JP5499627B2 - Heat exchange element and heat exchange method - Google Patents

Heat exchange element and heat exchange method Download PDF

Info

Publication number
JP5499627B2
JP5499627B2 JP2009245836A JP2009245836A JP5499627B2 JP 5499627 B2 JP5499627 B2 JP 5499627B2 JP 2009245836 A JP2009245836 A JP 2009245836A JP 2009245836 A JP2009245836 A JP 2009245836A JP 5499627 B2 JP5499627 B2 JP 5499627B2
Authority
JP
Japan
Prior art keywords
heat exchange
flow path
refrigerant
path wall
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009245836A
Other languages
Japanese (ja)
Other versions
JP2011089752A (en
Inventor
敬介 市毛
洋介 谷口
喜三郎 早川
昌徳 入谷
秀之 鈴木
泰史 平野
新 村上
修司 森山
大輔 床桜
真史 山本
裕哉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009245836A priority Critical patent/JP5499627B2/en
Publication of JP2011089752A publication Critical patent/JP2011089752A/en
Application granted granted Critical
Publication of JP5499627B2 publication Critical patent/JP5499627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱交換媒体と機能流体との混合流体の流路壁を挟んで熱交換を行うための熱交換要素、熱交換方法に関する。   The present invention relates to a heat exchange element and a heat exchange method for performing heat exchange across a flow path wall of a mixed fluid of a heat exchange medium and a functional fluid.

エアコンサイクルにおいて、コンプレッサの潤滑用のオイルを冷媒に混合させる技術が知られている(例えば、非特許文献1参照)。また、冷媒流路の内壁面に撥油膜が形成された冷凍サイクルが知られている(例えば、特許文献1参照)。   In an air conditioner cycle, a technique of mixing oil for lubricating a compressor with a refrigerant is known (for example, see Non-Patent Document 1). Further, a refrigeration cycle in which an oil repellent film is formed on the inner wall surface of a refrigerant channel is known (see, for example, Patent Document 1).

尾崎等、「CO2エアコンサイクル内のオイル循環率測定」、 デンソーテクニカルレビュー、Vol.8 No.2、2003Ozaki et al., “Oil circulation rate measurement in CO2 air conditioner cycle”, Denso Technical Review, Vol. 8 No. 2, 2003

特開平9−210513JP-A-9-210513

しかしながら、上記した前者の従来の技術では、潤滑用のオイルによる熱交換ロスを抑えるために、エアコンサイクル中に冷媒からオイルを分離するオイル分離器を設ける等の対策が必要となり、部品点数やエアコン質量の観点から改善の余地がある。一方、後者の技術についても、熱交換ロスの抑制すなわち熱伝達率の向上の観点から、改善の余地がある。   However, in the former prior art described above, in order to suppress heat exchange loss due to lubricating oil, measures such as providing an oil separator that separates oil from refrigerant during the air conditioner cycle are required. There is room for improvement in terms of mass. On the other hand, the latter technique also has room for improvement from the viewpoint of suppressing heat exchange loss, that is, improving the heat transfer coefficient.

本発明は、機能流体が混合された熱交換媒体を用いながら、熱交換ロスを抑えることができる熱交換要素及び熱交換方法を得ることが目的である。   An object of the present invention is to obtain a heat exchange element and a heat exchange method capable of suppressing heat exchange loss while using a heat exchange medium mixed with a functional fluid.

請求項1記載の発明に係る熱交換要素は、熱交換媒体としてのフッ素系冷媒該熱交換媒体に対する非相溶性の機能流体としての鉱物油を含む潤滑油との混合流体の流路を形成する流路壁の表面が微細凸凹構造とされると共に、該表面に前記フッ素系冷媒と親和性が高く、かつはっ水処理であるフッ素処理が施されることで、前記流路壁の表面に熱交換媒体が選択的に付着されるように構成されている。 The heat exchange element according to the invention of claim 1 is a flow path of a mixed fluid of a fluorine-based refrigerant as a heat exchange medium and a lubricating oil containing mineral oil as a functional fluid incompatible with the heat exchange medium. The surface of the flow path wall to be formed has a fine uneven structure, and the surface has a high affinity with the fluorinated refrigerant and is subjected to a fluorine treatment that is a water repellent treatment . A heat exchange medium is selectively attached to the surface.

請求項1記載の熱交換要素では、流路壁の表面に熱交換媒体と親和性の高い表面処理が施されているため、該流路壁の表面には、混合流体の構成成分のうち熱交換媒体が選択的に付着される。これにより、本熱交換要素では、流路壁の裏面側の物体(裏面に接触する流体や固体、流路壁の裏面側に一体に形成された冷却又は加熱対象)と、機能流体に対し熱伝達率の高い熱交換媒体との間で良好な熱交換が行われる。しかも、この流路壁の表面は微細凸凹構造とされているので、該表面に選択的に付着された熱交換媒体と、流路壁の裏面側の物体との間の熱伝達率が向上し、これらの間で一層良好な熱交換が行われる。   In the heat exchange element according to claim 1, since the surface of the flow path wall is subjected to a surface treatment having high affinity with the heat exchange medium, the surface of the flow path wall has heat among the components of the mixed fluid. An exchange medium is selectively deposited. Thereby, in this heat exchange element, heat is applied to the functional fluid and the object on the back side of the channel wall (fluid or solid contacting the back side, the cooling or heating object integrally formed on the back side of the channel wall). Good heat exchange is performed with a heat exchange medium having a high transfer rate. Moreover, since the surface of the flow path wall has a fine uneven structure, the heat transfer coefficient between the heat exchange medium selectively attached to the surface and the object on the back side of the flow path wall is improved. A better heat exchange is performed between them.

このように、請求項1記載の熱交換要素では、機能流体が混合された熱交換媒体を用いながら、熱交換ロスを抑えることができる。   Thus, in the heat exchange element according to claim 1, heat exchange loss can be suppressed while using the heat exchange medium in which the functional fluid is mixed.

請求項2記載の発明に係る熱交換要素は、請求項1記載の熱交換要素において、前記機能流体を潤滑油として、冷凍サイクルの熱交換器に適用されている。   A heat exchange element according to a second aspect of the present invention is the heat exchange element according to the first aspect, wherein the functional fluid is used as a lubricating oil and is applied to a heat exchanger of a refrigeration cycle.

請求項2記載の熱交換要素では、機能流体は、例えば冷凍サイクルを構成する圧縮機等の潤滑に寄与する。一方、熱交換媒体は、蒸発器や凝縮器で良好な熱交換が行われ、機能流体として潤滑油が熱交換媒体に混合されて構成された冷凍サイクルの性能確保に寄与する In the heat exchange element according to the second aspect, the functional fluid contributes to lubrication of, for example, a compressor constituting the refrigeration cycle. On the other hand, the heat exchange medium contributes to ensuring the performance of a refrigeration cycle in which good heat exchange is performed by an evaporator or a condenser, and lubricating oil is mixed as a functional fluid with the heat exchange medium .

請求項記載の発明に係る熱交換方法は、熱交換媒体としてのフッ素系冷媒該熱交換媒体に対する非相溶性の機能流体としての鉱物油を含む潤滑油との混合流体の流路を形成する微細凸凹構造とされた流路壁面に、前記熱交換媒体と親和性の高い表面処理として、前記フッ素系冷媒と親和性が高く、かつはっ水処理であるフッ素処理を施し、該流路壁の表面に前記熱交換媒体を選択的に付着させつつ、該熱交換媒体と流路壁の裏面側の物体との熱交換を行う。 According to a third aspect of the present invention, there is provided a heat exchange method comprising: a flow path of a mixed fluid of a fluorine-based refrigerant as a heat exchange medium and a lubricating oil containing mineral oil as a functional fluid incompatible with the heat exchange medium. As a surface treatment having a high affinity with the heat exchange medium, a flow treatment having a high affinity with the fluorinated refrigerant and a water repellent treatment is applied to the flow path wall surface having a fine uneven structure to be formed. While selectively adhering the heat exchange medium to the surface of the road wall, heat exchange between the heat exchange medium and the object on the back side of the flow path wall is performed.

請求項記載の熱交換方法では、表面に熱交換媒体と親和性の高い表面処理が施された流路壁を用いて、該流路壁の表面に熱交換媒体を選択的に付着させながら、該熱交換媒体と流路壁の裏面側の物体(裏面に接触する流体や固体、流路壁の裏面側に一体に形成された冷却又は加熱対象)との熱交換を行う。このため、本熱交換方法では、流路壁に裏面側の物体と、機能流体に対し熱伝達率の高い熱交換媒体との間で良好な熱交換が行われる。しかも、流路壁の表面は微細凸凹構造であるため、該表面に選択的に付着された熱交換媒体と、流路壁の裏面側の物体との間の熱伝達率が向上し、これらの間で一層良好な熱交換が行われる。 In the heat exchange method according to claim 3, while using a flow path wall having a surface treated with a surface having high affinity for the heat exchange medium, the heat exchange medium is selectively attached to the surface of the flow path wall. Then, heat exchange is performed between the heat exchange medium and the object on the back surface side of the flow path wall (fluid or solid contacting the back surface, or a cooling or heating object integrally formed on the back surface side of the flow path wall). For this reason, in this heat exchange method, favorable heat exchange is performed between the object on the back side of the flow path wall and the heat exchange medium having a high heat transfer coefficient with respect to the functional fluid. In addition, since the surface of the flow path wall has a fine uneven structure, the heat transfer coefficient between the heat exchange medium selectively attached to the surface and the object on the back side of the flow path wall is improved. Better heat exchange between them.

このように、請求項記載の熱交換方法では、機能流体が混合された熱交換媒体を用いながら、熱交換ロスを抑えることができる Thus, in the heat exchange method according to the third aspect , the heat exchange loss can be suppressed while using the heat exchange medium in which the functional fluid is mixed .

以上説明したように本発明に係る熱交換要素及び熱交換方法は、機能流体が混合された熱交換媒体を用いながら、熱交換ロスを抑えることができるという優れた効果を有する。   As described above, the heat exchange element and the heat exchange method according to the present invention have an excellent effect that heat exchange loss can be suppressed while using a heat exchange medium in which a functional fluid is mixed.

本発明の実施形態に係る熱交換要素の概略構成を模式的に示す側断面図である。It is a sectional side view which shows typically schematic structure of the heat exchange element which concerns on embodiment of this invention. 本発明の実施形態に係る熱交換要素を流れる混合流体中の冷媒、潤滑油の熱伝導特性を示す線図である。It is a diagram which shows the heat conductivity characteristic of the refrigerant | coolant and lubricating oil in the mixed fluid which flows through the heat exchange element which concerns on embodiment of this invention. 本実施形態に係る熱交換要素による冷媒の選択付着性を比較例と比較しつつ説明するための実験結果を示す線図である。It is a diagram which shows the experimental result for demonstrating the selective adhesion of the refrigerant | coolant by the heat exchange element which concerns on this embodiment, comparing with a comparative example. 図3の実験結果を示す実験用の装置の構成を概念的に示す図であって、(A)は断面図、(B)は正面図である。It is a figure which shows notionally the structure of the apparatus for an experiment which shows the experimental result of FIG. 3, Comprising: (A) is sectional drawing, (B) is a front view. 本実施形態に係る熱交換要素による熱伝達率の向上効果を説明するための実験結果を示す線図である。It is a diagram which shows the experimental result for demonstrating the improvement effect of the heat transfer rate by the heat exchange element which concerns on this embodiment. 図5の実験結果を示す実験用の装置の構成を概念的に示す図である。It is a figure which shows notionally the structure of the apparatus for experiment which shows the experimental result of FIG. 本実施形態に係る熱交換要素による沸騰特性を説明するための実験結果を示す線図である。It is a diagram which shows the experimental result for demonstrating the boiling characteristic by the heat exchange element which concerns on this embodiment. 図7の実験結果を示す実験用の装置の構成を概念的に示す図である。It is a figure which shows notionally the structure of the apparatus for an experiment which shows the experimental result of FIG. 本実施形態に係る熱交換要素が適用されたカーエアコン装置を示すブロック図である。It is a block diagram which shows the car air conditioner to which the heat exchange element which concerns on this embodiment was applied.

本発明の実施形態に係る熱交換要素10について図面に基づいて説明する。図1には、熱交換要素10の概略全体構成が、混合流体12の流れ方向(矢印F参照)に沿った断面図にて示されている。混合流体12について補足すると、混合流体12は、熱交換媒体としての冷媒14と、機能流体としての潤滑油(オイル)16混合されたものとされている。冷媒14と潤滑油16とは、互いに非相溶性(非溶解性)とされており、溶け合うことがない(機械的に分離可能で、分離状態では界面が形成される)。この実施形態では、冷媒14としてフッ素系冷媒が用いられ、潤滑油として鉱物油(に添加剤が適宜添加されたもの)が用いられている。   The heat exchange element 10 which concerns on embodiment of this invention is demonstrated based on drawing. FIG. 1 shows a schematic overall configuration of the heat exchange element 10 in a cross-sectional view along the flow direction of the mixed fluid 12 (see arrow F). Supplementing the mixed fluid 12, the mixed fluid 12 is a mixture of a refrigerant 14 as a heat exchange medium and lubricating oil (oil) 16 as a functional fluid. The refrigerant 14 and the lubricating oil 16 are incompatible with each other (insoluble) and do not melt together (can be mechanically separated and an interface is formed in the separated state). In this embodiment, a fluorine-based refrigerant is used as the refrigerant 14, and mineral oil (with additives appropriately added thereto) is used as the lubricating oil.

熱交換要素10は、混合流体12の流路22を成すと共に、該混合流体12の冷媒14と熱交換を行う相手方流体18の流路24を成す流路壁20を備えている。流路壁20は、混合流体12の流路22と相手方流体18の流路24との隔壁として捉えることができる。以下の説明では、流路壁20における混合流体12の流路22側の面を表面20A、相手方流体18の流路24側の面を裏面20Bということとする。   The heat exchange element 10 includes a flow path wall 20 that forms the flow path 22 of the mixed fluid 12 and the flow path 24 of the counterpart fluid 18 that exchanges heat with the refrigerant 14 of the mixed fluid 12. The channel wall 20 can be regarded as a partition wall between the channel 22 of the mixed fluid 12 and the channel 24 of the counterpart fluid 18. In the following description, the surface on the flow channel 22 side of the mixed fluid 12 in the flow channel wall 20 is referred to as the front surface 20A, and the surface on the flow channel 24 side of the counterpart fluid 18 is referred to as the back surface 20B.

流路壁20の表面20Aには、サブミクロンオーダーの微細凸凹構造26が形成されている。この実施形態における微細凸凹構造26は、そのピッチをP(図1では、隣り合う凹部26Aの最低部間の距離であるが、隣り合う凸部26Bのピーク間距離として捉えても良い)、その深さ(凸部26Bのピークから凹部26Aの最低部までの深さ)をDとすると、D>Pとなるように構成されている。この実施形態では、P≒1.5μm、D≒40μm(D≫P)とされている。これにより、微細凸凹構造26における流路22側に開口する凹部26A内には、混合流体12の一部(後述する如く冷媒14)を保持可能とされている。なお、この微細凸凹構造26は、例えば、エッチング、メッキ、酸化被膜、ピーニング等の方法で形成することができる。なお、ピッチPは、0.1μm〜10μmの範囲内で設定することが好ましい。また、深さDは、10〜50μmの範囲内で設定することが好ましい。   On the surface 20 </ b> A of the flow path wall 20, a sub-micron-order fine uneven structure 26 is formed. The fine concavo-convex structure 26 in this embodiment has a pitch P (in FIG. 1, it is the distance between the lowest portions of the adjacent concave portions 26A, but may be regarded as the distance between the peaks of the adjacent convex portions 26B), When the depth (depth from the peak of the convex portion 26B to the lowest portion of the concave portion 26A) is D, D> P. In this embodiment, P≈1.5 μm and D≈40 μm (D >> P). Thereby, a part of the mixed fluid 12 (the refrigerant 14 as described later) can be held in the concave portion 26 </ b> A that opens to the flow path 22 side in the fine uneven structure 26. In addition, this fine uneven structure 26 can be formed by methods, such as an etching, plating, an oxide film, and peening, for example. The pitch P is preferably set within a range of 0.1 μm to 10 μm. Moreover, it is preferable to set the depth D within the range of 10-50 micrometers.

また、熱交換要素10では、微細凸凹構造26(流路壁20の表面20A)に、冷媒14との親和性の高い表面処理28が施されている。表面処理28は、微細凸凹構造26の表面に倣って、(凹部26Aを埋めてしまうことがないように)施されている。これにより、微細凸凹構造26の表面すなわち流路壁20の表面20Aは、冷媒14に対する親和性が向上されている。   In the heat exchange element 10, the surface treatment 28 having high affinity with the refrigerant 14 is applied to the fine uneven structure 26 (the surface 20 </ b> A of the flow path wall 20). The surface treatment 28 is performed following the surface of the fine uneven structure 26 (so as not to fill the recess 26A). Thereby, the affinity with respect to the refrigerant | coolant 14 is improving the surface 20A of the fine uneven structure 26, ie, the surface 20A of the flow-path wall 20. FIG.

上記の通り冷媒14としてフッ素系不活性液体が作用された本実施形態では、表面処理28として、例えばフッ素被膜を形成するフッ素処理(多分子の薄膜を形成するはっ水処理として捉えても良い)を採用することができる。より具体的には、この実施形態(後述の実験例)では、冷媒14としての住友3M(株)製のフロリナートFC−84に対し、表面処理28として住友3M(株)製のフッ素系表面処理剤EGC−1720)が採用されている。   In the present embodiment in which a fluorine-based inert liquid is applied as the refrigerant 14 as described above, the surface treatment 28 may be regarded as, for example, fluorine treatment for forming a fluorine coating (water repellent treatment for forming a multimolecular thin film). ) Can be adopted. More specifically, in this embodiment (an experimental example to be described later), Fluorinert FC-84 manufactured by Sumitomo 3M Co. as the refrigerant 14 is used as the surface treatment 28, and a fluorine-based surface treatment manufactured by Sumitomo 3M Co., Ltd. is used. Agent EGC-1720) is employed.

なお、流路22における混合流体12の流れ場FFについて補足すると、この流れ場FFは、流路壁20に対し流れ方向との直交方向に離間するほどせん断速度が大きくなるせん断流れ場とされている。このせん断流れ場FFには、一対の流路壁の直線、回転等の相対変位によるせん断流れ場のほか、平行平板間や配管(断面形状は問わない)等の圧力流れ(ポアズイユ流れ)が含まれる。   If the flow field FF of the mixed fluid 12 in the flow path 22 is supplemented, the flow field FF is a shear flow field whose shear rate increases as the flow field FF is separated from the flow path wall 20 in a direction orthogonal to the flow direction. Yes. This shear flow field FF includes a shear flow field due to relative displacement such as straight and rotation of a pair of flow path walls, and pressure flow (Poiseuille flow) between parallel plates and pipes (regardless of cross-sectional shape). It is.

次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.

上記構成の熱交換要素10では、流路壁20における混合流体12の表面20Aに冷媒14との親和性が高い表面処理28が施されているため、流路22を流れる混合流体12のうち冷媒14が選択的に流路壁20の表面20Aに付着される。これにより、熱交換要素10では、相手方流体18と冷媒14とが流路壁20を介して熱交換を行うため、熱交換ロスが少ない。   In the heat exchange element 10 having the above configuration, the surface treatment 28 having high affinity with the refrigerant 14 is applied to the surface 20 </ b> A of the mixed fluid 12 in the flow path wall 20, so that the refrigerant out of the mixed fluid 12 flowing through the flow path 22. 14 is selectively attached to the surface 20 A of the flow path wall 20. Thereby, in the heat exchange element 10, since the other party fluid 18 and the refrigerant | coolant 14 perform heat exchange via the flow-path wall 20, there are few heat exchange losses.

すなわち、図2に示される如く、冷媒14と潤滑油16とを比較すると、各流速において冷媒14は潤滑油16に対し熱伝達率が高いため、流路壁20の表面20Aに冷媒14を選択的に付着させることで、流路壁20の表面20Aに混合流体12をそのまま付着させたり、潤滑油16のみ付着させたりする場合と比較して、熱交換ロスは低減される。すなわち、熱交換性能が向上する。また、相手方流体18の冷却用途の場合、流路壁20の表面20Aに付着され凹部26Aに保持された冷媒14は、沸騰(蒸発)しやすいので、該冷媒14の沸騰による冷却効果も期待できる。特に、流路壁20の表面20Aに微細凸凹構造26が形成されているので、熱伝達率が向上すると共に、冷媒14の沸騰が生じ易くなり、熱交換性能、沸騰冷却性能が向上される(この点は後に補足する)。   That is, as shown in FIG. 2, when the refrigerant 14 and the lubricating oil 16 are compared, the refrigerant 14 has a higher heat transfer coefficient than the lubricating oil 16 at each flow rate, so the refrigerant 14 is selected as the surface 20A of the flow path wall 20. Therefore, the heat exchange loss is reduced as compared with the case where the mixed fluid 12 is directly attached to the surface 20A of the flow path wall 20 or only the lubricating oil 16 is attached. That is, the heat exchange performance is improved. Further, in the cooling application of the counterpart fluid 18, the refrigerant 14 attached to the surface 20A of the flow path wall 20 and held in the recess 26A is likely to boil (evaporate), so that a cooling effect due to the boiling of the refrigerant 14 can also be expected. . In particular, since the fine uneven structure 26 is formed on the surface 20A of the flow path wall 20, the heat transfer rate is improved and the refrigerant 14 is easily boiled, so that the heat exchange performance and the boiling cooling performance are improved ( This point will be supplemented later).

流路壁20の表面20Aに冷媒14が選択的に付着する点につき、図3、図4の実験結果を参照しつつ説明する。図3には、図4に示す装置を用いて行った、流路壁20の表面20Aへの潤滑油16の付着具合の時間変化を示す実験結果が示されている。図4に示される実験装置30は、回転円盤32を短円筒状の透明容器34内に同時期的かつ相対回転可能に設け、回転円盤32の表面に付着する潤滑油16を観察するものである。回転円盤32は、アルミ製とされ、その表面状態として、流路壁20に対応して微細凸凹構造26及び表面処理28が施された実施形態モデル32A、アルミ表面の平坦面に表面処理28が施された第1比較例モデル32B、アルミ表面に微細凸凹構造26のみを採用した第2比較例モデル32C、及び単にアルミ表面の平担面とした第3比較例モデル32Dの4種類をそれぞれ用意した。   The point where the refrigerant 14 selectively adheres to the surface 20A of the flow path wall 20 will be described with reference to the experimental results of FIGS. FIG. 3 shows the experimental results showing the change over time of the adhesion of the lubricating oil 16 to the surface 20A of the flow path wall 20 performed using the apparatus shown in FIG. The experimental apparatus 30 shown in FIG. 4 provides a rotating disk 32 in a short cylindrical transparent container 34 so that it can rotate simultaneously and relatively, and observes the lubricating oil 16 adhering to the surface of the rotating disk 32. . The rotating disk 32 is made of aluminum, and as a surface state thereof, the embodiment model 32A in which the fine uneven structure 26 and the surface treatment 28 are applied corresponding to the flow path wall 20, and the surface treatment 28 is provided on the flat surface of the aluminum surface. Four types are prepared: a first comparative example model 32B, a second comparative example model 32C that employs only the fine uneven structure 26 on the aluminum surface, and a third comparative example model 32D that is simply a flat surface of the aluminum surface. did.

そして、透明容器34内に冷媒14(ほぼ透明)、潤滑油16(有色)の混合流体12(図4(A)、図4(B)の如く静止状態では、冷媒14と潤滑油16とに分離している)を該透明容器34の容量の略半分まで容れ、回転円盤32を回転させながら観察した、該回転円盤32の表面への潤滑油16の付着面積の時間変化をプロットしたものが図3の実験結果である。   Then, in the transparent container 34, the refrigerant 14 (substantially transparent) and the mixed fluid 12 of the lubricating oil 16 (colored) 12 (in the stationary state as shown in FIGS. 4A and 4B), the refrigerant 14 and the lubricating oil 16 are mixed. A graph plotting the time variation of the adhesion area of the lubricating oil 16 to the surface of the rotating disk 32 observed while rotating the rotating disk 32. It is an experimental result of FIG.

この図3の結果より、第2、第3比較例では、時間経過に拘わらず、潤滑油16が回転円盤32のほぼ全表面に亘り付着し続けることが解る。一方、実施形態モデル、第1比較例モデルでは、時間経過に伴い回転円盤32の表面への潤滑油16の付着面積が減じられ、最終的には、この付着面積がほぼ無視し得る程度まで減じられることが解る。換言すれば、この実験結果によって、第2、第3比較例においては、回転円盤32の表面に潤滑油16(を含んだ混合流体12)が付着するのに対し、実施形態モデル、第1比較例モデルでは、回転開始の初期を除く定常流れにおいて回転円盤32の表面には冷媒14が選択的に付着することが確かめられた。   From the results of FIG. 3, it can be seen that in the second and third comparative examples, the lubricating oil 16 continues to adhere to almost the entire surface of the rotating disk 32 regardless of the passage of time. On the other hand, in the embodiment model and the first comparative example model, the adhesion area of the lubricating oil 16 to the surface of the rotating disk 32 is reduced with time, and finally, the adhesion area is reduced to a level that can be almost ignored. I understand that In other words, according to this experimental result, in the second and third comparative examples, the lubricating oil 16 (including the mixed fluid 12) is attached to the surface of the rotating disk 32, whereas the embodiment model and the first comparison In the example model, it was confirmed that the refrigerant 14 selectively adheres to the surface of the rotating disk 32 in a steady flow excluding the initial stage of rotation.

そして、第2、第3比較例においては流路壁の表面に潤滑油16が付着されることで相対的に熱交換ロスが大きいのに対し、熱交換要素10では、上記の通り流路壁20の表面20Aには冷媒14が選択的に付着されるので、熱交換ロスが小さく、良好な熱交換性能が得られる。   In the second and third comparative examples, the lubricating oil 16 is attached to the surface of the flow path wall, so that the heat exchange loss is relatively large. In the heat exchange element 10, as described above, the flow path wall Since the refrigerant 14 is selectively attached to the surface 20A of the 20, the heat exchange loss is small and good heat exchange performance is obtained.

次に、微細凸凹構造26によって冷却性能が向上する点、より具体的には熱伝達率が向上する点、及び冷媒の沸騰が生じ易くなる点につき補足する。まず、前者について図5及び図6を参照しつつ説明し、その後、後者について図7及び図8を参照しつつ説明することとする。   Next, it supplements about the point which cooling performance improves by the fine uneven structure 26, the point to which a heat transfer rate improves more specifically, and the point where a boiling of a refrigerant | coolant becomes easy to produce. First, the former will be described with reference to FIGS. 5 and 6, and then the latter will be described with reference to FIGS. 7 and 8.

図5には、図6に示す装置を用いた強制対流試験により得た、流路壁20に対応する実施例モデルの試験片及び比較例に係る試験片の熱伝達率の測定結果が示されている。図6に示す装置は、試験片52を試験片加熱装置50にて加熱しつつ該試験片52に空気流を接触させ、試験片52の温度Tw、熱流束q、及び試験片52に接触する前の空気流の温度Taを計測するものである。試験片加熱装置50は、銅円柱54と、銅円柱54を加熱するヒータ56と、銅円柱54及びヒータ56を覆う断熱材58とを有し、銅円柱54の一端に接触された試験片52のみを選択(直接)的に加熱する構成とされている。銅円柱54と試験片52との間には、温度Tw、熱流束qを計測するための熱電対と熱流束センサとが一体化されたセンサ60が設けられている。温度Taは、熱電対62にて計測されるようになっている。また、試験片52は、アルミ製とされ、その表面状態として、流路壁20に対応して微細凸凹構造26が施された実施形態モデル52A、アルミ表面の平坦面にである比較例モデル52Bを用意した。   FIG. 5 shows the measurement results of the heat transfer coefficient of the test piece of the example model corresponding to the flow path wall 20 and the test piece of the comparative example obtained by the forced convection test using the apparatus shown in FIG. ing. In the apparatus shown in FIG. 6, an air flow is brought into contact with the test piece 52 while the test piece 52 is heated by the test piece heating device 50, and the temperature Tw, the heat flux q, and the test piece 52 of the test piece 52 are brought into contact. The temperature Ta of the previous air flow is measured. The test piece heating device 50 includes a copper cylinder 54, a heater 56 that heats the copper cylinder 54, and a heat insulating material 58 that covers the copper cylinder 54 and the heater 56, and a test piece 52 that is in contact with one end of the copper cylinder 54. Only the heating is selectively (directly) performed. A sensor 60 in which a thermocouple and a heat flux sensor for measuring the temperature Tw and the heat flux q are integrated is provided between the copper cylinder 54 and the test piece 52. The temperature Ta is measured by a thermocouple 62. In addition, the test piece 52 is made of aluminum, and the surface state of the test piece 52 is an embodiment model 52A provided with the fine uneven structure 26 corresponding to the flow path wall 20, and a comparative example model 52B which is a flat surface of the aluminum surface. Prepared.

そして、この装置にて計測した温度Tw、熱流束q、温度Taを用いて、
熱伝達率α = q/(Tw−Ta)
より熱伝達率を算出する。図5は、強制空気流の風速に対し、算出した熱伝達率をプロットしたものである。なお、図5での計測条件は、風速は2m/s〜8m/sとされ、ヒータ56による投入熱量は8.4W(=0.28A×30V)である。
And using temperature Tw, heat flux q, and temperature Ta measured with this device,
Heat transfer coefficient α = q / (Tw−Ta)
Calculate the heat transfer coefficient. FIG. 5 is a plot of the calculated heat transfer coefficient against the wind speed of the forced air flow. The measurement conditions in FIG. 5 are such that the wind speed is 2 m / s to 8 m / s, and the amount of heat input by the heater 56 is 8.4 W (= 0.28 A × 30 V).

この図5から、微細凸凹構造26が形成された本実施形態の形態では、微細凸凹構造26のない平坦面である比較例に対し、空気流の各風速において熱伝達率が10%強向上されることが確認された。これにより、表面処理28によって流路壁20の表面20Aに選択的に接触される冷媒14(混合流体12中の相対的に熱伝達率が高い液体)と相手方流体18との熱交換性能が向上する。すなわち、熱交換要素10は、図3の第1比較例の如く冷媒14が選択的に付着される表面が平坦な流路壁を備えたものと比較しても、熱交換性能が高くなる。しかも、冷媒14と親和性の高い表面処理28によって、微細凸凹構造26の凹部26Aすなわち流路壁20の表面20Aに冷媒14を選択的に保持(トラップ)することができるため、該流路壁20の表面20Aには、流れが生じている期間中常に冷媒14の膜を形成しておくことができ、これによっても熱交換性能の向上に寄与する。   From FIG. 5, in the embodiment of the present embodiment in which the fine uneven structure 26 is formed, the heat transfer coefficient is improved by a little over 10% at each wind speed of the air flow as compared with the comparative example which is a flat surface without the fine uneven structure 26. It was confirmed that Thereby, the heat exchange performance between the refrigerant 14 (liquid having a relatively high heat transfer coefficient in the mixed fluid 12) and the counterpart fluid 18 that are selectively brought into contact with the surface 20A of the flow path wall 20 by the surface treatment 28 is improved. To do. That is, the heat exchanging element 10 has higher heat exchanging performance as compared with the heat exchanging element 10 having a flow path wall with a flat surface to which the refrigerant 14 is selectively attached as in the first comparative example of FIG. In addition, the surface treatment 28 having a high affinity with the refrigerant 14 can selectively hold (trap) the refrigerant 14 in the concave portion 26A of the fine uneven structure 26, that is, the surface 20A of the flow channel wall 20, so that the flow channel wall A film of the refrigerant 14 can always be formed on the surface 20A of the 20 during the period in which the flow is generated, and this also contributes to the improvement of the heat exchange performance.

また、図7には、図8に示す装置を用いた沸騰特性試験により得た、実施形態モデルの試験片52A、比較例モデルの試験片52Bの実験結果が示されている。図8に示す装置は、試験片52を試験片加熱装置50にて加熱しつつ該試験片52を容器64内の揮発性液体Fv中に浸漬し、沸騰(気泡B)の様子を観察すると共に、センサ60によって熱流速を計測するものである。試験を容易にするため、揮発性液体Fvとして冷媒14よりも沸点の低い(略40℃)冷媒である住友3M(株)製のフロリナートFC−72を使用した。また、ヒータ56による投入熱量は24.5W(=0.49A×50V)とした。さらに、各試験片52での試験は、試験片52の温度Tw=28.1℃±0.2℃、揮発性液体Fvの温度Tf=22.5℃±0.5℃で揃えて測定を開始し、測定開始から30秒後にヒータ56を作動した。   Further, FIG. 7 shows experimental results of the test piece 52A of the embodiment model and the test piece 52B of the comparative example model obtained by the boiling characteristic test using the apparatus shown in FIG. The apparatus shown in FIG. 8 immerses the test piece 52 in the volatile liquid Fv in the container 64 while heating the test piece 52 with the test piece heating apparatus 50, and observes the state of boiling (bubble B). The heat flow rate is measured by the sensor 60. In order to facilitate the test, Fluorinert FC-72 manufactured by Sumitomo 3M Co., Ltd., which is a refrigerant having a boiling point lower than that of the refrigerant 14 (approximately 40 ° C.), was used as the volatile liquid Fv. The amount of heat input by the heater 56 was 24.5 W (= 0.49 A × 50 V). Furthermore, the test with each test piece 52 is performed with the test piece 52 temperature Tw = 28.1 ° C. ± 0.2 ° C. and the volatile liquid Fv temperature Tf = 22.5 ° C. ± 0.5 ° C. The heater 56 was activated 30 seconds after the start of measurement.

比較例に係る試験片52Bを用いた場合、図7に示す時間tbc(≒460s)後に沸騰を開始した。この際、気泡は、試験片52Bの限られた部分のみから生じていた。一方、実施形態モデルの試験片52Aを用いた場合、図7に示す時間tb(≒190s)後に沸騰を開始した。この際、気泡は、試験片52Aの各部において活発に生じる様子が観測された。これにより、微細凸凹構造26が形成された本実施形態の形態では、微細凸凹構造26のない平坦面である比較例に対し、接触する液体の沸騰を生じさせ易いこと(沸騰開示までの所要時間が短縮されること、及び投入エネルギあたりの蒸発量が多いこと)が確認された。また、図7に示される如く、試験片52Aでは、試験片52Bに対して揮発性液体Fvを沸騰させている状態での熱流束が大であることが確認された。以上により、熱交換要素10では、潜熱による相手方流体18の冷却用途に適用する場合に、表面処理28によって流路壁20の表面20Aに選択的に接触される冷媒14の沸騰による相手方流体18の冷却効果(沸騰冷却性能)が高い。   When the test piece 52B according to the comparative example was used, boiling started after the time tbc (≈460 s) shown in FIG. At this time, bubbles were generated only from a limited portion of the test piece 52B. On the other hand, when the test piece 52A of the embodiment model was used, boiling started after the time tb (≈190 s) shown in FIG. At this time, it was observed that bubbles were actively generated in each part of the test piece 52A. Thereby, in the form of this embodiment in which the fine uneven structure 26 is formed, it is easy to cause boiling of the liquid in contact with the comparative example which is a flat surface without the fine uneven structure 26 (required time until boiling is disclosed). , And the amount of evaporation per input energy is large). Further, as shown in FIG. 7, it was confirmed that in the test piece 52A, the heat flux in the state where the volatile liquid Fv was boiled with respect to the test piece 52B was large. As described above, in the heat exchange element 10, when applied to the cooling of the counterpart fluid 18 by latent heat, the counterpart fluid 18 due to the boiling of the refrigerant 14 that is selectively brought into contact with the surface 20 </ b> A of the flow path wall 20 by the surface treatment 28. High cooling effect (boiling cooling performance).

また、熱交換要素10では、冷媒14と親和性の高い表面処理28によって微細凸凹構造26に冷媒14が保持されるので、混合流体12の流路22を流れる主流(微細凸凹構造26の外側の流れ)は、固体壁でなく冷媒14と接触しつつ断流れ場FFを形成することとなる。このため、熱交換要素10では、混合流体12の流動抵抗を低減させることができる。   In the heat exchange element 10, since the refrigerant 14 is held in the fine uneven structure 26 by the surface treatment 28 having a high affinity with the refrigerant 14, the main flow (outside the fine uneven structure 26 outside the fine uneven structure 26) flows through the flow path 22 of the mixed fluid 12. The flow) forms a broken flow field FF while contacting the refrigerant 14 instead of the solid wall. For this reason, in the heat exchange element 10, the flow resistance of the mixed fluid 12 can be reduced.

次に、熱交換要素10の適用例を説明する。   Next, an application example of the heat exchange element 10 will be described.

図9には、熱交換要素10が適用されカーエアコン装置36が模式的なブロック図にて示されている。この図に示される如く、カーエアコン装置36は、圧縮機としてのコンプレッサ38と、凝縮器としてのコンデンサ40と、気液分離器42と、膨張弁44と、蒸発器としてのエバポレータ46と、これらを直列に連通するエアコン冷媒循環路48とを備えている。   FIG. 9 is a schematic block diagram showing the car air conditioner 36 to which the heat exchange element 10 is applied. As shown in this figure, the car air conditioner 36 includes a compressor 38 as a compressor, a condenser 40 as a condenser, a gas-liquid separator 42, an expansion valve 44, an evaporator 46 as an evaporator, And an air conditioner refrigerant circulation path 48 communicating in series.

カーエアコン装置36は、コンプレッサ38、コンデンサ40、膨張弁44、エバポレータ46の順でエアコン冷媒が循環されることで、圧縮・膨張式の冷凍(ヒートポンプ)サイクルであるエアコンサイクルが実行される構成とされている。具体的には、エアコン冷媒は、コンプレッサ38で圧縮されて高圧気相とされ、コンデンサ40で凝縮されて高圧液相とされ、膨張弁44で膨張されて低圧液相とされ、エバポレータ46で空調用空気との熱交換により蒸発されることで低圧気相とされるエアコンサイクルを繰り返すことで、エバポレータ46で空調用空気を冷却する構成とされている。   The car air conditioner 36 has a configuration in which an air conditioner cycle that is a compression / expansion refrigeration (heat pump) cycle is executed by circulating air conditioner refrigerant in the order of the compressor 38, the condenser 40, the expansion valve 44, and the evaporator 46. Has been. Specifically, the air-conditioner refrigerant is compressed by the compressor 38 into a high-pressure gas phase, condensed by the condenser 40 to be a high-pressure liquid phase, expanded by the expansion valve 44 to be a low-pressure liquid phase, and then air-conditioned by the evaporator 46. The evaporator 46 is configured to cool the air-conditioning air by repeating an air-conditioning cycle that is made into a low-pressure gas phase by being evaporated by heat exchange with the working air.

すなわち、エバポレータ46は、エアコン冷媒と空調用空気との熱交換器とされており、空調用空気(室外気又は室内気)からエアコン冷媒の蒸発潜熱を奪うことで、該空調用空気を冷却する構成とされている。また、コンデンサ40は、外気とエアコン冷媒との熱交換器とされており、車両走行風や図示しないファンの作動により生じる空気流にエアコン冷媒の凝縮熱を放出する構成とされている。   That is, the evaporator 46 is a heat exchanger between the air-conditioning refrigerant and the air-conditioning air, and cools the air-conditioning air by taking the latent heat of evaporation of the air-conditioning refrigerant from the air-conditioning air (outdoor air or indoor air). It is configured. The condenser 40 is a heat exchanger between the outside air and the air conditioner refrigerant, and is configured to release the heat of condensation of the air conditioner refrigerant into the airflow generated by the operation of the vehicle running wind or a fan (not shown).

そして、この実施形態に係る熱交換要素10が適用されたカーエアコン装置36では、エアコン冷媒としてフッ素系冷媒である冷媒14が用いられ、混合流体12がエアコン冷媒循環路48を循環される構成とされている。これにより、混合流体12中の冷媒14によって上記したエアコンサイクルが実行されると共に、混合流体12中の潤滑油16によってコンプレッサ38の潤滑が果たされるようになっている。   In the car air conditioner 36 to which the heat exchange element 10 according to this embodiment is applied, the refrigerant 14 that is a fluorine-based refrigerant is used as the air conditioner refrigerant, and the mixed fluid 12 is circulated through the air conditioner refrigerant circulation path 48. Has been. As a result, the above-described air-conditioner cycle is executed by the refrigerant 14 in the mixed fluid 12, and the compressor 38 is lubricated by the lubricating oil 16 in the mixed fluid 12.

ここで、カーエアコン装置36では、エバポレータ46に熱交換要素10が適用されている。具体的には、エバポレータ46は、エアコン冷媒の流路と空調用空気の流路との隔壁として流路壁20が用いられて構成されている。流路壁20は、エアコン冷媒の流路側に表面20A、空調用空気の流路側に裏面20Bを向けて設けられている。   Here, in the car air conditioner 36, the heat exchange element 10 is applied to the evaporator 46. Specifically, the evaporator 46 is configured by using the flow path wall 20 as a partition wall between the flow path of the air conditioner refrigerant and the flow path of the air conditioning air. The flow path wall 20 is provided with the front surface 20A facing the flow path side of the air conditioner refrigerant and the back surface 20B facing the flow path side of the air conditioning air.

これにより、エバポレータ46におけるエアコン冷媒の流路(混合流体12の流路22)を流れる混合流体12は、冷媒14が流路壁20の表面20Aに選択的に付着されるので、冷媒14と空調用空気との熱交換が良好に行われ、冷媒14は空調用空気から蒸発潜熱を奪って蒸発され、蒸発潜熱を奪われた空調空気は冷却される。   As a result, the mixed fluid 12 flowing through the flow path of the air-conditioner refrigerant (the flow path 22 of the mixed fluid 12) in the evaporator 46 is selectively attached to the surface 20A of the flow path wall 20 with the refrigerant 14 and the air-conditioning Heat exchange with the working air is satisfactorily performed, and the refrigerant 14 is evaporated by removing the latent heat of evaporation from the air for air conditioning, and the conditioned air deprived of the latent heat of evaporation is cooled.

例えば、熱交換要素10が適用されないエバポレータを備えた比較例に係るカーエアコン装置では、混合流体12のうち潤滑油16が流路壁側を流れ、エバポレータの熱交換ロスが大きくなってしまうことが知られている。この対策として、比較例に係るカーエアコン装置では、例えばコンプレッサ38の吐出側にオイルセパレータを設け、該オイルセパレータで分離した潤滑油16をコンプレッサ38の吸入側に戻す等の構成を採ることとなる。このため、比較例に係るカーエアコン装置では、部品点数が多く、質量が大きくなりやすい。   For example, in a car air conditioner according to a comparative example including an evaporator to which the heat exchange element 10 is not applied, the lubricating oil 16 of the mixed fluid 12 flows on the flow path wall side, and the heat exchange loss of the evaporator may increase. Are known. As a countermeasure, in the car air conditioner according to the comparative example, for example, an oil separator is provided on the discharge side of the compressor 38, and the lubricating oil 16 separated by the oil separator is returned to the suction side of the compressor 38. . For this reason, in the car air conditioner according to the comparative example, the number of parts is large and the mass tends to increase.

これに対して熱交換要素10が適用されたカーエアコン装置36では、上記の通り混合流体12中の冷媒14が流路壁20の表面20Aに選択的に付着されて熱交換ロスが低減されるので、混合流体12がエアコン冷媒循環路48を循環される構成において、所要のエアコン性能を確保することができる。しかも、流路壁20の表面20Aに微細凸凹構造26が形成されることで、熱伝達性能、沸騰冷却性能が向上するため、潜熱冷却器であるエバポレータ46を用いたエアコン性能(空調用空気の冷却性能)が一層向上する。このため、カーエアコン装置36は、オイルセパレータを不要にすることができ、部品点数の削減、軽量化(適用された自動車全体としての軽量化)が果たされる。   On the other hand, in the car air conditioner 36 to which the heat exchange element 10 is applied, as described above, the refrigerant 14 in the mixed fluid 12 is selectively attached to the surface 20A of the flow path wall 20 to reduce heat exchange loss. Therefore, in the configuration in which the mixed fluid 12 is circulated through the air conditioner refrigerant circulation path 48, the required air conditioner performance can be ensured. In addition, since the fine uneven structure 26 is formed on the surface 20A of the flow path wall 20, the heat transfer performance and the boiling cooling performance are improved. Therefore, the air conditioner performance using the evaporator 46 which is a latent heat cooler (air conditioning air Cooling performance) is further improved. For this reason, the car air conditioner 36 can eliminate the need for an oil separator, and can reduce the number of parts and reduce the weight (the weight of the applied automobile as a whole).

また、熱交換要素10は、上記の通り流動抵抗低減効果を奏するので、カーエアコン装置36の圧力損失低下に寄与する。特に、コンプレッサ38が自動車の駆動源(エンジン等)によって駆動される構成では、燃費の向上に寄与する。   Moreover, since the heat exchange element 10 has the flow resistance reduction effect as described above, it contributes to the pressure loss reduction of the car air conditioner 36. In particular, the configuration in which the compressor 38 is driven by an automobile drive source (such as an engine) contributes to improvement in fuel consumption.

なお、上記適用例では、熱交換要素10がエバポレータ46に適用された例を示したが、本発明はこれに限定されず、例えば、熱交換要素10がコンデンサ40に適用された構成としても良い。   In the application example described above, the heat exchange element 10 is applied to the evaporator 46. However, the present invention is not limited to this. For example, the heat exchange element 10 may be applied to the condenser 40. .

また、上記適用例では、熱交換要素10がカーエアコン装置36(冷凍サイクル)の熱交換器に適用された例を示したが、本発明はこれに限定されず、熱交換要素10は、熱交換媒体と機能流体との混合流体が流れる各種の熱交換要素(熱交換器の部品等)や被冷却要素、被加熱要素等に適用することが可能である。熱交換要素10が適用可能な被冷却要素として、例えば冷却及び潤滑が要求されるトランスミッションをはじめとする各種ギヤボックス、産業機械等(の潤滑油循環部)、ヒートシンクを挙げることができる。すなわち、冷媒14の熱交換対象は、流路壁20の裏面20Bに接触する流体に限られず、裏面20Bに接触する固体や流路壁20が一体化された機械の構成部品等も冷媒14の熱交換対象になり得る。また、機能流体の機能は、潤滑に限られることはなく、例えば熱交換要素への冷媒の運搬(流量の確保)機能を果たす構成とすることも可能である。   In the application example described above, the heat exchange element 10 is applied to the heat exchanger of the car air conditioner 36 (refrigeration cycle). However, the present invention is not limited to this, and the heat exchange element 10 The present invention can be applied to various types of heat exchange elements (heat exchanger components, etc.), elements to be cooled, elements to be heated and the like through which a mixed fluid of an exchange medium and a functional fluid flows. Examples of the element to be cooled to which the heat exchange element 10 can be applied include various gearboxes including transmissions that require cooling and lubrication, industrial machines, etc. (lubricating oil circulation portion thereof), and heat sinks. That is, the heat exchange target of the refrigerant 14 is not limited to the fluid that contacts the back surface 20B of the flow path wall 20, and solids that contact the back surface 20B, structural components of the machine in which the flow path wall 20 is integrated, and the like. Can be subject to heat exchange. Further, the function of the functional fluid is not limited to lubrication, and for example, it is possible to adopt a configuration that fulfills the function of transporting the refrigerant to the heat exchange element (securing the flow rate).

さらに、上記した実施形態では、冷媒14としてフッ素系冷媒を用い、該フッ素系冷媒に対する親和性が高い表面処理28としてフッ素系表面処理が施された例を示したが、参考例として、例えば、冷媒14としてのシリコン系冷媒を用い、該シリコン系冷媒に対する親和性が高い表面処理としてシリカ処理を施す構成としても良い。 Furthermore, in the above embodiment, a fluorine-based refrigerant as a refrigerant 14, a fluorine-based surface treatment is an example which has been subjected as a higher affinity surface treatment 28 with respect to the fluorine-based refrigerant, as a reference example, for example, It is good also as a structure which uses a silicon-type refrigerant | coolant as the refrigerant | coolant 14, and performs a silica process as a surface treatment with high affinity with respect to this silicon-type refrigerant | coolant.

10 熱交換要素
12 混合流体
14 冷媒(熱交換媒体)
16 潤滑油(機能流体)
20 流路壁
20A 表面
26 微細凸凹構造(凸凹構造)
28 表面処理
36 カーエアコン装置(冷凍サイクル)
46 エバポレータ(熱交換器)
10 Heat Exchange Element 12 Mixed Fluid 14 Refrigerant (Heat Exchange Medium)
16 Lubricating oil (functional fluid)
20 Channel wall 20A Surface 26 Fine uneven structure (uneven structure)
28 Surface treatment 36 Car air conditioner (refrigeration cycle)
46 Evaporator (Heat Exchanger)

Claims (3)

熱交換媒体としてのフッ素系冷媒該熱交換媒体に対する非相溶性の機能流体としての鉱物油を含む潤滑油との混合流体の流路を形成する流路壁の表面が微細凸凹構造とされると共に、該表面に前記フッ素系冷媒と親和性が高く、かつはっ水処理であるフッ素処理が施されることで、前記流路壁の表面に熱交換媒体が選択的に付着されるように構成された熱交換要素。 The surface of the flow path wall forming the flow path of the mixed fluid of the fluorine-based refrigerant as the heat exchange medium and the lubricating oil containing mineral oil as the incompatible functional fluid with the heat exchange medium has a fine uneven structure. At the same time, the surface is subjected to fluorine treatment that has high affinity with the fluorine-based refrigerant and is water repellent so that a heat exchange medium is selectively attached to the surface of the flow path wall. Heat exchange element configured to. 凍サイクルの熱交換器に適用された請求項1記載の熱交換要素。 Heat exchange elements of the applied claim 1, wherein the heat exchanger of refrigeration cycle. 熱交換媒体としてのフッ素系冷媒と、該熱交換媒体に対する非相溶性の機能流体としての鉱物油を含む潤滑油との混合流体の流路を形成する微細凸凹構造とされた流路壁面に、前記フッ素系冷媒と親和性が高く、かつはっ水処理であるフッ素処理を施し、該流路壁の表面に前記熱交換媒体を選択的に付着させつつ、該熱交換媒体と流路壁の裏面側の物体との熱交換を行う熱交換方法。On the flow path wall surface having a fine uneven structure that forms a flow path of a mixed fluid of a fluorine-based refrigerant as a heat exchange medium and a lubricating oil containing mineral oil as an incompatible functional fluid with the heat exchange medium, Fluorine treatment having high affinity with the fluorinated refrigerant and water repellency treatment is performed, and the heat exchange medium and the flow path wall are selectively adhered to the surface of the flow path wall. A heat exchange method for exchanging heat with an object on the back side.
JP2009245836A 2009-10-26 2009-10-26 Heat exchange element and heat exchange method Expired - Fee Related JP5499627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009245836A JP5499627B2 (en) 2009-10-26 2009-10-26 Heat exchange element and heat exchange method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009245836A JP5499627B2 (en) 2009-10-26 2009-10-26 Heat exchange element and heat exchange method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013266143A Division JP5999081B2 (en) 2013-12-24 2013-12-24 Cooled element and selective deposition method

Publications (2)

Publication Number Publication Date
JP2011089752A JP2011089752A (en) 2011-05-06
JP5499627B2 true JP5499627B2 (en) 2014-05-21

Family

ID=44108158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009245836A Expired - Fee Related JP5499627B2 (en) 2009-10-26 2009-10-26 Heat exchange element and heat exchange method

Country Status (1)

Country Link
JP (1) JP5499627B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055766A (en) * 2013-12-24 2014-03-27 Toyota Central R&D Labs Inc Wall, element to be cooled and selective attachment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297457B2 (en) * 1991-12-25 2002-07-02 松下冷機株式会社 Refrigerant pipe
JPH05322477A (en) * 1992-05-26 1993-12-07 Matsushita Refrig Co Ltd Boiling heat transfer surface
JPH09210513A (en) * 1996-02-07 1997-08-12 Denso Corp Refrigration cycle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055766A (en) * 2013-12-24 2014-03-27 Toyota Central R&D Labs Inc Wall, element to be cooled and selective attachment method

Also Published As

Publication number Publication date
JP2011089752A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5497058B2 (en) Composition comprising 2,3,3,3-tetrafluoropropene, vehicle heating and / or air conditioning method
JP6258253B2 (en) Vehicle heating and / or air conditioning method
JP6194154B2 (en) Vehicle heating and / or air conditioning method
JP5626194B2 (en) Heat exchange system
JP2017072367A (en) Vehicular heating and/or air conditioning method
US20100287954A1 (en) Supersonic Cooling System
JP2015131966A5 (en)
JP2009133500A (en) Air conditioner
CN205784707U (en) Heat exchanger and refrigerating circulatory device
US6993924B2 (en) Floating loop system for cooling integrated motors and inverters using hot liquid refrigerant
JP5499627B2 (en) Heat exchange element and heat exchange method
JP2013178032A (en) Vehicle heat pump air conditioner and method for operating the same
JP5999081B2 (en) Cooled element and selective deposition method
Kumar Sustainabilityof AlternativeMaterial of R-134a in Mobile Air-conditioning System: A Review
WO2012029516A1 (en) Rankine cycle device
JP2008164254A (en) Coolant piping structure
CN109282685A (en) Flat tube, micro-channel heat exchanger, refrigeration equipment and micro-channel heat exchanger production method
JP2006105541A (en) Air conditioner and outdoor unit therefor
US11073342B2 (en) Regenerative heat exchanger
KR20180106224A (en) Heat exchanger
Yaddanapudi et al. Spray cooling with HFC-134a and HFO-1234yf for thermal management of automotive power electronics
Kaneko et al. Research of heat transfer and pressure drop characteristic of concavo-convex plate
Mathur Experimental Investigation of the Performance of a Laminate Evaporator with HFO-1234yf as the Working Fluid
FR3041288B1 (en) IMPROVED AIR CONDITIONING DEVICE, IN PARTICULAR FOR A RAILWAY VEHICLE COMPARTMENT
JP5460474B2 (en) Heat exchanger, and air conditioner and refrigerator provided with this heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R151 Written notification of patent or utility model registration

Ref document number: 5499627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees