JP5498692B2 - Process for producing modified coal and hydrocarbon oil - Google Patents

Process for producing modified coal and hydrocarbon oil Download PDF

Info

Publication number
JP5498692B2
JP5498692B2 JP2008324550A JP2008324550A JP5498692B2 JP 5498692 B2 JP5498692 B2 JP 5498692B2 JP 2008324550 A JP2008324550 A JP 2008324550A JP 2008324550 A JP2008324550 A JP 2008324550A JP 5498692 B2 JP5498692 B2 JP 5498692B2
Authority
JP
Japan
Prior art keywords
tar
hydrocarbon oil
catalyst
lignite
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008324550A
Other languages
Japanese (ja)
Other versions
JP2010144094A (en
Inventor
希 園山
潤一郎 林
隆夫 増田
輝興 多湖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Idemitsu Kosan Co Ltd
Original Assignee
Hokkaido University NUC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Idemitsu Kosan Co Ltd filed Critical Hokkaido University NUC
Priority to JP2008324550A priority Critical patent/JP5498692B2/en
Publication of JP2010144094A publication Critical patent/JP2010144094A/en
Application granted granted Critical
Publication of JP5498692B2 publication Critical patent/JP5498692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、褐炭から、改質炭と炭化水素油を製造する方法に関し、さらに詳しくは、褐炭から、発熱量が向上した改質炭、及び褐炭に含まれるタールからアセトン、フェノールなど有用な化合物を多く含む炭化水素油を製造する方法に関するものである。   The present invention relates to a method for producing reformed coal and hydrocarbon oil from lignite, and more specifically, from lignite, modified coal with improved calorific value, and useful compounds such as acetone and phenol from tar contained in lignite. The present invention relates to a method for producing a hydrocarbon oil containing a large amount of.

石炭をエネルギーや、それに含まれるタールを有用な化合物の製造原料に利用することについては、従来から広く行われており、さらなる研究開発が行われている。
しかし、石炭の埋蔵量のかなりの割合を占める褐炭を現実に利用するには、種々の問題がある。例えば、褐炭は、石炭の中でも石炭化度が低く低品位のものであり、水分が多く、フミン酸など利用価値のない化合物を多く含むため、瀝青炭や亜瀝青炭と比較し、エネルギー資源としての質が低い。また、褐炭は、乾燥すると自然発火することがあり輸送、取扱いが困難であるという問題もある。このようなことから、褐炭の利用は進んでいないのが現状である。
したがって、褐炭をエネルギー資源として利用するには、水分およびフミン酸などを除去することにより発熱量を向上させることが必要であるが、さらに褐炭を利用することの経済性を高めるために、除去した大量の水分及びフミン酸などを含むタール分をいかに有効性が高く、かつ経済的に有利な方法で活用できるかが重要な問題である。もちろん、輸送が困難であるなどの、取扱いの問題も解決する必要がある。
The use of coal as energy and the tar contained therein as a raw material for the production of useful compounds has been widely conducted and further research and development has been conducted.
However, there are various problems in actually using lignite, which accounts for a considerable proportion of the reserves of coal. For example, lignite is a low quality coal with a low degree of coal content and contains a lot of moisture and compounds that are not useful such as humic acid. Is low. In addition, brown coal may spontaneously ignite when dried and has a problem that it is difficult to transport and handle. For these reasons, the use of lignite is not progressing.
Therefore, in order to use lignite as an energy resource, it is necessary to improve the calorific value by removing moisture, humic acid, etc., but in order to further improve the economics of using lignite, it was removed An important issue is how to use a tar containing a large amount of moisture and humic acid in a highly effective and economically advantageous manner. Of course, it is necessary to solve handling problems such as difficult transportation.

従来、褐炭の輸送の問題を解決する方法、及び褐炭から改質炭を製造するとともに有用な化合物の製造原料に利用するタールの製造方法としては、次のような技術が提案され、又は実施されている。   Conventionally, the following techniques have been proposed or implemented as a method for solving the problem of transporting lignite, and a method for producing reformed coal from lignite and a tar production method used as a raw material for producing useful compounds. ing.

前記輸送の問題を解決する方法としては、例えば、褐炭を乾式熱分解法や水添液化法などで改質する方法が提案されている。乾式熱分解法は、通常120〜500℃で水分を蒸発させて改質炭を得る方法であり、この方法で熱分解温度を高くすると、改質炭の発熱量は増加する。しかし、同時に、高沸点成分からなるタールが副生する。このような高沸点成分からなる副生タールにはフェノール、クレゾール、アセトン、メチルエチルケトンのような含酸素化合物や1〜2環芳香族化合物などの有用な化学成分の含有量が少ないという問題がある。また、副生タールをC重油代替として利用しても、C重油の経済的価値が低いため、改質プロセス全体の大幅な経済性の向上は期待できない。さらに、回収した排水には有機物が含まれ、排水処理を考慮する必要もある。   As a method for solving the transportation problem, for example, a method of reforming lignite by a dry pyrolysis method or a hydrogenation liquefaction method has been proposed. The dry pyrolysis method is a method in which moisture is evaporated at 120 to 500 ° C. to obtain reformed coal. When the pyrolysis temperature is increased by this method, the calorific value of the reformed coal increases. However, at the same time, tar consisting of high-boiling components is by-produced. By-product tar composed of such high-boiling components has a problem that the content of useful chemical components such as oxygen-containing compounds such as phenol, cresol, acetone, and methyl ethyl ketone, and 1- and 2-ring aromatic compounds is low. Further, even if the by-product tar is used as an alternative to C heavy oil, since the economic value of C heavy oil is low, it cannot be expected that the entire reforming process will be greatly improved in economic efficiency. Furthermore, the collected wastewater contains organic matter, and it is necessary to consider wastewater treatment.

また、水添液化法は、水素を添加することにより褐炭を液化し、ガソリンなどの有用化学成分を得るプロセスであるが、低温では高圧処理が必要となり、低圧では高温であることが要求されるためプラントのコストが高い。さらに水素製造設備が必要となる問題点も抱えている。   The hydrogenation liquefaction method is a process in which lignite is liquefied by adding hydrogen to obtain useful chemical components such as gasoline, but high pressure treatment is required at low temperatures, and high temperature is required at low pressures. Therefore, the cost of the plant is high. In addition, there are problems that require hydrogen production facilities.

一方、有用な化合物の製造原料に利用するタールの製造方法としては、(1)褐炭を750℃以下で10秒以下の短時間で熱分解する、迅速熱分解によってアルキルフェノール類を多く製造できる石炭タールを得る方法(例えば、特許文献1、及び2参照)や(2)褐炭を亜臨界或いは超臨界状態の水中で熱加水分解し、改質炭とフェノール類を回収する方法(例えば、特許文献3、4及び5参照)などが挙げられる。
しかしながら、(1)の迅速熱分解法で得られる石炭タールは、重質な炭化水素化合物であるピッチも増加するため、その重質炭化水素化合物の処理がさらに必要となり経済性が劣る。また、(2)の亜臨界或いは超臨界法では、高圧プロセスであることや、熱加水分解後に大量の水分から有用化学成分を回収する必要があるため製造コストが高くなるという欠点がある。
On the other hand, as a method for producing tar used as a raw material for producing useful compounds, (1) coal tar which can pyrolyze brown coal at 750 ° C. or less in a short time of 10 seconds or less and which can produce many alkylphenols by rapid pyrolysis (2) a method of thermally hydrolyzing lignite in subcritical or supercritical water and recovering the modified coal and phenols (for example, Patent Document 3) 4 and 5).
However, the coal tar obtained by the rapid pyrolysis method of (1) also increases the pitch, which is a heavy hydrocarbon compound, and thus requires further treatment of the heavy hydrocarbon compound, resulting in poor economic efficiency. In addition, the subcritical or supercritical method (2) has disadvantages that it is a high pressure process, and that it is necessary to recover useful chemical components from a large amount of water after thermal hydrolysis, resulting in high production costs.

特開平6−172240号公報JP-A-6-172240 特開平5−201888号公報JP-A-5-201888 特開2000−22900号公報Japanese Patent Laid-Open No. 2000-22900 特開2001−139957号公報JP 2001-139957 A 特開2002−265404号公報JP 2002-265404 A

本発明は、このような状況下で、褐炭から、タールを除去して発熱量が向上した改質炭を得るとともに、褐炭に含まれるタールからアセトン、フェノールなど有用な化合物を多く含む炭化水素油を、経済的に製造する方法を提供することを目的とするものである。   Under such circumstances, the present invention obtains a modified coal having a calorific value improved by removing tar from lignite, and a hydrocarbon oil containing many useful compounds such as acetone and phenol from tar contained in lignite. It aims at providing the method of manufacturing economically.

本発明者らは、前記の好ましい製造方法を開発すべく鋭意研究を重ねた結果、褐炭を特定雰囲気下で熱分解することによって、改質炭とタールに分離し、前記タールを特定雰囲気下で接触分解することによって、目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。すなわち、本発明は、   As a result of intensive research to develop the preferred production method, the present inventors have separated lignite into pyrolytic coal and tar by pyrolyzing in a specific atmosphere, and the tar is subjected to a specific atmosphere. It has been found that the object can be achieved by catalytic cracking. The present invention has been completed based on such findings. That is, the present invention

[1]褐炭を不活性ガス雰囲気下もしくは水蒸気雰囲気下で熱分解して改質炭と前記褐炭に含まれていた水分を含むタールとに分離し、前記タールを水蒸気雰囲気下、かつ鉄系触媒存在下で接触分解して炭化水素油を得る改質炭と炭化水素油の製造法であって、前記熱分解によって得られたタールを、油層と水層に分離した後、前記分離した油層を接触分解し、前記タールを油層と水層に分離して得られた水層を、前記褐炭の熱分解に供給する水蒸気源とすることを特徴とする改質炭と炭化水素油の製造法を特徴とする改質炭と炭化水素油の製造法、
[2]前記タールを油層と水層に分離して得られた水層を、前記タールの接触分解に供給する水蒸気源とすることを特徴とする前記[1]に記載の改質炭と炭化水素油の製造法、
[3]褐炭を不活性ガス雰囲気下もしくは水蒸気雰囲気下で熱分解して改質炭と前記褐炭に含まれていた水分を含むタールとに分離し、前記タールを水蒸気雰囲気下、かつ鉄系触媒存在下で接触分解して炭化水素油を得る改質炭と炭化水素油の製造法であって、前記熱分解によって得られたタールを、油層と水層に分離した後、前記分離した油層を接触分解し、前記タールを油層と水層に分離して得られた水層を、前記タールの接触分解に供給する水蒸気源とすることを特徴とする改質炭と炭化水素油の製造法、
[4]前記炭化水素油が、ケトン類、フェノール類、あるいは単環芳香族炭化水素類を含有する炭化水素油である前記[1]〜[3]のいずれかに記載の改質炭と炭化水素油の製造法。
[5]鉄系触媒が、水酸化鉄(FeOOH)、四酸化三鉄(Fe34)、あるいは三酸化二鉄(Fe23)を主要構成成分とする触媒である前記[1]〜[4]のいずれかに記載の改質炭と炭化水素油の製造法、
を提供するものである。
[1] The lignite is pyrolyzed under an inert gas atmosphere or a steam atmosphere to separate the reformed coal into a moisture-containing tar contained in the lignite, and the tar is contained in a steam atmosphere and an iron-based catalyst. A method for producing reformed coal and hydrocarbon oil, which is obtained by catalytic cracking in the presence to obtain a hydrocarbon oil , wherein the tar obtained by pyrolysis is separated into an oil layer and an aqueous layer, and then the separated oil layer is A method for producing reformed coal and hydrocarbon oil, characterized in that an aqueous layer obtained by catalytic cracking and separating the tar into an oil layer and an aqueous layer is used as a water vapor source for thermal decomposition of the lignite. A method for producing modified coal and hydrocarbon oil,
[2] The reformed coal and carbonization according to [1] , wherein an aqueous layer obtained by separating the tar into an oil layer and an aqueous layer is used as a water vapor source that supplies the tar for catalytic cracking. A method for producing hydrogen oil,
[3] The lignite is pyrolyzed in an inert gas atmosphere or a steam atmosphere to separate the reformed coal into a moisture-containing tar contained in the lignite, and the tar is contained in a steam atmosphere and an iron-based catalyst. A method for producing reformed coal and hydrocarbon oil, which is obtained by catalytic cracking in the presence to obtain a hydrocarbon oil, wherein the tar obtained by pyrolysis is separated into an oil layer and an aqueous layer, and then the separated oil layer is A method for producing reformed coal and hydrocarbon oil, characterized in that an aqueous layer obtained by catalytic cracking and separating the tar into an oil layer and an aqueous layer is used as a steam source for supplying the tar for catalytic cracking,
[4] The modified coal and carbonization according to any one of [1] to [3], wherein the hydrocarbon oil is a hydrocarbon oil containing ketones, phenols, or monocyclic aromatic hydrocarbons. Production method of hydrogen oil.
[5] The above [1], wherein the iron-based catalyst is a catalyst mainly composed of iron hydroxide (FeOOH), triiron tetroxide (Fe 3 O 4 ), or diiron trioxide (Fe 2 O 3 ). To [4] a method for producing reformed coal and hydrocarbon oil according to any one of
Is to provide.

本発明によれば、褐炭から発熱量が向上した改質炭を得るとともに、褐炭に含まれるタールからアセトン、フェノールなど有用な化合物を多く含む炭化水素油を、経済的に製造する方法を提供することができる。   According to the present invention, there is provided a method for economically producing a hydrocarbon oil containing a large amount of useful compounds such as acetone and phenol from tar contained in lignite while obtaining reformed coal having an improved calorific value from lignite. be able to.

本発明は、褐炭を特定雰囲気下で熱分解して改質炭とタールに分離し、前記タールを特定雰囲気下、特定の触媒存在下で接触分解することを特徴とする、改質炭と炭化水素油の製造法である。以下、熱分解、接触分解及び接触分解に用いる触媒について説明する。   The present invention is characterized in that lignite is pyrolyzed under a specific atmosphere to be separated into reformed coal and tar, and the tar is catalytically cracked under a specific atmosphere and in the presence of a specific catalyst. This is a method for producing hydrogen oil. Hereinafter, the catalyst used for thermal cracking, catalytic cracking and catalytic cracking will be described.

[熱分解]
本発明では、熱分解することによって、褐炭から改質炭とタールを得る。
この褐炭の熱分解は、水蒸気雰囲気下もしくは不活性ガス雰囲気下で行うことを要する。褐炭をこれらの雰囲気ではなく、空気雰囲気下で熱分解すると、熱分解生成物(チャー、タール、ガスなど)が空気中の酸素と反応し、改質炭や生成ガスの発熱量が低下し、タールの収率も減少する。
また、褐炭の熱分解を水蒸気雰囲気下で行うこと、褐炭あるいはタール中の脱水縮合反応を抑制する水酸基の保護効果により、タール中の水酸基含有化合物が増加し、接触分解後のフェノール類の濃度を高めることができる。
水蒸気雰囲気下で熱分解を行う具体的な方法としては、通常不活性ガスと水蒸気の混合ガスを熱分解炉に導入するか、あるいは水分を含んだ褐炭を熱分解炉に導入することによって行う。この場合、水蒸気濃度は、5〜100容量%であるのが好ましく、30〜100容量%であるのがより好ましい。
一方、不活性ガス雰囲気下で熱分解を行う場合は、N2、He、Ar、CO2などの不活性ガスを熱分解炉に充填して行う。それらの不活性ガスの中でもN2が好ましい。
[Thermal decomposition]
In the present invention, reformed coal and tar are obtained from lignite by pyrolysis.
This thermal decomposition of lignite needs to be performed in a steam atmosphere or an inert gas atmosphere. When lignite is pyrolyzed in an air atmosphere instead of these atmospheres, pyrolysis products (char, tar, gas, etc.) react with oxygen in the air, reducing the calorific value of the reformed coal and product gas, Tar yield is also reduced.
In addition, the thermal decomposition of lignite in a steam atmosphere, and the protective effect of hydroxyl groups that suppress the dehydration condensation reaction in lignite or tar, the number of hydroxyl-containing compounds in tar increases, and the concentration of phenols after catalytic cracking is reduced. Can be increased.
As a specific method for carrying out the pyrolysis in a steam atmosphere, usually, a mixed gas of an inert gas and steam is introduced into the pyrolysis furnace, or lignite containing water is introduced into the pyrolysis furnace. In this case, the water vapor concentration is preferably 5 to 100% by volume, and more preferably 30 to 100% by volume.
On the other hand, when thermal decomposition is performed in an inert gas atmosphere, the thermal decomposition furnace is filled with an inert gas such as N 2 , He, Ar, or CO 2 . Among these inert gases, N 2 is preferable.

当該熱分解における分解温度は、500〜800℃の範囲内で行うことが好ましい。500℃以上であれば、改質炭はタールフリーとなり、クリーンなガス化燃料として利用でき、一方800℃以下であれば、生成するタール中の水酸基の分解を抑制できるため、含酸素化合物の含有量を高濃度に保つことができ、有用な含酸素化合物を多量に回収できる。   It is preferable to perform the decomposition temperature in the said thermal decomposition within the range of 500-800 degreeC. If it is 500 ° C. or higher, the reformed coal becomes tar-free and can be used as a clean gasified fuel. On the other hand, if it is 800 ° C. or lower, decomposition of hydroxyl groups in the generated tar can be suppressed. The amount can be maintained at a high concentration, and a large amount of useful oxygen-containing compounds can be recovered.

前記熱分解により生成した改質炭は、通常燃料や化学品の製造原料として利用される。
一方、前記熱分解により生成したタールは、さらに接触分解する。この場合、タールは、熱分解によって生成した状態の蒸気のまま接触分解炉に導入しても良いが、タールを一旦凝縮液として回収した後、油層及び水層に分離した後、分離した油層を再加熱し接触分解炉に導入することが好ましい。このようにタールを油層及び水層に分離し、凝縮液とすることによって、ハンドリング性や輸送性が向上し、産炭地以外でのタールの接触分解も可能になるという利点がある。
また、前記分離した水層は、褐炭の熱分解の水蒸気の供給源として熱分解炉に導入して利用することが、プロセスの経済性の点で好ましい。
さらに、同様の理由から、前記分離した水層は、後述するタールの接触分解に供給する水蒸気源としても利用することが好ましい。
The reformed coal produced by the pyrolysis is usually used as a raw material for producing fuels and chemicals.
On the other hand, the tar generated by the thermal decomposition further undergoes catalytic decomposition. In this case, the tar may be introduced into the catalytic cracking furnace in the form of steam generated by thermal decomposition, but after the tar is once recovered as a condensate, it is separated into an oil layer and an aqueous layer, and then the separated oil layer is It is preferable to reheat and introduce into a catalytic cracking furnace. Thus, by separating tar into an oil layer and an aqueous layer and using it as a condensate, there are advantages that handling properties and transportability are improved and that catalytic cracking of tar outside the coal-producing area is possible.
Moreover, it is preferable from the point of economical efficiency of the process that the separated water layer is introduced into a pyrolysis furnace and used as a steam supply source for pyrolysis of lignite.
Furthermore, for the same reason, the separated water layer is preferably used as a water vapor source to be supplied for the catalytic cracking of tar described later.

[接触分解]
本発明では、鉄系触媒の存在下で接触分解することによって、タールからアセトン、フェノールなどの有用な含酸素化合物を多く含む炭化水素油を得る。
この接触分解は、水蒸気雰囲気下で行うことを要する。水蒸気雰囲気下で接触分解すれば、触媒への活性水素種や活性酸素種の供給や触媒のコーキング抑制の点で効果がある。
当該接触分解においては、前記のとおり、褐炭の熱分解により生成したタールをそのまま接触分解炉に導入しても良いが、タールを一旦凝縮液として回収した後、油層及び水層に分離し、分離した油層を再加熱して水蒸気とともに接触分解炉に導入しても良い。
この接触分解の温度は、400〜600℃が好ましい。接触分解温度が400℃以上であれば、タールの分解速度が遅くなる恐れがなく、大きい接触分解炉が必要となることがない。一方、接触分解の温度が600℃以下であれば、触媒の熱劣化やコーキングにより活性が低下することがない。
また、接触分解の反応圧力は常圧以上であり、かつ水が気相(水蒸気)で存在する圧力下であることが好ましい。この場合、水蒸気濃度が5〜100容量%であることが好ましい。常圧条件での水蒸気濃度としては、60〜80容量%がより好ましい。水蒸気分圧が低下するとコークが生成しやすくなり、水蒸気分圧が高い条件では水蒸気とタールの競争吸着の結果、触媒へのタール吸着が阻害され、反応速度が減少することがある。
[Catalytic decomposition]
In the present invention, hydrocarbon oil containing a large amount of useful oxygenated compounds such as acetone and phenol is obtained from tar by catalytic cracking in the presence of an iron-based catalyst.
This catalytic cracking needs to be performed in a steam atmosphere. Catalytic cracking in a steam atmosphere is effective in terms of supplying active hydrogen species and active oxygen species to the catalyst and suppressing coking of the catalyst.
In the catalytic cracking, as described above, the tar generated by the pyrolysis of lignite may be directly introduced into the catalytic cracking furnace, but after the tar is once recovered as a condensate, it is separated into an oil layer and a water layer, and separated. The heated oil layer may be reheated and introduced into the catalytic cracking furnace together with water vapor.
The catalytic decomposition temperature is preferably 400 to 600 ° C. If the catalytic cracking temperature is 400 ° C. or higher, there is no fear that the tar cracking rate will be slow, and a large catalytic cracking furnace will not be required. On the other hand, if the temperature of catalytic cracking is 600 ° C. or lower, the activity does not decrease due to thermal deterioration or coking of the catalyst.
In addition, the reaction pressure for catalytic cracking is preferably equal to or higher than normal pressure, and the pressure is such that water is present in the gas phase (water vapor). In this case, the water vapor concentration is preferably 5 to 100% by volume. The water vapor concentration under normal pressure conditions is more preferably 60 to 80% by volume. If the water vapor partial pressure is lowered, coke is likely to be generated. Under conditions where the water vapor partial pressure is high, the adsorption of tar to the catalyst may be hindered as a result of the competitive adsorption of water vapor and tar, and the reaction rate may be reduced.

[接触分解に用いる触媒]
前記接触分解に用いる、鉄系触媒の種類については、特に制限はなく、従来接触分解反応において慣用されている種々の鉄系触媒の中から適宜選択して用いることができる。中でも本発明においては、水酸化鉄(FeOOH)、四酸化三鉄(Fe34)、あるいは三酸化二鉄(Fe23)を主要構成成分とする鉄系触媒が好ましい。このような触媒の存在下で接触分解を行うことによって、タール中のフミン酸などを有用な化合物に転換することができる。
また、当該鉄系触媒は、さらに助触媒としてZr、Al、Ceなどを添加することによって、触媒の耐久性や活性を向上させることができる。
例えば、接触分解においてZrは、H2Oを乖離し酸化鉄触媒に活性酸素種を供給し、触媒の活性維持に重要な役割を果たし、Alは、反応中の酸化鉄触媒の格子構造の変化を抑制し、触媒の劣化を防止する。またCeは接触分解により消費された酸化鉄触媒の格子酸素を補充する助触媒として作用し、水蒸気雰囲気下での安定した活性、耐劣化性、耐失活性を付与する効果を有する。
[Catalyst used for catalytic cracking]
There is no restriction | limiting in particular about the kind of iron-type catalyst used for the said catalytic cracking, It can select suitably from the various iron-type catalysts conventionally used in the catalytic cracking reaction. Among them, in the present invention, an iron-based catalyst containing iron hydroxide (FeOOH), triiron tetroxide (Fe 3 O 4 ), or diiron trioxide (Fe 2 O 3 ) as a main constituent is preferable. By performing catalytic cracking in the presence of such a catalyst, humic acid and the like in tar can be converted into useful compounds.
The iron-based catalyst can further improve the durability and activity of the catalyst by adding Zr, Al, Ce or the like as a co-catalyst.
For example, in catalytic cracking, Zr dissociates H 2 O to supply active oxygen species to the iron oxide catalyst and plays an important role in maintaining the activity of the catalyst, and Al changes in the lattice structure of the iron oxide catalyst during the reaction. To prevent catalyst deterioration. Ce acts as a co-catalyst for replenishing lattice oxygen of the iron oxide catalyst consumed by catalytic cracking, and has an effect of imparting stable activity, deterioration resistance, and deactivation activity in a steam atmosphere.

本発明で用いる好適な鉄系触媒の具体例としては、例えば、下記の式(1)で表される触媒が挙げられる。
CeO2(a)/ZrO2(b)/Al23(c)/FeOx ・・・・(1)
式(1)中、a、b、cは、それぞれ、触媒中のCe、Zr、AlがCeO2、ZrO2、Al23になったと仮定した場合の含有量[質量%]を表し、aは0〜15、bは2〜15、cは、3〜20の範囲の数値を示す。また、xは、酸化鉄化合物の酸素の組成(割合)を示す。
前記a、b、cとしては、aが0〜6、bは4〜10、cは4〜10の範囲がより好ましい。
ここで、CeおよびZrの含有量が少ないとタールの分解で消費した酸化鉄触媒の格子酸素が十分補給されず活性が低下しやすくなる。CeおよびZrの含有量が多い場合、触媒反応の主反応場である酸化鉄表面が覆われ、活性が低下しやすい。
また、Al含有量が適切な範囲では触媒表面積が増加し活性が向上する。しかし、Al含有量が多すぎるとコークが生成しやすくなるため活性が低下しやすくなる。
Specific examples of suitable iron-based catalysts used in the present invention include, for example, a catalyst represented by the following formula (1).
CeO 2 (a) / ZrO 2 (b) / Al 2 O 3 (c) / FeOx (1)
In formula (1), a, b, and c represent the content [% by mass] when Ce, Zr, and Al in the catalyst are assumed to be CeO 2 , ZrO 2 , and Al 2 O 3 , respectively. a is 0 to 15, b is 2 to 15, and c is 3 to 20. X represents the oxygen composition (ratio) of the iron oxide compound.
As a, b, and c, a is preferably in the range of 0 to 6, b is in the range of 4 to 10, and c is in the range of 4 to 10.
Here, when the content of Ce and Zr is small, the lattice oxygen of the iron oxide catalyst consumed by the decomposition of tar is not sufficiently replenished, and the activity tends to decrease. When the content of Ce and Zr is large, the iron oxide surface, which is the main reaction field of the catalytic reaction, is covered, and the activity tends to decrease.
Further, when the Al content is in an appropriate range, the surface area of the catalyst is increased and the activity is improved. However, if the Al content is too large, coke is likely to be generated, and the activity tends to decrease.

このような鉄系触媒の製造方法としては、例えば、助触媒の金属塩(Ce塩とZr塩とAl塩)とFe塩を水溶液とした後、アルカリ溶液を加えてアルカリ共沈させ、ついで固液分離した固形分を濾過洗浄してケーキ上の濾過物とし、これを熱処理して製造する方法が挙げられる。
また、FeOOHあるいはFeOOH系の低品位鉄鉱石(リモナイト)を原料として鉄系触媒を製造する場合は、Zr塩を含浸担持して製造するか、もしくは、水蒸気雰囲気下でFeOOHあるいはリモナイトを熱処理したのちにZr塩を含浸担持して製造してもよい。
As a method for producing such an iron-based catalyst, for example, a co-catalyst metal salt (Ce salt, Zr salt and Al salt) and an Fe salt are made into an aqueous solution, and then an alkali solution is added to cause alkali coprecipitation, followed by solidification. Examples of the method include a method in which a solid content separated by liquid is filtered and washed to obtain a filtrate on a cake, which is then heat-treated.
Also, when producing an iron-based catalyst using FeOOH or FeOOH-based low-grade iron ore (limonite) as a raw material, it is produced by impregnating and supporting Zr salt, or after heat-treating FeOOH or limonite in a steam atmosphere. It may be produced by impregnating and supporting Zr salt.

本発明の改質炭と炭化水素油の製造法では、発熱量が向上した改質炭を得るとともに、褐炭に含まれるタールから有用な化合物を多く含む炭化水素油を得ることができる。この場合の有用な化合物とは、例えば、フェノール、クレゾールなどのフェノール類、アセトン、メチルエチルケトンなどのケトン類、トルエン、キシレンなどの単環芳香族炭化水素類などであり、これらのいずれかを多く含む炭化水素油を得ることができる。中でも、基礎化学品としてより重要視されるフェノールやアセトンを多く含むものが、経済性を高める観点から特に好ましい。   In the method for producing reformed coal and hydrocarbon oil of the present invention, it is possible to obtain reformed coal with an improved calorific value and to obtain hydrocarbon oil containing a lot of useful compounds from tar contained in lignite. Examples of useful compounds in this case include phenols such as phenol and cresol, ketones such as acetone and methyl ethyl ketone, and monocyclic aromatic hydrocarbons such as toluene and xylene. A hydrocarbon oil can be obtained. Among these, those containing a large amount of phenol and acetone, which are regarded as more important as basic chemicals, are particularly preferable from the viewpoint of improving economic efficiency.

以下に本発明の実施例及び比較例を挙げて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
<触媒の調製>
(i)触媒1(FeOx触媒)の調製
硝酸鉄の水溶液を30分間撹拌する。約10質量%のアンモニア水をマイクロフィーダーで滴下し、pH7まで中和した。次いで1時間撹拌した後、吸引濾過した。吸引濾過後、得られた固形物を100℃で24時間乾燥した。乾燥後に粉砕し、500℃、2時間空気焼成して、FeOx触媒(触媒1)を得た。
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
<Preparation of catalyst>
(I) Preparation of catalyst 1 (FeOx catalyst) An aqueous solution of iron nitrate is stirred for 30 minutes. About 10% by mass of ammonia water was dropped with a microfeeder to neutralize to pH7. Subsequently, after stirring for 1 hour, it filtered by suction. After suction filtration, the obtained solid was dried at 100 ° C. for 24 hours. After drying, it was pulverized and calcined in air at 500 ° C. for 2 hours to obtain a FeOx catalyst (catalyst 1).

(ii)触媒2〔CeO2(2.5)−ZrO2(7.5)−Al23(7.0)−FeOx触媒〕の調製
硝酸鉄、オキシ硝酸ジルコニウム、硝酸セリウム、硝酸アルミニウムの水溶液を混合し、30分間撹拌した。触媒は、Fe、Zr、Ce、AlがFe23、ZrO2、CeO2、Al23になったと仮定した場合、ZrO2 7.5質量%、CeO2 2.5質量%、Al23 7.0質量%となるよう調製した。約10質量%のアンモニア水をマイクロフィーダーで滴下し、pH7まで中和した。中和後、1時間撹拌した後、吸引濾過した。吸引濾過後、得られた固形物を100℃で24時間乾燥した。乾燥後に粉砕し、500℃、2時間空気焼成し、〔CeO2(2.5)−ZrO2(7.5)−Al23(7.0)−FeOx触媒〕)(触媒2)を得た。
(Ii) Preparation of catalyst 2 [CeO 2 (2.5) -ZrO 2 (7.5) -Al 2 O 3 (7.0) -FeOx catalyst] of iron nitrate, zirconium oxynitrate, cerium nitrate, aluminum nitrate The aqueous solution was mixed and stirred for 30 minutes. Assuming that Fe, Zr, Ce, and Al became Fe 2 O 3 , ZrO 2 , CeO 2 , and Al 2 O 3 , the catalyst was 7.5% by mass of ZrO 2 , 2.5% by mass of CeO 2 , Al 2 O 3 was prepared to 7.0 mass%. About 10% by mass of ammonia water was dropped with a microfeeder to neutralize to pH7. After neutralization, the mixture was stirred for 1 hour and filtered with suction. After suction filtration, the obtained solid was dried at 100 ° C. for 24 hours. After drying, it is pulverized and calcined in air at 500 ° C. for 2 hours to obtain [CeO 2 (2.5) -ZrO 2 (7.5) -Al 2 O 3 (7.0) -FeOx catalyst]) (catalyst 2). Obtained.

(iii)触媒3〔ZrO2(10.0)−Al23(7.0)−FeOx触媒〕の調製
硝酸鉄、オキシ硝酸ジルコニウム、硝酸アルミニウムの水溶液を混合し、30分間撹拌した。触媒は、Fe、Zr、AlがFe23、ZrO2、Al23になったと仮定した場合、ZrO2 10.0質量%、Al23 7.0質量%となるよう調製した。約10質量%のアンモニア水をマイクロフィーダーで滴下し、pH7まで中和した。中和後、1時間撹拌した後、吸引濾過した。吸引濾過後、得られた固形物を100℃で24時間乾燥した。乾燥後に粉砕し、500℃、2時間空気焼成し、〔ZrO2(10.0)−Al23(7.0)−FeOx触媒〕)(触媒3)を得た。
(Iii) Preparation of Catalyst 3 [ZrO 2 (10.0) -Al 2 O 3 (7.0) -FeOx Catalyst] An aqueous solution of iron nitrate, zirconium oxynitrate, and aluminum nitrate was mixed and stirred for 30 minutes. The catalyst was prepared to be 10.0% by mass of ZrO 2 and 7.0% by mass of Al 2 O 3 assuming that Fe, Zr, and Al became Fe 2 O 3 , ZrO 2 , and Al 2 O 3 . . About 10% by mass of ammonia water was dropped with a microfeeder to neutralize to pH7. After neutralization, the mixture was stirred for 1 hour and filtered with suction. After suction filtration, the obtained solid was dried at 100 ° C. for 24 hours. After drying, the mixture was pulverized and calcined in air at 500 ° C. for 2 hours to obtain [ZrO 2 (10.0) -Al 2 O 3 (7.0) -FeOx catalyst]) (catalyst 3).

(iv)触媒4〔CeO2(10.0)−ZrO2(10.0)−Al23(20.0)−FeOx触媒〕の調製
硝酸鉄、オキシ硝酸ジルコニウム、硝酸セリウム、硝酸アルミニウムの水溶液を混合し、30分間撹拌した。触媒は、Fe、Zr、Ce、AlがFe23、ZrO2、CeO2、Al23になったと仮定した場合、ZrO2 10.0質量%、CeO2 10.0質量%、Al23 20.0質量%となるよう調製した。約10質量%のアンモニア水をマイクロフィーダーで滴下し、pH7まで中和した。中和後、1時間撹拌した後、吸引濾過した。吸引濾過後、得られた固形物を100℃で24時間乾燥した。乾燥後に粉砕し、500℃、2時間空気焼成し、〔CeO2(10.0)−ZrO2(10.0)−Al23(20.0)−FeOx触媒〕)(触媒4)を得た。
(Iv) Preparation of catalyst 4 [CeO 2 (10.0) -ZrO 2 (10.0) -Al 2 O 3 (20.0) -FeOx catalyst] of iron nitrate, zirconium oxynitrate, cerium nitrate, aluminum nitrate The aqueous solution was mixed and stirred for 30 minutes. Assuming that Fe, Zr, Ce, and Al became Fe 2 O 3 , ZrO 2 , CeO 2 , and Al 2 O 3 , the catalyst was 10.0% by mass of ZrO 2, 10.0% by mass of CeO 2 , Al 2 O 3 20.0% by mass was prepared. About 10% by mass of ammonia water was dropped with a microfeeder to neutralize to pH7. After neutralization, the mixture was stirred for 1 hour and filtered with suction. After suction filtration, the obtained solid was dried at 100 ° C. for 24 hours. After drying, it is pulverized and calcined in air at 500 ° C. for 2 hours to obtain [CeO 2 (10.0) -ZrO 2 (10.0) -Al 2 O 3 (20.0) -FeOx catalyst]) (catalyst 4). Obtained.

実施例1
(i)まず、以下の方法で褐炭の熱分解を行った。
褐炭(オーストラリア産Loy−Yang炭)を3mmに粉砕・整粒し、600℃の窒素ガス(N2)雰囲気下、600℃で熱分解した。放出されたタールは、まず150℃に保温した石英円筒フィルターで高沸点成分を除去し、その後、150℃、0℃、−30℃、−70℃に保持した各タールトラップを通すことにより回収した。タールの合計収率は、14.7質量%であった。また、−70〜150℃で回収された油状成分(褐炭熱分解油)の収率は4.8質量%であった。
Example 1
(I) First, lignite was pyrolyzed by the following method.
Brown coal (Australian Loy-Yang coal) was pulverized and sized to 3 mm, and pyrolyzed at 600 ° C. in a nitrogen gas (N 2 ) atmosphere at 600 ° C. The released tar was first recovered by removing high-boiling components with a quartz cylindrical filter kept at 150 ° C., and then passing through each tar trap held at 150 ° C., 0 ° C., −30 ° C., and −70 ° C. . The total yield of tar was 14.7% by mass. Moreover, the yield of the oil component (brown coal pyrolysis oil) collect | recovered at -70-150 degreeC was 4.8 mass%.

(ii)次いで、タールの接触分解を行った。
タール(褐炭熱分解油)をベンゼンで10質量%に希釈したベンゼン溶液を調製した。この10質量%ベンゼン溶液を1g/h、水蒸気を1.5g/h、窒素を流量1.5ml/minで触媒1(FeOx触媒)を1g充填した固定床流通式反応装置に供給し、反応温度500℃、反応時間2時間で接触分解した。
なお、タールの希釈に使用したベンゼンは、鉄系触媒に対して不活性であるので、接触分解反応の結果には影響を与えない。
(iii)前記接触分解生成物について以下の分析行った。
氷水トラップで回収し接触分解生成物をガスクロマトグラフィーで各成分を定量した〔単位:mol‐C%(原料炭素基準)〕。結果を第1表に示した。
また、熱天秤を用いて接触分解生成物を窒素雰囲気下で250℃まで昇温した後、残渣(残渣重質物)の重量分率[質量%](生成液基準)を測定した。結果を第2表に示した。
(Ii) Then, catalytic cracking of tar was performed.
A benzene solution in which tar (brown coal pyrolysis oil) was diluted to 10% by mass with benzene was prepared. This 10% by mass benzene solution was supplied to a fixed bed flow reactor filled with 1 g / h of steam, 1.5 g / h of water vapor, and 1 g of catalyst 1 (FeOx catalyst) at a flow rate of 1.5 ml / min. Catalytic decomposition occurred at 500 ° C. for 2 hours.
In addition, since benzene used for the dilution of tar is inactive to the iron-based catalyst, it does not affect the result of the catalytic cracking reaction.
(Iii) The catalytic cracking product was analyzed as follows.
Each component was quantified by gas chromatography after collecting with an ice-water trap and the catalytic decomposition product [unit: mol-C% (based on raw material carbon)]. The results are shown in Table 1.
Moreover, after heating up the catalytic decomposition product to 250 degreeC under nitrogen atmosphere using a thermobalance, the weight fraction [mass%] (product liquid basis) of the residue (residue heavy substance) was measured. The results are shown in Table 2.

実施例2
触媒1を触媒2〔CeO2(2.5)−ZrO2(7.5)−Al23(7.0)−FeOx触媒〕に置換えた以外は、実施例1と同様の方法で、褐炭の熱分解、タールの接触分解及び接触分解生成物の分析を行った。接触分解生成物の分析結果を、第1表、及び第2表に示した。
実施例3
触媒1を触媒3〔ZrO2(10.0)−Al23(7.0)−FeOx触媒〕に置換えた以外は、実施例1と同様の方法で、褐炭の熱分解、タールの接触分解及び接触分解生成物の分析を行った。接触分解生成物の分析結果を、第1表、及び第2表に示した。
実施例4
触媒1を触媒4〔CeO2(10.0)−ZrO2(10.0)−Al23(20.0)−FeOx触媒〕に置換えた以外は、実施例1と同様の方法で、褐炭の熱分解、タールの接触分解及び接触分解生成物の分析を行った。接触分解生成物の分析結果を、第1表、及び第2表に示した。
Example 2
Except that catalyst 1 was replaced with catalyst 2 [CeO 2 (2.5) -ZrO 2 (7.5) -Al 2 O 3 (7.0) -FeOx catalyst], the same method as in Example 1, The pyrolysis of brown coal, catalytic cracking of tar and catalytic cracking products were analyzed. The analysis results of the catalytic decomposition products are shown in Tables 1 and 2.
Example 3
Except that catalyst 1 was replaced with catalyst 3 [ZrO 2 (10.0) -Al 2 O 3 (7.0) -FeOx catalyst], pyrolysis of lignite and contact with tar in the same manner as in Example 1. Analysis of cracking and catalytic cracking products was performed. The analysis results of the catalytic decomposition products are shown in Tables 1 and 2.
Example 4
Except that catalyst 1 was replaced with catalyst 4 [CeO 2 (10.0) -ZrO 2 (10.0) -Al 2 O 3 (20.0) -FeOx catalyst], the same method as in Example 1, The pyrolysis of brown coal, catalytic cracking of tar and catalytic cracking products were analyzed. The analysis results of the catalytic decomposition products are shown in Tables 1 and 2.

Figure 0005498692
Figure 0005498692

Figure 0005498692
Figure 0005498692

第1表より、熱分解で得られたタールを触媒1を用いて接触分解すると、アセトンやキシレンを高収率で得ることができ、中でもアセトンを高収率で得ることができることが分る(実施例1)。また、触媒2を用いた場合は、アセトン、メチルエチルケトン、トルエン、キシレン、及びフェノールを高収率で得ることができ、特に、有用であるとされているアセトン、メチルエチルケトンを高収率で得ることができる(実施例2)。また、触媒3を用いると、アセトンを高収率で得ることができる(実施例3)。さらに触媒4を用いた場合は、フェノール、トルエンの収率を高めることができる(実施例4)。
また、第2表より、接触分解生成物中の残渣重質物(沸点250℃以上の成分)は、触媒1〜4のいずれを用いた場合も、著しく低減することが分る(実施例1〜4)。
From Table 1, it is understood that when the tar obtained by thermal decomposition is catalytically decomposed using the catalyst 1, acetone and xylene can be obtained in high yield, and in particular, acetone can be obtained in high yield ( Example 1). Further, when the catalyst 2 is used, acetone, methyl ethyl ketone, toluene, xylene, and phenol can be obtained in high yield, and particularly, acetone and methyl ethyl ketone, which are considered to be useful, can be obtained in high yield. (Example 2) Further, when the catalyst 3 is used, acetone can be obtained in a high yield (Example 3). Furthermore, when the catalyst 4 is used, the yield of phenol and toluene can be increased (Example 4).
Moreover, from Table 2, it can be seen that the heavy residue (component having a boiling point of 250 ° C. or higher) in the catalytic cracking product is remarkably reduced when any of the catalysts 1 to 4 is used (Examples 1 to 4). 4).

本発明は、褐炭から、タールを除去して発熱量が向上した改質炭を得るとともに、褐炭に含まれるタールからアセトン、フェノールなど有用な化合物を多く含む炭化水素油を、経済的に製造する方法である。したがって、多量に埋蔵されている褐炭を有効に活用できる方法として有効である。   The present invention economically produces a hydrocarbon oil containing a large amount of useful compounds such as acetone and phenol from tar contained in lignite while obtaining reformed coal with improved calorific value by removing tar from lignite. Is the method. Therefore, it is effective as a method that can effectively utilize lignite coal that is buried in large quantities.

Claims (5)

褐炭を不活性ガス雰囲気下もしくは水蒸気雰囲気下で熱分解して改質炭と前記褐炭に含まれていた水分を含むタールとに分離し、前記タールを水蒸気雰囲気下、かつ鉄系触媒存在下で接触分解して炭化水素油を得る改質炭と炭化水素油の製造法であって、
前記熱分解によって得られたタールを、油層と水層に分離した後、前記分離した油層を接触分解し、
前記タールを油層と水層に分離して得られた水層を、前記褐炭の熱分解に供給する水蒸気源とすることを特徴とする改質炭と炭化水素油の製造法。
The lignite is pyrolyzed in an inert gas atmosphere or in a steam atmosphere to separate the reformed coal and the tar containing water contained in the lignite, and the tar is in a steam atmosphere and in the presence of an iron-based catalyst. A method for producing reformed coal and hydrocarbon oil obtained by catalytic cracking to obtain hydrocarbon oil,
The tar obtained by the thermal decomposition is separated into an oil layer and an aqueous layer, and then the separated oil layer is catalytically decomposed,
A method for producing reformed coal and hydrocarbon oil , wherein an aqueous layer obtained by separating the tar into an oil layer and an aqueous layer is used as a water vapor source for thermal decomposition of the lignite .
前記タールを油層と水層に分離して得られた水層を、前記タールの接触分解に供給する水蒸気源とすることを特徴とする請求項1に記載の改質炭と炭化水素油の製造法。 2. The production of reformed coal and hydrocarbon oil according to claim 1 , wherein an aqueous layer obtained by separating the tar into an oil layer and an aqueous layer is used as a steam source for supplying the tar for catalytic cracking. Law. 褐炭を不活性ガス雰囲気下もしくは水蒸気雰囲気下で熱分解して改質炭と前記褐炭に含まれていた水分を含むタールとに分離し、前記タールを水蒸気雰囲気下、かつ鉄系触媒存在下で接触分解して炭化水素油を得る改質炭と炭化水素油の製造法であって、The lignite is pyrolyzed in an inert gas atmosphere or in a steam atmosphere to separate the reformed coal and the tar containing water contained in the lignite, and the tar is in a steam atmosphere and in the presence of an iron-based catalyst. A method for producing reformed coal and hydrocarbon oil obtained by catalytic cracking to obtain hydrocarbon oil,
前記熱分解によって得られたタールを、油層と水層に分離した後、前記分離した油層を接触分解し、The tar obtained by the thermal decomposition is separated into an oil layer and an aqueous layer, and then the separated oil layer is catalytically decomposed,
前記タールを油層と水層に分離して得られた水層を、前記タールの接触分解に供給する水蒸気源とすることを特徴とする改質炭と炭化水素油の製造法。A method for producing reformed coal and hydrocarbon oil, wherein an aqueous layer obtained by separating the tar into an oil layer and an aqueous layer is used as a water vapor source for supplying the tar for catalytic cracking.
前記炭化水素油が、ケトン類、フェノール類、あるいは単環芳香族炭化水素類を含有する炭化水素油である請求項1〜3のいずれかに記載の改質炭と炭化水素油の製造法。The method for producing reformed coal and hydrocarbon oil according to any one of claims 1 to 3, wherein the hydrocarbon oil is a hydrocarbon oil containing ketones, phenols, or monocyclic aromatic hydrocarbons. 鉄系触媒が、水酸化鉄(FeOOH)、四酸化三鉄(Fe34)、あるいは三酸化二鉄(Fe23)を主要構成成分とする触媒である請求項1〜4のいずれかに記載の改質炭と炭化水素油の製造法。 Iron-based catalyst, iron hydroxide (FeOOH), any of claims 1 to 4 triiron tetraoxide (Fe 3 O 4), or a catalyst whose main constituent diiron trioxide (Fe 2 O 3) modified coal and preparation of hydrocarbon oil according to any.
JP2008324550A 2008-12-19 2008-12-19 Process for producing modified coal and hydrocarbon oil Active JP5498692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008324550A JP5498692B2 (en) 2008-12-19 2008-12-19 Process for producing modified coal and hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324550A JP5498692B2 (en) 2008-12-19 2008-12-19 Process for producing modified coal and hydrocarbon oil

Publications (2)

Publication Number Publication Date
JP2010144094A JP2010144094A (en) 2010-07-01
JP5498692B2 true JP5498692B2 (en) 2014-05-21

Family

ID=42564841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324550A Active JP5498692B2 (en) 2008-12-19 2008-12-19 Process for producing modified coal and hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP5498692B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9334458B2 (en) 2011-03-15 2016-05-10 Kyushu Electric Power Co., Inc. Complex system for utilizing coal in manufacture of char and raw material gas and electric power generation
JP5960003B2 (en) 2012-09-14 2016-08-02 九州電力株式会社 Fixed carbon production equipment
JP6130114B2 (en) 2012-09-14 2017-05-17 九州電力株式会社 Power generation system
JP6750775B2 (en) * 2013-08-23 2020-09-02 株式会社スーパーナノデザイン Method for treating organic matter in the presence of water, catalytic reactor and system including the same, and method for recovering waste heat from low temperature source
CN114260024B (en) * 2021-11-29 2023-09-15 曲阜师范大学 Polyionic liquid catalyst, preparation method, monocyclic aromatic compound and application

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238627B2 (en) * 1981-08-21 1990-08-31 Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai JUSHITSUYUNONETSUBUNKAITOTOMONIKANGENTETSUOSEIZOSURUHOHO
JPS57135890A (en) * 1981-02-13 1982-08-21 Res Assoc Residual Oil Process<Rarop> Cracking and conversion into light oil of heavy oil and preparation of hydrogen
JPH01113491A (en) * 1987-10-27 1989-05-02 Nippon Steel Corp Manufacture of coal tar
JP2946099B2 (en) * 1990-01-11 1999-09-06 三菱化学株式会社 Production method of tar oil
JP3062634B2 (en) * 1991-05-27 2000-07-12 大阪瓦斯株式会社 Rapid pyrolysis method of coal
JPH07331256A (en) * 1994-06-15 1995-12-19 Nippon Steel Corp Method for operating rapid thermal cracking of coal

Also Published As

Publication number Publication date
JP2010144094A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
Klinghoffer et al. Influence of char composition and inorganics on catalytic activity of char from biomass gasification
Jin et al. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor
Feng et al. Roles and fates of K and Ca species on biochar structure during in-situ tar H2O reforming over nascent biochar
US8541637B2 (en) Process and system for thermochemical conversion of biomass
Liang et al. Mild catalytic depolymerization of low rank coals: a novel way to increase tar yield
Huo et al. Comparison between in-situ and ex-situ catalytic pyrolysis of sawdust for gas production
KR101274314B1 (en) Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
Min et al. Catalytic reforming of tar during gasification. Part IV. Changes in the structure of char in the char-supported iron catalyst during reforming
Adrados et al. Upgrading of pyrolysis vapours from biomass carbonization
EP2199364A2 (en) Counter-current process for biomass conversion
JP5498692B2 (en) Process for producing modified coal and hydrocarbon oil
WO2009084736A1 (en) Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas
CN107537503B (en) Oxygen carrier for preparing synthesis gas from biomass, and preparation method and application thereof
Case et al. Formate assisted pyrolysis of pine sawdust for in-situ oxygen removal and stabilization of bio-oil
JP5659536B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
Kobayashi et al. Woody biomass and RPF gasification using reforming catalyst and calcium oxide
CN109876788B (en) Preparation method and application of biomass activated semicoke catalyst
Zhang et al. The integrated process for hydrogen production from biomass: Study on the catalytic conversion behavior of pyrolytic vapor in gas–solid simultaneous gasification process
Tsubouchi et al. Catalytic effect of ion-exchanged calcium on steam gasification of low-rank coal with a circulating fluidized bed reactor
JP5659534B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP5511169B2 (en) Method for reforming tar-containing gas
JP4919253B2 (en) Biological organic resource processing method and system
KR20130079246A (en) Method for pretreating heavy hydrocarbon fraction and woody biomass using solvent
Zhang et al. A new approach to catalytic coal gasification: The recovery and reuse of calcium using biomass derived crude vinegars
Zhang et al. Effect of coal ash on the steam reforming of simulated bio-oil for hydrogen production over Ni/γ-Al2O3

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5498692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250