydrazone derivatives such as aminobenzaldehyde-1,1-diphenylhydrazone, quinazoline derivatives such as 2-phenyl-4-styryl-quinazoline, benzofuran derivatives such as 6-hydroxy-2,3-di (p-methoxyphenyl) benzofuran, p Α-stilbene derivatives such as-(2,2-diphenylvinyl) -N, N-diphenylaniline, enamine derivatives, butadiene compounds, carbazole derivatives such as N-ethylcarbazole, poly-N-vinylcarbazole and derivatives thereof Pore transport materials, quinone compounds such as chloranil and broanthraquinone, tetraanoquinodimethane compounds, fluorenone compounds such as 2,4,7-trinitrofluorenone, 2,4,5,7-tetranitro-9-fluorenone, Xanthone compounds, thiophene And an electron transporting material such as a polymer, and a polymer having a group composed of the above-described compound in the main chain or side chain. These charge transport materials may be used alone or in combination of two or more. In addition, the ratio (mass ratio) of the content of the charge transport material and the binder resin in the charge transport layer 66 is 10: 1 or more and 1: 5 or less.

この電荷輸送層66に含まれる結着樹脂としては、アクリル樹脂、ポリアリレート等のポリエステル樹脂、ポリカーボネート樹脂、ポリスチレン、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン共重合体、ポリビニルブチラール等のポリビニルアセタール樹脂、ポリケトン樹脂、ポリビニルケトン樹脂、ポリスチレン樹脂、ポリスルホン、ポリアクリルアミド、ポリアミド、塩素ゴム等の絶縁性樹脂、およびポリビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン等の有機光導電性ポリマー等があげられる。   Examples of the binder resin contained in the charge transport layer 66 include acrylic resins, polyester resins such as polyarylate, polycarbonate resins, polystyrene, acrylonitrile-styrene copolymers, acrylonitrile-butadiene copolymers, and polyvinyl acetal resins such as polyvinyl butyral. Insulating resins such as polyketone resins, polyvinyl ketone resins, polystyrene resins, polysulfones, polyacrylamides, polyamides, and chlorinated rubbers, and organic photoconductive polymers such as polyvinyl carbazole, polyvinyl anthracene, and polyvinyl pyrene.

中でも、像保持体12の除電ムラを更に抑制する観点から、結着樹脂としては、下記一般式(2)で表される構造単位を含むことが望ましい。   Among these, it is desirable that the binder resin includes a structural unit represented by the following general formula (2) from the viewpoint of further suppressing the charge removal unevenness of the image carrier 12.

一般式(2)中、R及びRは、各々独立にハロゲン原子、炭素数1以上6以下のアルキル基、炭素数5以上7以下のシクロアルキル基、又は炭素数6以上12以下のアリール基であり、e,fは、各々独立に0以上4以下の整数を表す。 In General Formula (2), R 7 and R 8 are each independently a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 7 carbon atoms, or an aryl having 6 to 12 carbon atoms. E and f each independently represents an integer of 0 or more and 4 or less.

このように、電荷輸送層66の結着樹脂が、上記一般式(2)で表される構造単位を含む構成とされていることで、電荷輸送層66の電荷の移動度が該材料を用いない場合に比べて更に大きくなり、また、該移動度の環境による変動も抑制されると考えられる。
このため、転写部材20による除電が効率的に行われる、と考えられる。
また、電荷輸送層66の結着樹脂が、上記一般式(2)で表される構造単位を含む構成とされていることで、非画像形成時42において現像電圧を0Vとするまでの像保持体12の回転数(図4及び図5参照)や、非画像形成時において帯電電圧を0Vとするまでの像保持体12の回転数(図5参照)が更に抑えられ、像保持体12の少ない回転数で効果的に除電が行われると考えられる。
As described above, since the binder resin of the charge transport layer 66 includes the structural unit represented by the general formula (2), the charge mobility of the charge transport layer 66 uses the material. It is considered that the mobility is further increased as compared with the case where the mobility is not present, and fluctuations in the mobility due to the environment are also suppressed.
For this reason, it is considered that the charge removal by the transfer member 20 is performed efficiently.
Further, since the binder resin of the charge transport layer 66 includes the structural unit represented by the general formula (2), image retention until the developing voltage is set to 0 V in the non-image formation 42 is performed. The number of rotations of the body 12 (see FIGS. 4 and 5) and the number of rotations of the image carrier 12 (see FIG. 5) until the charging voltage is set to 0 V during non-image formation are further suppressed. It is considered that static elimination is effectively performed with a small number of revolutions.

また更に、像保持体12の除電ムラの更なる抑制や、更なる効率的な除電の観点から、電荷輸送層66に含まれる結着樹脂は、上記一般式(2)で表される構造単位と、下記一般式(3)で表される構造単位と、の共重合体を含むことが望ましい。   Furthermore, from the viewpoint of further suppressing uneven discharge of the image carrier 12 and further efficient charge removal, the binder resin contained in the charge transport layer 66 is a structural unit represented by the general formula (2). And a copolymer of the structural unit represented by the following general formula (3).

一般式(3)中、R及びR10は、各々独立にハロゲン原子、炭素数1以上6以下のアルキル基、炭素数5以上7以下のシクロアルキル基、又は炭素数6以上12以下のアリール基であり、g,hは、各々独立に0以上4以下の整数を表す。Xは、−CR1112−(但し、R11及びR12は、各々独立に水素原子、トリフルオロメチル基、炭素数1以上6以下のアルキル基、又は炭素数6以上12以下のアリール基のいずれかを表す。)、炭素数5以上11以下の1,1−シクロアルキレン基、炭素数2以上10以下のα,ω−アルキレン基、−O−、−S−、−SO−、または−SO−を表す。 In general formula (3), R 9 and R 10 are each independently a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 7 carbon atoms, or an aryl having 6 to 12 carbon atoms. And g and h each independently represent an integer of 0 or more and 4 or less. X is —CR 11 R 12 — (wherein R 11 and R 12 are each independently a hydrogen atom, a trifluoromethyl group, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms) Or a 1,1-cycloalkylene group having 5 to 11 carbon atoms, an α, ω-alkylene group having 2 to 10 carbon atoms, —O—, —S—, —SO—, or -SO 2 - represents a.

上記の一般式(2)で表される構造単位と、上記の一般式(3)で表される構造単位と、の共重合体の共重合比(下記具体例におけるm:n比に相当)は、例えば、m:n=95:5以上5:95以下の範囲、50:50以上5:95以下の範囲、30:70以上10:90以下の範囲が挙げられる。   Copolymer ratio of the copolymer of the structural unit represented by the above general formula (2) and the structural unit represented by the above general formula (3) (corresponding to the m: n ratio in the following specific examples) For example, m: n = 95: 5 or more and 5:95 or less, 50:50 or more and 5:95 or less, or 30:70 or more and 10:90 or less.

上記の一般式(2)で表される構造単位と、上記の一般式(3)で表される構造単位と、の共重合体の具体例としては、以下の構造式(A1)〜構造式(A3)が挙げられるが、これらに限定されるものではない。   Specific examples of the copolymer of the structural unit represented by the general formula (2) and the structural unit represented by the general formula (3) include the following structural formula (A1) to structural formula: Although (A3) is mentioned, it is not limited to these.

なお、機能を損ねない範囲で、上記一般式(2)で表される構造単位や、上記一般式(2)で表される構造単位と上記一般式(3)で表される構造単位との共重合体を含む結着樹脂以外の他の結着樹脂を用いてもよい。当該他の結着樹脂としては、例えば、ビスフェノールAタイプあるいはビスフェノールZタイプ等のポリカーボネート樹脂、アクリル樹脂、メタクリル樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン共重合体樹脂、アクリロニトリル−ブタジエン共重合体樹脂、ポリビニルアセテート樹脂、ポリビニルホルマール樹脂、ポリスルホン樹脂、スチレン−ブタジエン共重合体樹脂、塩化ビニリデン−アクリルニトリル共重合体樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、フェノール−ホルムアルデヒド樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、塩素ゴム等の絶縁性樹脂、及びポリビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン等の有機光導電性ポリマー等が挙げられる。これらの結着樹脂は、単独又は2種以上混合して用いてもよい。   The structural unit represented by the general formula (2), the structural unit represented by the general formula (2), and the structural unit represented by the general formula (3) are within a range not impairing the function. A binder resin other than the binder resin containing a copolymer may be used. Examples of the other binder resin include polycarbonate resin such as bisphenol A type or bisphenol Z type, acrylic resin, methacrylic resin, polyarylate resin, polyester resin, polyvinyl chloride resin, polystyrene resin, acrylonitrile-styrene copolymer. Resin, acrylonitrile-butadiene copolymer resin, polyvinyl acetate resin, polyvinyl formal resin, polysulfone resin, styrene-butadiene copolymer resin, vinylidene chloride-acrylonitrile copolymer resin, vinyl chloride-vinyl acetate-maleic anhydride resin, Insulating resins such as silicone resin, phenol-formaldehyde resin, polyacrylamide resin, polyamide resin, chlorinated rubber, and polyvinylcarbazole, polyvinylanthracene, polyvinyl chloride Organic photoconductive polymers such as Rupiren like. These binder resins may be used alone or in combination of two or more.

なお、電荷輸送層66は、上記の構成材料を溶剤に加えた塗布液を用いて形成すればよい。   The charge transport layer 66 may be formed using a coating liquid in which the above constituent materials are added to a solvent.

なお、以上説明した本実施の形態の画像形成装置10では、帯電部材14は、像保持体12の表面に接触して設けられていてもよいし、非接触で設けられていてもよく、また、電源28から帯電部材14に印加される帯電電圧は、直流電圧に交流電圧を重畳した重畳電圧であってもよいし、直流電圧であってもよい。ここで、帯電部材14が像保持体12の表面に接触して設けられ、帯電電圧として直流電圧を用いた場合には、一般的には、像保持体12の電位ムラが大きくなると考えられるが、本実施の形態の画像形成装置10によれば、帯電部材14を像保持体12の表面に接触して設けた構成とし、帯電電圧として直流電圧を用いた場合であっても、像保持体12の表面の電位ムラが効果的に抑制される、と考えられる。   In the image forming apparatus 10 of the present embodiment described above, the charging member 14 may be provided in contact with the surface of the image carrier 12 or may be provided in a non-contact manner. The charging voltage applied to the charging member 14 from the power supply 28 may be a superimposed voltage obtained by superimposing an AC voltage on a DC voltage, or may be a DC voltage. Here, when the charging member 14 is provided in contact with the surface of the image holding body 12 and a DC voltage is used as the charging voltage, generally, the potential unevenness of the image holding body 12 is considered to increase. According to the image forming apparatus 10 of the present embodiment, the charging member 14 is provided in contact with the surface of the image carrier 12, and the image carrier is used even when a DC voltage is used as the charging voltage. It is considered that potential unevenness on the surface of 12 is effectively suppressed.

以下、本実施の形態の画像形成装置を実施例によって具体的に説明するが、これらの実施例によって限定されるものではない。また、以下において特に指定のない場合「部」は「質量部」を表し、「%」は「質量%」を表す。   Hereinafter, the image forming apparatus of the present embodiment will be specifically described with reference to examples, but the present invention is not limited to these examples. Further, unless otherwise specified, “part” represents “part by mass” and “%” represents “mass%”.

<像保持体A〜像保持体Cの作製>
−像保持体Aの作製−
酸化亜鉛(平均粒子径:70nm、テイカ社製、比表面積値:15m/g)100質量部をメタノール500質量部と攪拌混合し、シランカップリング剤として、KBM603(信越化学社製)1.25質量部を添加し、2時間攪拌した。その後、メタノールを減圧蒸留にて留去し、120℃で3時間焼き付けを行い、シランカップリング剤表面処理酸化亜鉛微粒子を得た。
<Preparation of image carrier A to image carrier C>
-Production of image carrier A-
100 parts by mass of zinc oxide (average particle size: 70 nm, manufactured by Teica, specific surface area value: 15 m 2 / g) is stirred and mixed with 500 parts by mass of methanol, and KBM603 (manufactured by Shin-Etsu Chemical Co., Ltd.) is used as a silane coupling agent. 25 parts by mass was added and stirred for 2 hours. Thereafter, methanol was distilled off under reduced pressure, and baking was performed at 120 ° C. for 3 hours to obtain silane coupling agent surface-treated zinc oxide fine particles.

前記表面処理を施した酸化亜鉛微粒子60質量部と、アリザリン0.6質量部と、硬化剤としてブロック化イソシアネート(スミジュール3173、住友バイエルンウレタン社製)13.5質量部と、ブチラール樹脂(BM−1、積水化学社製)15質量部とを、メチルエチルケトン85質量部に溶解した溶液38質量部と、メチルエチルケトン25質量部とを混合し、直径1mmのガラスビーズを用いてサンドミルにて4時間の分散を行い、分散液を得た。得られた分散液に、触媒としてジオクチルスズジラウレート0.005質量部と、シリコーン樹脂粒子(トスパール145、GE東芝シリコーン社製)4.0質量部とを添加し、下引層形成用塗布液を得た。この塗布液を、浸漬塗布法にて直径30mmのアルミニウム基材上に塗布し、180℃、40分の乾燥硬化を行い厚さ25μmの下引層を得た。   60 parts by mass of the zinc oxide fine particles subjected to the surface treatment, 0.6 parts by mass of alizarin, 13.5 parts by mass of blocked isocyanate (Sumidule 3173, manufactured by Sumitomo Bayern Urethane Co., Ltd.) as a curing agent, and butyral resin (BM -1, manufactured by Sekisui Chemical Co., Ltd.) 15 parts by mass of 38 parts by mass of a solution obtained by dissolving 85 parts by mass of methyl ethyl ketone and 25 parts by mass of methyl ethyl ketone, and 4 hours in a sand mill using glass beads having a diameter of 1 mm. Dispersion was performed to obtain a dispersion. To the obtained dispersion, 0.005 parts by mass of dioctyltin dilaurate and 4.0 parts by mass of silicone resin particles (Tospearl 145, manufactured by GE Toshiba Silicone) are added as a catalyst, and a coating liquid for forming an undercoat layer is added. Obtained. This coating solution was applied on an aluminum substrate having a diameter of 30 mm by a dip coating method, followed by drying and curing at 180 ° C. for 40 minutes to obtain an undercoat layer having a thickness of 25 μm.

次に、電荷発生材料として、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも7.4゜、16.6゜、25.5゜及び28.3゜に強い回折ピークを有するクロロガリウムフタロシアニン結晶15質量部、塩化ビニル−酢酸ビニル共重合体樹脂(VMCH、日本ユニオンカーバイト社製)10質量部およびn−ブチルアルコール300質量部からなる混合物を、直径1mmのガラスビーズを用いてサンドミルにて4時間分散して電荷発生層形成用の塗布液を得た。この塗布液を前記下引層上に浸漬塗布し、乾燥して、厚みが0.2μmの電荷発生層を得た。   Next, as a charge generation material, it has strong diffraction peaks at Bragg angles (2θ ± 0.2 °) with respect to CuKα characteristic X-rays of at least 7.4 °, 16.6 °, 25.5 ° and 28.3 °. Using a glass bead having a diameter of 1 mm, a mixture of 15 parts by mass of chlorogallium phthalocyanine crystal, 10 parts by mass of vinyl chloride-vinyl acetate copolymer resin (VMCH, manufactured by Nippon Union Carbide) and 300 parts by mass of n-butyl alcohol was used. Then, it was dispersed in a sand mill for 4 hours to obtain a coating solution for forming a charge generation layer. This coating solution was dip-coated on the undercoat layer and dried to obtain a charge generation layer having a thickness of 0.2 μm.

次に、4フッ化エチレン樹脂粒子8質量部(平均粒径:0.2μm)と、フッ化アルキル基含有メタクリルコポリマー(重量平均分子量30000)0.01質量部とを、テトラヒドロフラン4質量部、トルエン1質量部とともに20℃の液温に保ち、48時間攪拌混合し、4フッ化エチレン樹脂粒子懸濁液Aを得た。   Next, 8 parts by mass of tetrafluoroethylene resin particles (average particle size: 0.2 μm) and 0.01 parts by mass of a fluorinated alkyl group-containing methacrylic copolymer (weight average molecular weight 30000), 4 parts by mass of tetrahydrofuran, toluene The mixture was kept at a liquid temperature of 20 ° C. together with 1 part by mass and stirred for 48 hours to obtain a tetrafluoroethylene resin particle suspension A.

次に、電荷輸送物質として下記構造式(1)(一般式(1)において、n=1、m=1、R、R、R、R、R、及びRが全てHのもの)を持つ化合物、トリス[4−(4,4−ジフェニル−1,3−ブタジエニル)フェニル]アミンを4質量部、結着樹脂としてビスフェノールZ型ポリカーボネート樹脂(粘度平均分子量:40000)6質量部、酸化防止剤として2,6−ジ−t−ブチル−4−メチルフェノール0.1質量部を混合して、テトラヒドロフラン24質量部及びトルエン11質量部を混合溶解して、混合溶解液Bを得た。 Next, as a charge transport material, the following structural formula (1) (in the general formula (1), n = 1, m = 1, R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are all H Compound), 4 parts by mass of tris [4- (4,4-diphenyl-1,3-butadienyl) phenyl] amine, and 6 parts of bisphenol Z-type polycarbonate resin (viscosity average molecular weight: 40000) as a binder resin Parts, 2,6-di-t-butyl-4-methylphenol 0.1 parts by mass as an antioxidant, 24 parts by mass of tetrahydrofuran and 11 parts by mass of toluene are mixed and dissolved, and mixed solution B is obtained. Obtained.

このB液に前記A液を加えて攪拌混合した後、微細な流路を持つ貫通式チャンバーを装着した高圧ホモジナイザー(吉田機械興行株式会社製)を用いて、500kgf/cmまで昇圧しての分散処理を6回繰り返した液に、フッ素変性シリコーンオイル(商品名:FL−100 信越シリコーン社製)を5ppm添加し、十分に撹拌して電荷輸送層形成用塗布液を得た。この塗布液を電荷発生層上に塗布して135℃で25分間乾燥し、厚さが20μmの電荷輸送層を形成し、目的の電子写真感光体を得た。このようにして得た電子写真感光体を像保持体Aとした。 After the A liquid was added to the B liquid and stirred and mixed, the pressure was increased to 500 kgf / cm 2 using a high-pressure homogenizer (manufactured by Yoshida Kikai Kogyo Co., Ltd.) equipped with a through-type chamber having a fine flow path. 5 ppm of fluorine-modified silicone oil (trade name: FL-100 manufactured by Shin-Etsu Silicone Co., Ltd.) was added to the solution obtained by repeating the dispersion treatment six times, and the mixture was sufficiently stirred to obtain a coating solution for forming a charge transport layer. This coating solution was applied onto the charge generation layer and dried at 135 ° C. for 25 minutes to form a charge transport layer having a thickness of 20 μm, thereby obtaining the intended electrophotographic photosensitive member. The electrophotographic photoreceptor thus obtained was designated as an image carrier A.

―像保持体Bの作製―
上記像保持体Aで、電荷輸送層の結着樹脂として用いたビスフェノールZ型ポリカーボネート樹脂(粘度平均分子量:40000)に代えて、下記構造式(A3)で示され、該構造式(A3)中のmが0.25,nが0.75であるポリカーボネート共重合体6質量部を用いた以外は、像保持体Aと同じ条件及び製法で像保持体Bを作製した。
-Production of image carrier B-
Instead of the bisphenol Z-type polycarbonate resin (viscosity average molecular weight: 40000) used as the binder resin for the charge transport layer in the image carrier A, the structural formula (A3) shows the following structural formula (A3). An image carrier B was produced under the same conditions and production method as those of the image carrier A, except that 6 parts by mass of a polycarbonate copolymer having an m of 0.25 and n of 0.75 was used.

−像保持体Cの作製−
上記像保持体Aで、電荷輸送層における電荷輸送物質として用いた上記一般式(1)において上記構造式(1)の構造を有する化合物に代えて、N,N‘−ビス(3−メチルフェニル)−N,N’−ジフェニルベンジジン2質量部及びN,N‘−ビス(3,4−ジメチルフェニル)ビフェニル−4−アミン2質量部を用いた以外は、像保持体Aと同じ条件及び同じ製法を用いて、像保持体Cを作製した。
-Production of image carrier C-
In the image carrier A, instead of the compound having the structure of the structural formula (1) in the general formula (1) used as the charge transport material in the charge transport layer, N, N′-bis (3-methylphenyl) ) The same conditions and the same as image carrier A except that 2 parts by mass of -N, N'-diphenylbenzidine and 2 parts by mass of N, N'-bis (3,4-dimethylphenyl) biphenyl-4-amine were used. Image carrier C was produced using the production method.

(実施例1〜実施例8,比較例1〜比較例2)
画像形成装置として、DocuCentre 505aにおける帯電部材14へ印加する帯電電圧、現像部材18Aへ印加する現像電圧、及び転写部材20へ印加する転写電圧を制御する制御装置において、図6に示す処理ルーチンを実行するためのプログラムを実行するように装置を改造した。
そして、像保持体の種類、画像形成時及び非画像形成時において帯電部材14へ印加する帯電電圧の種類、搭載する像保持体の種類、画像形成時における転写電圧、画像形成時における現像電圧、画像形成時における帯電電圧、非画像形成時における転写電圧と現像電圧と帯電電圧の電圧値及び電圧印加のタイミングを、表1に示す組合せとして、下記評価試験を行った。
(Example 1 to Example 8, Comparative Example 1 to Comparative Example 2)
The control routine for controlling the charging voltage applied to the charging member 14, the developing voltage applied to the developing member 18A, and the transfer voltage applied to the transfer member 20 in the DocuCentre 505a as the image forming apparatus is executed. The device was modified to run a program to do this.
The type of image carrier, the type of charging voltage applied to the charging member 14 during image formation and non-image formation, the type of image carrier to be mounted, the transfer voltage during image formation, the development voltage during image formation, The following evaluation tests were conducted with combinations of the charging voltage at the time of image formation, the transfer voltage at the time of non-image formation, the development voltage, the voltage value of the charging voltage, and the timing of voltage application as shown in Table 1.

上記表1中、シーケンスAとは、非画像形成時の電圧印加方式が、図5に示す方式であり、詳細には、試験環境を高温高湿(28℃、85RH%)環境とした場合の転写電圧、現像電圧、現像電圧の変化量、帯電電圧、帯電電圧の変化量を、表2に示す値とし、試験環境を低温低湿(10℃、15RH%)環境とした場合の帯電電圧、現像電圧、現像電圧の変化量、帯電電圧、帯電電圧の変化量を、表2に示す値とした場合を示している。   In Table 1 above, the sequence A is the voltage application method at the time of non-image formation as shown in FIG. 5, and more specifically, when the test environment is a high temperature and high humidity (28 ° C., 85 RH%) environment. The transfer voltage, development voltage, change amount of the development voltage, charge voltage, change amount of the charge voltage are the values shown in Table 2, and the test voltage is the low voltage and low humidity (10 ° C, 15RH%) environment. In this example, the voltage, the change amount of the development voltage, the charging voltage, and the change amount of the charging voltage are set to the values shown in Table 2.

また、上記表1中、シーケンスBとは、非画像形成時の電圧印加方式が、図4に示す方式であり、詳細には、試験環境を高温高湿(28℃、85RH%)環境とした場合の転写電圧、現像電圧、現像電圧の変化量、帯電電圧、帯電電圧の変化量を、表2に示す値とし、試験環境を低温低湿(10℃、15RH%)環境とした場合の帯電電圧、現像電圧、現像電圧の変化量、帯電電圧、帯電電圧の変化量を、表2に示す値とした場合を示している。   Further, in Table 1 above, the sequence B is the voltage application method at the time of non-image formation as shown in FIG. 4. Specifically, the test environment is a high temperature and high humidity (28 ° C., 85 RH%) environment. The transfer voltage, development voltage, change amount of the development voltage, charge voltage, change amount of the charge voltage are the values shown in Table 2, and the charge voltage when the test environment is a low temperature and low humidity (10 ° C., 15 RH%) environment. The development voltage, the change amount of the development voltage, the charging voltage, and the change amount of the charging voltage are shown in Table 2.

上記表1中、シーケンスCとは、非画像形成時の電圧印加方式が、図3に示す方式であり、詳細には、試験環境を高温高湿(28℃、85RH%)環境とした場合の転写電圧、帯電電圧、現像電圧を表2に示す値とし、試験環境を低温低湿(10℃、15RH%)環境とした場合の転写電圧を表2に示す値とした場合を示している。   In Table 1 above, the sequence C is the voltage application method at the time of non-image formation as shown in FIG. 3, and more specifically, when the test environment is a high temperature and high humidity (28 ° C., 85 RH%) environment. The transfer voltage, charging voltage, and development voltage are the values shown in Table 2, and the transfer voltage when the test environment is a low temperature and low humidity (10 ° C., 15 RH%) environment is shown in Table 2.

上記表1中、シーケンスDとは、非画像形成時の電圧印加方式を、図3に示す方式における転写電圧のみを、図4の線図50Aに示す転写電圧としたものであり、詳細には、試験環境を高温高湿(28℃、85RH%)環境とした場合の転写電圧、帯電電圧、現像電圧を表2に示す値とし、試験環境を低温低湿(10℃、15RH%)環境とした場合の転写電圧、帯電電圧、現像電圧を表2に示す値とした場合を示している。   In Table 1 above, the sequence D is a voltage application method during non-image formation, in which only the transfer voltage in the method shown in FIG. 3 is used as the transfer voltage shown in the diagram 50A of FIG. When the test environment is a high temperature and high humidity (28 ° C, 85RH%) environment, the transfer voltage, charging voltage, and development voltage are the values shown in Table 2, and the test environment is a low temperature and low humidity (10 ° C, 15RH%) environment. In this case, the transfer voltage, charging voltage, and development voltage are shown in Table 2.

例えば、表2中、シーケンスAは、非画像形成時の電圧印加方式が、図5に示す方式であり、高温高湿環境下にて評価を行う場合には、非画像形成時に、1020Vの転写電圧を、像保持体12の6回転分継続して印加した後に0Vとし、−400Vの現像電圧を、像保持体12の一回転毎に0Vに向かって120Vずつ変化させ、−825Vの帯電電圧を像保持体12の一回転毎に0Vに向かって100Vずつ変化させることを意味している。   For example, in Table 2, in sequence A, the voltage application method at the time of non-image formation is the method shown in FIG. 5, and when evaluation is performed in a high-temperature and high-humidity environment, transfer of 1020 V is performed at the time of non-image formation. The voltage is continuously applied for 6 rotations of the image carrier 12 to 0 V, and the development voltage of −400 V is changed by 120 V toward 0 V for each rotation of the image carrier 12 to obtain a charging voltage of −825 V. Is changed by 100 V toward 0 V for each rotation of the image carrier 12.

上記表1に示す組合せとした実施例1〜実施例8及び比較例1〜比較例2について、下記評価を行った。   The following evaluation was performed on Examples 1 to 8 and Comparative Examples 1 to 2 which were combinations shown in Table 1 above.

(評価)
−非画像形成直後の像保持体の表面の電位ムラ−
実施例1〜実施例8及び比較例1〜比較例2の上記改造機の各々について、高温高湿環境下、及び低温低湿環境下の各々において、画像形成時における画像形成処理として、画像密度30%のA4ハーフトーン画像を5枚連続して出力した後に、表1及び表2に示す各々の実施例及び比較例の条件で非画像形成時における非画像形成処理を行った。そして、非画像形成処理の直後における像保持体の表面電位を、表面電位計トレック334(トレック社製)を用いて、軸方向10mm毎に、周方向一周分(10mm毎)測定し、その電位の最大値と最小値の差ΔVを測定することにより得た。測定結果を表3に示した。
(Evaluation)
-Potential unevenness on the surface of the image carrier immediately after non-image formation-
For each of the modified machines of Examples 1 to 8 and Comparative Examples 1 to 2, an image density of 30 is used as an image forming process during image formation in a high temperature and high humidity environment and a low temperature and low humidity environment. % A4 halftone images were output in succession, and then non-image forming processing during non-image formation was performed under the conditions of the examples and comparative examples shown in Tables 1 and 2. Then, the surface potential of the image holding member immediately after the non-image forming process is measured by using a surface potentiometer Trek 334 (manufactured by Trek Co.) for every 10 mm in the axial direction for every circumference (every 10 mm). It was obtained by measuring the difference ΔV between the maximum value and the minimum value. The measurement results are shown in Table 3.

―除電サイクル数―
実施例1〜実施例8及び比較例1〜比較例2の上記改造機の各々について、高温高湿環境下、及び低温低湿環境下の各々において、画像形成時における画像形成処理として、画像密度30%のA4ハーフトーン画像を5枚連続して出力した後に、表1及び表2に示す各々の実施例及び比較例の条件で非画像形成時における非画像形成処理を行った。そして、この非画像形成時において、現像電圧を段階的に0Vに向かって変化させて、現像電圧、転写電圧、及び帯電電圧の全てが0Vとなった状態から数えて、像保持体の表面電位が直前の回転時に比べて5%以下の変化量となるまでに要した像保持体の回転数を計測し、計測結果から1を減算した数(直前までの回転数)を、像保持体の除電に要した回転数である「除電サイクル数」として計測した。計測結果を表3に示した。
―Number of static elimination cycles―
For each of the modified machines of Examples 1 to 8 and Comparative Examples 1 to 2, an image density of 30 is used as an image forming process during image formation in a high temperature and high humidity environment and a low temperature and low humidity environment. % A4 halftone images were output in succession, and then non-image forming processing during non-image formation was performed under the conditions of the examples and comparative examples shown in Tables 1 and 2. Then, during this non-image formation, the developing voltage is changed stepwise toward 0V, and the surface potential of the image carrier is counted from the state where all of the developing voltage, the transfer voltage, and the charging voltage are 0V. Measure the number of rotations of the image carrier required until the change amount is 5% or less compared to the previous rotation, and subtract 1 from the measurement result (the number of rotations until immediately before). It was measured as the “number of static elimination cycles” that was the number of rotations required for static elimination. The measurement results are shown in Table 3.

―非画像形成後の画像形成時の濃度ムラΔE―
実施例1〜実施例8及び比較例1〜比較例2の上記改造機の各々について、高温高湿環境下、及び低温低湿環境下の各々において、画像形成時における画像形成処理として、画像密度30%のA4ハーフトーン画像を5枚連続して出力した後に、表1及び表2に示す各々の実施例及び比較例の条件で非画像形成時における非画像形成処理を行った。そして、非画像形成処理の後に連続して画像形成処理として、画像密度30%のA4ハーフトーン画像を3枚連続して出力し、3枚目に印刷された画像の色差ΔEを、分光濃度計X−rite938(X−rite社製)を用いて、像保持体の軸方向10mm毎に、周方向に5mm間隔で19点測定し、その最大値と最小値の差を、色差ΔEとして求めた。測定結果を表3に示した。
-Density unevenness ΔE during image formation after non-image formation-
For each of the modified machines of Examples 1 to 8 and Comparative Examples 1 to 2, an image density of 30 is used as an image forming process during image formation in a high temperature and high humidity environment and a low temperature and low humidity environment. % A4 halftone images were output in succession, and then non-image forming processing during non-image formation was performed under the conditions of the examples and comparative examples shown in Tables 1 and 2. Then, as an image forming process continuously after the non-image forming process, three A4 halftone images with an image density of 30% are output in succession, and the color difference ΔE of the image printed on the third sheet is determined as a spectral densitometer. Using X-rite 938 (manufactured by X-rite), 19 points were measured at intervals of 5 mm in the circumferential direction for every 10 mm in the axial direction of the image carrier, and the difference between the maximum value and the minimum value was obtained as a color difference ΔE. . The measurement results are shown in Table 3.

―非画像形成後の画像形成時の像流れ―
実施例1〜実施例8及び比較例1〜比較例2の上記改造機の各々について、高温高湿環境下、及び低温低湿環境下の各々において、画像形成時における画像形成処理として、画像密度5%の文字画像をA4用紙に5枚連続して出力した後に、表1及び表2に示す各々の実施例及び比較例の条件で非画像形成時における非画像形成処理を行った。前記動作を2000回繰り返し、累計10000枚の出力を実施した後、装置を8時間放置した。
そして、8時間放置の後に、再度、画像密度20%のハーフトーン画像をA4用紙に1枚出力し、その画質を下記評価基準で評価した。評価結果を表3に示した。
-Image flow during image formation after non-image formation-
For each of the modified machines of Examples 1 to 8 and Comparative Examples 1 to 2, an image density of 5 was used as an image forming process at the time of image formation in each of a high temperature and high humidity environment and a low temperature and low humidity environment. % Character images were output continuously on A4 paper, and then non-image forming processing was performed during non-image formation under the conditions of the examples and comparative examples shown in Tables 1 and 2. The above operation was repeated 2000 times, a total of 10,000 sheets were output, and the apparatus was left for 8 hours.
Then, after leaving for 8 hours, one halftone image with an image density of 20% was again output on A4 paper, and the image quality was evaluated according to the following evaluation criteria. The evaluation results are shown in Table 3.

評価基準
G1:像流れ未発生
G2:像流れが3箇所以下発生
G3:像流れが3箇所を超えて発生
Evaluation criteria G1: Image flow has not occurred G2: Image flow has occurred in 3 or less locations G3: Image flow has occurred in more than 3 locations

−摩耗量−
摩耗量は、DocuCentre 505aの改造機に実施例および比較例を組みこんで、28℃、85RH%の高温高湿環境下および10℃、15RH%の低温低湿環境下にて画像密度5%のランダムな文字チャートを用いて、5枚連続して出力した後に、表1及び表2に示す各々の実施例及び比較例の条件で非画像形成時における非画像処理を行った。前記動作を16000回繰り返し、累計80000枚のA4連続プリントを行った後、感光体の膜厚を渦電流式膜厚測定装置(フィッシャー・インストルメンツ社製)により測定することで評価した。評価結果を表3に示した。
−Abrasion amount−
The amount of wear was determined by incorporating an example and a comparative example into a modified DocuCentre 505a, and a random image density of 5% in a high temperature and high humidity environment of 28 ° C. and 85 RH% and in a low temperature and low humidity environment of 10 ° C. and 15 RH% Using a simple character chart, five images were output continuously, and then non-image processing during non-image formation was performed under the conditions of the examples and comparative examples shown in Tables 1 and 2. The above operation was repeated 16000 times, and after a total of 80000 A4 continuous prints, the film thickness of the photoconductor was evaluated by measuring with an eddy current film thickness measuring device (manufactured by Fisher Instruments). The evaluation results are shown in Table 3.

上記表3に示すように、実施例では、比較例に比べて、高温高湿及び低温低湿の環境下の双方において、非画像形成後の像保持体の表面の電位ムラが抑制されていた。また、実施例では、比較例に比べて、高温高湿及び低温低湿の環境下の双方において、除電サイクル数も少なく、濃度ムラ、像流れ、摩耗量の全てにおいて良好な結果が得られた。   As shown in Table 3 above, in the example, the potential unevenness on the surface of the image carrier after non-image formation was suppressed in both the high temperature and high humidity environment and the low temperature and low humidity environment as compared with the comparative example. Further, in the example, the number of static elimination cycles was small in both the high temperature and high humidity environment and the low temperature and low humidity environment, and favorable results were obtained in all of density unevenness, image flow, and wear amount.

10 画像形成装置,12 像保持体,14 帯電部材,16 潜像形成装置,18A 現像部材,20 転写部材,28 電源,30 電源,32 電源,36 制御装置 DESCRIPTION OF SYMBOLS 10 Image forming apparatus, 12 Image holding body, 14 Charging member, 16 Latent image forming apparatus, 18A Developing member, 20 Transfer member, 28 Power supply, 30 Power supply, 32 Power supply, 36 Control apparatus

Claims (6)

像保持体と、
前記像保持体を帯電させる帯電部材と、
前記帯電部材が所定の帯電電位となるように該帯電部材に帯電電圧を印加する第1の印加装置と、
前記帯電部材によって帯電された前記像保持体に静電潜像を形成する潜像形成装置と、
前記像保持体上に形成された前記静電潜像をトナーによって現像する現像部材と、
前記現像部材が所定の現像電位となるように該現像部材に現像電圧を印加する第2の印加装置と、
前記現像部材によって前記像保持体上に形成されたトナー像を被転写体へ転写し、且つ前記像保持体を除電する転写部材と、
前記転写部材が所定の転写電位となるように該転写部材に転写電圧を印加する第3の印加装置と、
画像形成から非画像形成へ切り替えた時に、直前の画像形成時に印加されていた転写電圧を少なくとも第1の期間継続して前記転写部材へ印加し、直前の画像形成時に印加されていた現像電圧を前記第1の期間の間0Vに向かって段階的に変化させて前記現像部材へ印加し、且つ前記帯電部材への帯電電圧の印加を解除するように、前記第1の印加装置、前記第2の印加装置、及び前記第3の印加装置を制御する制御装置と、
を備えた画像形成装置。
An image carrier,
A charging member for charging the image carrier;
A first application device that applies a charging voltage to the charging member such that the charging member has a predetermined charging potential;
A latent image forming apparatus that forms an electrostatic latent image on the image carrier charged by the charging member;
A developing member for developing the electrostatic latent image formed on the image carrier with toner;
A second application device for applying a developing voltage to the developing member such that the developing member has a predetermined developing potential;
A transfer member for transferring a toner image formed on the image carrier by the developing member to a transfer target member and discharging the image carrier;
A third application device for applying a transfer voltage to the transfer member so that the transfer member has a predetermined transfer potential;
When switching from image formation to non-image formation, the transfer voltage applied during the previous image formation is continuously applied to the transfer member for at least the first period, and the development voltage applied during the previous image formation is applied. In the first period, the first application device, the second application device, and the second application device are applied to the developing member while being changed stepwise toward 0V and the charging voltage is not applied to the charging member. And a control device for controlling the third application device;
An image forming apparatus.
前記像保持体が、支持体上に、電荷発生層及び電荷輸送層をこの順に有し、
前記電荷輸送層が、結着樹脂と、下記一般式(1)で表される構造を有する電荷輸送性材料を含む請求項1に記載の画像形成装置。


(一般式(1)中、R、R、R、R、R、及びRはそれぞれ独立して水素原子、ハロゲン原子、炭素数1以上20以下のアルキル基、炭素数1以上20以下のアルコキシ基、又は、置換もしくは未置換の炭素数6以上30以下のアリール基を表し、隣接する2つの置換基同士が結合して炭化水素環構造を形成してもよい。n及びmはそれぞれ独立して0又は1を表す。)
The image carrier has a charge generation layer and a charge transport layer in this order on a support,
The image forming apparatus according to claim 1, wherein the charge transport layer includes a binder resin and a charge transport material having a structure represented by the following general formula (1).


(In General Formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. It represents an alkoxy group having 20 or less or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, and two adjacent substituents may be bonded to form a hydrocarbon ring structure. m represents 0 or 1 each independently.)
前記結着樹脂が、下記一般式(2)で表される構造単位を含む請求項2に記載の画像形成装置。

(一般式(2)中、R及びRは、各々独立にハロゲン原子、炭素数1以上6以下のアルキル基、炭素数5以上7以下のシクロアルキル基、又は炭素数6以上12以下のアリール基であり、e,fは、各々独立に0以上4以下の整数を表す。)
The image forming apparatus according to claim 2, wherein the binder resin includes a structural unit represented by the following general formula (2).

(In the general formula (2), R 7 and R 8 are each independently a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 7 carbon atoms, or a group having 6 to 12 carbon atoms. An aryl group, and e and f each independently represent an integer of 0 or more and 4 or less.)
前記結着樹脂が、前記一般式(2)で表される構造単位と、下記一般式(3)で表される構造単位と、の共重合体を含む請求項3に記載の画像形成装置。


(一般式(3)中、R及びR10は、各々独立にハロゲン原子、炭素数1以上6以下のアルキル基、炭素数5以上7以下のシクロアルキル基、又は炭素数6以上12以下のアリール基であり、g,hは、各々独立に0以上4以下の整数を表す。Xは、−CR1112−(但し、R11及びR12は、各々独立に水素原子、トリフルオロメチル基、炭素数1以上6以下のアルキル基、又は炭素数6以上12以下のアリール基のいずれかを表す。)、炭素数5以上11以下の1,1−シクロアルキレン基、炭素数2以上10以下のα,ω−アルキレン基、−O−、−S−、−SO−、または−SO−を表す。)
The image forming apparatus according to claim 3, wherein the binder resin includes a copolymer of a structural unit represented by the general formula (2) and a structural unit represented by the following general formula (3).


(In General Formula (3), R 9 and R 10 are each independently a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 7 carbon atoms, or a carbon group having 6 to 12 carbon atoms. Each is an aryl group, and g and h each independently represent an integer of 0 or more and 4 or less, X is —CR 11 R 12 — (wherein R 11 and R 12 are each independently a hydrogen atom, trifluoromethyl; A group, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms), a 1,1-cycloalkylene group having 5 to 11 carbon atoms, and 2 to 10 carbon atoms. The following α, ω-alkylene group, —O—, —S—, —SO—, or —SO 2 — is represented.)
前記制御装置は、非画像形成時に、直前の画像形成時に印加されていた帯電電圧を前記第1の期間の間0Vに向かって段階的に変化させて前記帯電部材へ印加するように前記第1の印加装置を制御することによって、前記帯電部材への帯電電圧の印加を解除するように制御する請求項1〜請求項4の何れか1項に記載の画像形成装置。   The control device changes the charging voltage applied at the time of the previous image formation stepwise toward 0V during the first period and applies the charging voltage to the charging member during non-image formation. 5. The image forming apparatus according to claim 1, wherein the application device is controlled so as to cancel the application of the charging voltage to the charging member. 前記帯電部材は、前記像保持体の表面に接触して配置され、
前記第1の印加装置は、前記帯電電圧として前記帯電部材へ直流電圧を印加する請求項1〜請求項4の何れか1項に記載の画像形成装置。
The charging member is disposed in contact with the surface of the image carrier,
The image forming apparatus according to claim 1, wherein the first application device applies a DC voltage to the charging member as the charging voltage.
JP2010048244A 2010-03-04 2010-03-04 Image forming apparatus Expired - Fee Related JP5499782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010048244A JP5499782B2 (en) 2010-03-04 2010-03-04 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048244A JP5499782B2 (en) 2010-03-04 2010-03-04 Image forming apparatus

Publications (2)

Publication Number Publication Date
JP2011186000A JP2011186000A (en) 2011-09-22
JP5499782B2 true JP5499782B2 (en) 2014-05-21

Family

ID=44792402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048244A Expired - Fee Related JP5499782B2 (en) 2010-03-04 2010-03-04 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP5499782B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6604040B2 (en) 2014-08-18 2019-11-13 ブラザー工業株式会社 Image forming apparatus
JP6736942B2 (en) * 2016-03-28 2020-08-05 富士ゼロックス株式会社 Image forming apparatus and process cartridge
JP2018205561A (en) * 2017-06-06 2018-12-27 京セラドキュメントソリューションズ株式会社 Image formation apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129678A (en) * 1988-11-09 1990-05-17 Canon Inc Image forming device
JP4590716B2 (en) * 2000-03-10 2010-12-01 富士ゼロックス株式会社 Image forming apparatus
JP2002278231A (en) * 2001-03-16 2002-09-27 Konica Corp Image forming device
JP2006195133A (en) * 2005-01-13 2006-07-27 Fuji Xerox Co Ltd Image forming apparatus
JP2010197466A (en) * 2009-02-23 2010-09-09 Murata Machinery Ltd Image forming apparatus

Also Published As

Publication number Publication date
JP2011186000A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5663296B2 (en) Image forming apparatus
JP2007322996A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2007219087A (en) Electrifying device and image forming apparatus
JP2010231077A (en) Electrophotographic photoreceptor, process cartridge, and image forming device
JP2011069906A (en) Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP5499782B2 (en) Image forming apparatus
JP2007086209A (en) Image forming apparatus and image forming method
JP4223671B2 (en) Electrophotographic photosensitive member, electrophotographic method, electrophotographic apparatus, and process cartridge for electrophotographic apparatus
JP2010204561A (en) Process cartridge and image forming apparatus
JP4339197B2 (en) Electrophotographic photosensitive member, electrophotographic method using the same, electrophotographic apparatus and process cartridge
JP2011022425A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2008233165A (en) Electrophotographic photoreceptor, electrophotographic process cartridge, and image forming apparatus
JP4483693B2 (en) Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP5935700B2 (en) Image forming apparatus, image forming method, and process cartridge
US9057987B2 (en) Image forming apparatus
JPH08115007A (en) Image forming method
JP5621376B2 (en) Image forming apparatus
JP4542961B2 (en) Electrophotographic photosensitive member, electrophotographic forming method, electrophotographic apparatus, process cartridge
JPH09265194A (en) Electrophotographic photoreceptor and image forming method using the same
JP4957239B2 (en) Image forming apparatus
JP2012145876A (en) Image formation device
JP4729092B2 (en) Electrophotographic photosensitive member, electrophotographic method using the same, electrophotographic apparatus and process cartridge
JP2008262050A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2009075341A (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP4459093B2 (en) Electrophotographic photosensitive member, electrophotographic method using the same, electrophotographic apparatus and process cartridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees