JP5484648B2 - Bone mineralization promoting factor - Google Patents

Bone mineralization promoting factor Download PDF

Info

Publication number
JP5484648B2
JP5484648B2 JP2005503105A JP2005503105A JP5484648B2 JP 5484648 B2 JP5484648 B2 JP 5484648B2 JP 2005503105 A JP2005503105 A JP 2005503105A JP 2005503105 A JP2005503105 A JP 2005503105A JP 5484648 B2 JP5484648 B2 JP 5484648B2
Authority
JP
Japan
Prior art keywords
dmp1
bone
derivative
calcification
forming agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005503105A
Other languages
Japanese (ja)
Other versions
JPWO2004078217A1 (en
Inventor
悟 豊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koken Co Ltd
Original Assignee
Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co Ltd filed Critical Koken Co Ltd
Priority to JP2005503105A priority Critical patent/JP5484648B2/en
Publication of JPWO2004078217A1 publication Critical patent/JPWO2004078217A1/en
Application granted granted Critical
Publication of JP5484648B2 publication Critical patent/JP5484648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Zoology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Prostheses (AREA)

Description

本出願は、参照によりここに援用されるところの、日本特許出願番号特願2003−059130からの優先権を請求する。  This application claims the priority from Japanese Patent Application No. 2003-059130, which is incorporated herein by reference.

本発明は、生体内所望部位の骨の石灰化を促進する手段に関する。さらに詳細には、骨の石灰化促進方法及びそれに使用する石灰化促進因子に関する。特に、DMP1(Dentin matrix protein 1)の新規な用途に関する。  The present invention relates to a means for promoting bone mineralization at a desired site in a living body. More specifically, the present invention relates to a method for promoting bone mineralization and a factor for promoting mineralization used therein. In particular, it relates to a novel use of DMP1 (Dentin matrix protein 1).

骨形成能を有する薬理学的活性剤として、rhBMP−2、rhBMP−7、及びTGF−β、bFGF、PTH等の骨形成細胞を分化させ、骨誘導を起こす因子が知られている。しかし、これまでに骨マトリックスの石灰化の速度を速め、より早期に石灰化した成熟した骨を形成する物質等の存在は知られていない。
骨、象牙質及びセメント質は、細胞外マトリックスにリン酸カルシウムが沈着し、石灰化したものである。該細胞外マトリックスは、主にコラーゲンであるが、非コラーゲン性マトリックスも含まれ、非コラーゲン性マトリックスの殆どは酸性リン酸化蛋白質である。該コラーゲンの線維はハイドロキシアパタイト結晶の沈着する足場として機能し、酸性リン酸化蛋白質は細胞外マトリックスの石灰化に関与すると信じられてきた。組替えDNA技術で同定された該酸性リン酸化蛋白質は、最初AG1と名づけられ(J.BiolChem 1993;268:12624−12630:非特許文献1)、後にDMP1と変更された(J.Histchem Cytochem 1994;42:1527−1531:非特許文献2)。DMP1のcDNAクローンは、ラットの歯のcDNAライブラリーから同定され、歯の象牙質に特異的であると考えられてきたが(J.Histchem Cytochem 1994;42:1527−1531:非特許文献3)、後に、その発現は他の石灰化組織でも存在することが示された。
最近、本発明者は、歯の形成能を欠失した動物種である鳥類においてもゲノムの中に、DMP1遺伝子が存在し、骨組織で特異的にその遺伝子発現がある事から、DMP1は骨組織で重要な働きがある事を示峻した(J.Mol Evol 2000;48:160−166:非特許文献4)。さらに、本発明者は、鳥類や哺乳類の骨組織では、その動物種に関係なく共通して、DMP1遺伝子は骨マトリックスを分泌する骨芽細胞には発現せず、石灰化した骨マトリックスの中に存在する骨細胞に特異的に発現し、その蛋白は骨細胞周囲の骨マトリックスにのみ分布する事を発見した(J.Bone Miner Res2001;16:2017−2026:非特許文献5)。DMP1の特徴的様相は、酸性アミノ酸含有量が非常に高いこと、また、組織中で高度にリン酸化されることから、組織中では高度に負に荷電する事である。
J.BiolChem 1993;268:12624−12630 J.Histchem Cytochem 1994;42:1527−1531 J.Histchem Cytochem 1994;42:1527−1531 J.Mol Evol 2000;48:160−166 J.Bone Miner Res 2001;16:2017−2026
As pharmacologically active agents having osteogenic potential, factors that cause osteoinduction by differentiating osteogenic cells such as rhBMP-2, rhBMP-7, and TGF-β, bFGF, PTH and the like are known. However, the existence of substances that increase the rate of calcification of the bone matrix and form mature bone that has been calcified earlier has not been known so far.
Bone, dentin, and cementum are calcified with calcium phosphate deposited in the extracellular matrix. The extracellular matrix is mainly collagen, but also includes a non-collagenous matrix, and most of the non-collagenous matrix is an acidic phosphorylated protein. It has been believed that the collagen fibers function as a scaffold on which hydroxyapatite crystals are deposited, and that acidic phosphorylated proteins are involved in calcification of the extracellular matrix. The acidic phosphorylated protein identified by recombinant DNA technology was first named AG1 (J. BiolChem 1993; 268: 12624-12630: Non-Patent Document 1) and later changed to DMP1 (J. Histchem Cytochem 1994; 42: 1527-1531: Non-patent document 2). A cDNA clone of DMP1 was identified from a rat tooth cDNA library and has been considered to be specific for dental dentin (J. Histchem Cytochem 1994; 42: 1527-1531). Later, it was shown that its expression is also present in other calcified tissues.
Recently, the present inventor has found that DMP1 gene is present in the genome even in birds, which are animal species lacking the ability to form teeth, and DMP1 is expressed in bone tissue. It was shown that there is an important function in the organization (J. Mol Evol 2000; 48: 160-166: Non-Patent Document 4). Further, the present inventor has found that in bone tissue of birds and mammals, the DMP1 gene is not expressed in osteoblasts that secrete bone matrix, and is not expressed in calcified bone matrix regardless of animal species. It was specifically expressed in the existing bone cells, and the protein was found to be distributed only in the bone matrix surrounding the bone cells (J. Bone Miner Res2001; 16: 2017-2026: Non-patent document 5). A characteristic aspect of DMP1 is that it has a very high content of acidic amino acids and is highly phosphorylated in the tissue, so that it is highly negatively charged in the tissue.
J. et al. BiolChem 1993; 268: 12624-12630 J. et al. Histchem Cytochem 1994; 42: 1527-1531 J. et al. Histchem Cytochem 1994; 42: 1527-1531 J. et al. Mol Evol 2000; 48: 160-166 J. et al. Bone Miner Res 2001; 16: 2017-2026

本発明は、新規な骨の石灰化促進手段の提供を課題とし、特にDMP1の新規な用途を見出すことにある。DMP1は、組織中で高度にマイナスにチャージする性状から、カルシウムと結合し、それによって細胞外マトリックスの石灰化を促進していると推測される。これまでに石灰化組織において幾つかの非コラーゲン性蛋白質が同定されてきたが、in vivoで細胞外マトリックスの石灰化を促進させたものはなかった。硬組織工学においてDMP1の可能な適応を得るために、DMP1分子の特徴と石灰化過程におけるその可能な機能を検討した。
本発明者は、上記課題を解決するため、DMP1を特異的に骨組織で発現させる手段を確立し、その機能の検討から、DMP1の適量産生が生体への副作用を起こすことなく、骨密度の上昇、ひいては骨の石灰化を促進するものであることを見出し本発明を完成した。
本発明は、以下よりなる。
1.標的骨形成部位をマイナスチャージ状態にすることを特徴とする骨の石灰化促進方法。
2.マイナスイオンチャージ状態が、化合物の存在によって達成される前項1の方法。
3.化合物が、DMP1又はDMP1誘導体である前項2の方法。
4.化合物の存在が充填によるものである前項2又は3の方法。
5.化合物の存在が、選択的骨組織における遺伝子導入法による産生の増加による前項2又は3の方法。
6.化合物の存在が、マトリックス物質との結合又は共存である前項4の方法。
7.結合させるマトリックス物質が、コラーゲンである前項6の方法。
8.前項2〜7の何れか一に記載の方法に使用するDMP1又はDMP1遺伝子担持ベクターを含む骨の石灰化促進因子。
9.DMP1の誘導体又は該遺伝子担持ベクターである前項8の石灰化促進因子。
10.遺伝子担持ベクターが、骨での特異的発現調節に適合したプロモーターを担持する前項8又は9の石灰化促進因子。
11.前項1〜7のいずれか一項に記載する骨の石灰化促進方法を用いた骨又は歯の形成方法。
12.前項1〜7のいずれか一項に記載する骨の石灰化促進方法を用いた骨若しくは歯の疾患及び/又は障害の治療方法。
13.前項8〜10のいずれか一項に記載の石灰化促進因子を有効成分として含む骨若しくは歯の疾患及び/又は障害用治療剤。
14.前項8〜10のいずれか一項に記載の石灰化促進因子を有効成分として含む骨若しくは歯の形成剤。
15.前項8〜10のいずれか一項に記載の石灰化促進因子を有効成分として含む骨又は歯用の医薬組成物。
An object of the present invention is to provide a novel means for promoting bone mineralization, and particularly to find a new use of DMP1. Since DMP1 is highly negatively charged in tissues, it is presumed that it binds calcium and thereby promotes calcification of the extracellular matrix. To date, several non-collagenous proteins have been identified in calcified tissue, but none have promoted extracellular matrix calcification in vivo. In order to obtain possible adaptations of DMP1 in hard tissue engineering, the characteristics of DMP1 molecules and their possible functions in the mineralization process were investigated.
In order to solve the above-mentioned problems, the present inventor has established means for specifically expressing DMP1 in bone tissue. From the examination of its function, the production of an appropriate amount of DMP1 does not cause side effects on the living body, and the bone density can be reduced. The present invention was completed by finding out that it promotes the rise, and consequently, calcification of bone.
The present invention consists of the following.
1. A method for promoting bone mineralization, wherein a target bone formation site is in a negatively charged state.
2. The method of item 1, wherein the negative ion charge state is achieved by the presence of the compound.
3. 3. The method according to item 2 above, wherein the compound is DMP1 or a DMP1 derivative.
4). 4. The method of item 2 or 3, wherein the presence of the compound is due to filling.
5. 4. The method according to item 2 or 3 above, wherein the presence of the compound is due to an increase in production by a gene transfer method in selective bone tissue.
6). 5. The method according to item 4 above, wherein the presence of the compound is binding or coexistence with the matrix substance.
7). 7. The method according to item 6 above, wherein the matrix substance to be bound is collagen.
8). A bone mineralization promoting factor comprising DMP1 or a DMP1 gene-carrying vector used in the method according to any one of 2 to 7 above.
9. 9. The calcification promoting factor according to 8 above, which is a derivative of DMP1 or the gene-carrying vector.
10. 10. The calcification promoting factor according to 8 or 9 above, wherein the gene-carrying vector carries a promoter suitable for specific expression regulation in bone.
11. A bone or tooth formation method using the bone mineralization promoting method according to any one of 1 to 7 above.
12 A method for treating a bone or dental disease and / or disorder using the method for promoting bone mineralization according to any one of 1 to 7 above.
13. A therapeutic agent for a bone or dental disease and / or disorder comprising the calcification promoting factor according to any one of the above items 8 to 10 as an active ingredient.
14 A bone or tooth forming agent comprising the calcification promoting factor according to any one of 8 to 10 as an active ingredient.
15. A bone or dental pharmaceutical composition comprising the calcification promoting factor according to any one of 8 to 10 as an active ingredient.

第1図は、マウスの大腿骨の遠位側の皮質骨の骨密度を測定した図である。
第2図は、マウスの大腿骨の骨幹部の皮質骨の骨密度を測定した図である。
FIG. 1 shows the measurement of bone density of cortical bone on the distal side of the femur of a mouse.
FIG. 2 is a diagram in which the bone density of cortical bone at the diaphysis of the femur of a mouse was measured.

符号の説明Explanation of symbols

第1図の横軸はスライスNO.〔遠位側から骨幹部/大腿骨へ向かって遠位側で15分割のスライスを調製した。正常では遠位側から石灰化が始まり骨幹部/大腿骨に向けて石灰化度(骨密度)があがる〕、縦軸は骨密度(mg/cm)を表し、Tg2MはDMP1の5倍強制発現、Tg3HはDMP1の30倍強制発現、WTは野生型を意味する。●はTg2M、▲はTg3H、○は野生型を示す。各値は平均値を示した。第2図の横軸は各Tg2M、Tg3H、WTであること、縦軸は骨密度(mg/cm)を表す。The horizontal axis in FIG. [15 slices were prepared distally from the distal side to the diaphysis / femur. Normally, calcification starts from the distal side and the degree of calcification (bone density) increases toward the diaphysis / femur], the vertical axis indicates bone density (mg / cm 3 ), and Tg2M is 5 times the force of DMP1 Expression, Tg3H means 30-fold forced expression of DMP1, and WT means wild type. ● represents Tg2M, ▲ represents Tg3H, and ◯ represents a wild type. Each value is an average value. In FIG. 2, the horizontal axis represents Tg2M, Tg3H, and WT, and the vertical axis represents bone density (mg / cm 3 ).

DMP1は、アミノ酸数400〜550個の細胞外マトリックス蛋白質である酸性蛋白質である。そのアミノ酸配列及び遺伝子配列は、豊沢等により開示されている(J Mol Evol 1999;48:160−166,Gene 1999;234:307−314,J Mol Evol 2000;50:31−38など)。DMP1遺伝子は公知の遺伝子であり、ヒトを含む10種の動物からDMP1の配列が報告されている。アミノ酸配列の比較から、全ての種のDMP1は16−21個のアミノ酸を含む疎水性リーダー配列で始まることが知られている。細胞接着性のペプチドRGDモチーフはDMP1分子特異的ではないが、多くの他の酸性リン酸化蛋白質、例えばオステオポンチン、骨シアロ蛋白質、及び象牙質シアロリン酸化蛋白質に存在することが確認されている。Arg−Gly−Asp配列は厳格に哺乳動物のDMP1配列で保存され、その重要な生物学的機能を有することが考えられる。また、DMP1は酸性を示すアミノ酸を非常に多く含有し、また、Serを含む多数のモチーフ配列がリン酸化を受ける事から、組織中で高度にマイナスにチャージしていると判断される。このことから、DMP1はカルシウムイオンと強固な結合能を有し、細胞外マトリックスの石灰化に必要であると考えられる。
本発明の一の特徴は、骨形成部位におけるマイナスイオン状態と骨の石灰化の速度との関係を見出したことである。本発明者は、DMP1遺伝子を骨組織で選択的に発現させ、その蛋白質を骨基質に蓄積させた。そしてその発現量を種々の条件を変えることで調節し、DMP1の産生量と骨の石灰化速度には最適濃度が存在することを確認した。DMP1は、組織中で高度にマイナスにチャージする蛋白質であり、このことが骨の石灰化の速度に強く関係することが本発明によって確認された。なお、石灰化はリン酸カルシウムが細胞外マトリックスに沈着する事であるが、DMP1がカルシウムイオンを引き寄せ、コラーゲンがリン酸を引き寄せる事により、同部位にカルシウムイオンとリン酸が集積し、リン酸カルシウム結晶が形成され、石灰化が促進されると考えられる。
本発明において、DMP1及びその誘導体が石灰化促進因子として機能することを確認した。DMP1は、既に遺伝子工学的に産生できることが確立しており、既知の汎用される大腸菌宿主プロモーター系を使った系で大量生産した組み換えDMP1の使用が可能である。特に、糖鎖構造などの翻訳後修飾は必要でなく、大腸菌が生産するDMP1で十分である。本発明において、DMP1誘導体は、DMP1の石灰化促進機能を維持した、特に哺乳類で確認された保存配列を維持したアミノ酸の1個から数個の置換・欠失・付加等の配列変異、及びDMP1のアミノ酸配列を部分的に模した数十個のアミノ酸からなる合成ポリペプチドをも対象とする。誘導体には、骨形成の足場構造をもつ蛋白質或いは生分解性合成樹脂等も例示される。蛋白質としては、コラーゲン、特にI型コラーゲン、生分解性合成樹脂としてはポリ乳酸誘導体が好適に利用できる。結合は、物理的結合或いは化学的結合を問わず、あらゆる可能性があるが、好適にはジスルフィド結合である。また、DMP1は誘導体化されていなくとも、マトリックス構造をもつ蛋白質或いは生分解性合成樹脂等との混合物であっても十分である。
本発明の石灰化促進手段において、材料1ml当りの石灰化を促進するDMP1の使用量は、骨の石灰化作用を促進する濃度であればいずれでもよい。例えば、通常は0.1μg以上、好ましくは数μg、より好ましくは5〜20μgである。
DMP1を例えば、標的骨形成部に充填するためには、既知組成物との配合による汎用手段によってペースト状に調製されていることが好ましい。例えば、コラーゲンやポリ乳酸誘導体等との配合組成物が利用可能である。
DMP1遺伝子又はその誘導体遺伝子を担持するベクターは、骨組織への特異的遺伝子導入手段により、本発明の骨石灰化促進機能を発揮することができる。自己増殖ベクターに遺伝子を担持する手段によっても本発明の目的は達成可能である。つまり、DMP1遺伝子を担持したベクターも本発明の石灰化促進因子に含めることができる。遺伝子の導入手段は、望ましくはインテグレーションさせる方法、例えばリポソーム法、リン酸カルシウム法、エレクトロポレーション法等によるのが好ましい。しかし一過性に発現させるリポソーム法、リン酸カルシウム法、エレクトロポレーション法、ウイルスベクター法、アテロコラーゲン法等の方法であってもよい。用いるベクターは特に限定されず、公知のプラスミド、ファージ、コスミド、BAC、YAC、組換えウイルス、トランスポゾン等、通常の組み換え実験によって挿入DNA断片を導入することが可能な全ての組換えベクターに適用することができる。ベクターは、当然に自体公知の組合せが好適であるプロモーター、エンハンサーと共に構築することができる。例えば、通常宿主に適したプロモーターが挿入されている市販の蛋白質発現ベクターを用いることができる。
具体的には、ZAP Express(ストラタジーン社製)、pSVK3(アマシャムファルマシアバイオテク社製)、pEGFP−C1(クロンテック社製)、アテロコラーゲン等が挙げられる。プロモーターは、本発明の実施例では、マウスのpro−α1(I)collagenプロモーターを使ったが、その他オステオカルシンプロモーター等でもよい。このプロモーターは、骨形成細胞が特異的に分泌する蛋白質のプロモーターであることから、DMP1を骨組織で特異的に発現させるために有力な手段を提供するものである。
ベクターへのDMP1ポリヌクレオチドの挿入は、該ポリヌクレオチド又はこれを含むDNA断片をベクター中のプロモーターの下流にプロモーターの制御下におかれるように連結して行う。また、プロモーターとDMP1との間にコザック配列(Kozak,M.,Gene,234,187,(1999))を挿入したり、DMP1の下流にタグとなるポリペプチドをコードするDNAを挿入した構造を有するベクターも好ましく用いられる。タグとなるポリペプチドとしては特に制限はないが、例えば、FLAGタグ(BioTechniques,7,580,(1989))等が挙げられる。
プロモーターを連結したDMP1ポリヌクレオチドを標的細胞の染色体中に直接挿入する相同組換え技術(A.A.Vertes et al.,Biosci.Biotechnol.Biochem.,57,2036(1993))、あるいはトランスポゾンや挿入配列(A.A.Vertes et al.,Molecular Microbiol.,11,739(1994))等を用いて発現させることができる。
かくして調製されたDMP1又はその誘導体は、骨の石灰化を所望する骨形成部位に直接充填することができる。また、DMP1遺伝子又はその誘導体遺伝子を担持するベクターを、直接注入、遺伝子銃、注射などによって投与することができる。
本発明により、DMP1又はその誘導体は、骨折の接合部充填、感染による腐骨除去後の骨充填、腫瘍や骨髄炎による広範囲切除後のセラミックなどの充填物と既存骨との接合部充填、歯槽膿漏による歯槽骨除去後の歯槽骨充填、入れ歯の歯槽堤形成術のための充填、インプラント植立のための歯槽骨形成のための充填等に有効に使用可能である。本発明の導入により、骨形成細胞が増生し細胞外基質が産生された後、早期に石灰化レベルが上昇し、成熟した骨としての早期機能発揮が可能となる。
また、本発明の石灰化促進因子を有効成分として含む医薬組成物には、薬学的に許容される塩を含むことができる。薬理学的に許容される塩とは、慣用の無毒性の塩すなわち酸付加塩及び各種塩基との塩を挙げることができる。より具体的には、塩酸、硝酸、硫酸等の無機酸塩、酢酸、クエン酸、フマル酸、酒石酸等の有機酸塩、メタンスルホン酸、p−トルエンスルホン酸等のスルホン酸塩及びアラニン、ロイシン、グルタミン酸等のアミノ酸塩並びにアルカリ金属塩(例えばナトリウム塩、カリウム塩等)、アルカリ土類金属塩(例えばマグネシウム塩、カルシウム塩等)等の無機塩基塩及びトリエチルアミン塩、ピリジン塩、ピコリン塩、エタノールアミン塩、トリエタノールアミン塩、ジシクロヘキシルアミン塩、N,N’−ジベンジルエチレンジアミン塩等の有機アミン塩が挙げられる。
本発明の技術的範囲は骨の石灰化促進方法及び骨の石灰化促進因子に限定されるのみではなく、骨の石灰化促進方法を用いた骨若しくは歯の形成方法、骨若しくは歯の疾患及び/又は障害の治療方法にも及ぶ。さらに、本発明は本発明の石灰化促進因子を有効成分として含む医薬組成物を含み、骨若しくは歯の疾患及び/又は障害用治療剤、さらに骨若しくは歯の形成剤をも含むものである。
DMP1 is an acidic protein that is an extracellular matrix protein having 400 to 550 amino acids. The amino acid sequence and gene sequence are disclosed by Toyosawa et al. (J Mol Evol 1999; 48: 160-166, Gene 1999; 234: 307-314, J Mol Evol 2000; 50: 31-38, etc.). The DMP1 gene is a known gene, and the sequence of DMP1 has been reported from 10 kinds of animals including humans. From amino acid sequence comparisons, all species of DMP1 are known to begin with a hydrophobic leader sequence containing 16-21 amino acids. The cell-adhesive peptide RGD motif is not specific to the DMP1 molecule but has been found to be present in many other acidic phosphorylated proteins such as osteopontin, bone sialoprotein, and dentin sialophosphoprotein. The Arg-Gly-Asp sequence is strictly conserved with the mammalian DMP1 sequence and is thought to have its important biological functions. In addition, DMP1 contains a very large amount of acidic amino acids, and a large number of motif sequences including Ser undergo phosphorylation. Therefore, it is judged that DMP1 is highly negatively charged in tissues. This suggests that DMP1 has a strong binding ability with calcium ions and is necessary for calcification of the extracellular matrix.
One feature of the present invention is that a relationship between the negative ion state at the bone formation site and the bone mineralization rate has been found. The inventor selectively expressed the DMP1 gene in bone tissue and accumulated the protein in the bone matrix. And the expression level was adjusted by changing various conditions, and it was confirmed that the optimal concentration exists in the production amount of DMP1 and the bone mineralization rate. It was confirmed by the present invention that DMP1 is a highly negatively charged protein in the tissue, and this is strongly related to the rate of bone mineralization. Calcification is the deposition of calcium phosphate in the extracellular matrix, but DMP1 attracts calcium ions and collagen attracts phosphoric acid, so that calcium ions and phosphate accumulate at the same site to form calcium phosphate crystals. It is considered that calcification is promoted.
In the present invention, it was confirmed that DMP1 and its derivatives function as calcification promoting factors. It has already been established that DMP1 can be produced by genetic engineering, and it is possible to use recombinant DMP1 produced in large quantities in a system using a known and widely used E. coli host promoter system. In particular, post-translational modifications such as sugar chain structure are not necessary, and DMP1 produced by E. coli is sufficient. In the present invention, the DMP1 derivative is a sequence mutation such as one to several substitutions / deletions / additions of amino acids that maintain the calcification-promoting function of DMP1, particularly a conserved sequence confirmed in mammals, and DMP1 A synthetic polypeptide consisting of several tens of amino acids partially mimicking the amino acid sequence is also targeted. Examples of the derivative include a protein having a scaffold for bone formation or a biodegradable synthetic resin. As proteins, collagen, particularly type I collagen, and polylactic acid derivatives can be suitably used as biodegradable synthetic resins. The bond may be any physical bond or chemical bond, but is preferably a disulfide bond. Further, even if DMP1 is not derivatized, it may be a mixture with a protein having a matrix structure or a biodegradable synthetic resin.
In the calcification promoting means of the present invention, the amount of DMP1 used to promote calcification per 1 ml of material may be any concentration as long as it promotes bone mineralization. For example, it is usually 0.1 μg or more, preferably several μg, more preferably 5 to 20 μg.
For example, in order to fill DMP1 into the target bone forming part, it is preferably prepared in a paste form by general-purpose means by blending with a known composition. For example, a blended composition with collagen, a polylactic acid derivative, or the like can be used.
A vector carrying the DMP1 gene or a derivative gene thereof can exhibit the bone mineralization promoting function of the present invention by means of specific gene introduction into bone tissue. The object of the present invention can also be achieved by means for carrying a gene in a self-propagating vector. That is, a vector carrying the DMP1 gene can also be included in the calcification promoting factor of the present invention. Desirably, the gene introduction means is based on an integration method, for example, a liposome method, a calcium phosphate method, an electroporation method, or the like. However, a transient expression method such as a liposome method, a calcium phosphate method, an electroporation method, a viral vector method, an atelocollagen method, or the like may be used. The vector to be used is not particularly limited, and it is applicable to all recombinant vectors capable of introducing an inserted DNA fragment by a usual recombination experiment, such as a known plasmid, phage, cosmid, BAC, YAC, recombinant virus, transposon, etc. be able to. The vector can be constructed together with a promoter and an enhancer which are naturally suitable for a combination known per se. For example, a commercially available protein expression vector in which a promoter suitable for a normal host is inserted can be used.
Specific examples include ZAP Express (manufactured by Stratagene), pSVK3 (manufactured by Amersham Pharmacia Biotech), pEGFP-C1 (manufactured by Clontech), and atelocollagen. In the examples of the present invention, the mouse pro-α1 (I) collagen promoter was used as the promoter, but other promoters such as osteocalcin promoter may be used. Since this promoter is a promoter of a protein that is secreted specifically by bone-forming cells, it provides a powerful means for specifically expressing DMP1 in bone tissue.
The DMP1 polynucleotide is inserted into the vector by ligating the polynucleotide or a DNA fragment containing the polynucleotide so as to be placed under the control of the promoter downstream of the promoter in the vector. In addition, a structure in which a Kozak sequence (Kozak, M., Gene, 234, 187, (1999)) is inserted between the promoter and DMP1, or a DNA encoding a polypeptide serving as a tag is inserted downstream of DMP1. A vector having the same is also preferably used. The polypeptide to be a tag is not particularly limited, and examples thereof include a FLAG tag (BioTechniques, 7, 580, (1989)).
A homologous recombination technique (AA Vertes et al., Biosci. Biotechnol. Biochem., 57, 2036 (1993)), or a transposon or insertion that directly inserts a promoter-linked DMP1 polynucleotide into the chromosome of the target cell. It can be expressed using a sequence (AA Vertes et al., Molecular Microbiol., 11, 739 (1994)) and the like.
DMP1 or a derivative thereof thus prepared can be directly loaded into the bone formation site where bone mineralization is desired. Further, a vector carrying the DMP1 gene or a derivative gene thereof can be administered by direct injection, gene gun, injection or the like.
According to the present invention, DMP1 or a derivative thereof is used for filling a joint part of a fracture, filling a bone after removal of bone due to infection, filling a joint such as ceramic after extensive resection by tumor or osteomyelitis and existing bone, alveoli It can be effectively used for filling the alveolar bone after removal of the alveolar bone due to pus leakage, filling for alveolar ridge formation of dentures, filling for alveolar bone formation for implant implantation, and the like. With the introduction of the present invention, after osteogenic cells grow and extracellular matrix is produced, the level of calcification rises early, and early function can be demonstrated as mature bone.
Moreover, the pharmaceutical composition containing the calcification promoting factor of the present invention as an active ingredient can contain a pharmaceutically acceptable salt. Examples of pharmacologically acceptable salts include conventional non-toxic salts, that is, acid addition salts and salts with various bases. More specifically, inorganic acid salts such as hydrochloric acid, nitric acid and sulfuric acid, organic acid salts such as acetic acid, citric acid, fumaric acid and tartaric acid, sulfonic acid salts such as methanesulfonic acid and p-toluenesulfonic acid, and alanine and leucine Amino acid salts such as glutamic acid, and inorganic base salts such as alkali metal salts (for example, sodium salts, potassium salts), alkaline earth metal salts (for example, magnesium salts, calcium salts), and triethylamine salts, pyridine salts, picoline salts, ethanol Organic amine salts such as amine salts, triethanolamine salts, dicyclohexylamine salts, N, N′-dibenzylethylenediamine salts and the like can be mentioned.
The technical scope of the present invention is not limited to the bone mineralization promoting method and the bone mineralization promoting factor, but the bone or tooth formation method using the bone mineralization promoting method, the bone or dental disease, and It extends to methods for treating disorders. Furthermore, the present invention includes a pharmaceutical composition containing the calcification promoting factor of the present invention as an active ingredient, and includes a therapeutic agent for bone or dental diseases and / or disorders, and further a bone or dental formation agent.

以下、実施例によって、本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。  EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.

ラットDMP1遺伝子の翻訳領域の開始コドンからストップコドンまでをpro−α1(I)collagenプロモーター(文献:J Cell Biol.1995;129:1421−1432)で骨組織に選択的に発現させるようpNASSβ(CLONTECH Lab.,Inc.)に制限酵素を使って組み込み、トランスジェニックマウス作製用のコンストラクトを構築した。このコンストラクトを使い、C57B/Lの受精卵に遺伝子導入し、DMP1トランスジェニックマウスを作製し、DMP1を強制発現させた骨組識の骨密度(1群4匹で3群)を検討した。生後3ヶ月における大腿骨の各部位における骨密度を測定した。骨組織におけるDMP1の発現は、Northernでその発現量を検討し、in situ hybridizationでその発現部位を再度確認し、DMP1の正常値の約5倍強制発現したもの、正常の約30倍強制発現したものを正常マウスの場合と比較検討した。
図1は、マウスの大腿骨の遠位側の皮質骨の骨密度を測定したものである。横軸は、遠位側から0.5mm刻みでスライスし、No.15までのスライスについて皮質骨の各骨密度(mg/cm)をperipheral quantitative computed tomography(pQCT)で測定した。大腿骨などの長幹骨では、骨端軟骨部から骨幹部へと遠位側に行くに従い皮質骨の骨密度が上昇する。DMP1を正常の約5倍に強制発現させたDMP1トランスジェニックマウス(Tg2M群)では正常マウス(WT群)にくらべて骨密度が各スライス部で有為に上昇した。一方、DMP1を正常の約30倍に強制発現させたDMP1トランスジェニックマウス(Tg3H群)は正常マウスにくらべて骨密度に変化はなかった。このことはDMP1の補充には適応量があり、骨組織に多量に蓄積させると無影響になることが確認された。すなわち、正常の約5倍に強制発現させた場合に、皮質骨の骨密度の上昇率が正常よりも早くなり、石灰化が促進されていることを意味するのである。ここでは、実験系として遺伝子導入法でDMP1の効果を確認したが、この効果はDMP1自体を直接、あるいはコラーゲン等のマトリクス物質とともに対象部位に充填しても同様の効果が導けることを証明しているものと思料する。
図2は、マウスの大腿骨の骨幹部の皮質骨の骨密度を測定したものである。横軸は、左から各Tg2M(DMP1を正常の約5倍に強制発現させたDMP1トランスジェニックマウス)、Tg3H(DMP1を正常の約30倍に強制発現させたDMP1トランスジェニックマウス)、WT(正常マウス)について各骨密度(mg/cm)を上記と同様に測定した。この結果、Tg2M、Tg3H群とWT群間で骨密度に差異はなかった。このことは、石灰化が進み、骨が成熟した骨密度のプラトー状況下ではもはやDMP1は薬理学的作用をおこすことなく過剰な骨の石灰化を導かないことを示すものである。
PNASSβ (CLONTECH) for selective expression in the bone tissue from the start codon to the stop codon of the translation region of the rat DMP1 gene with the pro-α1 (I) collagen promoter (Reference: J Cell Biol. 1995; 129: 1421-1432). Lab., Inc.) using a restriction enzyme to construct a construct for producing a transgenic mouse. Using this construct, a gene was introduced into a C57B / L fertilized egg to produce a DMP1 transgenic mouse, and the bone density of the bone tissue in which DMP1 was forcibly expressed (4 groups per group, 3 groups) was examined. The bone density at each site of the femur at 3 months of age was measured. The expression level of DMP1 in bone tissue was examined by Northern, the expression site was confirmed again by in situ hybridization, and about 5 times normal expression of DMP1 was forcibly expressed, about 30 times normal expression. These were compared with normal mice.
FIG. 1 shows the measurement of bone density of cortical bone on the distal side of the femur of a mouse. The horizontal axis is sliced in 0.5 mm increments from the distal side. For each of up to 15 slices, each bone density (mg / cm 3 ) of the cortical bone was measured with a peripheral quantitative computed tomography (pQCT). In long shafts such as the femur, the bone density of cortical bone increases as it goes distally from the epiphyseal cartilage to the shaft. In the DMP1 transgenic mouse (Tg2M group) in which DMP1 was forcibly expressed about 5 times the normal, the bone density was significantly increased in each slice portion as compared to the normal mouse (WT group). On the other hand, the DMP1 transgenic mice (Tg3H group) in which DMP1 was forcibly expressed about 30 times normal did not change in bone density compared to normal mice. It has been confirmed that there is an adaptive amount for supplementing DMP1, and that no effect is obtained when a large amount is accumulated in bone tissue. That is, when it is forced to express about 5 times the normal, the rate of increase in bone density of cortical bone is faster than normal, which means that calcification is promoted. Here, the effect of DMP1 was confirmed by the gene introduction method as an experimental system, but this effect proved that the same effect can be induced even if DMP1 itself is filled directly or together with a matrix substance such as collagen in the target site. Think of it as being.
FIG. 2 shows the bone density of cortical bone at the diaphysis of the femur of a mouse. The horizontal axis represents each Tg2M (DMP1 transgenic mouse in which DMP1 is forcibly expressed about 5 times normal), Tg3H (DMP1 transgenic mouse in which DMP1 is forcibly expressed about 30 times normal), WT (normal) from the left. Each bone density (mg / cm 3 ) was measured in the same manner as above. As a result, there was no difference in bone density between the Tg2M, Tg3H group and the WT group. This indicates that DMP1 no longer induces excessive bone mineralization without pharmacological action under conditions of plateaus with increased bone mineral density and bone density.

本発明の手段は、骨形成に際し、石灰化の足場となる細胞外マトリックス部に石灰化を引き起こしやすくし、石灰化の速度をあげて早期に成熟した骨形成を促すに有効な手段を提供する。その結果、骨治療における新たな臨床的意義を提供するものである。特に、本発明手段は、骨の形成期にあっては、骨の石灰化を促進するが、石灰化レベルが上昇し成熟した骨形成が終了すると、もはや石灰化促進機能は発揮しないものであるから、過石灰化等の副作用を起こさない安全性にも優れた骨疾患の治療手段になりうるものである。  The means of the present invention provides an effective means for facilitating early bone formation by increasing the speed of calcification by facilitating calcification in the extracellular matrix portion that becomes a scaffold for calcification during bone formation. . As a result, it provides new clinical significance in bone treatment. In particular, the means of the present invention promotes bone mineralization during the bone formation period, but when the level of mineralization is increased and mature bone formation is completed, the function of promoting mineralization is no longer exhibited. Therefore, it can be a therapeutic means for bone diseases with excellent safety without causing side effects such as hypercalcification.

Claims (6)

哺乳類のDMP1、又は、DMP1の石灰化促進機能を維持した哺乳類のDMP1のアミノ酸配列の1個から数個の置換・欠失・付加の配列変異体若しくは哺乳類のDMP1のアミノ酸配列を部分的に模した数十個のアミノ酸からなる合成ポリペプチド(以下DMP1誘導体という)と、I型コラーゲンを併用投与し、それらの結合若しくは共存下で、標的骨形成部位の石灰化の促進をすることを特徴とするDMP1又はDMP1誘導体からなる骨若しくは歯の形成剤Partially mimics the mammalian DMP1, or one or several substitutions, deletions or additions of the mammalian DMP1 amino acid sequence that maintains the calcification promoting function of DMP1, or the mammalian DMP1 amino acid sequence. A synthetic polypeptide consisting of several tens of amino acids (hereinafter referred to as DMP1 derivative) and type I collagen are administered in combination, and in combination or coexistence thereof, calcification of the target bone formation site is promoted. A bone or tooth forming agent comprising DMP1 or a DMP1 derivative. DMP1又はDMP1誘導体の投与が、標的骨形成部位への充填によるものである請求項1の骨若しくは歯の形成剤The bone or tooth forming agent according to claim 1, wherein the administration of DMP1 or DMP1 derivative is by filling the target bone formation site. DMP1又はDMP1誘導体の投与が、選択的骨組織における遺伝子導入法による産生の増加によるものである請求項1の骨若しくは歯の形成剤The bone or tooth forming agent according to claim 1, wherein the administration of DMP1 or DMP1 derivative is due to an increase in production by a gene transfer method in selective bone tissue. DMP1又はDMP1誘導体が、DMP1である請求項1〜3のいずれか一に記載の骨若しくは歯の形成剤The bone or tooth forming agent according to any one of claims 1 to 3 , wherein the DMP1 or the DMP1 derivative is DMP1. DMP1又はDMP1誘導体が、DMP1の石灰化促進機能を維持した哺乳類のDMP1のアミノ酸配列の1個から数個の置換・欠失・付加の配列変異体である請求項1〜3のいずれか一に記載の骨若しくは歯の形成剤The DMP1 or DMP1 derivative is a sequence variant of one to several substitutions, deletions or additions of the amino acid sequence of mammalian DMP1 that maintains the calcification promoting function of DMP1. The bone or tooth forming agent described. DMP1又はDMP1誘導体が、哺乳類のDMP1のアミノ酸配列を部分的に模した数十個のアミノ酸からなる合成ポリペプチドである請求項1〜2のいずれか一に記載の骨若しくは歯の形成剤The bone or tooth forming agent according to any one of claims 1 to 2, wherein the DMP1 or DMP1 derivative is a synthetic polypeptide consisting of several tens of amino acids partially mimicking the amino acid sequence of mammalian DMP1.
JP2005503105A 2003-03-05 2004-03-04 Bone mineralization promoting factor Expired - Fee Related JP5484648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005503105A JP5484648B2 (en) 2003-03-05 2004-03-04 Bone mineralization promoting factor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003059130 2003-03-05
JP2003059130 2003-03-05
JP2005503105A JP5484648B2 (en) 2003-03-05 2004-03-04 Bone mineralization promoting factor
PCT/JP2004/002748 WO2004078217A1 (en) 2003-03-05 2004-03-04 Bone calcification promoter

Publications (2)

Publication Number Publication Date
JPWO2004078217A1 JPWO2004078217A1 (en) 2006-06-08
JP5484648B2 true JP5484648B2 (en) 2014-05-07

Family

ID=32958820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005503105A Expired - Fee Related JP5484648B2 (en) 2003-03-05 2004-03-04 Bone mineralization promoting factor

Country Status (2)

Country Link
JP (1) JP5484648B2 (en)
WO (1) WO2004078217A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013249A1 (en) * 2010-07-30 2012-02-02 Université de Liège Dentin matrix protein 1 (dmp1) for use in pharmaceutical compositions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9721585D0 (en) * 1997-10-10 1997-12-10 Geistlich Soehne Ag Chemical product
AU2002300450B2 (en) * 2001-08-10 2007-04-05 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Collagen Carrier of Therapeutic Genetic Material, and Method
JP2003116560A (en) * 2001-10-11 2003-04-22 Teijin Ltd New polypeptide and polynucleotide encoding the same

Also Published As

Publication number Publication date
JPWO2004078217A1 (en) 2006-06-08
WO2004078217A1 (en) 2004-09-16
WO2004078217A9 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
US10519213B2 (en) Fusion proteins of collagen-binding domain and parathyroid hormone
US10335458B2 (en) Pharmaceutical compositions for treating or preventing bone conditions
DE69513149T3 (en) Methods and compositions for the stimulation of bone cells
EP1594889B1 (en) Nell peptide expression systems and bone formation activity of nell peptide
JP2845346B2 (en) Bone former
KR102647743B1 (en) Induction of osteogenesis by delivering bmp encoding rna
KR101772449B1 (en) Novel peptide
JPH05503003A (en) Potentially involved peptides and their uses
WO1999039724A9 (en) Treatment of bony defects with osteoblast precursor cells
JPH06506360A (en) Protein-induced morphogenesis
CA2699411A1 (en) Neuroendocrine factors for treatment of degenerative diseases
WO1994001557A1 (en) Bone formation-inducing protein
WO1997018829A1 (en) Cartilage/bone inducing materials for reparation
CA2575416A1 (en) Bone sialoprotein collagen-binding peptides
JP5484648B2 (en) Bone mineralization promoting factor
CZ389397A3 (en) Stimulation factor of bones
EP1863850B1 (en) Non-activated polypeptides having a function of tissue regeneration and method for preparing the same
JP2006089395A (en) Prophylactic and/or curative agent for disease caused by production increase of genetic product of collagen gene
FI119373B (en) Bone proteins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110621

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140219

R150 Certificate of patent or registration of utility model

Ref document number: 5484648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees