JP5487591B2 - Diagnosis method of rotating equipment - Google Patents

Diagnosis method of rotating equipment Download PDF

Info

Publication number
JP5487591B2
JP5487591B2 JP2008276992A JP2008276992A JP5487591B2 JP 5487591 B2 JP5487591 B2 JP 5487591B2 JP 2008276992 A JP2008276992 A JP 2008276992A JP 2008276992 A JP2008276992 A JP 2008276992A JP 5487591 B2 JP5487591 B2 JP 5487591B2
Authority
JP
Japan
Prior art keywords
evaluation point
life
rotating
failure
rotating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008276992A
Other languages
Japanese (ja)
Other versions
JP2010107233A (en
Inventor
正樹 吉川
美孝 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008276992A priority Critical patent/JP5487591B2/en
Publication of JP2010107233A publication Critical patent/JP2010107233A/en
Application granted granted Critical
Publication of JP5487591B2 publication Critical patent/JP5487591B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、重量物を大量に搬送し加工する設備(たとえば製鉄プラント等)で使用される様々な回転機器の経年劣化型損傷(たとえば疲労,腐食,摩耗等)を診断して、補修あるいは更新の時期を決定する方法に関するものである。   The present invention diagnoses and repairs or renews aged deterioration type damage (such as fatigue, corrosion, wear, etc.) of various rotating equipment used in facilities that transport and process large quantities of heavy objects (for example, steel plants). It relates to a method for determining the timing of the period.

鋼材のような重量物を大量に搬送しかつ加工する設備には、様々な回転機器が使用される。それらの回転機器は、重量物を搬送加工する故に経年劣化型損傷(以下、劣化損傷という)を生じる。回転機器の劣化損傷が進行すると、その回転機器の故障を引き起こし、一連の設備の稼動に支障をきたす。そのため、回転機器の劣化損傷を診断して、回転機器が故障する前に補修あるいは更新を行なう必要がある。   Various rotating devices are used in facilities for transporting and processing heavy objects such as steel in large quantities. These rotating devices cause aged deterioration type damage (hereinafter referred to as deterioration damage) because they convey and process heavy objects. When the deterioration damage of the rotating equipment progresses, the rotating equipment breaks down and hinders the operation of a series of facilities. Therefore, it is necessary to diagnose deterioration damage of the rotating device and repair or update it before the rotating device breaks down.

そこで、回転機器の診断技術が種々検討されている。
たとえば特許文献1には、回転機器の状態を示す振動や電流を測定し、その測定値を劣化指数に変換して、劣化損傷の進行を診断する技術が開示されている。
特許文献2には、回転機器の振動と回転数を測定し、その測定値を所定の関数で補正して、得られた補正値と予め設定した閾値とを比較することによって劣化損傷の進行を診断する技術が開示されている。
Accordingly, various diagnostic techniques for rotating equipment have been studied.
For example, Patent Document 1 discloses a technique for diagnosing the progress of deterioration damage by measuring vibration and current indicating the state of a rotating device and converting the measured value into a deterioration index.
In Patent Document 2, the progress of deterioration damage is measured by measuring the vibration and rotation speed of a rotating device, correcting the measured value with a predetermined function, and comparing the obtained correction value with a preset threshold value. A technique for diagnosing is disclosed.

これらの技術は、いずれも単に回転機器の劣化損傷を診断するものであり、一連の設備におけるその回転機器の経済的な優先度は考慮されていない。
たとえば、加熱した鋼スラブを圧延して熱延コイルを製造する熱間圧延設備では、粗圧延機,仕上げ圧延機,巻取り機,搬送コンベア等に様々な回転機器が使用されており、故障が発生したときの復旧に要する時間や費用は、回転機器が配設される装置に応じて異なる。そのため、限られた人員で熱間圧延設備の保守点検を行なうためには、補修あるいは更新を行なう回転機器を選択する際に、経済的な観点から評価した優先度を考慮する必要がある。
All of these technologies merely diagnose deterioration damage of rotating equipment, and the economic priority of the rotating equipment in a series of facilities is not considered.
For example, in a hot rolling facility that produces hot-rolled coils by rolling a heated steel slab, various rotating devices are used for roughing mills, finish rolling mills, winders, conveyors, etc. The time and cost required for recovery when it occurs vary depending on the device in which the rotating device is installed. Therefore, in order to perform maintenance and inspection of the hot rolling facility with a limited number of personnel, it is necessary to consider the priority evaluated from an economic viewpoint when selecting a rotating device to be repaired or updated.

ところが特許文献1,2に開示された技術では、経済的優先度を考慮していないので、復旧作業の期間中に生産が停止することによる経済的な損失を最小に抑えることは困難である。
経済的優先度を考慮したプラントの診断技術としては、米国石油協会(API)が作成した規格API581(Risk-Based Inspection BRD, May 2000)が知られている。しかし、この技術は石油化学プラントの圧力容器や配管等の静機械の損傷を診断するものであり、回転機器の劣化損傷の診断に適用するのは困難である。
特開昭63-169536号公報 特開平7-218333号公報
However, the technologies disclosed in Patent Documents 1 and 2 do not consider the economic priority, so it is difficult to minimize the economic loss due to production stoppage during the recovery operation.
A standard API581 (Risk-Based Inspection BRD, May 2000) prepared by the American Petroleum Institute (API) is known as a plant diagnosis technique considering economic priority. However, this technique diagnoses damage to static machines such as pressure vessels and piping in petrochemical plants, and is difficult to apply to diagnosis of deterioration damage of rotating equipment.
JP 63-169536 JP JP 7-218333 A

本発明は、多数の回転機器の劣化損傷を診断するにあたって、補修あるいは更新を行なう回転機器を選択する際に、故障に起因する経済的損失を考慮して優先順位を決定することによって、設備の稼動停止による経済的な損失を最小に抑えることが可能な診断方法を提供することを目的とする。   In diagnosing deterioration damage of a large number of rotating equipment, the present invention determines the priority of the equipment by determining the priority in consideration of economic loss due to failure when selecting the rotating equipment to be repaired or updated. An object of the present invention is to provide a diagnostic method capable of minimizing an economic loss due to a shutdown.

本発明は、鋼スラブの熱間圧延設備における粗圧延機、仕上げ圧延機、巻取り機、搬送コンベアの各回転機器に、加速度計センサーとして配設し、各センサーから得られるデータを繰返し応力範囲Rangeに変換して当該回転機器の応力振幅Amp=Range/2を求め、応力振幅Ampを予め設定したマスターカーブに適用して寿命回転数Nを求め、寿命回転数Nから損傷度d=1/Nを算出し、所定の日数の間に得られる損傷度dを累積して累積損傷度D=Σdを算出し、累積損傷度Dを用いてD=1となる寿命日数Lを算出し、次に、当該回転機器の使用日数Uと寿命日数Lを用いて寿命消費率S=U/Lを算出し、寿命消費率Sのレベルに応じて寿命評価点SPを付与し、予め故障検知のレベルに応じて設定した故障検知度評価点TPと寿命評価点SPとを用いて故障発生リスク評価点RP=TP×SPを算出し、次いで、予め故障に起因する経済的損失のレベルに応じて設定した経済リスク評価点EPと故障発生リスク評価点RPとに基づいて、当該回転機器の補修あるいは更新の必要性を判定し、その他の回転機器についても同様に補修あるいは更新の必要性を判定し、相互に比較することによって補修あるいは更新を行なう回転機器を選択する回転機器の診断方法である。 The present invention, rough rolling mill in the hot rolling mill of the steel slab, finishing mill, coiling machine, each rotating device conveyor, disposed accelerometer as a sensor, repeat data obtained from each sensor stress By converting into the range Range, the stress amplitude Amp = Range / 2 of the rotating device is obtained, the life amplitude N is obtained by applying the stress amplitude Amp to a preset master curve, and the damage degree d = 1 from the life revolution N / N is calculated, the damage d obtained during a predetermined number of days is accumulated to calculate the cumulative damage D = Σd, and the life days L where D = 1 is calculated using the cumulative damage D, Next, the life consumption rate S = U / L is calculated by using the use days U and the life days L of the rotating device, and a life evaluation point SP is given according to the level of the life consumption rate S, and the failure is detected in advance. failure detection evaluation point T P and life evaluation set depending on the level of It calculates the failure risk assessment point R P = T P × S P by using the S P, then economic risk evaluation points E P and failure risks set depending on the level of economic losses due to pre-failure Based on the evaluation point R P , the necessity of repair or update of the rotating equipment is determined, and the necessity of repair or update is similarly determined for other rotating equipment, and repair or update is performed by comparing with each other. This is a rotating device diagnosis method for selecting a rotating device to perform the operation.

本発明によれば、多数の回転機器を備えた設備の各回転機器の中から補修あるいは更新(以下、設備保全という)の対象とする回転機器を選択する際に、故障に起因する経済的損失を考慮して優先順位を決定するので、設備保全作業の期間中に生産が停止することによる経済的な損失を最小に抑えることができる。   According to the present invention, when selecting a rotating device to be repaired or updated (hereinafter referred to as facility maintenance) from each rotating device of a facility having a large number of rotating devices, the economic loss due to the failure. Therefore, the priority order is determined in consideration of the above, so that the economic loss due to the production stoppage during the period of the equipment maintenance work can be minimized.

重量物を大量に搬送しかつ加工する設備(たとえば製鉄プラント等)には、様々な回転機器が使用される。製鉄プラントの一例として、加熱した鋼スラブを圧延して熱延コイルを製造する熱間圧延設備を模式的に図1に示す。熱間圧延設備では、粗圧延機2,仕上げ圧延機3,巻取り機4,搬送コンベア等に様々な回転機器が使用される。なお図1では、搬送コンベアは図示を省略する。   Various rotating devices are used in equipment (for example, an iron manufacturing plant) that conveys and processes heavy objects in large quantities. As an example of an iron manufacturing plant, a hot rolling facility for rolling a heated steel slab to produce a hot rolled coil is schematically shown in FIG. In a hot rolling facility, various rotating devices are used for a rough rolling mill 2, a finish rolling mill 3, a winder 4, a conveyor, and the like. In FIG. 1, the illustration of the conveyer is omitted.

これらの回転機器が劣化損傷によって故障すると、一連の設備の稼動に支障をきたす。そこで、各回転機器にセンサーを配設して、設備の稼動によって進行する劣化損傷を診断する。
回転機器に配設するセンサーは、加速度計を使用する。
If these rotating devices fail due to deterioration damage, the operation of a series of facilities will be hindered. Therefore, a sensor is disposed in each rotating device to diagnose deterioration damage that progresses due to the operation of the equipment.
Sensors disposed in rotating equipment uses the accelerometer.

そのセンサーから得られるデータを繰返し応力範囲Rangeに変換して、さらに当該回転機器の応力振幅Amp=Range/2を求める。ここで応力振幅Ampは、繰返し応力の最大応力と最小応力の差である繰返し応力範囲Rangeの1/2とした振幅であり、Amp=Range/2で算出される。たとえば熱間圧延設備では、1日あたり数百回程度の鋼スラブの圧延が行なわれ、その圧延回数に相当する数のAmp値が得られる。それらのAmp値は全て同一ではなく、正規分布を示す。   The data obtained from the sensor is repeatedly converted into a stress range Range, and the stress amplitude Amp = Range / 2 of the rotating device is obtained. Here, the stress amplitude Amp is an amplitude that is ½ of the cyclic stress range Range, which is the difference between the maximum stress and the minimum stress of the cyclic stress, and is calculated as Amp = Range / 2. For example, in a hot rolling facility, a steel slab is rolled several hundred times per day, and Amp values corresponding to the number of rolling times are obtained. Their Amp values are not all the same, but show a normal distribution.

一方で、予め回転機器の応力振幅と寿命との関係を求めておく。ここで寿命は、回転数で表わされ、新品から故障発生に到るまでの総回転数(以下、寿命回転数という)を指す。つまり寿命回転数は、新品の回転機器に特定の応力振幅の負荷が継続して作用した場合の故障発生に到るまでの総回転数を表わすものである。その応力振幅と寿命回転数との関係を示すグラフ(以下、マスターカーブという)の例を図2に示す。なお図2は、回転機器に用いられている鋼材の一例である。   On the other hand, the relationship between the stress amplitude and the life of the rotating device is obtained in advance. Here, the life is represented by the number of rotations, and indicates the total number of rotations (hereinafter referred to as the life rotation number) from the new article to the occurrence of a failure. That is, the life rotation speed represents the total rotation speed until a failure occurs when a load having a specific stress amplitude is continuously applied to a new rotating device. An example of a graph (hereinafter referred to as a master curve) showing the relationship between the stress amplitude and the life rotation speed is shown in FIG. In addition, FIG. 2 is an example of the steel material used for the rotating equipment.

そのマスターカーブに、当該回転機器のセンサーから得たデータから得た応力振幅Aを適用して、寿命回転数Nを求める。次に、寿命回転数Nを用いて損傷度d=1/Nを算出する。たとえば熱間圧延設備では、1日あたり数百回程度のAmp値が得られるので、その都度、損傷度dを求める。
さらに、所定の日数の間に得られた損傷度dを累積して累積損傷度D=Σdを算出する。本発明では損傷度dを累積する日数は特に限定しないが、簡潔な演算処理を行なうために1日分の損傷度dを累積することが好ましい。たとえば熱間圧延設備では、1日あたり数百回程度のd値が得られるので、それを累積して累積損傷度Dを求める。
The life rotation speed N is obtained by applying the stress amplitude A obtained from the data obtained from the sensor of the rotating device to the master curve. Next, the damage degree d = 1 / N is calculated using the life rotation speed N. For example, in a hot rolling facility, an Amp value of several hundred times per day can be obtained, and the damage degree d is obtained each time.
Further, the cumulative damage degree D = Σd is calculated by accumulating the damage degree d obtained during a predetermined number of days. In the present invention, the number of days for which the damage degree d is accumulated is not particularly limited, but it is preferable to accumulate the damage degree d for one day in order to perform a simple calculation process. For example, since a d value of about several hundred times per day is obtained in a hot rolling facility, the accumulated damage degree D is obtained by accumulating the d value.

次に、D=1となる日数L(以下、寿命日数という)を算出する。そして、当該回転機器の使用日数Uと寿命日数Lとを用いて寿命消費率S=U/Lを算出する。得られた寿命消費率Sのレベルに応じて寿命評価点SPを付与する。寿命消費率Sが低い(すなわち使用日数の少ない)ものは小さい寿命評価点SPを付与し、寿命消費率Sが高い(すなわち使用日数の多い)ものは大きい寿命評価点SPを付与する。本発明では寿命評価点SPの数値は特に限定せず、回転機器の仕様やその回転機器が配設される設備の稼動条件等に応じて適宜設定する。 Next, the number of days L at which D = 1 (hereinafter referred to as the number of life days) is calculated. And the lifetime consumption rate S = U / L is calculated using the usage days U and the lifetime days L of the rotating equipment. A life evaluation point S P is given according to the level of the obtained life consumption rate S. Life consumption rate S is low (i.e. less number of days used) those imparts a small life evaluation point S P, (busy i.e. number of days used) is higher lifetime consumption rate S what confers greater life evaluation point S P. Numerical life evaluation point S P in the present invention is not particularly limited and appropriately set in accordance with the operating conditions of the equipment specifications and the rotary device of the rotating device is arranged.

一方で、予め回転機器の故障を検知する度合(たとえば日常点検の頻度等)に応じて故障検知度評価点TPを付与しておく。故障の検知が容易なものは小さい故障検知度評価点TPを付与し、故障の検知が困難なものは大きい故障検知度評価点TPを付与する。したがって、全ての回転機器の故障検知度評価点TPは必ずしも同一ではない。たとえば熱間圧延設備では、粗圧延機,仕上げ圧延機,巻取り機,搬送コンベア等に配設される回転機器の故障検知度評価点TPをそれぞれ個別に設定する。 On the other hand, a failure detection degree evaluation point TP is given in advance according to the degree of detecting a failure of the rotating device (for example, the frequency of daily inspection). Those that are easy to detect a failure are assigned a small failure detectability evaluation point T P, and those that are difficult to detect are assigned a large failure detectability evaluation point T P. Thus, failure detection evaluation point T P of all of the rotating device is not necessarily the same. For example, in the hot rolling mill, roughing mill, finishing mill, coiling machine, each set separately failure detection evaluation point T P of the rotating device which is disposed conveyor like.

そして当該回転機器の寿命評価点SPと故障検知度評価点TPとを用いて、故障発生リスク評価点RP=SP×TPを算出する。
また、予め回転機器の故障が発生した場合の経済的損失の度合(たとえば復旧作業に要する時間や費用等)に応じて経済リスク評価点EPを付与しておく。経済的損失が低いものは小さい経済リスク評価点EPを付与し、経済的損失が高いものは大きい経済リスク評価点EPを付与する。したがって、全ての回転機器の経済リスク評価点EPは必ずしも同一ではない。たとえば熱間圧延設備では、粗圧延機,仕上げ圧延機,巻取り機,搬送コンベア等に配設される回転機器の経済リスク評価点EPをそれぞれ個別に設定する。
Then, a failure occurrence risk evaluation point R P = S P × T P is calculated using the life evaluation point S P and the failure detection degree evaluation point T P of the rotating device.
In addition, an economic risk evaluation point E P is given in advance according to the degree of economic loss (for example, time and cost required for restoration work) when a failure of the rotating device occurs. Those with a low economic loss are assigned a small economic risk score E P, and those with a high economic loss are assigned a large economic risk score E P. Therefore, the economic risk evaluation points E P of all rotating devices are not necessarily the same. For example, in a hot rolling facility, economic risk evaluation points E P of rotating equipment arranged in a roughing mill, a finish rolling mill, a winder, a conveyor, etc. are individually set.

このようして得た故障発生リスク評価点RPと経済リスク評価点EPとに基づいて、当該回転機器の設備保全(すなわち補修あるいは更新)の必要性を判定する。その判定に用いるマトリックスの一例を図3に示す。当該回転機器の故障発生リスク評価点RPと経済リスク評価点EPがAの領域にあれば、故障発生のリスクと経済的なリスクがともに大きいので設備保全の対象と判定される。Bの領域では、故障を早期に発見するために重点的に点検を行なう対象と判定される。Cの領域では、通常通りの点検を行なう対象と判定される。 Based on the failure occurrence risk evaluation point R P and the economic risk evaluation point E P obtained in this way, the necessity for facility maintenance (that is, repair or update) of the rotating equipment is determined. An example of the matrix used for the determination is shown in FIG. When the failure occurrence risk evaluation point R P and the economic risk evaluation point E P of the rotating device are in the range of A, the failure occurrence risk and the economic risk are both large, so that it is determined as the object of equipment maintenance. In the region B, it is determined that the inspection is focused on in order to detect the failure at an early stage. In the area C, it is determined that the inspection is performed as usual.

なお、図3は判定基準の一例を示したものであり、本発明では判定基準を特に限定しない。判定基準は、回転機器の仕様やその回転機器が配設される設備の稼動条件等に応じて適宜設定する。たとえば熱間圧延設備では、粗圧延機,仕上げ圧延機,巻取り機,搬送コンベア等の判定基準をそれぞれ個別に設定する。
その他の回転機器についても同様にして、設備保全の必要性を判定する。そして、それらを相互に比較することによって、設備保全の対象とする回転機器を選択する。なお、選択された回転機器の補修を行なう、あるいは更新を行なう等の決定は、担当者が状況に応じて行なう。
FIG. 3 shows an example of the determination criterion, and the determination criterion is not particularly limited in the present invention. The determination criterion is appropriately set according to the specifications of the rotating device, the operating conditions of the facility where the rotating device is installed, and the like. For example, in a hot rolling facility, determination criteria such as a roughing mill, a finishing mill, a winder, and a conveyor are set individually.
In the same manner for other rotating devices, the necessity for facility maintenance is determined. Then, by comparing them with each other, a rotating device to be subjected to equipment maintenance is selected. Note that the person in charge makes a decision to repair or update the selected rotating device depending on the situation.

故障発生リスク評価点RPと経済リスク評価点EPとに基づいて得られる図3に示すようなマトリックス中に、回転機器が占める位置を表示する手段は、従来から知られている装置(たとえば紙に印刷する,画面に表示する等)を使用すれば良い。
以上に説明した回転機器の診断を定期的に行なうことによって、故障の発生を精度良く予測し、限られた人員によって設備の点検および設備保全を効率良く行なうことができ、回転機器の故障を未然に防止し、しかも設備保全作業の期間中に生産が停止することによる経済的な損失を最小に抑えることができる。
A means for displaying the position occupied by the rotating device in the matrix as shown in FIG. 3 obtained based on the failure occurrence risk evaluation point R P and the economic risk evaluation point E P is a conventionally known device (for example, Print on paper, display on screen, etc.).
By regularly diagnosing rotating equipment as described above, it is possible to accurately predict the occurrence of a failure, and efficiently perform inspection and maintenance of equipment by a limited number of personnel. In addition, the economic loss due to the production stoppage during the maintenance work can be minimized.

また設備の稼動体制が変更されるような場合に、その生産計画から、回転機器の補修あるいは更新を行なう時期の変化を予測することも可能である。   Further, when the operation system of the facility is changed, it is possible to predict a change in the timing for repairing or updating the rotating equipment from the production plan.

図1に示すような熱間圧延設備の各回転機器にセンサーを配設し、所定の期間内に得られる繰返し荷重のデータを繰返し応力範囲Rangeに変換して、当該回転機器の応力振幅Amp=Range/2を求めた。
一方で、予め回転機器の応力振幅と寿命回転数との関係を示すマスターカーブを作成した。マスターカーブは、回転機器に用いられている鋼材の疲労試験データ等を用いて作成した。その一例を図2に示す。
A sensor disposed to the rotation device of the hot-rolling equipment shown in FIG. 1, is converted into stress range Range repeated data of repeated load obtained during the period of Jo Tokoro stress amplitude Amp of the rotating equipment = Range / 2 was determined.
On the other hand, the master curve which shows the relationship between the stress amplitude of a rotation apparatus and lifetime rotation speed was created beforehand. The master curve was created using fatigue test data of steel materials used in rotating equipment. An example is shown in FIG.

そのマスターカーブに当該回転機器の応力振幅を適用して、寿命回転数N(すなわち新品から故障発生に到るまでの回転数)を求めた。
次に、寿命回転数Nを用いて損傷度d=1/Nを算出した。その1日分の損傷度dを加算していき、累積損傷度D=Σdを算出した。さらに、D=1となる寿命日数Lを算出した。たとえば粗圧延機の回転機器の寿命日数Lは187ケ月と算出された。その寿命日数Lと当該回転機器の使用日数Uとを用いて寿命消費率S=U/Lを算出し、得られた寿命消費率Sのレベルに応じて寿命評価点SPを付与した。すなわち、寿命消費率Sの低いものをSp=1とし、寿命消費率Sの高いものをSP=5として、5段階に分類した。
By applying the stress amplitude of the rotating device to the master curve, the life rotation speed N (that is, the rotation speed from the new article to the occurrence of the failure) was obtained.
Next, the damage degree d = 1 / N was calculated using the life rotation speed N. The damage d for one day was added and the cumulative damage D = Σd was calculated. Furthermore, the life days L for which D = 1 was calculated. For example, the life days L of the rotary machine of the rough rolling mill was calculated as 187 months. The lifetime consumption rate S = U / L was calculated using the lifetime days L and the usage days U of the rotating equipment, and the lifetime evaluation points SP were given according to the level of the obtained lifetime consumption rate S. That is, the low life consumption rate S was classified into 5 stages, with S p = 1, and the high life consumption rate S having S P = 5.

一方で、予め回転機器の故障を検知する度合に応じて故障検知度評価点TPを付与した。すなわち、故障の検知が容易なものをTP=1とし、故障の検知が困難なものをTP=4とし、4段階に分類した。
そして当該回転機器の寿命評価点SPと故障検知度評価点TPとを用いて、故障発生リスク評価点RP=SP×TPを算出した。
On the other hand, to impart failure detection evaluation point T P according to the degree to detect the failure of the pre-rotation device. That is, T P = 1 for easy detection of failure and T P = 4 for failure detection of failure was classified into four stages.
Then, the failure occurrence risk evaluation point R P = S P × T P was calculated using the life evaluation point S P and the failure detection degree evaluation point T P of the rotating device.

また、予め回転機器の故障が発生した場合の経済的損失の度合に応じて経済リスク評価点EPを付与した。すなわち、経済的損失が低いものをEP=1とし、経済的損失が高いものをEP=8として、8段階に分類した。
このようして得た故障発生リスク評価点RPと経済リスク評価点EPとを用いて、図3に示すようなマトリックスから、当該回転機器の設備保全の必要性を判定した。
In addition, an economic risk evaluation score E P was given in advance according to the degree of economic loss when a rotating machine failure occurred. That is, E P = 1 for low economic loss, E P = 8 for high economic loss, and classified into 8 stages.
Using the failure risk evaluation point R P and the economic risk evaluation point E P obtained in this way, the necessity for equipment maintenance of the rotating equipment was determined from the matrix as shown in FIG.

その他の回転機器についても同様に、設備保全の必要性を判定した。そして、それらを相互に比較することによって、多数の回転機器の中から設備保全の対象とするものを選択した。
このようにして、限られた人員によって熱間圧延設備の点検および設備保全を効率良く行ない、回転機器の故障を未然に防止し、かつ設備保全作業の期間中の生産停止による経済的な損失を最小に抑えることができた。
Similarly, the necessity of equipment maintenance was also determined for other rotating equipment. Then, by comparing them with each other, an object for equipment maintenance was selected from a large number of rotating devices.
In this way, inspection and maintenance of hot rolling equipment can be efficiently performed by a limited number of personnel to prevent rotating equipment from being damaged beforehand, and economic loss due to production stoppage during equipment maintenance work can be avoided. We were able to keep it to a minimum.

なお上記した各回転機器の荷重の測定から故障発生リスク評価点を算出するまでの演算、および故障発生リスク評価点と経済リスク評価点とに基づいて得られるマトリックス中に回転機器が占める位置の表示は、コンピューターで処理した。   It should be noted that the calculation from the load measurement of each rotating device to the calculation of the failure occurrence risk evaluation point, and the display of the position occupied by the rotation device in the matrix obtained based on the failure occurrence risk evaluation point and the economic risk evaluation point Was processed on a computer.

熱間圧延設備の例を模式的に示す配置図である。It is an arrangement figure showing an example of hot rolling equipment typically. マスターカーブの一例を示すグラフである。It is a graph which shows an example of a master curve. 経済リスク評価点と故障発生リスク評価点を表示する例を示す図である。It is a figure which shows the example which displays an economic risk evaluation score and a failure occurrence risk evaluation score.

符号の説明Explanation of symbols

1 鋼スラブ
2 粗圧延機
3 仕上げ圧延機
4 巻取り機
1 Steel slab 2 Coarse rolling mill 3 Finish rolling mill 4 Winding machine

Claims (1)

鋼スラブの熱間圧延設備における粗圧延機、仕上げ圧延機、巻取り機、搬送コンベアの各回転機器に、加速度計センサーとして配設し、各センサーから得られるデータを繰返し応力範囲Rangeに変換して当該回転機器の応力振幅Amp=Range/2を求め、前記応力振幅Ampを予め設定したマスターカーブに適用して寿命回転数Nを求め、前記寿命回転数Nから損傷度d=1/Nを算出し、所定の日数の間に得られる前記損傷度dを累積して累積損傷度D=Σdを算出し、前記累積損傷度Dを用いてD=1となる寿命日数Lを算出し、次に、当該回転機器の使用日数Uと前記寿命日数Lとを用いて寿命消費率S=U/Lを算出し、前記寿命消費率Sのレベルに応じて寿命評価点SPを付与し、予め故障検知のレベルに応じて設定した故障検知度評価点TPと前記寿命評価点SPとを用いて故障発生リスク評価点RP=TP×SPを算出し、次いで、予め故障に起因する経済的損失のレベルに応じて設定した経済リスク評価点EPと前記故障発生リスク評価点RPとに基づいて、当該回転機器の補修あるいは更新の必要性を判定し、その他の回転機器についても同様に補修あるいは更新の必要性を判定し、相互に比較することによって補修あるいは更新を行なう回転機器を選択することを特徴とする回転機器の診断方法。 Rough rolling mill in the hot rolling mill of the steel slab, finishing mill, coiling machine, each rotating device conveyor, disposed accelerometer as a sensor, converted into a stress range Range repeated data obtained from each sensor Then, the stress amplitude Amp = Range / 2 of the rotating device is obtained, the life amplitude N is obtained by applying the stress amplitude Amp to a preset master curve, and the damage degree d = 1 / N from the life revolution N. And calculating the cumulative damage degree D = Σd by accumulating the damage degree d obtained during a predetermined number of days, and calculating the life days L at which D = 1 using the cumulative damage degree D, Next, the service life consumption rate S = U / L is calculated using the use days U and the service life days L of the rotating device, and the service life evaluation point SP is given according to the level of the service life consumption rate S, Failure detection degree evaluation set in advance according to the level of failure detection The failure risk evaluation point R P = T P × S P is calculated using the point T P and the life evaluation point S P, and then the economic risk set in advance according to the level of economic loss due to the failure Based on the evaluation point E P and the failure risk evaluation point R P , determine the necessity of repair or update of the rotating equipment, determine the necessity of repair or update of other rotating equipment in the same way, A rotating device diagnosis method comprising selecting rotating devices to be repaired or updated by comparing with each other.
JP2008276992A 2008-10-28 2008-10-28 Diagnosis method of rotating equipment Expired - Fee Related JP5487591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008276992A JP5487591B2 (en) 2008-10-28 2008-10-28 Diagnosis method of rotating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008276992A JP5487591B2 (en) 2008-10-28 2008-10-28 Diagnosis method of rotating equipment

Publications (2)

Publication Number Publication Date
JP2010107233A JP2010107233A (en) 2010-05-13
JP5487591B2 true JP5487591B2 (en) 2014-05-07

Family

ID=42296830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008276992A Expired - Fee Related JP5487591B2 (en) 2008-10-28 2008-10-28 Diagnosis method of rotating equipment

Country Status (1)

Country Link
JP (1) JP5487591B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543357A (en) * 2018-10-18 2019-03-29 电子科技大学 Fault degree quantitative evaluation method for multivariate regression model optimization

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079984B2 (en) * 2004-03-03 2006-07-18 Fisher-Rosemount Systems, Inc. Abnormal situation prevention in a process plant
JP2006079322A (en) * 2004-09-09 2006-03-23 Tokuyama Corp Maintenance management method of rotary equipment
JP5137307B2 (en) * 2006-01-27 2013-02-06 中国電力株式会社 Risk assessment system for hydropower plants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543357A (en) * 2018-10-18 2019-03-29 电子科技大学 Fault degree quantitative evaluation method for multivariate regression model optimization
CN109543357B (en) * 2018-10-18 2021-01-05 电子科技大学 Fault degree quantitative evaluation method for multivariate regression model optimization

Also Published As

Publication number Publication date
JP2010107233A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
CN108572006B (en) Condition diagnosing device
US9360393B2 (en) Determining damage and remaining useful life of rotating machinery including drive trains, gearboxes, and generators
US7433789B1 (en) Method, apparatus and computer program product for determining a maintenance value associated with a component
Kosasih et al. Degradation trend estimation and prognosis of large low speed slewing bearing lifetime
JP6365526B2 (en) Bearing deterioration detection method and bearing deterioration detection device for small diameter roll
KR20200135453A (en) Abnormality determination support device
US20210294289A1 (en) Method for detecting integrity index of driving unit
JP5487591B2 (en) Diagnosis method of rotating equipment
Oßberger et al. Insights towards condition monitoring of fixed railway crossings
JP2013029916A (en) Product defect factor analysis device
CN103411506A (en) Chain abrasion inspection method and inspection tool
Belodedenko et al. Prediction of operability of the plate rolling rolls based on the mixed fracture mechanism
JP6896071B2 (en) Bearing life evaluation method and equipment
Rusin et al. Steam turbine maintenance planning based on forecasting of life consumption processes and risk analysis
JP7187397B2 (en) Re-learning Necessity Determining Method and Re-learning Necessity Determining Device for Diagnosis Model in Machine Tool, Re-learning Necessity Determining Program
JP7031512B2 (en) Monitoring work support system for steel plants
Shin et al. A study on the health monitoring of hot rolling mill
WO2017051456A1 (en) Equipment life diagnostic device
JP3379304B2 (en) Plant abnormality monitoring method and abnormality monitoring device
JP7217593B2 (en) Predictive diagnosis system
JP6835049B2 (en) Tension control method in metal strip processing line
Jin et al. Identification of influential functional process variables for surface quality control in hot rolling processes
Deckers et al. Condition monitoring and failure diagnosis in plants of the metals industry
KR101733006B1 (en) Structure Unit For Detecting Overload Of Roll Mill
KR20190130319A (en) Apparatus and method for calculating roll pitch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5487591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees