JP5487062B2 - Noise removal device - Google Patents

Noise removal device Download PDF

Info

Publication number
JP5487062B2
JP5487062B2 JP2010211608A JP2010211608A JP5487062B2 JP 5487062 B2 JP5487062 B2 JP 5487062B2 JP 2010211608 A JP2010211608 A JP 2010211608A JP 2010211608 A JP2010211608 A JP 2010211608A JP 5487062 B2 JP5487062 B2 JP 5487062B2
Authority
JP
Japan
Prior art keywords
noise
signal
window function
input signal
impulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010211608A
Other languages
Japanese (ja)
Other versions
JP2012068342A (en
Inventor
大輔 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010211608A priority Critical patent/JP5487062B2/en
Publication of JP2012068342A publication Critical patent/JP2012068342A/en
Application granted granted Critical
Publication of JP5487062B2 publication Critical patent/JP5487062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Noise Elimination (AREA)

Description

本発明は、磁気センサで取得した入力信号に含まれるインパルス状磁気雑音を除去するための雑音除去装置に関する。   The present invention relates to a noise removal device for removing impulse magnetic noise included in an input signal acquired by a magnetic sensor.

磁気センサの高感度化、小型化により、磁気センサを利用する環境が多様となり、設置環境で発生する磁気が出力信号に及ぼす影響が大きくなっている。   Due to the high sensitivity and miniaturization of magnetic sensors, the environment in which the magnetic sensor is used is diversified, and the influence of magnetism generated in the installation environment on the output signal is increasing.

特に磁気センサをデバイスに搭載した場合、デバイス内の他の電子機器が動作する時に同期して発生するインパルス状磁気雑音の影響は大きく、磁気センサの検出レベルの何十倍という雑音を発生させている。   In particular, when a magnetic sensor is installed in a device, the influence of impulse magnetic noise generated in synchronization with the operation of other electronic devices in the device is significant, and noise that is tens of times the detection level of the magnetic sensor is generated. Yes.

従来、雑音を除去する方法としては、特許文献1、2に記載されているような手法が使用されている。特許文献1では、環境雑音が存在する環境下で音声がときどき入力されるような場合には、雑音スペクトル更新部が、フーリエ分析部の出力と雑音スペクトル記憶部内の前の雑音スペクトルとに基づいて、現在の雑音スペクトルを求め、雑音スペクトル記憶部内の前の雑音スペクトルと求めた現在の雑音スペクトルとを、雑音信号判定部の判定に基づいて切り換え、推定雑音スペクトルとして出力し、雑音スペクトル記憶部内の前の雑音スペクトルを現在の雑音スペクトルに更新し、雑音が重畳した音声から雑音を除去している。   Conventionally, techniques as described in Patent Documents 1 and 2 are used as a method for removing noise. In Patent Literature 1, when speech is sometimes input in an environment where environmental noise exists, the noise spectrum update unit is based on the output of the Fourier analysis unit and the previous noise spectrum in the noise spectrum storage unit. The current noise spectrum is obtained, the previous noise spectrum in the noise spectrum storage unit and the obtained current noise spectrum are switched based on the determination of the noise signal determination unit, and output as an estimated noise spectrum, and the noise spectrum storage unit The previous noise spectrum is updated to the current noise spectrum, and the noise is removed from the speech with the superimposed noise.

また、特許文献2では、入力信号の音響特徴量をフレームごとに抽出し、クリーン音声信号と無音信号の確率モデルを利用して、雑音モデルパラメータを、並列処理により、かつ時間軸に対し順方向だけでなく逆方向にも推定する。そして、フレーム毎に非音声状態/音声確率及び非音声状態確率に対する音声確率の比を算出し、当該音声確率の比と閾値を比較して音声区間推定を行う。さらに、各確率モデルのパラメータと非音声状態/音声確率とを用い、雑音信号を除去する周波数応答フィルタを生成し、当該周波数応答フィルタをインパルス応答フィルタに変換し、入力信号に対して当該インパルス応答フィルタを畳み込んで雑音除去音声信号を生成して出力している。   Further, in Patent Document 2, an acoustic feature amount of an input signal is extracted for each frame, and a noise model parameter is forward-processed by parallel processing and with respect to a time axis by using a probability model of a clean speech signal and a silence signal. As well as the reverse direction. Then, for each frame, a non-speech state / speech probability and a ratio of the speech probability to the non-speech state probability are calculated, and a speech interval estimation is performed by comparing the speech probability ratio with a threshold. Furthermore, using the parameters of each probability model and the non-speech state / speech probability, a frequency response filter that removes a noise signal is generated, the frequency response filter is converted into an impulse response filter, and the impulse response is converted to the input signal. The filter is convoluted to generate and output a noise-removed audio signal.

図4は特許文献1に示す従来の雑音除去装置の動作フローの一例を示す図である。図4において、雑音の重畳した入力波形に対し、10ms〜20ms程度の局所時間データを切出し、窓掛け部21によりデータの連続性を保つため窓関数を掛ける。続いてFFT分析部22により周波数分析を行い、この分析結果を振幅スペクトルと位相スペクトルに分解する。振幅スペクトルは、音声区間検知部23、雑音スペクトル更新部24、雑音引き算部25に出力される。一方、位相スペクトルは、音声波形の再合成のためにIFFT合成部27に出力される。   FIG. 4 is a diagram illustrating an example of an operation flow of the conventional noise removing device disclosed in Patent Document 1. In FIG. In FIG. 4, local time data of about 10 ms to 20 ms is cut out from the input waveform on which noise is superimposed, and a window function is applied by the windowing unit 21 to maintain data continuity. Subsequently, frequency analysis is performed by the FFT analysis unit 22, and the analysis result is decomposed into an amplitude spectrum and a phase spectrum. The amplitude spectrum is output to the voice section detection unit 23, the noise spectrum update unit 24, and the noise subtraction unit 25. On the other hand, the phase spectrum is output to the IFFT synthesis unit 27 for re-synthesis of the speech waveform.

音声区間検知部23では、入力された雑音信号の重畳した音声信号のある音声区間、および音声の無い雑音信号のみの雑音区間を判別し、雑音スペクトル更新部24に出力する。雑音スペクトル更新部24では、音声区間および雑音区間における雑音信号を推定する。雑音引き算部25では、FFT分析部からの雑音信号の重畳した振幅スペクトルから、雑音スペクトル更新部24で推定された雑音信号を各周波数について減じる処理を行う。負係数0化部26では、雑音引き算部25での引き算の結果、振幅が負になる周波数についてその振幅を0にする。雑音信号が除かれた振幅スペクトルと位相スペクトルを、IFFT合成部27により合成処理および逆フーリエ変換を行い、さらに、窓掛け波形の加算による合成部28にて連続波形を再生、出力することによって、雑音が除去された音声信号の波形を得ることができる。   The voice section detection unit 23 discriminates a voice section with a voice signal on which the input noise signal is superimposed and a noise section with only a noise signal without voice and outputs them to the noise spectrum update unit 24. The noise spectrum updating unit 24 estimates a noise signal in the voice section and the noise section. The noise subtracting unit 25 performs processing for subtracting the noise signal estimated by the noise spectrum updating unit 24 for each frequency from the amplitude spectrum on which the noise signal from the FFT analyzing unit is superimposed. The negative coefficient zero unit 26 sets the amplitude to zero for a frequency at which the amplitude becomes negative as a result of the subtraction in the noise subtraction unit 25. The IFFT synthesis unit 27 performs synthesis processing and inverse Fourier transform on the amplitude spectrum and phase spectrum from which the noise signal has been removed, and further reproduces and outputs a continuous waveform by the synthesis unit 28 based on addition of windowed waveforms. The waveform of the audio signal from which noise has been removed can be obtained.

特開平8−160994号公報JP-A-8-160994 特開2009−210647号公報JP 2009-210647 A

上述した従来の雑音除去装置は、サンプリング間隔が10ms〜20ms程度の音声信号処理では利点を有している。しかし、サンプリング間隔が大きくなる場合には、FFT分析とIFFT合成を実施することに伴う遅延とメモリ量増加が問題となる。すなわち、一旦周波数領域への変換を行い、周波数成分で雑音推定、除去を行い、再び時間領域へ再変換および合成を行うため、例えば50Hz以下の低周波信号のような、サンプリング間隔100msを超える信号の場合には、より長いデータ処理時間が必要となる。そのため、リアルタイム性と雑音除去性能を両立することが困難であった。   The above-described conventional noise removal apparatus has an advantage in audio signal processing with a sampling interval of about 10 ms to 20 ms. However, when the sampling interval becomes large, the delay and the increase in the amount of memory associated with performing FFT analysis and IFFT synthesis become a problem. That is, once converted to the frequency domain, noise estimation and removal is performed with the frequency component, and re-converted and synthesized again into the time domain, for example, a signal exceeding a sampling interval of 100 ms, such as a low frequency signal of 50 Hz or less. In this case, a longer data processing time is required. For this reason, it has been difficult to achieve both real-time performance and noise removal performance.

そこで本発明は、リアルタイム性を損なわず、インパルス状磁気雑音を除去可能な雑音除去装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a noise removing device that can remove impulse magnetic noise without impairing real-time performance.

上述した課題を解決するため、本発明の雑音除去装置は、低周波観測信号に対し、時間軸領域での単純処理を行い、リアルタイム性を損なわず、インパルス状磁気雑音を除去可能としたものである。   In order to solve the above-described problems, the noise removal device of the present invention performs simple processing in the time axis region for low-frequency observation signals, and can remove impulse magnetic noise without impairing real-time characteristics. is there.

本発明によれば、インパルス状磁気雑音が混在した入力信号から前記インパルス状磁気雑音を除去する雑音除去装置であって、前記インパルス状磁気雑音の発生と共に、メモリ内に保持された前記インパルス状磁気雑音が混在するまでの入力信号である過去のデータを、一次または二次の近似式で近似予測した近似予測値を算出する予測値計算部と、窓関数係数値を算出する窓関数計算部を備え、前記近似予測値を前記入力信号から減じた雑音推定信号と前記窓関数係数値を乗じて雑音推定補間信号が算出され、前記雑音推定補間信号を前記入力信号から減じることにより、前記インパルス状磁気雑音を除去することを特徴とする雑音除去装置が得られる。 According to the present invention, there is provided a noise removing device for removing the impulse magnetic noise from an input signal mixed with the impulse magnetic noise, wherein the impulse magnetic noise held in a memory is generated together with the generation of the impulse magnetic noise. A prediction value calculation unit that calculates an approximate prediction value obtained by approximating past data that is an input signal until noise is mixed with a primary or secondary approximation formula, and a window function calculation unit that calculates a window function coefficient value. A noise estimation interpolation signal is calculated by multiplying the noise estimation signal obtained by subtracting the approximate prediction value from the input signal and the window function coefficient value , and subtracting the noise estimation interpolation signal from the input signal, thereby generating the impulse shape A noise removal apparatus characterized by removing magnetic noise is obtained.

本発明によれば、前記窓関数計算部は、前記インパルス状磁気雑音の発生を起点として、1から0へ連続的に変化する前記窓関数係数値を出力することを特徴とする上記の雑音除去装置が得られる。 According to the present invention, the window function calculator, as a starting point the occurrence of the impulse magnetic noise, said noise removal and outputs the window function coefficient value that varies continuously from 1 to 0 A device is obtained.

本発明においては、インパルス状磁気雑音の発生を起点として予測値計算と窓関数計算を行うことにより、雑音推定補間信号を算出し、この信号を入力信号から減じることとで、インパルス状磁気雑音を除去可能となる。また、本発明においては、周波数成分分析が不要なことから、リアルタイム性を損なわない雑音除去装置を提供することが可能となる。   In the present invention, a noise estimation interpolation signal is calculated by performing a prediction value calculation and a window function calculation starting from the generation of the impulse magnetic noise, and the impulse magnetic noise is reduced by subtracting this signal from the input signal. It can be removed. In the present invention, since the frequency component analysis is unnecessary, it is possible to provide a noise removing device that does not impair the real-time property.

本発明による雑音除去装置を示す図。The figure which shows the noise removal apparatus by this invention. インパルス状磁気雑音の除去結果を示す図で、図2(a)は、周波数−パワースペクトル特性図で、図2(b)は時間−磁気レベル特性図。FIG. 2A is a diagram illustrating a result of removing impulse magnetic noise, FIG. 2A is a frequency-power spectrum characteristic diagram, and FIG. 2B is a time-magnetic level characteristic diagram. 窓関数計算部による窓関数係数出力値を示す図。The figure which shows the window function coefficient output value by a window function calculation part. 従来の雑音除去装置の動作フローの一例を示す図。The figure which shows an example of the operation | movement flow of the conventional noise removal apparatus.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明による雑音除去装置を示す図である。本発明の雑音除去装置1について、以下に説明する。磁気センサで検出した入力信号11に、インパルス状磁気雑音としてインパルス発生トリガ信号12を入力し、サンプリングを行う。予測値計算部13は、インパルス発生トリガ信号12が入力されるまで、過去データを使用し、以下に示す(数1)により回帰直線係数a、bを逐次算出している。(数1)は回帰直線係数を算出する数式である。インパルス発生トリガ信号12が入力されると同時に、最新の回帰直線係数に固定し、インパルス発生トリガ信号12入力からの時間経過による算出データ数に対応した近似予測値を出力するよう構成され、入力信号11に対する近似予測を行う。(数1)において、Nは算出データ数、x(i)はNで規定される最も古い過去データをゼロとしたデータ番号、y(i)はx(i)に対応する入力信号とする。入力信号11から予測値計算部13で出力された近似予測値を減算し、雑音推定信号を出力する。   FIG. 1 is a diagram showing a noise removing apparatus according to the present invention. The noise removal apparatus 1 of the present invention will be described below. An impulse generation trigger signal 12 is inputted as impulse magnetic noise to the input signal 11 detected by the magnetic sensor, and sampling is performed. The predicted value calculation unit 13 uses the past data until the impulse generation trigger signal 12 is input, and sequentially calculates the regression linear coefficients a and b by the following (Equation 1). (Equation 1) is a mathematical formula for calculating a regression linear coefficient. At the same time when the impulse generation trigger signal 12 is input, it is fixed to the latest regression linear coefficient, and is configured to output an approximate predicted value corresponding to the number of calculated data over time from the input of the impulse generation trigger signal 12. Approximate prediction for 11 is performed. In (Expression 1), N is the number of calculated data, x (i) is a data number in which the oldest past data defined by N is zero, and y (i) is an input signal corresponding to x (i). The approximate predicted value output from the predicted value calculation unit 13 is subtracted from the input signal 11 to output a noise estimation signal.

Figure 0005487062
Figure 0005487062

本実施の形態では、予測値計算部13において、回帰直線での近似を行ったが、これは本実施例では、低周波信号に対してインパルス状磁気雑音の発生時間が短いことを想定しており、直線的に近似しても入力信号に対する影響は微小であるためである。また、回帰直線での近似以外にも、2次数の近似式でも本発明の効果が得られる。   In the present embodiment, the predicted value calculation unit 13 approximates the regression line. In this embodiment, it is assumed that the generation time of the impulse magnetic noise is short with respect to the low frequency signal. This is because even if linear approximation is performed, the influence on the input signal is very small. In addition to the approximation by the regression line, the effect of the present invention can be obtained by an approximate expression of a second order.

インパルス発生トリガ信号12入力からの時間経過に伴う算出データ数が増えるに従い、近似予測値を減算した雑音推定信号は、入力信号11に対し時間差による遅延誤差が増加する。この遅延誤差の増加を抑制するために、雑音推定信号に窓関数計算部14で計算された窓関数係数を掛け合わせ、雑音推定信号を窓関数で補間するのが好ましい。図3は、窓関数計算部による窓関数係数出力値を示す図である。窓関数計算部14は、インパルス発生トリガ信号12入力中に1〜0へ変化するように、以下に示す(数2)より窓関数係数を算出し、図3のような係数が出力されるよう構成されている。窓幅WNのi番目データに対する窓関数係数出力値W(i)は(数2)のように示される。ここで重み決定係数COEは、経過データ数に対する窓関数係数出力値W(i)を変化させる係数である。   As the number of calculated data with the passage of time from the input of the impulse generation trigger signal 12 increases, the noise estimation signal obtained by subtracting the approximate prediction value increases the delay error due to the time difference with respect to the input signal 11. In order to suppress an increase in the delay error, it is preferable to multiply the noise estimation signal by the window function coefficient calculated by the window function calculation unit 14 and interpolate the noise estimation signal with the window function. FIG. 3 is a diagram illustrating a window function coefficient output value by the window function calculation unit. The window function calculation unit 14 calculates the window function coefficient from the following (Equation 2) so that it changes from 1 to 0 during the impulse generation trigger signal 12 input, and the coefficient as shown in FIG. 3 is output. It is configured. The window function coefficient output value W (i) for the i-th data of the window width WN is expressed as (Equation 2). Here, the weight determination coefficient COE is a coefficient that changes the window function coefficient output value W (i) with respect to the number of elapsed data.

Figure 0005487062
Figure 0005487062

入力信号11から近似予測値による変化分を減じた雑音推定信号に、窓関数計算部14で計算された窓関数係数出力値を掛け合わせ補間して得られた雑音推定補間信号を、入力信号11から減算することで、インパルス状磁気雑音が除去された出力信号15を得ることが出来る。   The noise estimation interpolation signal obtained by interpolating the noise estimation signal obtained by subtracting the change due to the approximate prediction value from the input signal 11 and the window function coefficient output value calculated by the window function calculation unit 14 is obtained as the input signal 11. By subtracting from, it is possible to obtain the output signal 15 from which the impulse magnetic noise has been removed.

なお、窓関数計算部14は、インパルス発生トリガ信号12が入力されていない場合は、ゼロを出力するよう構成されているため、入力信号11は出力信号15へと無補償で出力される。   The window function calculation unit 14 is configured to output zero when the impulse generation trigger signal 12 is not input, and therefore the input signal 11 is output to the output signal 15 without compensation.

本実施例では、入力信号のサンプリング間隔100ms、(数1)での回帰直線係数の算出データ数Nを2〜100とし、(数2)での窓幅WNを11〜61、重み決定係数COEを1〜32として、雑音除去前の入力信号と、雑音除去後の出力信号を周波数解析し、周波数−パワースペクトル特性を測定し、雑音除去レベルを算出した。雑音除去レベルは、10Hzにおいて、インパルス発生トリガ信号が混在した入力信号の最大値から出力信号の最大値を減算した値である。表1は、各条件での雑音除去レベルの算出結果である。   In this embodiment, the input signal sampling interval is 100 ms, the regression line coefficient calculation data number N in (Expression 1) is 2 to 100, the window width WN in (Expression 2) is 11 to 61, and the weight determination coefficient COE. 1 to 32, the input signal before noise removal and the output signal after noise removal were subjected to frequency analysis, the frequency-power spectrum characteristics were measured, and the noise removal level was calculated. The noise removal level is a value obtained by subtracting the maximum value of the output signal from the maximum value of the input signal mixed with the impulse generation trigger signal at 10 Hz. Table 1 shows the calculation result of the noise removal level under each condition.

Figure 0005487062
Figure 0005487062

表1からわかるように、本発明の雑音除去装置によると、雑音除去前の入力信号から−15dB〜−30dB程度の雑音除去効果が得られていることが確認できる。なお、10Hz以外の周波数においても同レベルの雑音除去効果が得られた。   As can be seen from Table 1, according to the noise removal apparatus of the present invention, it can be confirmed that a noise removal effect of about −15 dB to −30 dB is obtained from the input signal before noise removal. Note that the same level of noise removal effect was obtained at frequencies other than 10 Hz.

本発明の雑音除去装置において、入力信号のサンプリング間隔は50ms未満であると、正確な信号を再現できず、500msより大きいと必要以上にデータ数が多くなり信号処理に時間がかかるため、50ms〜500msが望ましい。(数1)での回帰直線係数の算出データ数Nは、100以上では予測値計算時間が長くなることで低周波信号の影響を受け補間誤差が増えて本発明の実施効果が得られないため2〜100が望ましい。また、(数2)での窓幅WNは21〜61が望ましく、21〜61の範囲外のとき、表1からわかるように、雑音除去効果が得られない。重み決定係数COEは、32を超えると単なる直線近似補間に近づき補間誤差が増え本発明による実施効果が得られないため1〜32程度が望ましい。   In the noise removal apparatus of the present invention, if the sampling interval of the input signal is less than 50 ms, an accurate signal cannot be reproduced, and if it is greater than 500 ms, the number of data increases more than necessary and signal processing takes time. 500 ms is desirable. When the number N of regression line coefficient calculation data in (Equation 1) is 100 or more, the prediction value calculation time becomes long, and therefore the interpolation error increases due to the influence of the low frequency signal, and the implementation effect of the present invention cannot be obtained. 2-100 are desirable. Further, the window width WN in (Equation 2) is preferably 21 to 61. When the window width WN is outside the range of 21 to 61, as can be seen from Table 1, the noise removal effect cannot be obtained. When the weight determination coefficient COE exceeds 32, it becomes closer to simple linear approximation interpolation and the interpolation error increases, and the effect of the present invention cannot be obtained.

また、入力信号のサンプリング間隔を100ms、(数1)での回帰直線係数の算出データ数Nを5、(数2)での窓幅WNを41、重み決定係数COEを10としたときの周波数−パワースペクトル特性と、時間領域での振幅特性として磁気レベルを測定した。図2は、インパルス状磁気雑音の除去結果を示す図で、図2(a)は、周波数−パワースペクトル特性図で、図2(b)時間−磁気レベル特性図である。   Further, the frequency when the sampling interval of the input signal is 100 ms, the number N of calculated regression line coefficient data in (Equation 1) is 5, the window width WN is 41 in (Equation 2), and the weight determination coefficient COE is 10. -The magnetic level was measured as a power spectrum characteristic and an amplitude characteristic in the time domain. FIG. 2 is a diagram showing a result of removing impulse-like magnetic noise, FIG. 2A is a frequency-power spectrum characteristic diagram, and FIG. 2B is a time-magnetic level characteristic diagram.

図2(a)から明らかなように、本発明の雑音除去装置によると、雑音除去後は測定した全周波数において高い雑音除去レベルが得られている。また、図2の(b)から明らかなように、磁気雑音除去前後の磁気レベルを測定した結果、インパルス状磁気雑音に対する雑音除去効果が得られており、時間軸で信号遅延も発生しないことが確認できた。   As apparent from FIG. 2 (a), according to the noise removal apparatus of the present invention, a high noise removal level is obtained at all measured frequencies after noise removal. Further, as apparent from FIG. 2B, as a result of measuring the magnetic level before and after the magnetic noise removal, a noise removal effect for the impulse magnetic noise is obtained, and no signal delay occurs on the time axis. It could be confirmed.

本発明の雑音除去装置は、コンピュータでのプログラムとして構成してもよいし、少なくとも一部をハードウエアとして構成しても良い。本発明は上述の実施の形態に限定されるものではないことは言うまでもなく、各部の構成値は目的や要求性能に応じて設計変更可能である。   The noise removal apparatus of the present invention may be configured as a program on a computer, or at least a part may be configured as hardware. Needless to say, the present invention is not limited to the above-described embodiment, and the design values of the components can be changed according to the purpose and required performance.

1 雑音除去装置
11 入力信号
12 インパルス発生トリガ信号
13 予測値計算部
14 窓関数計算部
15 出力信号
21 窓掛け部
22 FFT分析部
23 音声区間検知部
24 雑音スペクトル更新部
25 雑音引き算部
26 負係数0化部
27 IFFT合成部
28 窓掛け波形の加算による合成部
DESCRIPTION OF SYMBOLS 1 Noise removal apparatus 11 Input signal 12 Impulse generation trigger signal 13 Predicted value calculation part 14 Window function calculation part 15 Output signal 21 Windowing part 22 FFT analysis part 23 Voice area detection part 24 Noise spectrum update part 25 Noise subtraction part 26 Negative coefficient Zeroing unit 27 IFFT synthesis unit 28 Synthesis unit by addition of windowed waveform

Claims (2)

インパルス状磁気雑音が混在した入力信号から前記インパルス状磁気雑音を除去する雑音除去装置であって、前記インパルス状磁気雑音の発生と共に、メモリ内に保持された前記インパルス状磁気雑音が混在するまでの入力信号である過去のデータを、一次または二次の近似式で近似予測した近似予測値を算出する予測値計算部と、窓関数係数値を算出する窓関数計算部を備え、前記近似予測値を前記入力信号から減じた雑音推定信号と前記窓関数係数値を乗じて雑音推定補間信号が算出され、前記雑音推定補間信号を前記入力信号から減じることにより、前記インパルス状磁気雑音を除去することを特徴とする雑音除去装置。 A noise removing device that removes the impulse magnetic noise from an input signal in which impulse magnetic noise is mixed. A prediction value calculation unit that calculates an approximate prediction value obtained by approximating the past data that is an input signal with a primary or secondary approximation formula; and a window function calculation unit that calculates a window function coefficient value , the approximate prediction value A noise estimation interpolation signal is calculated by multiplying the noise estimation signal subtracted from the input signal by the window function coefficient value, and the impulse magnetic noise is removed by subtracting the noise estimation interpolation signal from the input signal. A noise removal device characterized by the above. 前記窓関数計算部は、前記インパルス状磁気雑音の発生を起点として、1から0へ連続的に変化する前記窓関数係数値を出力することを特徴とする請求項1に記載の雑音除去装置。 The window function calculator, as a starting point the occurrence of the impulse magnetic noise, noise removal device according to claim 1, characterized in that outputs the window function coefficient value that varies continuously from 1 to 0.
JP2010211608A 2010-09-22 2010-09-22 Noise removal device Active JP5487062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010211608A JP5487062B2 (en) 2010-09-22 2010-09-22 Noise removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211608A JP5487062B2 (en) 2010-09-22 2010-09-22 Noise removal device

Publications (2)

Publication Number Publication Date
JP2012068342A JP2012068342A (en) 2012-04-05
JP5487062B2 true JP5487062B2 (en) 2014-05-07

Family

ID=46165721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211608A Active JP5487062B2 (en) 2010-09-22 2010-09-22 Noise removal device

Country Status (1)

Country Link
JP (1) JP5487062B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248630A (en) * 1990-02-27 1991-11-06 Kokusai Denshin Denwa Co Ltd <Kdd> Noise reduction system for voice signal
JPH06349208A (en) * 1993-06-08 1994-12-22 Matsushita Electric Ind Co Ltd Noise suppressor
JP4058987B2 (en) * 2002-04-15 2008-03-12 三菱電機株式会社 Noise removing apparatus and noise removing method
FR2883656B1 (en) * 2005-03-25 2008-09-19 Imra Europ Sas Soc Par Actions CONTINUOUS SPEECH TREATMENT USING HETEROGENEOUS AND ADAPTED TRANSFER FUNCTION
JP2006279185A (en) * 2005-03-28 2006-10-12 Casio Comput Co Ltd Imaging apparatus, and sound recording method and program
JP4868999B2 (en) * 2006-09-22 2012-02-01 富士通株式会社 Speech recognition method, speech recognition apparatus, and computer program

Also Published As

Publication number Publication date
JP2012068342A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP6177253B2 (en) Harmonicity-based single channel speech quality assessment
JP4568733B2 (en) Noise suppression device, noise suppression method, noise suppression program, and computer-readable recording medium
KR100938691B1 (en) Active noise suppressor
JP4958303B2 (en) Noise suppression method and apparatus
JP6136995B2 (en) Noise reduction device
CN103021420B (en) Speech enhancement method of multi-sub-band spectral subtraction based on phase adjustment and amplitude compensation
JP5528538B2 (en) Noise suppressor
EP2031583B1 (en) Fast estimation of spectral noise power density for speech signal enhancement
US10741195B2 (en) Sound signal enhancement device
JP5387459B2 (en) Noise estimation device, noise reduction system, noise estimation method, and program
EP1903560B1 (en) Sound signal correcting method, sound signal correcting apparatus and computer program
JP2017021385A (en) Method and device for dereverberation of single-channel speech
RU2013123696A (en) ECHO SUPPRESSION CONTAINING MODELING OF LATE REVERB COMPONENTS
CN102047689A (en) Acoustic echo canceller and acoustic echo cancel method
JP2006313997A (en) Noise level estimating device
JP2014194437A (en) Voice processing device, voice processing method and voice processing program
JP5487062B2 (en) Noise removal device
EP2877820A1 (en) Method of extracting zero crossing data from full spectrum signals
JP3310225B2 (en) Noise level time variation calculation method and apparatus, and noise reduction method and apparatus
JP6182862B2 (en) Signal processing apparatus, signal processing method, and signal processing program
Islam et al. Speech enhancement based on noise compensated magnitude spectrum
JP5700850B2 (en) Delay estimation method, echo cancellation method using the method, apparatus, program and recording medium therefor
JP7461192B2 (en) Fundamental frequency estimation device, active noise control device, fundamental frequency estimation method, and fundamental frequency estimation program
KR20180087021A (en) Method for estimating room transfer function in noise environment and signal process method for estimating room transfer function in noise environment
JP2007251917A (en) Similarity calculation apparatus and method, and echo erasure apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140224

R150 Certificate of patent or registration of utility model

Ref document number: 5487062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350