JP5498275B2 - Sound reproduction apparatus, method and program - Google Patents

Sound reproduction apparatus, method and program Download PDF

Info

Publication number
JP5498275B2
JP5498275B2 JP2010141210A JP2010141210A JP5498275B2 JP 5498275 B2 JP5498275 B2 JP 5498275B2 JP 2010141210 A JP2010141210 A JP 2010141210A JP 2010141210 A JP2010141210 A JP 2010141210A JP 5498275 B2 JP5498275 B2 JP 5498275B2
Authority
JP
Japan
Prior art keywords
sound
reflection
intensity
distance
directional speaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010141210A
Other languages
Japanese (ja)
Other versions
JP2012008157A (en
Inventor
弘章 伊藤
賢一 古家
陽一 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010141210A priority Critical patent/JP5498275B2/en
Publication of JP2012008157A publication Critical patent/JP2012008157A/en
Application granted granted Critical
Publication of JP5498275B2 publication Critical patent/JP5498275B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

この発明は、ある部屋で音を再生する際に、特定の方向だけに受聴領域を限定した音響再生装置、或いは効率良く部屋全体に音を行き渡らせる音響再生装置とすることが出来る音響再生装置とその方法と、プログラムに関する。   The present invention relates to an audio reproduction device that can be used as an audio reproduction device that limits a listening area only in a specific direction when reproducing sound in a room, or an audio reproduction device that efficiently distributes sound throughout the room. It relates to the method and the program.

従来、特定の方向だけに受聴領域を限定した音響再生装置、或いは効率良く部屋全体に音を行き渡らせる音響再生装置を作るのに、部屋の残響特性を測定する必要があった。非特許文献1に、部屋の残響時間の測定方法が述べられている。その方法は、マイクロホンを部屋中に分散配置して音圧を測定することで、スピーカ音の放射方向に依存した残響特性を得るものである。この部屋の残響特性から、どの方向に音を放射すると最も吸音させることが出来るか、若しくは最も拡散させることが出来るかを知ることができる。部屋の残響特性を知ることで、特定の方向だけに受聴領域を限定した音響再生装置或いは、効率良く部屋全体に音を行き渡らせる音響再生装置を作ることができる。   Conventionally, it has been necessary to measure the reverberation characteristics of a room in order to produce a sound reproducing device in which a listening area is limited only in a specific direction or a sound reproducing device that efficiently distributes sound throughout the room. Non-Patent Document 1 describes a method for measuring the reverberation time of a room. This method obtains reverberation characteristics depending on the radiation direction of the speaker sound by measuring the sound pressure by distributing microphones in the room. From the reverberation characteristics of this room, it is possible to know in which direction the sound can be absorbed most or diffused most. By knowing the reverberation characteristics of the room, it is possible to make a sound reproducing device that limits the listening area only in a specific direction, or a sound reproducing device that efficiently distributes sound throughout the room.

ハインリッヒ・クットルフ著、藤原恭司、日高孝之 訳、「室内音響学 建築の響きとその理論」、市ヶ谷出版社、pp.230-272,Aug.2003.Heinrich Kuttorf, Koji Fujiwara, Takayuki Hidaka, “Sound of chamber acoustics and its theory”, Ichigaya Publishing Co., pp. 230-272, Aug. 2003.

部屋全体の残響時間を測定するには手間がかかる。また、その部屋に対応させた音響再生装置となるため装置の汎用性が低くなる課題があった。   It takes time to measure the reverberation time of the entire room. Moreover, since the sound reproducing apparatus is adapted to the room, there is a problem that the versatility of the apparatus is lowered.

この発明は、このような課題に鑑みてなされたものであり、部屋の残響特性を測定する必要が無く、特定の方向だけに受聴領域を限定した音響再生装置、或いは効率良く部屋全体に音響信号を行き渡らせる音響再生装置と、することが出来る汎用性の高い音響再生装置とその方法とプログラムを提供することを目的とする。   The present invention has been made in view of such problems, and it is not necessary to measure the reverberation characteristics of the room, and the sound reproduction apparatus in which the listening area is limited only in a specific direction, or the sound signal efficiently in the entire room. It is an object of the present invention to provide a sound reproducing apparatus that spreads sound, a highly versatile sound reproducing apparatus that can be used, a method thereof, and a program.

この発明の音響再生装置は、指向性スピーカと反射方向制御部とから成る。反射方向制御部は、反射板と、反射音強度測定手段と、測距手段と、統合手段と、反射方向制御手段とを具備する。反射板は、指向性スピーカが放射する音響信号の方向を変化させる。反射音強度測定手段は、音響再生装置を中心としたあらゆる方向に音波を放射し、その方向からの反射音を測定して反射強度を求める。測距手段は、反射強度を求めた方向に存在する物体までの距離を測定する。統合手段は、反射強度と物体までの距離とを入力として反射強度の大きさに応じた順番にその方向を整列する。反射方向制御手段は、統合手段が整列した最上位の方向に指向性スピーカからの音響信号を向けるように反射板の反射面の方向を制御する。   The sound reproducing apparatus of the present invention includes a directional speaker and a reflection direction control unit. The reflection direction control unit includes a reflection plate, reflected sound intensity measurement means, distance measurement means, integration means, and reflection direction control means. The reflector changes the direction of the acoustic signal emitted by the directional speaker. The reflected sound intensity measuring means radiates sound waves in all directions centering on the sound reproducing device, and measures the reflected sound from that direction to obtain the reflection intensity. The distance measuring means measures the distance to the object existing in the direction in which the reflection intensity is obtained. The integration means inputs the reflection intensity and the distance to the object, and arranges the directions in order according to the magnitude of the reflection intensity. The reflection direction control means controls the direction of the reflection surface of the reflector so that the acoustic signal from the directional speaker is directed to the uppermost direction in which the integration means are aligned.

この発明の音響再生装置は、部屋の吸音特性を測定し、例えば、音を吸音する方向に指向性スピーカが放射する音響信号を向けるので、効率良く受聴領域を限定した音響再生装置を提供することが出来る。また、音を反射する方向に音響信号を向ければ、少ない出力で部屋全体に音響信号を行き渡らせることができる。このように部屋の音響特性に合わせて所望の音響再生装置を提供することが出来る。   The sound reproducing device of the present invention measures the sound absorption characteristics of a room and, for example, directs the sound signal radiated by a directional speaker in the direction of sound absorption, and therefore provides a sound reproducing device that efficiently limits the listening area. I can do it. Also, if the acoustic signal is directed in the direction of reflecting the sound, the acoustic signal can be distributed throughout the room with a small output. Thus, a desired sound reproducing apparatus can be provided in accordance with the acoustic characteristics of the room.

この発明の音響再生装置は、反射強度と物体までの距離とから指向性スピーカからの音を向ける方向を決めるので、受聴領域を適切に設定することが出来る。受聴領域を適切に設定とは、例えば、反射強度が低くても単に空間が広がっている領域に音響信号を向けることが無いことを意味する。比較的広い部屋にこの発明の音響再生装置を設置して受聴領域を限定する場合を想定する。この時、この発明の音響再生装置は、周囲にある物体までの距離も測定するので、反射強度が低くても物体が何も無い方向に音響信号を向けて受聴領域を拡大させてしまうことが無い。   Since the sound reproduction apparatus of this invention determines the direction in which the sound from the directional speaker is directed from the reflection intensity and the distance to the object, the listening area can be set appropriately. Setting the listening area appropriately means, for example, that an acoustic signal is not directed to an area where the space is wide even if the reflection intensity is low. Assume that the listening area is limited by installing the sound reproducing device of the present invention in a relatively large room. At this time, since the sound reproducing apparatus of the present invention also measures the distance to the surrounding object, even if the reflection intensity is low, the listening area may be expanded by directing the sound signal in the direction where there is no object. No.

この発明の音響再生装置100の機能構成例を示す図。The figure which shows the function structural example of the sound reproduction apparatus 100 of this invention. 反射方向制御部20の動作フローを示す図。The figure which shows the operation | movement flow of the reflection direction control part. 反射音強度測定手段24と測距手段25の動作を説明するための図。The figure for demonstrating operation | movement of the reflected sound intensity measurement means 24 and the ranging means 25. FIG. 相対方向探索機能を備えた音響再生装置100′の機能構成例を示す図。The figure which shows the function structural example of acoustic reproduction apparatus 100 'provided with the relative direction search function. 指向性スピーカ11と指向性制御用受音手段12の例を示す図であり、(a)はワンポイントステレオマイクロホン120を用いた例、(b)はマイクロホン121を4個用いた例を示す図である。It is a figure which shows the example of the directional speaker 11 and the sound reception means 12 for directivity control, (a) is an example using the one point stereo microphone 120, (b) is a figure which shows the example using four microphones 121. It is. 反射板21の形状を変化させるための機能構成例を示す図。The figure which shows the function structural example for changing the shape of the reflecting plate. 反射板21の形状を変化させた例を示す図であり、(a)は凸面形状とした例、(b)は凹面形状とした例を示す図である。It is a figure which shows the example which changed the shape of the reflecting plate 21, (a) is an example made into convex shape, (b) is a figure which shows the example made into concave shape. 相対方向探索過程の動作フローを示す図。The figure which shows the operation | movement flow of a relative direction search process. この発明の音響再生装置200の機能構成例を示す図。The figure which shows the function structural example of the sound reproduction apparatus 200 of this invention. 音響再生装置200の動作フローを示す図。The figure which shows the operation | movement flow of the sound reproducing apparatus.

以下、この発明の実施の形態を図面を参照して説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。   Embodiments of the present invention will be described below with reference to the drawings. The same reference numerals are given to the same components in a plurality of drawings, and the description will not be repeated.

図1にこの発明の音響再生装置100の機能構成例を示す。音響再生装置100は、指向性スピーカ11と、反射方向制御部20とから成る。指向性スピーカ11は、ホーンスピーカ、パラメトリックスピーカ、ディジタルフィルタ型スピーカアレー等の、放射する音響信号の指向性を可変することが可能な公知のスピーカである。   FIG. 1 shows an example of a functional configuration of the sound reproducing device 100 of the present invention. The sound reproducing device 100 includes a directional speaker 11 and a reflection direction control unit 20. The directional speaker 11 is a known speaker capable of changing the directivity of a radiated acoustic signal, such as a horn speaker, a parametric speaker, or a digital filter type speaker array.

反射方向制御部20は、反射板21と、反射音強度測定手段24と、測距手段25と、統合手段23と、反射方向制御手段22と、を具備する。反射板21を除く各手段は、例えばROM、RAM、CPU等で構成されるコンピュータに所定のプログラムが読み込まれて、CPUがそのプログラムを実行することで実現されるものである。   The reflection direction control unit 20 includes a reflection plate 21, reflected sound intensity measurement means 24, distance measurement means 25, integration means 23, and reflection direction control means 22. Each means excluding the reflecting plate 21 is realized by reading a predetermined program into a computer composed of, for example, a ROM, a RAM, a CPU, and the like, and executing the program by the CPU.

反射板21は、指向性スピーカ11が放射する音響信号の方向を変化させる。図1に示す例では、指向性スピーカ11から指向特性の付加された音響信号が鉛直下方向に放射され、反射板21によってその音響信号の指向方向が90°変化させられている。   The reflector 21 changes the direction of the acoustic signal radiated from the directional speaker 11. In the example shown in FIG. 1, an acoustic signal to which directivity characteristics are added is radiated vertically downward from the directional speaker 11, and the directivity direction of the acoustic signal is changed by 90 ° by the reflector 21.

図2に音響再生装置100の動作フローを示す。反射音強度測定手段24は、音響再生装置100を中心としたあらゆる方向に音波を放射し、その方向からの反射音を測定して反射強度を求める(ステップS24)。放射する音波は、可聴音でも超音波でも良い。   FIG. 2 shows an operation flow of the sound reproducing device 100. The reflected sound intensity measuring means 24 radiates sound waves in all directions centering on the sound reproducing device 100, and measures the reflected sound from the directions to obtain the reflection intensity (step S24). The radiated sound wave may be an audible sound or an ultrasonic wave.

測距手段25は、反射音強度測定手段24が音波を放射した方向に存在する物体までの距離を測定する(ステップS25)。統合手段23は、反射音強度測定手段24が測定した反射強度と、測距手段25が測定した物体までの距離とを入力として反射強度の大きさに応じた順番に方向を整列する(ステップS23)。   The distance measuring means 25 measures the distance to the object existing in the direction in which the reflected sound intensity measuring means 24 radiates the sound wave (step S25). The integration unit 23 uses the reflection intensity measured by the reflected sound intensity measurement unit 24 and the distance to the object measured by the distance measurement unit 25 as inputs, and arranges the directions in order according to the magnitude of the reflection intensity (step S23). ).

例えば、物体までの距離が1m以内で反射強度が10dB減衰する方向は、反射強度が小さい方に順位付けされる。また、物体までの距離が例えば10m以上と遠くて反射強度が10dB減衰する方向は、前者よりも反射強度が大きい方に順位付けされる。このように反射強度と物体までの距離とを用いて各方向の反射強度の順位付けが行われる。なお、物体までの距離が近くて反射強度が大きい方向は、反射強度の大きい方に順位付けされる。   For example, the direction in which the reflection intensity is attenuated by 10 dB when the distance to the object is within 1 m is ranked in the order of smaller reflection intensity. Further, the direction in which the distance to the object is as long as 10 m or more and the reflection intensity is attenuated by 10 dB is ranked in the direction where the reflection intensity is higher than the former. In this way, the reflection intensity in each direction is ranked using the reflection intensity and the distance to the object. In addition, the direction where the distance to the object is close and the reflection intensity is large is ranked in the direction with the larger reflection intensity.

反射方向制御手段22は、統合手段23が整列した最上位の方向に指向性スピーカ11からの音響信号を向けるように反射板21の角度と方向を制御する(ステップS22)。この反射方向制御ステップは、所望の方向に音響信号を向ける意味で音響出力ステップと称しても良い。   The reflection direction control means 22 controls the angle and direction of the reflection plate 21 so that the acoustic signal from the directional speaker 11 is directed to the uppermost direction in which the integration means 23 is aligned (step S22). This reflection direction control step may be referred to as a sound output step in the sense that the sound signal is directed in a desired direction.

例えば、統合手段23が反射強度の大きい順に方向を整列した場合は、その最上位の方向に音響信号を向けることで比較的少ない音量でも効率良く部屋全体に音を行き渡らせることが出来る。また、反射強度の小さい順に方向を整列した場合は、その最上位の方向には音を良く吸収する物体が存在するので、その方向に音響信号を向けると、その物体と音響再生装置100との間に受聴領域を限定することが出来る。   For example, when the integration unit 23 arranges the directions in the descending order of the reflection intensity, the sound can be efficiently distributed to the entire room even with a relatively low volume by directing the acoustic signal in the highest direction. Also, when the directions are arranged in order of increasing reflection intensity, there is an object that absorbs sound well in the uppermost direction. Therefore, when an acoustic signal is directed in that direction, the object and the sound reproducing device 100 The listening area can be limited in between.

このように、この発明の音響再生装置100によれば、部屋の残響特性を測定しなくても部屋の音響特性に合わせた所望の音響再生装置を提供することが出来る。   As described above, according to the sound reproducing device 100 of the present invention, it is possible to provide a desired sound reproducing device that matches the acoustic characteristics of the room without measuring the reverberation characteristics of the room.

ここで、反射音強度測定手段24と測距手段25について更に詳しく説明する。反射音強度測定手段24は、あらゆる方向に音波を放射すると説明したが、先ず音響再生装置100を中心とした水平方向に音波を放射する例で、反射強度と物体までの距離の具体的な求め方を説明する。   Here, the reflected sound intensity measuring means 24 and the distance measuring means 25 will be described in more detail. The reflected sound intensity measuring means 24 has been described as emitting sound waves in all directions. First, in the example of emitting sound waves in the horizontal direction centering on the sound reproducing device 100, the specific determination of the reflection intensity and the distance to the object is performed. Explain how.

図3に、反射音強度測定手段24と測距手段25の具体例を示す。反射音強度測定手段24は、音響再生装置100を中心とした所定の半径の円周上の所定の角度毎に音波を放射し、その方向からの反射音を測定する複数の反射音センサ24a〜24xを備える。図3に示す例では、24個の反射音センサ24a〜24xが所定の円周上に約中心角10°おきに設けられる。煩雑になるので全ての反射音センサの参照符号を表記していない。反射音センサ24a〜24xのそれぞれは、例えば、指向性スピーカと指向性マイクロホンとの組で構成される。指向性マイクロホンは、その指向方向からの音を受音した受音信号を反射音強度測定手段24に伝達する。反射音強度測定手段24は、指向性スピーカに与えた出力信号と、指向性マイクロホンで受音した受音信号とからその方向の反射強度を求める。   FIG. 3 shows specific examples of the reflected sound intensity measuring means 24 and the distance measuring means 25. The reflected sound intensity measuring means 24 emits a sound wave at every predetermined angle on the circumference of a predetermined radius centered on the sound reproducing device 100 and measures the reflected sound from that direction. 24x is provided. In the example shown in FIG. 3, 24 reflected sound sensors 24a to 24x are provided on a predetermined circumference at approximately central angles of 10 °. Since it becomes complicated, the reference numerals of all reflected sound sensors are not shown. Each of the reflected sound sensors 24a to 24x is configured by a set of a directional speaker and a directional microphone, for example. The directional microphone transmits a received sound signal that receives sound from the directional direction to the reflected sound intensity measuring means 24. The reflected sound intensity measuring means 24 obtains the reflection intensity in that direction from the output signal given to the directional speaker and the received sound signal received by the directional microphone.

測距手段25は、反射音センサ24a〜24xと対になるように測距センサ25a〜25xを備える。測距センサは、例えば三角測量の原理を応用した光学式センサであり、反射物までの距離を測定することが出来る。測距センサには、例えば、シャープ製測距センサGP2D12等が利用可能である。測距センサ25a〜25xは、各方向にある物体までの距離に比例する光電流を検出して測距手段25に伝達する。測距手段25は、その光電流から物体までの距離を測定する。   The distance measuring means 25 includes distance measuring sensors 25a to 25x so as to be paired with the reflected sound sensors 24a to 24x. The distance measuring sensor is an optical sensor that applies the principle of triangulation, for example, and can measure the distance to the reflecting object. As the distance measuring sensor, for example, a distance measuring sensor GP2D12 manufactured by Sharp can be used. The distance measuring sensors 25 a to 25 x detect a photocurrent proportional to the distance to the object in each direction and transmit it to the distance measuring means 25. The distance measuring means 25 measures the distance from the photocurrent to the object.

以上述べたように反射音センサと測距センサを用いることで、反射強度と物体までの距離とを測定することが出来る。上記した反射音センサと測距センサを、測定したい方向の数だけ用意することで、あらゆる方向の反射強度と距離を測定することが可能である。   As described above, the reflection intensity and the distance to the object can be measured by using the reflected sound sensor and the distance measuring sensor. By preparing the reflected sound sensors and distance measuring sensors as many as the number of directions to be measured, it is possible to measure the reflection intensity and distance in all directions.

なお、測距手段25として各方向のそれぞれに測距センサを設ける例で説明したが、測距センサには1個のセンサで全周360°を光学スキャンして周囲の物体との距離を測定するタイプもある。例えば、浜松ホトニクス製C9159等がある。このようなタイプの距離センサを用いて測距手段25を構成しても良い。   The distance measuring unit 25 has been described with an example in which a distance measuring sensor is provided in each direction. However, the distance measuring sensor optically scans the entire circumference of 360 ° with one sensor and measures the distance to surrounding objects. There is also a type to do. For example, there is C9159 made by Hamamatsu Photonics. The distance measuring means 25 may be configured using such a type of distance sensor.

なお、反射方向制御手段22は、外部から入力される方向情報に基づいて反射板21の角度と方向を制御するようにしても良い(図1に破線で示す方向情報を参照)。つまり、吸音物体の位置が既知である場合、その方向に音響信号を反射するようにすればステップS24,S25,S23(図2参照)は不要である。   In addition, you may make it the reflection direction control means 22 control the angle and direction of the reflecting plate 21 based on the direction information input from the outside (refer the direction information shown with a broken line in FIG. 1). That is, when the position of the sound absorbing object is known, steps S24, S25, and S23 (see FIG. 2) are unnecessary if the acoustic signal is reflected in that direction.

また、図1の例では、反射方向制御部20が指向性スピーカ11の鉛直方向下の既知の位置である場合で説明したが、その位置関係は未知であっても良い。お互いの位置が未知の場合、指向性スピーカ11と反射方向制御部20に、お互いの位置を探索する相対方向探索機能を持たせる。   In the example of FIG. 1, the reflection direction control unit 20 has been described as being a known position below the directional speaker 11 in the vertical direction, but the positional relationship may be unknown. When the mutual position is unknown, the directional speaker 11 and the reflection direction control unit 20 are provided with a relative direction search function for searching for the mutual position.

〔相対方向探索機能〕
図4に、相対方向探索機能を持つ音響再生装置100′の機能構成例を示す。音響再生装置100′は、指向性スピーカ11の側に指向性制御用受音手段12と放音指向性制御手段13とを備える点で音響再生装置100と異なる。また、反射方向制御部20′が、反射方向制御用受音手段26と相対方向探索機能を含む反射方向制御手段40とを備える点で音響再生装置100と異なる。
(Relative direction search function)
FIG. 4 shows a functional configuration example of the sound reproducing device 100 ′ having a relative direction searching function. The sound reproducing device 100 ′ is different from the sound reproducing device 100 in that the sound receiving device 12 for directivity control and the sound emitting directivity control device 13 are provided on the directional speaker 11 side. Further, the reflection direction control unit 20 ′ is different from the sound reproduction device 100 in that the reflection direction control unit 20 ′ includes a reflection direction control sound receiving unit 26 and a reflection direction control unit 40 including a relative direction search function.

指向性制御用受音手段12は、指向性スピーカ11の前方の固定された位置に配置され、指向性スピーカ11から放射する音響信号と反射方向制御部20′で反射した反射音の放射受音信号を受音する。放音指向性制御手段13は、放射受音信号が最大になるように、指向性スピーカ11の指向性を制御する。   The directivity control sound receiving means 12 is disposed at a fixed position in front of the directional speaker 11, and radiated sound reception of an acoustic signal radiated from the directional speaker 11 and a reflected sound reflected by the reflection direction control unit 20 '. Receive a signal. The sound emission directivity control means 13 controls the directivity of the directional speaker 11 so that the radiation reception signal is maximized.

反射方向制御部20′の反射方向制御用受音手段26は、反射板21の前方に配置され、指向性スピーカ11の音響信号と反射板21で反射した反射音の反射受音信号を受音する。反射方向制御手段40は、反射受音信号が最大になるように、反射板21の反射面の形状と方向を制御する。   The reflection direction control sound receiving means 26 of the reflection direction control unit 20 ′ is disposed in front of the reflection plate 21 and receives the sound signal of the directional speaker 11 and the reflection sound reception signal of the reflection sound reflected by the reflection plate 21. To do. The reflection direction control means 40 controls the shape and direction of the reflection surface of the reflection plate 21 so that the reflected sound reception signal is maximized.

以上のように放音指向性制御手段13と反射方向制御手段40とが動作することで、指向性スピーカ11の側と、反射方向制御部20′の側で、お互いの位置関係を把握することが出来る。従って音響再生装置100′は、指向性スピーカ11と反射方向制御部20′とが、少々乱暴に配置されても音響再生装置として機能することが出来る。   As described above, by operating the sound emission directivity control means 13 and the reflection direction control means 40, the mutual relationship between the directivity speaker 11 side and the reflection direction control unit 20 ′ side is grasped. I can do it. Therefore, the sound reproducing device 100 ′ can function as a sound reproducing device even if the directional speaker 11 and the reflection direction control unit 20 ′ are arranged somewhat roughly.

図5に、指向性スピーカ11と指向性制御用受音手段12のより具体的な構成例を示して更に詳しく説明する。図5(a)は、指向性制御用受音手段12にワンポイントステレオマイクロホン120を用いた例を示す。図5(b)は、4本のマイクロホン121a〜121dを用いた例を示す。何れの図も指向性スピーカ11の正面から見た図であり、指向性スピーカ11を複数のスピーカ11a〜11qで構成されるディジタルフィルタ型スピーカアレーとした例で示す。   FIG. 5 shows a more specific configuration example of the directional speaker 11 and the directivity control sound receiving means 12 and will be described in more detail. FIG. 5A shows an example in which a one-point stereo microphone 120 is used as the directivity control sound receiving means 12. FIG. 5B shows an example using four microphones 121a to 121d. Each figure is a diagram seen from the front of the directional speaker 11, and shows an example in which the directional speaker 11 is a digital filter type speaker array including a plurality of speakers 11a to 11q.

ディジタルフィルタ型スピーカアレーは、各スピーカ11a〜11qに入力する信号の遅延量と振幅量を制御することで放射音の指向性を可変するものであり公知の技術である。   The digital filter type loudspeaker array is a well-known technique for changing the directivity of radiated sound by controlling the delay amount and amplitude amount of signals input to the speakers 11a to 11q.

図5(a)は、指向性スピーカ11を構成する16個のスピーカ11a〜11qの前方の略中央に、ワンポイントステレオマイクロホン120が配置される。指向性スピーカ11からの放射音の指向方向が変化しても、ワンポイントステレオマイクロホン120の位置は固定され、放射音の指向方向の変化と、反射板21からの反射音とを受音する。   In FIG. 5A, the one-point stereo microphone 120 is disposed in the approximate center in front of the 16 speakers 11 a to 11 q constituting the directional speaker 11. Even if the directivity direction of the radiated sound from the directional speaker 11 changes, the position of the one-point stereo microphone 120 is fixed, and the change in the directional direction of the radiated sound and the reflected sound from the reflecting plate 21 are received.

図5(b)は、指向性スピーカ11を構成する16個のスピーカ11a〜11qの中心点の前方を直交する2つの軸上に、その中央から等間隔を空けた位置に2個ずつのマイクロホン121b,121dと、マイクロホン121a,121cとが配置される。指向性スピーカ11からの放射音の指向方向が変化しても、4個のマイクロホン121a〜121dの位置は固定され、放射音の指向方向の変化と、反射板21からの反射音とを受音する。   FIG. 5B shows two microphones on two axes orthogonal to the front of the center point of the 16 speakers 11 a to 11 q constituting the directional speaker 11, at a position equidistant from the center. 121b and 121d and microphones 121a and 121c are arranged. Even if the directivity direction of the radiated sound from the directional speaker 11 changes, the positions of the four microphones 121a to 121d are fixed, and the change in the directional direction of the radiated sound and the reflected sound from the reflecting plate 21 are received. To do.

マイクロホンの位置は、上記した例に限定されない。マイクロホンが2個以上で、指向性スピーカ11の前方の固定された位置に配置されれば、放射音の指向性の変化を検出することができ、放射音と反射板21で反射された反射音からなる放射受音信号を受音することができる。   The position of the microphone is not limited to the above example. If two or more microphones are arranged at a fixed position in front of the directional speaker 11, a change in the directivity of the radiated sound can be detected, and the radiated sound and the reflected sound reflected by the reflecting plate 21 are detected. It is possible to receive a radiation reception signal consisting of

放射受音信号は放音指向性制御手段13に入力され、放音指向性制御手段13は放射受音信号が最大になるように指向性スピーカ11の指向方向を制御する。放音指向性制御手段13は、例えばディジタルフィルタ型スピーカアレーで構成される指向性スピーカ11の指向方向を、各スピーカに入力する信号の遅延量と振幅量を可変して制御する。放音指向性制御手段13は、公知の技術で容易に実現できる。   The radiation reception signal is input to the sound emission directivity control means 13, and the sound emission directivity control means 13 controls the directivity direction of the directional speaker 11 so that the radiation reception signal is maximized. The sound emission directivity control means 13 controls the directivity direction of the directional speaker 11 constituted by, for example, a digital filter type speaker array by varying the delay amount and the amplitude amount of the signal input to each speaker. The sound emission directivity control means 13 can be easily realized by a known technique.

〔反射板〕
ここで、反射板21の形状を制御する方法について説明する。図6に反射方向制御手段40に含まれる形状制御手段60の機能構成例を示す。形状制御手段60は反射板21の形状を制御する。反射板21の方向を制御する部分については一般的な方法で実現可能であるので図6では省略し、反射板21の形状を制御する構成のみを示している。なお、図6は反射板21を側面方向から見た図である。
〔reflector〕
Here, a method for controlling the shape of the reflecting plate 21 will be described. FIG. 6 shows a functional configuration example of the shape control means 60 included in the reflection direction control means 40. The shape control means 60 controls the shape of the reflecting plate 21. Since the portion for controlling the direction of the reflecting plate 21 can be realized by a general method, it is omitted in FIG. 6 and only the configuration for controlling the shape of the reflecting plate 21 is shown. FIG. 6 is a view of the reflecting plate 21 as viewed from the side.

形状制御手段60は、反射板固定枠64a,64bと、湾曲駆動モータ65と、湾曲軸66と、湾曲方向初期化モータ67と、初期化軸68と、を備える。反射板21の鉛直方向の上下2端が、反射板固定枠64aと64bとで保持される。その一方の反射板固定枠64aは湾曲軸66を介して湾曲駆動モータ65に連結されている。湾曲駆動モータ65が回転することで反射板固定枠64aの鉛直方向の位置が上下する。   The shape control means 60 includes reflector plate fixing frames 64a and 64b, a bending drive motor 65, a bending shaft 66, a bending direction initialization motor 67, and an initialization shaft 68. The upper and lower ends of the reflector 21 in the vertical direction are held by the reflector fixing frames 64a and 64b. One reflector fixing frame 64 a is connected to a bending drive motor 65 through a bending shaft 66. As the bending drive motor 65 rotates, the vertical position of the reflector fixing frame 64a moves up and down.

反射板21は、例えば、変形が可能な薄い金属板若しくは下敷きのようなプラスチック材料で出来ており、反射板固定枠64aの位置が下がることで変形が可能である。その反射板21の略中央の一面に初期化軸68が接続され、その初期化軸68は湾曲方向初期化モータ67で前後に移動可能にされている。   The reflector 21 is made of, for example, a deformable thin metal plate or a plastic material such as an underlay, and can be deformed by lowering the position of the reflector fixing frame 64a. An initialization shaft 68 is connected to a substantially central surface of the reflecting plate 21, and the initialization shaft 68 can be moved back and forth by a bending direction initialization motor 67.

図7に、反射板21を凸面(図7(a))、凹面(図7(b))に変形させた場合を示す。反射板21の形状を凸面にする場合、湾曲方向初期化モータ67は、湾曲駆動モータ65が回転を開始するのと同時若しくはその前に初期化軸68を前方に駆動する。その後は、初期化軸68には駆動力を与えず自由な状態にする。このような状態の切り換えは、湾曲方法初期化モータ67を例えばリニアモータで構成することで容易に実現できる。
そして、反射板固定枠64aの位置が下がることで、反射板21を凸面に変形することができる。
FIG. 7 shows a case where the reflecting plate 21 is deformed into a convex surface (FIG. 7A) and a concave surface (FIG. 7B). When the shape of the reflecting plate 21 is convex, the bending direction initialization motor 67 drives the initialization shaft 68 forward at the same time or before the bending drive motor 65 starts to rotate. Thereafter, the initialization shaft 68 is brought into a free state without applying a driving force. Such switching of the state can be easily realized by configuring the bending method initialization motor 67 with, for example, a linear motor.
And the reflecting plate 21 can be deform | transformed into a convex surface because the position of the reflecting plate fixing frame 64a falls.

反射板21の形状を凹面にする場合、湾曲方向初期化モータ67は、湾曲駆動モータ65が回転を開始するのと同時若しくはその前に初期化軸68を後方に駆動する。その後は、初期化軸68には駆動力を与えず自由な状態にする。その状態で、反射板固定枠64aの位置が下がると反射板21は凹面に変形する。   When the shape of the reflecting plate 21 is concave, the bending direction initialization motor 67 drives the initialization shaft 68 rearward at the same time as or before the bending drive motor 65 starts to rotate. Thereafter, the initialization shaft 68 is brought into a free state without applying a driving force. In this state, when the position of the reflector fixing frame 64a is lowered, the reflector 21 is deformed into a concave surface.

以上述べたように、反射板21の形状は、平面から凸面、平面から凹面に自由に変形することが可能である。この反射板21の形状変化を利用することで、相対方向探索を効率良く行うことが可能になる。   As described above, the shape of the reflecting plate 21 can be freely deformed from a flat surface to a convex surface and from a flat surface to a concave surface. By utilizing the change in the shape of the reflecting plate 21, the relative direction search can be performed efficiently.

図8に、自動的に放射音と反射音とを相対させる相対方向探索動作の動作フローを示す。指向性スピーカ11と反射方向制御部20′の、お互いの位置が未知の場合、反射板21で反射する反射音は拡散していた方が、相対方向を見つけ易い。よって、相対方向を探索する初期の段階では、反射板21の形状を凸面形状にして置くと都合が良い(ステップS60)。そして、反射板21の方向は固定として放射受音信号が最大になる方向に指向性スピーカ11の指向方向を決定する(ステップS13)。その後、段階的に反射板21の形状を平面に変化させる(ステップS61)。   FIG. 8 shows an operation flow of a relative direction search operation in which the radiated sound and the reflected sound are automatically opposed to each other. When the positions of the directional speaker 11 and the reflection direction control unit 20 ′ are unknown, it is easier to find the relative direction if the reflected sound reflected by the reflection plate 21 is diffused. Therefore, at the initial stage of searching for the relative direction, it is convenient to place the reflector 21 in a convex shape (step S60). Then, the direction of the reflecting plate 21 is fixed, and the directivity direction of the directional speaker 11 is determined in the direction in which the radiation sound reception signal is maximized (step S13). Thereafter, the shape of the reflecting plate 21 is changed to a plane step by step (step S61).

反射板21の形状を一段階可変した後に、反射板21の形状は固定のままその方向を変えて反射受音信号が最大になるよう反射板21の方向を制御する(ステップS40)。このステップS13とステップS61とステップS40の動作を、反射受音信号が最大になるまで繰り返すことで放射音と反射音とを相対させることができる(ステップS41のYes)。このように反射板21の形状を可変することで、相対方向探索を効率良く行うことができる。なお、より正確に反射方向制御部20′の位置を把握したい場合は、反射板21を凹面形状にしても良い。この、放音指向性制御手段13と反射方向制御手段40における相対方向探索動作の連携は、放音指向性制御手段13と反射方向制御手段40とを信号線(図4の13と40を結ぶ破線)で結び、お互いの動作状況を相手側に通信することで容易に実現することができる。その有線接続による通信は、赤外線通信や近距離無線通信に代えても良い。   After changing the shape of the reflecting plate 21 by one step, the direction of the reflecting plate 21 is controlled so that the reflected sound signal is maximized by changing the direction of the reflecting plate 21 while the shape of the reflecting plate 21 is fixed (step S40). By repeating the operations of Step S13, Step S61, and Step S40 until the reflected sound reception signal becomes maximum, the radiated sound and the reflected sound can be made to be opposite (Yes in Step S41). By thus changing the shape of the reflecting plate 21, the relative direction search can be performed efficiently. In addition, when it is desired to grasp the position of the reflection direction control unit 20 'more accurately, the reflection plate 21 may be formed in a concave shape. The cooperation of the relative direction searching operation in the sound emission directivity control means 13 and the reflection direction control means 40 is performed by connecting the sound emission directivity control means 13 and the reflection direction control means 40 to a signal line (13 and 40 in FIG. 4). It can be easily realized by linking with a broken line) and communicating each other's operation status to the other party. The communication by the wired connection may be replaced with infrared communication or short-range wireless communication.

なお、指向性スピーカ11と反射方向制御部20の位置関係が既知の場合には相対方向探索動作を省略可能であり、反射板21は形状を制御できるものに限られない。   When the positional relationship between the directional speaker 11 and the reflection direction control unit 20 is known, the relative direction search operation can be omitted, and the reflector 21 is not limited to one that can control the shape.

以上述べた相対方向探索機能によって、指向性スピーカ11と反射方向制御部20の位置関係が明らかになった後に反射方向制御手段40は、図2で説明した反射方向制御過程の処理を行う。その結果、音響再生装置100′は、指向性スピーカ11と反射方向制御部20′の位置が未知の場合でも音響再生装置として機能することが出来る。   After the positional relationship between the directional speaker 11 and the reflection direction control unit 20 is clarified by the relative direction search function described above, the reflection direction control means 40 performs the reflection direction control process described with reference to FIG. As a result, the sound reproducing device 100 ′ can function as a sound reproducing device even when the positions of the directional speaker 11 and the reflection direction control unit 20 ′ are unknown.

図9にこの発明の音響再生装置200の機能構成例を示す。その動作フローを図10に示す。音響再生装置200は、指向性スピーカ91と、指向性制御手段90と、統合手段23と、反射音強度測定手段24と、測距手段25と、を具備する。   FIG. 9 shows a functional configuration example of the sound reproducing device 200 of the present invention. The operation flow is shown in FIG. The sound reproducing device 200 includes a directional speaker 91, directivity control means 90, integration means 23, reflected sound intensity measurement means 24, and distance measurement means 25.

音響再生装置200は、指向性スピーカ91と、指向性制御手段90とを備える点が音響再生装置100と異なり、統合手段23で整列した方向に指向性スピーカ91から音響信号を直接放射するようにしたものである。つまり、指向性制御手段90が、統合手段23が整列した最上位の方向に、指向性スピーカ91の指向方向を直接向ける点(ステップS90)が異なる。   The sound reproducing device 200 is different from the sound reproducing device 100 in that the sound reproducing device 200 includes a directional speaker 91 and directivity control means 90 so as to directly radiate sound signals from the directional speaker 91 in the direction aligned by the integrating means 23. It is a thing. That is, the directivity control means 90 is different in that the directivity direction of the directional speaker 91 is directly directed to the uppermost direction in which the integration means 23 are aligned (step S90).

指向性制御手段30は、統合手段23整列した方向に音響信号が放射されるように、指向性スピーカ91を例えばディジタルフィルタ型スピーカアレーで構成した場合、ディジタルフィルタ型スピーカアレーを構成する複数のスピーカに入力する信号の遅延量と振幅量を制御する。その結果、音響再生装置200は、反射強度の小さい方向若しくは大きい方向に直接音響信号を放射する。   When the directional speaker 91 is constituted by, for example, a digital filter type speaker array so that an acoustic signal is radiated in a direction aligned with the integration unit 23, the directivity control unit 30 includes a plurality of speakers constituting the digital filter type speaker array. Controls the amount of delay and amplitude of the signal input to. As a result, the sound reproducing device 200 directly radiates an acoustic signal in a direction where the reflection intensity is small or large.

なお、上記装置における処理手段をコンピュータによって実現する場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、各装置における処理手段がコンピュータ上で実現される。   When the processing means in the above apparatus is realized by a computer, the processing contents of functions that each apparatus should have are described by a program. Then, by executing this program on the computer, the processing means in each apparatus is realized on the computer.

この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。具体的には、例えば、磁気記録装置として、ハードディスク装置、フレキシブルディスク、磁気テープ等を、光ディスクとして、DVD(Digital Versatile Disc)、DVD−RAM(Random Access Memory)、CD−ROM(Compact Disc Read Only Memory)、CD−R(Recordable)/RW(ReWritable)等を、光磁気記録媒体として、MO(Magneto Optical disc)等を、半導体メモリとしてEEP−ROM(Electronically Erasable and Programmable-Read Only Memory)等を用いることができる。   The program describing the processing contents can be recorded on a computer-readable recording medium. As the computer-readable recording medium, for example, any recording medium such as a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory may be used. Specifically, for example, as a magnetic recording device, a hard disk device, a flexible disk, a magnetic tape or the like, and as an optical disk, a DVD (Digital Versatile Disc), a DVD-RAM (Random Access Memory), a CD-ROM (Compact Disc Read Only). Memory), CD-R (Recordable) / RW (ReWritable), etc., magneto-optical recording medium, MO (Magneto Optical disc), etc., semiconductor memory, EEP-ROM (Electronically Erasable and Programmable-Read Only Memory), etc. Can be used.

また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD−ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記録装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。   The program is distributed by selling, transferring, or lending a portable recording medium such as a DVD or CD-ROM in which the program is recorded. Further, the program may be distributed by storing the program in a recording device of a server computer and transferring the program from the server computer to another computer via a network.

また、各手段は、コンピュータ上で所定のプログラムを実行させることにより構成することにしてもよいし、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。   Each means may be configured by executing a predetermined program on a computer, or at least a part of these processing contents may be realized by hardware.

Claims (4)

指向性スピーカと反射方向制御部とから成る音響再生装置であって、
反射方向制御部は、
上記指向性スピーカが放射する音響信号の方向を変化させる反射板と、
音響再生装置を中心としたあらゆる方向に音波を放射し、その方向からの反射音を測定して反射強度を求める反射音強度測定手段と、
上記反射強度を求めた方向に存在する物体までの距離を測定する測距手段と、
上記反射強度と上記物体までの距離とを入力として反射強度の大きさに応じた順番に上記方向を整列する統合手段と、
統合手段が整列した最上位の方向に上記音響信号を向けるように上記反射板の反射面の方向を制御する反射方向制御手段と、
を具備する音響再生装置。
A sound reproducing device including a directional speaker and a reflection direction control unit,
The reflection direction control unit
A reflector that changes the direction of the acoustic signal emitted by the directional speaker;
Reflected sound intensity measuring means for radiating sound waves in all directions centering on the sound reproducing device and measuring the reflected sound from that direction to obtain the reflected intensity;
Ranging means for measuring the distance to an object present in the direction in which the reflection intensity is obtained;
An integrating means for aligning the directions in order according to the magnitude of the reflection intensity, using the reflection intensity and the distance to the object as inputs;
Reflection direction control means for controlling the direction of the reflection surface of the reflector so that the acoustic signal is directed in the uppermost direction in which the integration means are aligned;
A sound reproducing apparatus comprising:
指向性スピーカを備える音響再生装置であって、
音響再生装置を中心としたあらゆる方向に音波を放射し、その方向からの反射音を測定して反射強度を求める反射音強度測定手段と、
上記反射強度を求めた方向に存在する物体までの距離を測定する測距手段と、
上記反射強度と上記物体までの距離とを入力として反射強度の大きさに応じた順番に上記方向を整列する統合手段と、
統合手段が整列した最上位の方向に上記指向性スピーカの指向方向を向ける指向性制御手段と、
を具備する音響再生装置。
A sound reproducing device including a directional speaker,
Reflected sound intensity measuring means for radiating sound waves in all directions centering on the sound reproducing device and measuring the reflected sound from that direction to obtain the reflected intensity;
Ranging means for measuring the distance to an object present in the direction in which the reflection intensity is obtained;
An integrating means for aligning the directions in order according to the magnitude of the reflection intensity, using the reflection intensity and the distance to the object as inputs;
Directivity control means for directing the directivity direction of the directional speaker in the uppermost direction in which the integration means are aligned;
A sound reproducing apparatus comprising:
指向性スピーカを備える音響再生装置を中心としたあらゆる方向に音波を放射し、その方向からの反射音を測定して反射強度を求める反射強度測定ステップと、
上記反射強度を求めた方向に存在する物体までの距離を測定する測距ステップと、
上記反射強度と上記物体までの距離とを入力として反射強度の大きさに応じた順番に上記方向を整列する統合ステップと、
上記統合ステップが整列した最上位の方向に上記指向性スピーカの指向方向を向ける音響出力ステップと、
を含む音響再生方法。
A reflection intensity measuring step for radiating sound waves in all directions centering on a sound reproducing device including a directional speaker and measuring reflected sound from the directions to obtain a reflection intensity;
A distance measuring step for measuring a distance to an object existing in the direction in which the reflection intensity is obtained;
An integration step of aligning the directions in order according to the magnitude of the reflection intensity with the reflection intensity and the distance to the object as inputs;
A sound output step for directing the directivity direction of the directional speaker in the uppermost direction in which the integration steps are aligned;
A sound reproduction method including:
請求項3に記載した音響再生方法を、コンピュータに実行させるためのプログラム。 Program for sound reproduction method according to claim 3, causes the computer to execute.
JP2010141210A 2010-06-22 2010-06-22 Sound reproduction apparatus, method and program Expired - Fee Related JP5498275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010141210A JP5498275B2 (en) 2010-06-22 2010-06-22 Sound reproduction apparatus, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010141210A JP5498275B2 (en) 2010-06-22 2010-06-22 Sound reproduction apparatus, method and program

Publications (2)

Publication Number Publication Date
JP2012008157A JP2012008157A (en) 2012-01-12
JP5498275B2 true JP5498275B2 (en) 2014-05-21

Family

ID=45538828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010141210A Expired - Fee Related JP5498275B2 (en) 2010-06-22 2010-06-22 Sound reproduction apparatus, method and program

Country Status (1)

Country Link
JP (1) JP5498275B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427400B (en) * 2012-05-15 2017-11-21 三垦电气株式会社 The control circuit of switching power unit
CN110275547A (en) * 2018-03-16 2019-09-24 杭州钱江称重技术有限公司 A kind of hot-metal bottle tracking alignment system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078545A (en) * 2005-09-15 2007-03-29 Yamaha Corp Object detection system and voice conference system

Also Published As

Publication number Publication date
JP2012008157A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
KR102089485B1 (en) Intervention between voice-enabled devices
JP6101989B2 (en) Signal-enhanced beamforming in an augmented reality environment
US20150277610A1 (en) Apparatus and method for providing three-dimensional air-touch feedback
US20150215723A1 (en) Wireless speaker system with distributed low (bass) frequency
JP6110923B2 (en) Acoustic diffusion generator
CN102893175A (en) Distance estimation using sound signals
Bai et al. Impact localization combined with haptic feedback for touch panel applications based on the time-reversal approach
CN106489130A (en) For making audio balance so that the system and method play on an electronic device
US10855901B2 (en) Device adjustment based on laser microphone feedback
CN107613428A (en) Sound processing method, device and electronic equipment
US20210026219A1 (en) Acoustic imaging systems having sound forming lenses and sound amplitude detectors and associated methods
CN112672251B (en) Loudspeaker control method and system, storage medium and loudspeaker
EP3351019B1 (en) Apparatuses and methods for sound recording, manipulation, distribution and pressure wave creation through energy transfer between photons and media particles
Calvo et al. Experimental verification of enhanced sound transmission from water to air at low frequencies
CN103997706B (en) Method and system for acquiring natural frequency of vibration diaphragm
JP5498275B2 (en) Sound reproduction apparatus, method and program
US9924286B1 (en) Networked speaker system with LED-based wireless communication and personal identifier
CN105657253A (en) Focusing method and electronic device
JP5543106B2 (en) Spatial audio signal reproduction apparatus and spatial audio signal reproduction method
JP6329679B1 (en) Audio controller, ultrasonic speaker, audio system, and program
Melon et al. Comparison of four subwoofer measurement techniques
CN110177325A (en) Wideband electro-acoustic energy converter and wideband electro-acoustic array
Dzikowicz et al. A spiral wave front beacon for underwater navigation: Transducer prototypes and testing
Klippel et al. Distributed mechanical parameters of loudspeakers, Part 1: Measurements
JP2019068395A (en) Audio controller and ultrasonic speaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R150 Certificate of patent or registration of utility model

Ref document number: 5498275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees