JP5484033B2 - Surface protection film - Google Patents

Surface protection film Download PDF

Info

Publication number
JP5484033B2
JP5484033B2 JP2009288911A JP2009288911A JP5484033B2 JP 5484033 B2 JP5484033 B2 JP 5484033B2 JP 2009288911 A JP2009288911 A JP 2009288911A JP 2009288911 A JP2009288911 A JP 2009288911A JP 5484033 B2 JP5484033 B2 JP 5484033B2
Authority
JP
Japan
Prior art keywords
component
propylene
ethylene
temperature
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009288911A
Other languages
Japanese (ja)
Other versions
JP2011126231A (en
Inventor
安弘 白石
玄 金井
康則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2009288911A priority Critical patent/JP5484033B2/en
Publication of JP2011126231A publication Critical patent/JP2011126231A/en
Application granted granted Critical
Publication of JP5484033B2 publication Critical patent/JP5484033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、表面保護用フィルムに関し、詳しくは、合成樹脂板、化粧板、金属板、ガラス板などの建築部材の表面保護用、偏光板や位相差板などの液晶表示装置の構成部材の表面保護用として好適に使用されるプロピレン系表面保護用フィルムに関する。   The present invention relates to a film for protecting a surface, and more specifically, for protecting a surface of a building member such as a synthetic resin plate, a decorative plate, a metal plate, and a glass plate, and a surface of a constituent member of a liquid crystal display device such as a polarizing plate or a retardation plate. The present invention relates to a propylene-based surface protective film that is suitably used for protection.

合成樹脂板等の建築部材や、光学機器や電子電気機器等の液晶表示部等は、組立加工時や輸送運搬時等の表面の傷つきや汚れ防止の観点から、表面保護フィルムが貼り付けられ、加工後又は輸送運搬後に係る表面保護フィルムを剥がして使用することが一般的である。
従来、表面保護フィルムとしては、エチレン系樹脂を主成分とした表面保護用フィルムがある。例えば、メタロセン触媒より重合され、組成分布及び、分子量分布が狭く、フィッシュアイの存在しないエチレン系樹脂製の表面保護用フィルムが記載されている(例えば、特許文献1参照)。また、特定の低密度ポリエチレン50〜90重量%と、重量平均分子量/数平均分子量との比が9〜15の特定の高密度ポリエチレン10〜50重量%とからなるポリエチレンと、エチレン−不飽和エステル共重合体からなる粘着層とを共押出しした積層フィルムが記載されている(例えば、特許文献2参照)。
Surface protection films are affixed to building materials such as synthetic resin plates, and liquid crystal display parts such as optical equipment and electronic and electrical equipment, from the viewpoint of preventing scratches and dirt on the surface during assembly processing, transportation, etc. It is common to peel off and use the surface protection film after processing or after transportation and transportation.
Conventionally, as the surface protective film, there is a surface protective film mainly composed of an ethylene-based resin. For example, a surface protective film made of an ethylene-based resin that is polymerized from a metallocene catalyst, has a narrow composition distribution and molecular weight distribution, and does not have fisheye is described (for example, see Patent Document 1). Further, a polyethylene composed of 50 to 90% by weight of a specific low density polyethylene and 10 to 50% by weight of a specific high density polyethylene having a weight average molecular weight / number average molecular weight ratio of 9 to 15, and an ethylene-unsaturated ester A laminated film obtained by coextruding an adhesive layer made of a copolymer is described (for example, see Patent Document 2).

しかしながら、上記特許文献に記載の表面保護フィルムにおいては、ポリエチレンが主成分であるため、フィルム製膜時に成形機押出機等の内部に滞留が生じ、エチレン成分の劣化によるゲル化が起こり、フィルム中にフィッシュアイが発生するため、被保護物に貼付けた後、そのままの状態で段積み保管した場合、上記フィッシュアイの存在により、被保護物に凹みが生じる。したがって、たとえば液晶表示材として使用される偏光板や位相差板として上記積層フィルムを使用しようとしても、凹みがあることにより画像に歪みが生じるので、適用できないという問題があった。
また、ポリエチレンの耐熱性や耐傷つき性、剛性の問題点を鑑み、かつ、塩素イオンの影響による金属薄膜層の点状欠陥を改良した塩素含有量が5重量ppm以下であるポリプロピレンからなることを特徴とするプロピレン系樹脂を主成分にした表面保護フィルムも提案されている(例えば、特許文献3参照)。しかしながら、該特許文献に記載のプロピレン系樹脂においても、ポリエチレンのようなゲル化は起こらないものの、分子量分布が広く、つまり分子量の小さい低分子量のものと、分子量の大きい高分子量のものとが混在しているため、高分子量成分が、フィルムを成形する際に、未溶融の微細なかたまりがフィッシュアイとなってフィルム中に存在してしまい、被保護物に凹みが生じる結果となる。
However, in the surface protective film described in the above patent document, since polyethylene is the main component, retention occurs inside the molding machine extruder during film formation, gelation occurs due to deterioration of the ethylene component, Since the fish eye is generated, when the product is attached to the object to be protected and stacked and stored as it is, the object to be protected is dented due to the presence of the fish eye. Therefore, for example, even if an attempt is made to use the laminated film as a polarizing plate or a retardation plate used as a liquid crystal display material, there is a problem that the image is distorted due to the dents and cannot be applied.
In addition, in view of the problems of heat resistance, scratch resistance, and rigidity of polyethylene, it is made of polypropylene having a chlorine content of 5 ppm by weight or less, which has improved the point defects of the metal thin film layer due to the influence of chlorine ions. A surface protective film mainly composed of a characteristic propylene-based resin has also been proposed (see, for example, Patent Document 3). However, even in the propylene-based resin described in the patent document, gelation like polyethylene does not occur, but the molecular weight distribution is wide, that is, low molecular weight having a low molecular weight and high molecular weight having a high molecular weight are mixed. Therefore, when the high molecular weight component is formed into a film, an unmelted fine lump becomes a fish eye and exists in the film, resulting in a dent in the protected object.

さらに、エチレン系樹脂及びプロピレン系樹脂とも結晶性分布を有するが、結晶性分布が広く、低結晶成分の存在が多いと、被保護物が汚染されるという問題点がある。また、ポリマーを製造する過程において、低結晶成分のベタツキにより重合槽等でポリマー付着が発生し、滞留によるポリマーの劣化が起こり、結果としてポリマー劣化物由来のフィッシュアイとなってフィルム中に存在してしまい、被保護物に凹みが生じる結果となり、表面保護用フィルムとして適用できないという問題が生じている。また、結晶性分布が広いと結晶性の低い成分と結晶性の高い成分との相溶性が不均一となり結晶性の高い成分が未溶融の微細なかたまりとなりフィッシュアイとなって存在しやすくなるため、同様に表面保護用フィルムとして適用できないという問題がある。   Further, both ethylene-based resins and propylene-based resins have a crystallinity distribution, but there is a problem that if the crystallinity distribution is wide and there are many low crystal components, the object to be protected is contaminated. In addition, in the process of producing the polymer, sticking of the low crystal component causes polymer adhesion in a polymerization tank or the like, resulting in deterioration of the polymer due to stagnation, and as a result, fish eyes derived from polymer degradation products exist in the film. As a result, the object to be protected is dented, and there is a problem that it cannot be applied as a surface protective film. In addition, if the crystallinity distribution is wide, the compatibility between the low crystallinity component and the high crystallinity component becomes non-uniform, and the high crystallinity component tends to exist as fish eyes in the form of a fine unmelted mass. Similarly, there is a problem that it cannot be applied as a surface protective film.

特開平9−111208号公報JP-A-9-111208 特開昭54−133578号公報JP 54-133578 A 特開2006−282761号公報JP 2006-282761 A

本発明は、前述した従来の技術の問題点に鑑み、フィッシュアイが非常に少なく、アンチブロッキング剤を用いなくてもブロッキング性に優れ、透明性に優れ、剥離力の制御と繰り出し性能が改良された、合成樹脂板、化粧板、金属板、ガラス板などの建築部材の表面保護用、偏光板や位相差板などの液晶表示の構成部材の表面保護用のフィルムとして好適なプロピレン系樹脂製の表面保護用フィルムを提供することを目的とするものである。   In view of the problems of the prior art described above, the present invention has very little fish eye, excellent blocking properties without using an anti-blocking agent, excellent transparency, and improved peel force control and feeding performance. Further, it is made of a propylene-based resin suitable as a film for protecting a surface of a building member such as a synthetic resin plate, a decorative plate, a metal plate, or a glass plate, and as a surface protecting film for a liquid crystal display component such as a polarizing plate or a retardation plate. It aims at providing the film for surface protection.

本発明者は、上記課題を解決するため種々の研究を重ねた結果、特定の製法で製造され特定のMFRを有するプロピレン−エチレンブロック共重合体を基材層に用い、特定のMFR、酢酸ビニル含量を有するエチレン−酢酸ビニル共重合体樹脂を粘着層に用い、シリコ−ン系または長鎖アルキル系剥離処理剤を剥離処理層に用いることにより、フィッシュアイが少なく、柔軟性に優れ、剥離力の制御と繰り出し性能が改良された、透明性に優れたプロピレン系樹脂製の自己粘着型の表面保護用フィルムが得られることを見出し、本発明を完成させた。   As a result of repeating various studies to solve the above problems, the present inventor used a propylene-ethylene block copolymer having a specific MFR manufactured by a specific manufacturing method as a base material layer, and using a specific MFR and vinyl acetate. By using an ethylene-vinyl acetate copolymer resin having a content for the adhesive layer and using a silicone-based or long-chain alkyl-based release treatment agent for the release treatment layer, there is less fish eye, excellent flexibility, and release strength. The present inventors have found that a self-adhesive surface protective film made of a propylene-based resin having improved control and feeding performance and excellent in transparency can be obtained.

すなわち、本発明の第1の発明によれば、基材層の一方の面に粘着層が形成され、他方の面に剥離処理層が形成された表面保護用フィルムにおいて、基材層がメタロセン触媒を用いて重合され下記(a1)〜(a3)、(a5)、(a8)及び(a9)の特性を有するプロピレン−エチレンブロック共重合体(A)で形成され、粘着層が下記(b1)〜(b2)の特性を有するエチレン−酢酸ビニル共重合樹脂(B)で形成され、剥離処理層がシリコーン系又は長鎖アルキル系剥離処理剤(C)で形成されていることを特徴とする表面保護用フィルムが提供される。
(A)プロピレン−エチレンブロック共重合体
(a1)メタロセン系触媒を用いて、第1工程でエチレン含量が0.5〜6重量%のプロピレン−エチレンランダム共重合体成分(A1)を30〜95重量%、第2工程で成分(A1)よりも6〜20重量%多くのエチレンを含有するプロピレン−エチレンランダム共重合体成分(A2)を70〜5重量%逐次重合して得られるプロピレン−エチレンブロック共重合体
(a2)メルトフローレート(MFR:230℃、2.16kg)が1〜30g/10分
(a3)ゲルパーミエーションクロマトグラフィー(GPC)測定により得られる分子量5,000以下の成分量Wが、全体の0.8重量%以下
(a5)o−ジクロロベンゼン溶媒を用いた−15℃〜+140℃の温度範囲での温度昇温溶離分別法(TREF)による温度に対する溶出量(dWt%/dT)のプロットとして得られるTREF溶出曲線において、
高温側に観測されるピーク温度T(A1)が55℃〜96℃の範囲にあり、
低温側に観測されるピーク温度T(A2)が45℃以下にあるか、またはピーク温度T(A2)が観測されず、
プロピレン−エチレンブロック共重合体の99重量%が溶出する温度T(A4)が98℃以下である
(a8)23℃キシレン可溶分を、135℃デカリン中で測定した固有粘度[η]cxsが1〜2dl/gである
(a9)固体粘弾性測定(DMA)により得られる温度−損失正接(tanδ)曲線において、tanδ曲線が0℃以下に単一のピークを有する
(B)エチレン−酢酸ビニル共重合樹脂
(b1)メルトフローレート(MFR:230℃、2.16kg)が2〜200g/10分
(b2)酢酸ビニルの含有量が10〜40重量%
That is, according to the first aspect of the present invention, in the surface protective film in which the adhesive layer is formed on one surface of the base material layer and the release treatment layer is formed on the other surface, the base material layer is a metallocene catalyst. And the following (a1) to (a3), (a5), (a8) and (a9) are used to form the propylene-ethylene block copolymer (A), and the adhesive layer has the following (b1) A surface characterized in that it is formed of an ethylene-vinyl acetate copolymer resin (B) having the characteristics of (b2), and the release treatment layer is formed of a silicone-based or long-chain alkyl-based release treatment agent (C). A protective film is provided.
(A) Propylene-ethylene block copolymer (a1) 30-95 propylene-ethylene random copolymer component (A1) having an ethylene content of 0.5-6 wt% in the first step using a metallocene catalyst. Propylene-ethylene obtained by sequential polymerization of 70 to 5 wt% of propylene-ethylene random copolymer component (A2) containing 6 to 20 wt% more ethylene than component (A1) in the second step. Block copolymer (a2) Melt flow rate (MFR: 230 ° C., 2.16 kg) is 1 to 30 g / 10 min
(A3) The component amount W having a molecular weight of 5,000 or less obtained by gel permeation chromatography (GPC) is 0.8% by weight or less of the whole.
(A5) TREF elution curve obtained as a plot of elution amount (dWt% / dT) against temperature by the temperature rising elution fractionation method (TREF) in the temperature range of −15 ° C. to + 140 ° C. using an o-dichlorobenzene solvent In
The peak temperature T (A1) observed on the high temperature side is in the range of 55 ° C. to 96 ° C.,
The peak temperature T (A2) observed on the low temperature side is 45 ° C. or lower, or the peak temperature T (A2) is not observed,
The temperature T (A4) at which 99% by weight of the propylene-ethylene block copolymer elutes is 98 ° C. or lower.
(A8) Intrinsic viscosity [η] cxs measured in a 135 ° C. decalin for 23 ° C. xylene solubles is 1 to 2 dl / g
(A9) In the temperature-loss tangent (tan δ) curve obtained by solid viscoelasticity measurement (DMA), the tan δ curve has a single peak at 0 ° C. or less (B) ethylene-vinyl acetate copolymer resin (b1) melt Flow rate (MFR: 230 ° C., 2.16 kg) is 2 to 200 g / 10 min. (B2) Vinyl acetate content is 10 to 40% by weight.

また、本発明の第の発明によれば、第1の発明において、プロピレン−エチレンブロック共重合体(A)が、下記(a4)の特性を満たすことを特徴とする表面保護用フィルムが提供される。
(a4)第1工程で得られる成分(A1)は、プロピレン−エチレンブロック共重合体全体における割合が30〜85重量%の範囲にあり、
第2工程で得られる成分(A2)は、プロピレン−エチレンブロック共重合体全体における割合が70〜15重量%の範囲にある
According to a second aspect of the present invention, there is provided a surface protective film characterized in that, in the first aspect, the propylene-ethylene block copolymer (A) satisfies the following property (a4): Is done.
(A4) In the component (A1) obtained in the first step, the proportion of the entire propylene-ethylene block copolymer is in the range of 30 to 85% by weight,
In the component (A2) obtained in the second step, the proportion of the entire propylene-ethylene block copolymer is in the range of 70 to 15% by weight.

また、本発明の第の発明によれば、第1又は2の発明において、プロピレン−エチレンブロック共重合体(A)が、下記(a6)〜(a7)の特性を満たすことを特徴とする表面保護用フィルムが提供される。
(a6)第1工程で得られる成分(A1)は、エチレン含量が1.5〜6重量%のプロピレン−エチレンランダム共重合体で、プロピレン−エチレンブロック共重合体全体における割合が30〜70重量%の範囲にあり、
第2工程で得られる成分(A2)は、成分(A1)よりも8〜15重量%多いエチレン含量を有し、プロピレン−エチレンブロック共重合体全体における割合が70〜30重量%の範囲にある
(a7)o−ジクロロベンゼン溶媒を用いた−15℃〜+140℃の温度範囲での温度昇温溶離分別法(TREF)による温度に対する溶出量(dWt%/dT)のプロットとして得られるTREF溶出曲線において、
高温側に観測されるピーク温度T(A1)が60℃〜88℃の範囲にあり、
低温側に観測されるピーク温度T(A2)が40℃以下にあるか、またはピーク温度T(A2)が観測されず、
プロピレン−エチレンブロック共重合体の99重量%が溶出する温度T(A4)が90℃以下である
According to the third invention of the present invention, in the first or second invention, the propylene-ethylene block copolymer (A) satisfies the following characteristics (a6) to (a7): A surface protecting film is provided.
(A6) The component (A1) obtained in the first step is a propylene-ethylene random copolymer having an ethylene content of 1.5 to 6% by weight, and the proportion of the propylene-ethylene block copolymer is 30 to 70% by weight. % Range,
The component (A2) obtained in the second step has an ethylene content that is 8 to 15% by weight higher than that of the component (A1), and the proportion of the entire propylene-ethylene block copolymer is in the range of 70 to 30% by weight. (A7) TREF elution curve obtained as a plot of elution amount (dWt% / dT) against temperature by the temperature rising elution fractionation method (TREF) in the temperature range of −15 ° C. to + 140 ° C. using an o-dichlorobenzene solvent In
The peak temperature T (A1) observed on the high temperature side is in the range of 60 ° C. to 88 ° C.,
The peak temperature T (A2) observed on the low temperature side is 40 ° C. or lower, or the peak temperature T (A2) is not observed,
The temperature T (A4) at which 99% by weight of the propylene-ethylene block copolymer elutes is 90 ° C. or lower.

また、本発明の第の発明によれば、第1〜のいずれかの発明において、建築部材の表面保護用に使用されることを特徴とする表面保護用フィルムが提供される。
さらに、本発明の第の発明によれば、第1〜のいずれかの発明において、液晶表示装置の構成部材の表面保護に使用されることを特徴とする表面保護用フィルムが提供される。
According to a fourth aspect of the present invention, there is provided a surface protecting film that is used for protecting the surface of a building member in any one of the first to third aspects.
Furthermore, according to a fifth aspect of the present invention, there is provided a surface protective film characterized in that in any one of the first to third aspects, the surface protective film is used for protecting a surface of a constituent member of a liquid crystal display device. .

本発明の表面保護用フィルムは、基材層にメタロセン触媒を用いて重合された特定のプロピレン−エチレンブロック共重合体を用い、粘着層に特定のエチレン−酢酸ビニル共重合樹脂を用いることにより、基材層と粘着層の少なくとも一方が溶融状態で積層するときは強固に接着し、層間剥離性に優れることにより、フィルム成形時に未溶融のフィッシュアイが非常に少なく、かつ粘着層と基材層の層間剥離の恐れが無く、柔軟性に富み、なおかつ優れた粘着性を発現する。このため、表面保護フィルムを被保護物に貼付けて段積み保管しても、被保護物に凹みが生じることがない。
また、本発明の表面保護用フィルムは、アンチブロッキング剤を用いることなくブロッキング性にすぐれ、かつ透明性に優れている。さらにまた、剥離処理層としてシリコーン系又は長鎖アルキル系剥離処理剤を剥離処理層に用いているので、粘着層と剥離処理層の両方が固体状態で接するロール巻状態から、ロールを解くときにはスムースにはがれ、使用時には繰り出し性が向上するという特性を有する表面保護用フィルムとすることができる。
The surface protective film of the present invention uses a specific propylene-ethylene block copolymer polymerized using a metallocene catalyst for the base material layer, and a specific ethylene-vinyl acetate copolymer resin for the adhesive layer, When at least one of the base material layer and the pressure-sensitive adhesive layer is laminated in a molten state, it adheres firmly and has excellent delamination properties, so that there are very few unmelted fish eyes during film formation, and the pressure-sensitive adhesive layer and the base material layer There is no fear of delamination of the material, it is rich in flexibility and exhibits excellent adhesiveness. For this reason, even if a surface protection film is affixed on a to-be-protected object and stored in a stacked manner, the to-be-protected object does not dent.
Moreover, the film for surface protection of this invention is excellent in blocking property without using an antiblocking agent, and is excellent in transparency. Furthermore, since a silicone-based or long-chain alkyl-based release treatment agent is used for the release treatment layer as the release treatment layer, when the roll is unwound from the roll winding state where both the adhesive layer and the release treatment layer are in contact with each other in a solid state, It can be made into a film for surface protection having the property that peeling and improving the drawability during use.

TREFによる成分(A1)および(A2)の溶出量及び溶出量積算を示す図である。It is a figure which shows the elution amount and elution amount integration | accumulation of the components (A1) and (A2) by TREF.

本発明は、基材層の1方の面に粘着層が形成され、粘着層と反対面に剥離処理層を有するプロピレン系表面保護用フィルムであって、基材層がメタロセン触媒を用いて重合され、かつ特性(a1)および(a2)、必要に応じて、さらに特性(a3)〜(a9)を有するプロピレン−エチレンブロック共重合体(A)で形成され、粘着層が特性(b1)〜(b2)を有するエチレン−酢酸ビニル共重合樹脂(B)で形成され、剥離処理層がシリコーン系又は長鎖アルキル系剥離処理剤(C)で形成されていることを特徴とする表面保護用フィルムである。
以下、本発明の表面保護用フィルムの各層の構成成分、表面保護用フィルムの製造法について詳細に説明する。
The present invention relates to a propylene-based surface protective film having an adhesive layer formed on one surface of a base material layer and having a release treatment layer on the opposite surface of the adhesive layer, and the base material layer is polymerized using a metallocene catalyst. And the characteristics (a1) and (a2), and if necessary, the propylene-ethylene block copolymer (A) further having the characteristics (a3) to (a9), and the adhesive layer having the characteristics (b1) to A film for surface protection, characterized in that it is formed of an ethylene-vinyl acetate copolymer resin (B) having (b2), and the release treatment layer is formed of a silicone-based or long-chain alkyl release agent (C). It is.
Hereinafter, the component of each layer of the film for surface protection of this invention and the manufacturing method of the film for surface protection are demonstrated in detail.

1.基材層
本発明の表面保護用フィルムにおける基材層および粘着層は、下記プロピレン−エチレンブロック共重合体(A)を用いる。
1. Base material layer The following propylene-ethylene block copolymer (A) is used for the base material layer and the adhesion layer in the film for surface protection of this invention.

本発明で用いられるプロピレン−エチレンブロック共重合体(A)は、プロピレン単独重合体又はプロピレン−エチレンランダム共重合体成分(A1)(以下、成分(A1)ということがある。)と、プロピレン−エチレンランダム共重合体成分(A2)(以下、成分(A2)ということがある。)から構成され、下記特性(a1)〜(a2)、さらに必要に応じて、特性(a3)〜(a9)を満たすものである。   The propylene-ethylene block copolymer (A) used in the present invention is a propylene homopolymer or a propylene-ethylene random copolymer component (A1) (hereinafter sometimes referred to as component (A1)) and propylene-. It is composed of an ethylene random copolymer component (A2) (hereinafter also referred to as component (A2)), and the following properties (a1) to (a2), and further, if necessary, properties (a3) to (a9) It satisfies.

(a1)メタロセン系触媒を用いて、第1工程でプロピレン単独重合体又はプロピレン−エチレンランダム共重合体成分(A1)を30〜95重量%、第2工程で成分(A1)よりも多くのエチレンを含有するプロピレン−エチレンランダム共重合体成分(A2)を70〜5重量%逐次重合して得られるプロピレン−エチレンブロック共重合体
なお、このようなプロピレン−エチレンブロック共重合体(A)は、いわゆるブロック共重合体と通称されているものであるが、成分(A1)と成分(A2)のブレンド状態にあり、双方が重合で結合しているものではない。
(a2)メルトフローレート(MFR:230℃ 2.16kg)が1〜30g/10分
(A1) 30 to 95% by weight of propylene homopolymer or propylene-ethylene random copolymer component (A1) in the first step and more ethylene than component (A1) in the second step using the metallocene catalyst Propylene-ethylene block copolymer (A) obtained by sequentially polymerizing 70 to 5% by weight of a propylene-ethylene random copolymer component (A2) containing Although it is commonly called a block copolymer, it is in a blended state of the component (A1) and the component (A2), and both are not bonded by polymerization.
(A2) Melt flow rate (MFR: 230 ° C. 2.16 kg) is 1 to 30 g / 10 min

(a3)ゲルパーミエーションクロマトグラフィー(GPC)測定により得られる分子量5,000以下の成分量W(Mw≦5,000)が、全体の0.8重量%以下
(a4)第1工程で得られる成分(A1)が、エチレン含量が0.5〜6重量%のプロピレン−エチレンランダム共重合体で、プロピレン−エチレンブロック共重合体全体における割合が30〜85重量%の範囲にあり、第2工程で得られる成分(A2)は、(A1)よりも6〜20重量%多くのエチレン含量を有し、プロピレン−エチレンブロック共重合体全体における割合が70〜15重量%の範囲にある
(a5)o−ジクロロベンゼン溶媒を用いた−15℃〜140℃の温度範囲での温度昇温溶離分別法(TREF)による温度に対する溶出量(dWt%/dT)のプロットとして得られるTREF溶出曲線において、
高温側に観測されるピーク温度T(A1)が55℃〜96℃の範囲にあり、
低温側に観測されるピーク温度T(A2)が45℃以下にあるか、又はピーク温度T(A2)が観測されず、
プロピレン−エチレンブロック共重合体の99重量%が溶出する温度T(A4)が98℃以下である
(A3) The component amount W (Mw ≦ 5,000) having a molecular weight of 5,000 or less obtained by gel permeation chromatography (GPC) measurement is 0.8% by weight or less of the total (a4) obtained in the first step. Component (A1) is a propylene-ethylene random copolymer having an ethylene content of 0.5 to 6% by weight, and the proportion of the total propylene-ethylene block copolymer is in the range of 30 to 85% by weight. The component (A2) obtained in (6) has an ethylene content of 6 to 20% by weight more than (A1), and the proportion in the entire propylene-ethylene block copolymer is in the range of 70 to 15% by weight (a5). The elution amount (dWt% / dT) with respect to the temperature by the temperature rising elution fractionation method (TREF) in the temperature range of −15 ° C. to 140 ° C. using o-dichlorobenzene solvent. In TREF elution curve obtained as Tsu bets,
The peak temperature T (A1) observed on the high temperature side is in the range of 55 ° C. to 96 ° C.,
The peak temperature T (A2) observed on the low temperature side is 45 ° C. or lower, or the peak temperature T (A2) is not observed,
The temperature T (A4) at which 99% by weight of the propylene-ethylene block copolymer elutes is 98 ° C. or lower.

(a6)第1工程で得られる成分(A1)は、エチレン含量が1.5〜6重量%の範囲にあるプロピレン−エチレンランダム共重合体で、ブロック共重合体の全体における割合が30〜70重量%の範囲にあり、第2工程で得られる成分(A2)は、(A1)よりも8〜15重量%多くのエチレン含量を有し、プロピレン−エチレンブロック共重合体全体における割合が70〜30重量%の範囲にある (A6) The component (A1) obtained in the first step is a propylene-ethylene random copolymer having an ethylene content in the range of 1.5 to 6% by weight, and the proportion of the entire block copolymer is 30 to 70. The component (A2) in the range of wt% and obtained in the second step has an ethylene content of 8 to 15 wt% more than (A1), and the proportion in the total propylene-ethylene block copolymer is 70 to In the range of 30% by weight

(a7)o−ジクロロベンゼン溶媒を用いた−15℃〜140℃の温度範囲での温度昇温溶離分別法(TREF)による温度に対する溶出量(dWt%/dT)のプロットとして得られるTREF溶出曲線において、
高温側に観測されるピーク温度T(A1)が60℃〜88℃の範囲にあり、
低温側に観測されるピーク温度T(A2)が40℃以下にあるか、又はピーク温度T(A2)が観測されず、
プロピレン−エチレンブロック共重合体の99重量%が溶出する温度T(A4)が90℃以下である
(a8)23℃キシレン可溶分を、135℃デカリン中で測定される固有粘度[η]cxsが1〜2dl/gである
(a9)固体粘弾性測定(DMA)により得られる温度−損失正接(tanδ)曲線において、tanδ曲線が0℃以下に単一のピークを有する
以下、特性(a1)〜(a9)について詳細に説明する。
(A7) TREF elution curve obtained as a plot of elution amount (dWt% / dT) against temperature by the temperature rising elution fractionation method (TREF) in the temperature range of −15 ° C. to 140 ° C. using an o-dichlorobenzene solvent In
The peak temperature T (A1) observed on the high temperature side is in the range of 60 ° C. to 88 ° C.,
The peak temperature T (A2) observed on the low temperature side is 40 ° C. or lower, or the peak temperature T (A2) is not observed,
The temperature T (A4) at which 99% by weight of the propylene-ethylene block copolymer elutes is 90 ° C. or lower. (A9) In the temperature-loss tangent (tan δ) curve obtained by solid viscoelasticity measurement (DMA), the tan δ curve has a single peak at 0 ° C. or lower. Characteristic (a1) -(A9) is demonstrated in detail.

(1)成分(A1)中のエチレン含量([E]A1
第1工程で製造される成分(A1)は、フィルムのべたつきを抑制し、耐熱性を発現するために、融点が比較的高く、結晶性を有するプロピレン単独重合体、もしくはプロピレン−エチレンランダム共重合体である必要がある。成分(A1)中のエチレン含量([E]A1)は、好ましくは7重量%以下であり、より好ましくは6重量%以下、さらに好ましくは0.5〜6重量である。[E]A1が7重量%を超えると融点が低くなりすぎ、フィルムの耐熱性を悪化させる恐れがある。
なお、成分(A1)はプロピレン単独重合体でも改良された粘着性や耐熱性を示すが、成分(A1)がプロピレン単独重合体の場合には充分な粘着性を発揮させるために後述する成分(A2)の割合を極端に増加させる必要が生じ、これにより耐熱性及びベタツキやブロッキングなどの悪化を招くことが懸念される。
一方、成分(A1)をプロピレン−エチレンランダム共重合体とすると、成分(A1)自体の融点は低下することで耐熱性は悪化するように見えるが、充分な粘着性を発揮するために必要な成分(A2)の量を抑制できることで、ブロック共重合体全体としての耐熱性はむしろ向上し、かつ、ベタツキやブロッキングの悪化が小さいため好ましい。
さらに融点を低下させられることで、フィルム成形時の成形温度を低下させても充分な押出安定性等が得られることで臭気性などが極めて優れたフィルムを得ることができる。
これらの観点から、成分(A1)中のエチレン含量[E]A1は、好ましくは0.5重量%以上、より好ましくは1.5重量%以上である
(1) Ethylene content in component (A1) ([E] A1 )
The component (A1) produced in the first step suppresses stickiness of the film and exhibits heat resistance, so that the propylene homopolymer or propylene-ethylene random copolymer having a relatively high melting point and crystallinity. Must be coalesced. Ethylene content of component (A1) ([E] A1 ) is preferably at 7 wt% or less, more preferably 6 wt% or less, more preferably from 0.5 to 6 wt. [E] When A1 exceeds 7% by weight, the melting point becomes too low and the heat resistance of the film may be deteriorated.
In addition, although component (A1) shows the adhesiveness and heat resistance which were improved also with the propylene homopolymer, in order to exhibit sufficient adhesiveness when component (A1) is a propylene homopolymer, the component (described later) There is a need to extremely increase the ratio of A2), which may cause deterioration of heat resistance, stickiness, blocking, and the like.
On the other hand, when component (A1) is a propylene-ethylene random copolymer, although the melting point of component (A1) itself decreases, the heat resistance seems to deteriorate, but it is necessary to exhibit sufficient adhesiveness. Since the amount of the component (A2) can be suppressed, the heat resistance of the block copolymer as a whole is rather improved, and stickiness and blocking are less deteriorated, which is preferable.
Further, by reducing the melting point, it is possible to obtain a film excellent in odor and the like because sufficient extrusion stability and the like can be obtained even if the molding temperature during film molding is lowered.
From these viewpoints, the ethylene content [E] A1 in the component (A1) is preferably 0.5% by weight or more, more preferably 1.5% by weight or more.

(2)成分(A2)中のエチレン含量([E]A2
第2工程で製造されるプロピレン−エチレンランダム共重合体成分(A2)は、プロピレン−エチレンブロック共重合体(A)の粘着性と耐衝撃性及び柔軟性を向上させるのに必要な成分である。
ここで、成分(A2)は上記効果を充分発揮するために特定範囲のエチレン含量であることが必要である。すなわち、本発明のブロック共重合体において、成分(A1)に対し成分(A2)の結晶性は低い方が、粘着性改良効果が大きく、結晶性はプロピレン−エチレンランダム共重合体中のエチレン含量で制御されるため、成分(A2)中のエチレン含量[E]A2は、成分(A1)中のエチレン含量[E]A1Eよりも多いことが必要であり、好ましくは3重量%以上、より好ましくは6重量%以上、更に好ましくは8重量%以上、成分(A1)よりも多くのエチレンを含む。
ここで、成分(A1)と成分(A2)のエチレン含量の差を[E]gap([E]A2−[E]A1)と定義すると、[E]gapは、3〜20重量%の範囲であることが好ましく、より好ましくは6〜20重量%、更に好ましくは8〜15重量%である。
[E]gapが、3重量%未満の場合、ゴム弾性が不足し好ましくない。また、20重量%を超えると第1工程で製造される成分(A1)と成分(A2)とのマトリクスとドメインに分かれた相分離構造を取り相溶性が悪くなるため、フィッシュアイが発生する恐れがある。これは、これは元来、ポリプロピレンはポリエチレンとの相溶性が低く、プロピレン−エチレンランダム共重合体においても、エチレン含量が異なるものの相互の相溶性は、エチレン含量の違いが大きくなると低下するためである。
(2) Ethylene content in component (A2) ([E] A2 )
The propylene-ethylene random copolymer component (A2) produced in the second step is a component necessary for improving the tackiness, impact resistance and flexibility of the propylene-ethylene block copolymer (A). .
Here, the component (A2) needs to have an ethylene content in a specific range in order to sufficiently exhibit the above effects. That is, in the block copolymer of the present invention, the lower the crystallinity of the component (A2) relative to the component (A1), the greater the effect of improving the tackiness, and the crystallinity is the ethylene content in the propylene-ethylene random copolymer. Therefore, the ethylene content [E] A2 in the component (A2) needs to be larger than the ethylene content [E] A1 E in the component (A1), and preferably 3% by weight or more. Preferably it is 6 weight% or more, More preferably, it is 8 weight% or more, and contains more ethylene than a component (A1).
Here, when the difference in ethylene content between the component (A1) and the component (A2) is defined as [E] gap ([E] A2− [E] A1 ), [E] gap is in the range of 3 to 20% by weight. More preferably, it is 6 to 20 weight%, More preferably, it is 8 to 15 weight%.
[E] If the gap is less than 3% by weight, the rubber elasticity is insufficient, which is not preferable. On the other hand, if it exceeds 20% by weight, a phase separation structure divided into a matrix and a domain of the component (A1) and the component (A2) produced in the first step is taken and compatibility is deteriorated, so that fish eyes may be generated. There is. This is because polypropylene originally has low compatibility with polyethylene, and even in the case of propylene-ethylene random copolymers, although the ethylene content is different, the compatibility with each other decreases as the difference in ethylene content increases. is there.

(3)成分(A1)および成分(A2)の割合
プロピレン−エチレンブロック共重合体を構成する成分(A1)の割合(W(A1))および成分(A2)の割合(W(A2))の含有量比は、W(A1)が30〜95重量%であり、W(A2)が70〜5重量%の範囲にある必要があり、好ましくは、W(A1)の割合が30〜85重量%、更に好ましくは30〜70重量%の範囲である。
W(A1)の割合が30重量%未満であると、フィルムのべたつき発生、かつ耐熱性が低下する恐れがある。他方、W(A1)の割合が95重量%を超えるとプロピレン−エチレンブロック共重合体の粘着性や耐衝撃性の改良効果を充分に発揮することができない。
成分(A2)の割合が多過ぎるとベタツキが増加しブロッキングに悪化が生じ、耐熱性の低下も顕著になる。一方、成分(A2)の割合が少なくなり過ぎると粘着性や耐衝撃性の改良効果が得られない。
(3) Ratio of component (A1) and component (A2) Ratio of component (A1) constituting propylene-ethylene block copolymer (W (A1)) and ratio of component (A2) (W (A2)) The content ratio should be such that W (A1) is 30 to 95% by weight and W (A2) is in the range of 70 to 5% by weight, and preferably the ratio of W (A1) is 30 to 85% by weight. %, More preferably in the range of 30 to 70% by weight.
If the ratio of W (A1) is less than 30% by weight, stickiness of the film may occur and heat resistance may be reduced. On the other hand, when the proportion of W (A1) exceeds 95% by weight, the effect of improving the tackiness and impact resistance of the propylene-ethylene block copolymer cannot be sufficiently exhibited.
When the proportion of the component (A2) is too large, the stickiness increases, the blocking is deteriorated, and the heat resistance is significantly reduced. On the other hand, if the proportion of the component (A2) is too small, the effect of improving the adhesiveness and impact resistance cannot be obtained.

(4)[E]A1と[E]A2及びW(A1)とW(A2)の測定
上記した[E]A1と[E]A2及びW(A1)とW(A2)の測定は、製造時の物質収支(マテリアルバランス)によって特定することも可能であるが、より正確にこれらを特定するためには、以下の分析を用いることが望ましい。
(i)温度昇温溶離分別(TREF)によるW(A1)とW(A2)の特定
プロピレン−エチレンランダム共重合体の結晶性分布をTREFにより評価する手法は、当該業者によく知られるものであり、例えば、次の文献などで詳細な測定法が示されている。
G.Glockner,J.Appl.Polym.Sci.:Appl.Polym.Symp.;45,1−24(1990)
L.Wild,Adv.Polym.Sci.;98,1−47(1990)
J.B.P.Soares,A.E.Hamielec,Polymer;36,
8,1639−1654(1995)
(4) Measurement of [E] A1 and [E] A2 and W (A1) and was measured above W (A2) [E] A1 and [E] A2 and W (A1) and W (A2) is prepared Although it is possible to specify by the material balance of the time (material balance), in order to specify these more accurately, it is desirable to use the following analysis.
(I) Identification of W (A1) and W (A2) by temperature-temperature elution fractionation (TREF) The technique for evaluating the crystallinity distribution of a propylene-ethylene random copolymer by TREF is well known to those skilled in the art. Yes, for example, detailed measurement methods are shown in the following documents.
G. Glockner, J. et al. Appl. Polym. Sci. : Appl. Polym. Symp. 45, 1-24 (1990)
L. Wild, Adv. Polym. Sci. 98, 1-47 (1990)
J. et al. B. P. Soares, A .; E. Hamielec, Polymer; 36,
8, 1639-1654 (1995)

本発明におけるプロピレン−エチレンブロック共重合体は、成分(A1)と(A2)の各々の結晶性に大きな違いがあり、また、メタロセン触媒を用いて製造されることで各々の結晶性分布が狭くなっていることから双方の中間的な成分は極めて少なく、双方をTREFにより精度良く判別することが可能である。   The propylene-ethylene block copolymer in the present invention is greatly different in the crystallinity of each of the components (A1) and (A2), and each crystallinity distribution is narrow by being produced using a metallocene catalyst. Therefore, there are very few intermediate components between the two, and both can be discriminated with high accuracy by TREF.

具体的な方法を図1のTREFによる溶出量及び溶出量積算を示す図を用いて説明する。
図1は、実施例(製造例1)で製造された本発明の基材層用のプロピレン−エチレンブロック共重合体(PEB−1)のTREF溶出曲線のグラフである。図1の上図におけるプロット線は各温度における溶出量を示し、下図でのプロット線はその溶出量の積算を示す。
TREF溶出曲線(温度に対する溶出量のプロット)において、成分(A1)と(A2)は、結晶性の違いにより、各々T(A1)とT(A2)にその溶出ピークを示し、その差は十分大きいため、中間の温度T(C)(={T(A1)+T(A2)}/2)においてほぼ分離が可能である。
また、TREF測定温度の下限は、本測定に用いた装置では−15℃であるが、成分(A2)の結晶性が非常に低いあるいは非晶性成分の場合には本測定方法において、測定温度範囲内にピークを示さない場合がある。(この場合には、測定温度下限(すなわち−15℃)において溶媒に溶解した成分(A2)の濃度は検出される。)
このとき、T(A2)は測定温度下限以下に存在するものと考えられるが、その値を測定することが出来ないため、このような場合にはT(A2)を測定温度下限である−15℃と定義する。
ここで、T(C)までに溶出する成分の積算量をW(A2)重量%、T(C)以上で溶出する部分の積算量をW(A1)重量%と定義すると、W(A2)は結晶性が低いあるいは非晶性の成分(A2)の量とほとんど対応しており、T(C)以上で溶出する成分の積算量W(A1)は結晶性が比較的高い成分(A1)の量とほぼ対応している。TREFによって得られる溶出量曲線と、そこから求められる上記の各種の温度や量の算出の方法は図1に例示するように行う。
A specific method will be described with reference to the figure showing the elution amount and the elution amount integration by TREF in FIG.
FIG. 1 is a graph of a TREF elution curve of a propylene-ethylene block copolymer (PEB-1) for a base material layer of the present invention produced in Example (Production Example 1). The plot line in the upper diagram of FIG. 1 shows the elution amount at each temperature, and the plot line in the lower diagram shows the integration of the elution amount.
In the TREF elution curve (plot of elution amount versus temperature), components (A1) and (A2) show their elution peaks at T (A1) and T (A2), respectively, due to the difference in crystallinity. Since it is large, separation is possible at an intermediate temperature T (C) (= {T (A1) + T (A2)} / 2).
In addition, the lower limit of the TREF measurement temperature is −15 ° C. in the apparatus used for this measurement, but in the case where the crystallinity of the component (A2) is very low or an amorphous component, There may be no peak in the range. (In this case, the concentration of the component (A2) dissolved in the solvent is detected at the measurement temperature lower limit (ie, −15 ° C.).)
At this time, T (A2) is considered to exist below the lower limit of the measurement temperature, but the value cannot be measured. In such a case, T (A2) is the lower limit of the measurement temperature. Defined as ° C.
Here, if the integrated amount of the component eluting up to T (C) is defined as W (A2) wt%, and the integrated amount of the portion eluting at T (C) or higher is defined as W (A1) wt%, W (A2) Almost corresponds to the amount of the component (A2) having low crystallinity or non-crystallinity, and the integrated amount W (A1) of the component eluted at T (C) or higher is the component (A1) having relatively high crystallinity. Almost corresponds to the amount of. The elution amount curve obtained by TREF and the above-described methods for calculating the various temperatures and amounts obtained therefrom are performed as illustrated in FIG.

(ii)TREF測定方法
本発明においては、TREFの測定は具体的には以下のように測定を行う。
試料を140℃でo−ジクロロベンゼン(0.5mg/mL BHT入り)に溶解し溶液とする。これを140℃のTREFカラムに導入した後8℃/分の降温速度で100℃まで冷却し、引き続き4℃/分の降温速度で−15℃まで冷却し、60分間保持する。その後、溶媒であるo−ジクロロベンゼン(0.5mg/mLBHT入り)を1mL/分の流速でカラムに流し、TREFカラム中で−15℃のo−ジクロロベンゼンに溶解している成分を10分間溶出させ、次に昇温速度100℃/時間にてカラムを140℃までリニアに昇温し、溶出曲線を得る。
(Ii) Method for measuring TREF In the present invention, TREF is specifically measured as follows.
A sample is dissolved in o-dichlorobenzene (containing 0.5 mg / mL BHT) at 140 ° C. to prepare a solution. This is introduced into a 140 ° C. TREF column, cooled to 100 ° C. at a rate of 8 ° C./min, subsequently cooled to −15 ° C. at a rate of 4 ° C./min, and held for 60 minutes. Thereafter, o-dichlorobenzene (containing 0.5 mg / mL BHT) as a solvent is flowed through the column at a flow rate of 1 mL / min, and components dissolved in o-dichlorobenzene at −15 ° C. are eluted in the TREF column for 10 minutes. Next, the column is linearly heated to 140 ° C. at a heating rate of 100 ° C./hour to obtain an elution curve.

(iii)各成分中のエチレン含量[E]A1と[E]A2の特定
(イ)成分(A1)と成分(A2)の分離
上述のTREF測定により求めたT(C)を基に、分取型分別装置を用い昇温カラム分別法により、T(C)にける可溶成分(A2)とT(C)における不溶成分(A1)とに分別し、NMRにより各成分のエチレン含量を求める。
昇温カラム分別法とは、例えば、Macromolecules、21 314〜319(1988)に開示されたような測定方法をいう。具体的には、本発明において以下の方法を用いる。
(ロ)分別条件
直径50mm、高さ500mmの円筒状カラムにガラスビーズ担体(80〜100メッシュ)を充填し、140℃に保持する。次に、140℃で溶解したサンプルのo−ジクロロベンゼン溶液(10mg/mL)200mLを前記カラムに導入する。その後、該カラムの温度を0℃まで10℃/時間の降温速度で冷却する。0℃で1時間保持後、10℃/時間の昇温速度でカラム温度をT(C)まで加熱し、1時間保持する。なお、一連の操作を通じてのカラムの温度制御精度は±1℃とする。
次いで、カラム温度をT(C)に保持したまま、T(C)のo−ジクロロベンゼンを20mL/分の流速で800mL流すことにより、カラム内に存在するT(C)で可溶な成分を溶出させ回収する。
次いで10℃/分の昇温速度で当該カラム温度を140℃まで上げ、140℃で1時間静置後、140℃の溶媒(o−ジクロロベンゼン)を20mL/分の流速で800mL流すことにより、T(C)で不溶な成分を溶出させ回収する。
分別によって得られたポリマーを含む溶液は、エバポレーターを用いて20mLまで濃縮された後、5倍量のメタノール中に析出される。析出ポリマーをろ過して回収後、真空乾燥器により一晩乾燥する。
(Iii) Specificity of ethylene content [E] A1 and [E] A2 in each component (a) Separation of component (A1) and component (A2) Based on T (C) determined by the above TREF measurement, Using a temperature-separating column separation method using a preparative type separation apparatus, the soluble component (A2) in T (C) and the insoluble component (A1) in T (C) are separated, and the ethylene content of each component is determined by NMR. .
The temperature rising column fractionation method refers to a measurement method disclosed in, for example, Macromolecules, 21 314 to 319 (1988). Specifically, the following method is used in the present invention.
(B) Fractionation conditions A cylindrical column having a diameter of 50 mm and a height of 500 mm is filled with a glass bead carrier (80 to 100 mesh) and maintained at 140 ° C. Next, 200 mL of the o-dichlorobenzene solution (10 mg / mL) of the sample dissolved at 140 ° C. is introduced into the column. Thereafter, the temperature of the column is cooled to 0 ° C. at a rate of temperature decrease of 10 ° C./hour. After holding at 0 ° C. for 1 hour, the column temperature is heated to T (C) at a heating rate of 10 ° C./hour and held for 1 hour. Note that the temperature control accuracy of the column through a series of operations is ± 1 ° C.
Next, while maintaining the column temperature at T (C), 800 mL of o (dichlorobenzene) of T (C) is allowed to flow at a flow rate of 20 mL / min, whereby components soluble in T (C) existing in the column are obtained. Elute and collect.
Next, the column temperature is increased to 140 ° C. at a temperature rising rate of 10 ° C./min, and after leaving still at 140 ° C. for 1 hour, by flowing 800 mL of a 140 ° C. solvent (o-dichlorobenzene) at a flow rate of 20 mL / min, Elute insoluble components with T (C) and collect.
The solution containing the polymer obtained by fractionation is concentrated to 20 mL using an evaporator and then precipitated in 5 times the amount of methanol. The precipitated polymer is recovered by filtration and then dried overnight in a vacuum dryer.

(ハ)13C−NMRによるエチレン含量の測定
上記分別により得られた成分(A1)と(A2)それぞれについてのエチレン含有量はプロトン完全デカップリング法により以下の条件に従って測定した13C−NMRスペクトルを解析することにより求める。
機種:日本電子(株)製GSX−400または、同等の装置(炭素核共鳴周波数100MHz以上)
溶媒:o−ジクロロベンゼン/重ベンゼン=4/1(体積比)
濃度:100mg/mL
温度:130℃
パルス角:90°
パルス間隔:15秒
積算回数:5,000回以上
スペクトルの帰属は、例えばMacromolecules,17 1950(1984)等を参考に行えばよい。
上記条件により測定されたスペクトルの帰属は下表1の通りである。表1中、Sαα等の記号はCarmanら(Macromolecules,10 536(1977))の表記法に従い、Pはメチル炭素、Sはメチレン炭素、Tはメチン炭素をそれぞれ表わす。
(C) 13 C-NMR according to the measurement the fractionated by components obtained ethylene content (A1) (A2) 13 C -NMR spectrum ethylene content was determined according to the following conditions by complete proton decoupling method for each It is obtained by analyzing.
Model: GSX-400 manufactured by JEOL Ltd. or equivalent equipment (carbon nuclear resonance frequency of 100 MHz or more)
Solvent: o-dichlorobenzene / heavy benzene = 4/1 (volume ratio)
Concentration: 100 mg / mL
Temperature: 130 ° C
Pulse angle: 90 °
Pulse interval: 15 seconds Integration count: 5,000 times or more The attribution of the spectrum may be performed with reference to, for example, Macromolecules, 17 1950 (1984).
The spectrum assignments measured under the above conditions are as shown in Table 1 below. In Table 1, symbols such as S αα represent Carman et al. (Macromolecules, 10536 (1977)), P represents methyl carbon, S represents methylene carbon, and T represents methine carbon.

Figure 0005484033
Figure 0005484033

以下、「P」を共重合体連鎖中のプロピレン単位、「E」をエチレン単位とすると、連鎖中にはPPP、PPE、EPE、PEP、PEE、およびEEEの6種類のトリアッドが存在し得る。Macromolecules,15 1150 (1982)などに記されているように、これらトリアッドの濃度と、スペクトルのピーク強度とは、以下の式(1)〜(6)の関係式で結び付けられる。
[PPP]=k×I(Tββ) …(1)
[PPE]=k×I(Tβδ) …(2)
[EPE]=k×I(Tδδ) …(3)
[PEP]=k×I(Sββ) …(4)
[PEE]=k×I(Sβδ) …(5)
[EEE]=k×{I(Sδδ)/2+I(Sγδ)/4} … (6)
ここで[ ]はトリアッドの分率を示し、例えば[PPP]は全トリアッド中のPPPトリアッドの分率である。従って、
[PPP]+[PPE]+[EPE]+[PEP]+[PEE]+[EEE]=1…(7)
である。
また、kは定数であり、Iはスペクトル強度を示し、例えばI(Tββ)は、Tββに帰属される28.7ppmのピークの強度を意味する。
Hereinafter, when “P” is a propylene unit in a copolymer chain and “E” is an ethylene unit, six kinds of triads of PPP, PPE, EPE, PEP, PEE, and EEE may exist in the chain. As described in Macromolecules, 15 1150 (1982), the concentration of these triads and the peak intensity of the spectrum are linked by the following relational expressions (1) to (6).
[PPP] = k × I (T ββ ) (1)
[PPE] = k × I (T βδ ) (2)
[EPE] = k × I (T δδ ) (3)
[PEP] = k × I (S ββ ) (4)
[PEE] = k × I (S βδ ) (5)
[EEE] = k × {I (S δδ ) / 2 + I (S γδ ) / 4} (6)
Here, [] indicates the fraction of triads, for example, [PPP] is the fraction of PPP triads in all triads. Therefore,
[PPP] + [PPE] + [EPE] + [PEP] + [PEE] + [EEE] = 1 (7)
It is.
Further, k is a constant, I indicates the spectral intensity, and for example, I (T ββ ) means the intensity of the peak at 28.7 ppm attributed to T ββ .

上記式(1)〜(7)の関係式を用いることにより、各トリアッドの分率が求まり、さらに下式によりエチレン含有量が求まる。
エチレン含有量(モル%)=([PEP]+[PEE]+[EEE])×100
By using the relational expressions of the above formulas (1) to (7), the fraction of each triad is obtained, and the ethylene content is obtained by the following formula.
Ethylene content (mol%) = ([PEP] + [PEE] + [EEE]) × 100

なお、本発明のプロピレン−エチレンランダム共重合体には、少量のプロピレン異種結合(2,1−結合及び/または1,3−結合)が含まれ、それにより、以下の微小なピークを生じる。   The propylene-ethylene random copolymer of the present invention contains a small amount of a propylene hetero bond (2,1-bond and / or 1,3-bond), thereby producing the following minute peak.

Figure 0005484033
Figure 0005484033

正確なエチレン含有量を求めるにはこれら異種結合に由来するピークも考慮して計算に含める必要があるが、異種結合由来のピークの完全な分離・同定が困難であり、また異種結合量が少量であることから、本願発明のエチレン含有量は実質的に異種結合を含まないチーグラー触媒で製造された共重合体の解析と同じく式(1)〜(7)の関係式を用いて求めることとする。
エチレン含有量のモル%から重量%への換算は以下の式を用いて行う
エチレン含有量(重量%)=(28×X/100)/{28×X/100+42×(1−X/100)}×100
ここでXはモル%表示でのエチレン含有量である。
In order to obtain an accurate ethylene content, it is necessary to include these peaks derived from heterogeneous bonds in the calculation. Therefore, the ethylene content of the present invention is obtained by using the relational expressions (1) to (7) in the same manner as the analysis of the copolymer produced with a Ziegler catalyst that does not substantially contain a heterogeneous bond. To do.
Conversion from mol% to wt% of ethylene content is carried out using the following formula: ethylene content (wt%) = (28 × X / 100) / {28 × X / 100 + 42 × (1−X / 100) } × 100
Here, X is the ethylene content in mol%.

また、プロピレン−エチレンブロック共重合体全体のエチレン含量[E]は、上記より測定された成分(A1)と(A2)それぞれのエチレン含量[E]A1と[E]A2及びTREFより算出される各成分の重量比率W(A1)とW(A2)重量%から以下の式により算出される。
[E]={[E]A1×W(A1)+[E]A2×W(A2)}/100 (重量%)
The ethylene content [E] W of the entire propylene-ethylene block copolymer is calculated from the respective ethylene contents [E] A1 , [E] A2 and TREF measured from the components (A1) and (A2). From the weight ratios W (A1) and W (A2)% by weight of the respective components, the following formula is used.
[E] W = {[E] A1 × W (A1) + [E] A2 × W (A2)} / 100 (% by weight)

(4)プロピレン−エチレンブロック共重合体(A)のメルトフローレート(MFR)
本発明で使用されるプロピレン−エチレンブロック共重合体のメルトフローレート(MFR)は、1〜30g/10分であり、好ましくは4〜15g/10分である。MFRが1g/10分未満ではフィルムの表面にシャークスキンやメルトフラクチャと呼ばれる表面荒れが発生し外観を著しく損なう。一方で、MFRが高すぎると成形時の安定性が悪化し、フィルムの幅や厚みが変動し製品を得ることができない。
ここで、MFRは、JIS K7210 A法 条件Mに準拠し、加熱温度230℃、荷重2.16kg(21.18N)で測定する値である。
(4) Melt flow rate (MFR) of propylene-ethylene block copolymer (A)
The melt flow rate (MFR) of the propylene-ethylene block copolymer used in the present invention is 1 to 30 g / 10 minutes, preferably 4 to 15 g / 10 minutes. When the MFR is less than 1 g / 10 min, surface roughness called shark skin or melt fracture occurs on the surface of the film and the appearance is remarkably impaired. On the other hand, if the MFR is too high, the stability during molding deteriorates, the width and thickness of the film vary, and a product cannot be obtained.
Here, MFR is a value measured at a heating temperature of 230 ° C. and a load of 2.16 kg (21.18 N) in accordance with JIS K7210 A method condition M.

(5)tanδ曲線のピークによる規定
本発明においては、フィルムの相溶性を良好に保つために、使用するプロピレン−エチレンブロック共重合体を構成する成分(A1)と成分(A2)とが相分離していないことが必要である。相分離の条件は、エチレン含量のみならず、分子量や組成によっても影響を受けるため、上記のエチレン含量に関する規定に加えて、固体粘弾性測定(DMA)により得られる温度−損失正接(tanδ)曲線において、tanδ曲線のピークに関する規定が必要となる。
本発明で用いられるプロピレン−エチレンブロック共重合体(A)においては、固体粘弾性測定(DMA)により得られる温度−損失正接(tanδ)曲線において、tanδ曲線が0℃以下に単一のピークを有することが好ましい。
プロピレン−エチレンブロック共重合体(A)が相分離構造を取る場合には、成分(A1)に含まれる非晶部のガラス転移温度と成分(A2)に含まれる非晶部のガラス転移温度が各々異なるため、ピークは複数となる。この場合には、フィッシュアイが発生しやすくなるという問題が生じる。
相分離構造を取っているかどうかは、固体粘弾性測定におけるtanδ曲線において判別可能であり、フィッシュアイの発生を左右する相分離構造の回避は、tanδ曲線が0℃以下に単一のピークを有することによりもたらされる。
(5) Definition by peak of tan δ curve In the present invention, in order to maintain good compatibility of the film, the component (A1) and the component (A2) constituting the propylene-ethylene block copolymer to be used are phase separated. It is necessary not to do. The phase separation conditions are affected not only by the ethylene content but also by the molecular weight and composition. Therefore, in addition to the above-mentioned regulations regarding the ethylene content, a temperature-loss tangent (tan δ) curve obtained by solid viscoelasticity measurement (DMA) Therefore, it is necessary to define the peak of the tan δ curve.
In the propylene-ethylene block copolymer (A) used in the present invention, in the temperature-loss tangent (tan δ) curve obtained by solid viscoelasticity measurement (DMA), the tan δ curve has a single peak at 0 ° C. or lower. It is preferable to have.
When the propylene-ethylene block copolymer (A) has a phase separation structure, the glass transition temperature of the amorphous part contained in the component (A1) and the glass transition temperature of the amorphous part contained in the component (A2) are Since each is different, there are a plurality of peaks. In this case, there arises a problem that fish eyes are likely to occur.
Whether or not the phase separation structure is taken can be determined in the tan δ curve in the solid viscoelasticity measurement, and the tan δ curve has a single peak below 0 ° C. Is brought about by

固体粘弾性測定とは、具体的には、短冊状の試料片に特定周波数の正弦歪みを与え、発生する応力を検知することで行う。ここでは、周波数は1Hzを用い測定温度は−60℃から段階状に昇温し、サンプルが融解して測定不能になるまで行う。また、歪みの大きさは0.1〜0.5%程度が推奨される。得られた応力から、公知の方法によって貯蔵弾性率G’と損失弾性率G”を求め、これの比で定義される損失正接(=損失弾性率/貯蔵弾性率)を温度に対してプロットすると0℃以下の温度領域で鋭いピークを示す。一般に0℃以下でのtanδ曲線のピークは非晶部のガラス転移を観測するものであり、ここでは本ピーク温度をガラス転移温度Tg(℃)として定義する。   Specifically, solid viscoelasticity measurement is performed by applying a sinusoidal strain of a specific frequency to a strip-shaped sample piece and detecting the generated stress. Here, the frequency is 1 Hz and the measurement temperature is raised stepwise from −60 ° C. until the sample is melted and cannot be measured. Further, it is recommended that the magnitude of distortion is about 0.1 to 0.5%. From the obtained stress, the storage elastic modulus G ′ and the loss elastic modulus G ″ are obtained by a known method, and the loss tangent (= loss elastic modulus / storage elastic modulus) defined by this ratio is plotted against the temperature. It shows a sharp peak in the temperature range below 0 ° C. Generally, the peak of the tan δ curve below 0 ° C. is for observing the glass transition of the amorphous part, and here the peak temperature is defined as the glass transition temperature Tg (° C.). Define.

(6)分子量
本発明で使用されるプロピレン−エチレンブロック共重合体のゲルパーミエーション(GPC)法により測定される重量平均分子量の5,000以下の成分量は、0.8重量%以下が好ましく、より好ましくは0.5重量%以下である。本発明におけるプロピレン−エチレンブロック共重合体(A)は、低分子量成分が少ないことを付加的な特徴とし、低分子量成分、特に、その分子量が絡み合い点間分子量に満たない成分は、成形体の表面にブリードアウトし、ベタツキ性や透明性などを悪化させると考えられる。
なお、ポリプロピレンの絡み合い点間分子量は、Journal of Polymer Science:Part B:Polyer Physics; 37 1023−1033(1999)に記載されるように、約5,000である。
(6) Molecular weight The amount of the component having a weight average molecular weight of 5,000 or less as measured by the gel permeation (GPC) method of the propylene-ethylene block copolymer used in the present invention is preferably 0.8% by weight or less. More preferably, it is 0.5 wt% or less. The propylene-ethylene block copolymer (A) in the present invention has an additional feature that the low molecular weight component is small, and the low molecular weight component, particularly the component whose molecular weight is less than the entangled molecular weight, It seems to bleed out on the surface and deteriorate stickiness and transparency.
In addition, the molecular weight between the entanglement points of polypropylene is about 5,000 as described in Journal of Polymer Science: Part B: Polymer Physics; 37 1023-1103 (1999).

ここで、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定したものをいう。
保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。
使用する標準ポリスチレンは何れも東ソー(株)製の以下の銘柄である。 F380,F288,F128,F80,F40,F20,F10,F4,F1,A5000,A2500,A1000
各々が0.5mg/mlとなるようにo−ジクロロベンゼン(0.5mg/mlのBHTを含む)に溶解した溶液を0.2ml注入して較正曲線を作成する。
較正曲線は最小二乗法で近似して得られる三次式を用いる。分子量への換算に使用する粘度式: [η]=K×Mα は、以下の数値を用いる。
PS : K=1.38×10−4 α=0.7
PE : K=3.92×10−4 α=0.733
PP : K=1.03×10−4 α=0.78
Here, the weight average molecular weight (Mw) refers to that measured by gel permeation chromatography (GPC).
Conversion from the retention volume to the molecular weight is performed using a calibration curve prepared in advance with standard polystyrene.
Standard polystyrenes used are the following brands manufactured by Tosoh Corporation. F380, F288, F128, F80, F40, F20, F10, F4, F1, A5000, A2500, A1000
A calibration curve is prepared by injecting 0.2 ml of a solution dissolved in o-dichlorobenzene (containing 0.5 mg / ml BHT) so that each is 0.5 mg / ml.
The calibration curve uses a cubic equation obtained by approximation by the least square method. Viscosity formula used for conversion to molecular weight: [η] = K × M α uses the following numerical values.
PS: K = 1.38 × 10 −4 α = 0.7
PE: K = 3.92 × 10 −4 α = 0.733
PP: K = 1.03 × 10 −4 α = 0.78

なお、GPCの測定条件は以下の通りである。
装置:WATERS社製 GPC(ALC/GPC 150C)
検出器:FOXBORO社製MIRAN 1A IR検出器(測定波長:3.42μm)
カラム:昭和電工社製AD806M/S(3本)
移動相溶媒:o−ジクロロベンゼン
測定温度:140℃
流速:1.0ml/min
注入量:0.2ml
試料の調製
試料はo−ジクロロベンゼン(0.5mg/mlのBHTを含む)を用いて1mg/mlの溶液を調製し、140℃で約1時間を要して溶解させる。
GPC測定により得られた分子量に対する溶出割合のプロットから、分子量5,000以下の成分量も求めることができる。
The measurement conditions for GPC are as follows.
Apparatus: GPC (ALC / GPC 150C) manufactured by WATERS
Detector: MIRAN 1A IR detector manufactured by FOXBORO (measurement wavelength: 3.42 μm)
Column: AD806M / S (3 pieces) manufactured by Showa Denko KK
Mobile phase solvent: o-dichlorobenzene Measurement temperature: 140 ° C.
Flow rate: 1.0 ml / min
Injection volume: 0.2ml
Sample Preparation Prepare a 1 mg / ml solution using o-dichlorobenzene (containing 0.5 mg / ml BHT) and dissolve it at 140 ° C. for about 1 hour.
The amount of the component having a molecular weight of 5,000 or less can also be determined from a plot of the elution ratio with respect to the molecular weight obtained by GPC measurement.

(7)固有粘度[η]cxs
プロピレン−エチレンブロック共重合体(A)において、ベタツキやブリードアウトが特に問題となるのは、常温のキシレンに可溶な成分(CXS成分)であるため、固有粘度[η]cxsの測定は、CXS成分に対して行うことが好ましい。
ここで、CXS成分は、プロピレン−エチレンブロック共重合体(A)をp−キシレンに130℃で溶解させ溶液とした後、25℃で12時間放置し、析出したポリマーを濾別し、濾液からp−キシレンを蒸発させることにより得られ、得られたCXS成分の固有粘度[η]cxsを、デカリンを溶媒として用い、温度135℃でウベローデ型粘度計を用いて測定することができる。
このとき、本発明のプロピレン−エチレンブロック共重合体(A)は、ブリードアウトしやすい分子量5,000以下の成分の生成を増加させることが無いため、従来のチーグラー・ナッタ系触媒では、製造上の問題やブロッキングなどの悪化により実用上問題のあった、CXS成分の固有粘度[η] cxsが2以下の領域であっても、格別な物性の悪化を引き起こすことなく、製造し利用することができる。
このようなCXS成分の固有粘度を下げながら分子量5,000以下の成分を増加させないプロピレン−エチレンブロック共重合体は、引張破断伸びが大きく、引張破断強度が高いという物性面での特徴を持ち、さらに、ブツやフィッシュアイと称される外観不良の発生が少ないという効果を示す。
(7) Intrinsic viscosity [η] cxs
In the propylene-ethylene block copolymer (A), it is a component (CXS component) that is soluble in xylene at room temperature, in which stickiness and bleed out are particularly problematic. Therefore, the measurement of intrinsic viscosity [η] cxs is: It is preferable to carry out for the CXS component.
Here, the CXS component was prepared by dissolving the propylene-ethylene block copolymer (A) in p-xylene at 130 ° C. to form a solution, and then leaving the solution at 25 ° C. for 12 hours. The intrinsic viscosity [η] cxs of the CXS component obtained by evaporating p-xylene can be measured using a Ubbelohde viscometer at a temperature of 135 ° C. using decalin as a solvent.
At this time, since the propylene-ethylene block copolymer (A) of the present invention does not increase the generation of a component having a molecular weight of 5,000 or less that tends to bleed out, the conventional Ziegler-Natta catalyst is Even if the intrinsic viscosity [η] cxs of the CXS component is in the region of 2 or less, which has been a practical problem due to problems such as blocking and deterioration of blocking, it can be produced and used without causing any particular deterioration in physical properties. it can.
The propylene-ethylene block copolymer which does not increase the component having a molecular weight of 5,000 or less while lowering the intrinsic viscosity of such a CXS component has characteristics in terms of physical properties such as high tensile elongation at break and high tensile strength at break. In addition, there is an effect that there is little occurrence of an appearance defect called “butsu” or “fish eye”.

(8)TREF溶出曲線による結晶性分布の付加的要件
各成分の量を特定するために用いたTREF溶出曲線を用いることで、本発明のプロピレン−エチレンブロック共重合体に、結晶性分布において付加的な特徴を見出すことができる。
(i)溶出ピーク温度T(A1)
TREF溶出曲線における成分(A1)の溶出ピーク温度T(A1)が高いほど、成分(A1)は結晶性が高くなるが、このとき、成分(A1)の結晶性が高くなるとプロピレン−エチレンブロック共重合体(A)の粘着性を改良するために必要な成分(A2)を多くしなくてはならない。
一方で、成分(A2)の割合が多くなり過ぎるとベタツキや耐熱性の悪化が生じるため、粘着性、柔軟性とのバランスを向上させるためには、T(A1)は高過ぎないほうがよい。さらに、臭気性などは成形温度の上昇と共に悪化する傾向があるが、T(A1)を低下させることで、押出温度を低下させても安定した可塑化が得られる点でも好ましい。
本発明において成分(A1)はプロピレン単独重合体又はプロピレン・エチレンランダム共重合体であるが、T(A1)はエチレン含量の増加により低下させることができる。このとき、充分な粘着性と柔軟性と耐熱性のバランスを発揮するためには、T(A1)は96℃以下であることが好ましく、最も好ましい範囲は88℃以下であることが好ましい。
一方、ピーク温度T(A1)が55℃未満である場合には、成分(A1)の結晶が融解する温度は低く、プロピレン−エチレンブロック共重合体が充分な耐熱性を発揮することができず、ブロッキングが悪化するため、本発明においては、ピーク温度T(A1)は55℃以上であることが好ましく、より好ましくは、60℃以上である。
(8) Additional requirements for crystallinity distribution by TREF elution curve By using the TREF elution curve used to specify the amount of each component, it was added to the propylene-ethylene block copolymer of the present invention in the crystallinity distribution. Characteristic can be found.
(I) Elution peak temperature T (A1)
The higher the elution peak temperature T (A1) of the component (A1) in the TREF elution curve, the higher the crystallinity of the component (A1). At this time, the higher the crystallinity of the component (A1), the higher the propylene-ethylene block content. The component (A2) necessary for improving the adhesiveness of the polymer (A) must be increased.
On the other hand, if the proportion of the component (A2) is too large, stickiness and heat resistance are deteriorated. Therefore, in order to improve the balance between adhesiveness and flexibility, T (A1) should not be too high. Further, odor properties and the like tend to deteriorate with an increase in molding temperature, but it is also preferable in that stable plasticization can be obtained by reducing T (A1) even if the extrusion temperature is lowered.
In the present invention, the component (A1) is a propylene homopolymer or a propylene / ethylene random copolymer, but T (A1) can be decreased by increasing the ethylene content. At this time, in order to exhibit a sufficient balance of adhesiveness, flexibility and heat resistance, T (A1) is preferably 96 ° C. or lower, and the most preferable range is preferably 88 ° C. or lower.
On the other hand, when the peak temperature T (A1) is less than 55 ° C., the temperature at which the component (A1) crystals melt is low, and the propylene-ethylene block copolymer cannot exhibit sufficient heat resistance. Since blocking is worsened, in the present invention, the peak temperature T (A1) is preferably 55 ° C. or higher, more preferably 60 ° C. or higher.

(ii)溶出終了温度T(A4)
T(A1)が低くとも高結晶側に結晶性分布を持つ場合にはフィッシュアイの悪化が生じる。この原因は定かではないが、高結晶側に結晶性分布があると結晶構造の密度が増加し非晶部との密度差が増大する、或いは、核生成頻度が低下し球晶サイズが増大するためと推察される。
そこで、TREF溶出曲線において高温側への結晶性の広がりは抑制されることが好ましい。この高結晶側へ結晶性の広がりはTREF測定により評価可能であり、ピーク温度T(A1)に対し、成分プロピレン−エチレンブロック共重合体(A)全体の溶出終了温度T(A4)(但し、TREF測定における誤差を考えると全て溶出する温度を定義することは困難であるので、本発明においては全体の99重量%が溶出する温度を溶出終了温度T(A4)と定義する)は高くないほうが好ましく、高温側に溶出成分があるとその成分の結晶化度が増加してしまうので、本発明の好ましい要件としてT(A4)は98℃以下、好ましくは90℃以下である。
さらに、溶出ピークから溶出終了までの温度差ΔT(T(A4)−T(A1))は好ましくは5℃以下、より好ましくは4℃以下、さらに好ましくは3℃以下の範囲にあればよい。
(Ii) Elution end temperature T (A4)
When T (A1) is low, the fish eye is deteriorated when the crystallinity distribution is present on the high crystal side. The cause of this is not clear, but if there is a crystalline distribution on the high crystal side, the density of the crystal structure increases and the density difference from the amorphous part increases, or the nucleation frequency decreases and the spherulite size increases. This is probably because of this.
Therefore, it is preferable that the crystallinity spread to the high temperature side is suppressed in the TREF elution curve. The spread of crystallinity toward the high crystal side can be evaluated by TREF measurement, and the elution end temperature T (A4) of the entire component propylene-ethylene block copolymer (A) with respect to the peak temperature T (A1) (however, Considering errors in TREF measurement, it is difficult to define the temperature at which all elution occurs, so in the present invention, the temperature at which 99% by weight of the total elution is defined as the elution end temperature T (A4)) should not be high. Preferably, if there is an elution component on the high temperature side, the crystallinity of the component increases. Therefore, as a preferable requirement of the present invention, T (A4) is 98 ° C. or less, preferably 90 ° C. or less.
Furthermore, the temperature difference ΔT (T (A4) −T (A1)) from the elution peak to the end of elution is preferably 5 ° C. or less, more preferably 4 ° C. or less, and even more preferably 3 ° C. or less.

(iii)溶出ピーク温度T(A2)
成分(A2)の結晶性が充分に低下していないとプロピレン−エチレンブロック共重合体(A)の粘着性と柔軟性を確保することができないため、T(A2)は好ましくは45℃以下、より好ましくは40℃以下である。
(Iii) Elution peak temperature T (A2)
Since the adhesiveness and flexibility of the propylene-ethylene block copolymer (A) cannot be ensured unless the crystallinity of the component (A2) is sufficiently lowered, T (A2) is preferably 45 ° C. or less. More preferably, it is 40 degrees C or less.

(9)プロピレン−エチレンブロック共重合体(A)の製造
本発明のプロピレン−エチレンブロック共重合体(A)を製造する方法は、メタロセン系触媒の使用を必須とするものである。プロピレン−エチレンブロック共重合体において分子量及び結晶性分布が広いとベタツキやブリードアウトが悪化することは当業者に広く知られるところであるが、本発明に用いられるプロピレン−エチレンブロック共重合体においても、ベタツキ及びブリードアウトを抑制するため、かつ、フィルム成形においてより少ないフィッシュアイの発生を達成するために、分子量及び結晶性分布を狭くできるメタロセン系触媒を用いて重合されることが必要であり、チーグラー・ナッタ系触媒では本発明の優れたプロピレン−エチレンブロック共重合体が得られないのは、後記の実施例と比較例との対比からも明らかである。
(9) Production of propylene-ethylene block copolymer (A) The method for producing the propylene-ethylene block copolymer (A) of the present invention requires the use of a metallocene catalyst. It is well known to those skilled in the art that stickiness and bleedout deteriorate when the molecular weight and crystallinity distribution are wide in the propylene-ethylene block copolymer, but also in the propylene-ethylene block copolymer used in the present invention, In order to suppress stickiness and bleed-out, and to achieve less fisheye in film forming, it is necessary to polymerize using a metallocene catalyst that can narrow the molecular weight and crystallinity distribution. The fact that the propylene-ethylene block copolymer of the present invention cannot be obtained with a Natta-based catalyst is also apparent from the comparison of Examples and Comparative Examples described later.

ここで、メタロセン系触媒の種類は、本発明の性能を有する共重合体を生成できる限りは、特に限定はされるものではないが、本発明の要件を満たすために、例えば、下記に示すような成分(x)と成分(y)及び必要に応じて使用する成分(z)からなるメタロセン系触媒を用いることが好ましい。
成分(x):一般式(1)で表される遷移金属化合物から選ばれる少なくとも1種のメタロセン遷移金属化合物
成分(y):下記(y−1)〜(y−4)から選ばれる少なくとも1種の固体成分
(y−1)有機アルミオキシ化合物が担持された微粒子状担体
(y−2)成分(x)と反応して成分(x)をカチオンに変換することが可能なイオン性化合物またはルイス酸が担持された微粒子状担体
(y−3)固体酸微粒子
(y−4)イオン交換性層状珪酸塩
成分(z):有機アルミニウム化合物
Here, the type of the metallocene-based catalyst is not particularly limited as long as a copolymer having the performance of the present invention can be produced, but in order to satisfy the requirements of the present invention, for example, as shown below: It is preferable to use a metallocene-based catalyst comprising the component (x), the component (y), and the component (z) used as necessary.
Component (x): At least one metallocene transition metal compound selected from the transition metal compounds represented by the general formula (1) Component (y): At least one selected from the following (y-1) to (y-4) Ionic compound capable of reacting with solid component (y-1), particulate carrier (y-2) component (x) on which solid organic component (y-1) is supported, and converting component (x) into a cation Fine carrier on which Lewis acid is supported (y-3) Solid acid fine particle (y-4) Ion exchange layered silicate component (z): Organoaluminum compound

成分(x)
成分(x)としては、下記一般式(1)で表される遷移金属化合物から選ばれる少なくとも1種のメタロセン遷移金属化合物を使用することができる。
Q(C4−a−aR)(C4−b−bR)MeXY …(1)
[ここで、Qは、2つの共役五員環配位子を架橋する2価の結合性基を示し、Meは、チタン、ジルコニウム、ハフニウムから選ばれる金属原子を示し、X及びYは、水素原子、ハロゲン原子、炭化水素基、アルコキシ基、アミノ基、窒素含有炭化水素基、リン含有炭化水素基又はケイ素含有炭化水素基を示し、X及びYは、それぞれ独立に、すなわち同一でも異なっていてもよい。R及びRは、水素、炭化水素基、ハロゲン化炭化水素基、ケイ素含有炭化水素基、窒素含有炭化水素基、酸素含有炭化水素基、ホウ素含有炭化水素基又はリン含有炭化水素基を示す。a 及びb は置換基の数である。]
Ingredient (x)
As the component (x), at least one metallocene transition metal compound selected from transition metal compounds represented by the following general formula (1) can be used.
Q (C 5 H 4-a -aR 1) (C 5 H 4-b -bR 2) MeXY ... (1)
[Wherein Q represents a divalent linking group that bridges two conjugated five-membered ring ligands, Me represents a metal atom selected from titanium, zirconium, and hafnium, and X and Y represent hydrogen atoms. Atom, halogen atom, hydrocarbon group, alkoxy group, amino group, nitrogen-containing hydrocarbon group, phosphorus-containing hydrocarbon group or silicon-containing hydrocarbon group, X and Y are each independently, ie, the same or different. Also good. R 1 and R 2 represent hydrogen, a hydrocarbon group, a halogenated hydrocarbon group, a silicon-containing hydrocarbon group, a nitrogen-containing hydrocarbon group, an oxygen-containing hydrocarbon group, a boron-containing hydrocarbon group, or a phosphorus-containing hydrocarbon group. . a and b are the number of substituents. ]

詳しくは、Qは、2つの共役五員環配位子を架橋する2価の結合性基を表し、例えば、2価の炭化水素基、シリレン基ないしオリゴシリレン基、炭化水素基を置換基として有するシリレン基或いはオリゴシリレン基又は炭化水素基を置換基として有するゲルミレン基などが例示される。この中でも好ましいものは2価の炭化水素基と炭化水素基を置換基として有するシリレン基である。
X及びYは、水素原子、ハロゲン原子、炭化水素基、アルコキシ基、アミノ基、窒素含有炭化水素基、リン含有炭化水素基又はケイ素含有炭化水素基を示し、このうちで好ましいものとしては、水素、塩素、メチル、イソブチル、フェニル、ジメチルアミド、ジエチルアミド基などを例示することができる。X及びYは、それぞれ独立に、すなわち同一でも異なっていてもよい。
Specifically, Q represents a divalent linking group that bridges two conjugated five-membered ring ligands. For example, a divalent hydrocarbon group, a silylene group, an oligosilylene group, or a hydrocarbon group as a substituent. Examples thereof include a silylene group, an oligosilylene group, or a germylene group having a hydrocarbon group as a substituent. Among these, preferred is a silylene group having a divalent hydrocarbon group and a hydrocarbon group as a substituent.
X and Y represent a hydrogen atom, a halogen atom, a hydrocarbon group, an alkoxy group, an amino group, a nitrogen-containing hydrocarbon group, a phosphorus-containing hydrocarbon group, or a silicon-containing hydrocarbon group. Among these, hydrogen is preferable , Chlorine, methyl, isobutyl, phenyl, dimethylamide, diethylamide group and the like. X and Y may be independent, that is, may be the same or different.

及びRは、水素、炭化水素基、ハロゲン化炭化水素基、ケイ素含有炭化水素基、窒素含有炭化水素基、酸素含有炭化水素基、ホウ素含有炭化水素基又はリン含有炭化水素基を表す。
炭化水素基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、フェニル基、ナフチル基、ブテニル基、ブタジエニル基などが例示される。また、ハロゲン化炭化水素基、ケイ素含有炭化水素基、窒素含有炭化水素基、酸素含有炭化水素基、ホウ素含有炭化水素基又はリン含有炭化水素基としては、メトキシ基、エトキシ基、フェノキシ基、トリメチルシリル基、ジエチルアミノ基、ジフェニルアミノ基、ピラゾリル基、インドリル基、ジメチルフォスフィノ基、ジフェニルフォスフィノ基、ジフェニルホウ素基、ジメトキシホウ素基などを典型的な例として例示できる。これらの中で、炭素数1〜20の炭化水素基であることが好ましく、メチル基、エチル基、プロピル基、ブチル基であることが特に好ましい。
ところで、隣接したR及びRは、結合して環を形成してもよく、この環上に炭化水素基、ハロゲン化炭化水素基、ケイ素含有炭化水素基、窒素含有炭化水素基、酸素含有炭化水素基、ホウ素含有炭化水素基又はリン含有炭化水素基からなる置換基を有していてもよい。
Meは、チタン、ジルコニウム、ハフニウムの中から選ばれる金属原子であり、好ましくはジルコニウム、ハフニウムである。
R 1 and R 2 represent hydrogen, a hydrocarbon group, a halogenated hydrocarbon group, a silicon-containing hydrocarbon group, a nitrogen-containing hydrocarbon group, an oxygen-containing hydrocarbon group, a boron-containing hydrocarbon group, or a phosphorus-containing hydrocarbon group. .
Specific examples of the hydrocarbon group include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, a phenyl group, a naphthyl group, a butenyl group, and a butadienyl group. In addition, halogenated hydrocarbon group, silicon-containing hydrocarbon group, nitrogen-containing hydrocarbon group, oxygen-containing hydrocarbon group, boron-containing hydrocarbon group or phosphorus-containing hydrocarbon group include methoxy group, ethoxy group, phenoxy group, trimethylsilyl group. Typical examples include a group, a diethylamino group, a diphenylamino group, a pyrazolyl group, an indolyl group, a dimethylphosphino group, a diphenylphosphino group, a diphenylboron group, and a dimethoxyboron group. Among these, a hydrocarbon group having 1 to 20 carbon atoms is preferable, and a methyl group, an ethyl group, a propyl group, and a butyl group are particularly preferable.
By the way, adjacent R 1 and R 2 may combine to form a ring, on which a hydrocarbon group, halogenated hydrocarbon group, silicon-containing hydrocarbon group, nitrogen-containing hydrocarbon group, oxygen-containing You may have a substituent which consists of a hydrocarbon group, a boron containing hydrocarbon group, or a phosphorus containing hydrocarbon group.
Me is a metal atom selected from titanium, zirconium and hafnium, preferably zirconium and hafnium.

以上において記載した成分(x)の中で、本発明のプロピレン−エチレンブロック共重合体の製造に好ましいものは、炭化水素置換基を有するシリレン基、ゲルミレン基或いはアルキレン基で架橋された置換シクロペンタジエニル基、置換インデニル基、置換フルオレニル基、置換アズレニル基を有する配位子からなる遷移金属化合物であり、特に好ましくは、炭化水素置換基を有するシリレン基、あるいはゲルミレン基で架橋された2,4−位置換インデニル基、2,4−位置換アズレニル基を有する配位子からなる遷移金属化合物である。   Among the components (x) described above, preferred for production of the propylene-ethylene block copolymer of the present invention is a substituted cyclopenta crosslinked with a silylene group, a germylene group or an alkylene group having a hydrocarbon substituent. It is a transition metal compound composed of a ligand having a dienyl group, a substituted indenyl group, a substituted fluorenyl group, or a substituted azulenyl group, and particularly preferably a 2, 2 crosslinked by a silylene group having a hydrocarbon substituent or a germylene group. It is a transition metal compound comprising a ligand having a 4-position substituted indenyl group and a 2,4-position substituted azulenyl group.

非限定的な具体例としては、
ジメチルシリレンビス(2−メチル−4−フェニルインデニル)ジルコニウムジクロリド、
ジフェニルシリレンビス(2−メチル−4−フェニルインデニル)ジルコニウムジクロリド、
ジメチルシリレンビス(2−メチルベンゾインデニル)ジルコニウムジクロリド、
ジメチルシリレンビス{2−イソプロピル−4−(3,5−ジイソプロピルフェニル)インデニル}ジルコニウムジクロリド、
ジメチルシリレンビス(2−プロピル−4−フェナントリルインデニル)ジルコニウムジクロリド、
ジメチルシリレンビス(2−メチル−4−フェニルアズレニル)ジルコニウムジクロリド、
ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)アズレニル}ジルコニウムジクロリド、
ジメチルシリレンビス(2−エチル−4−フェニルアズレニル)ジルコニウムジクロリド、
ジメチルシリレンビス(2−イソプロピル−4−フェニルアズレニル)ジルコニウムジクロリド、
ジメチルシリレンビス{2−エチル−4−(2−フルオロビフェニル)アズレニル}ジルコニウムジクロリド、
ジメチルシリレンビス{2−エチル−4−(4−t−ブチル−3−クロロフェニル)アズレニル}ジルコニウムジクロリドなどが挙げられる。
これらの具体例の化合物のシリレン基をゲルミレン基に、ジルコニウムをハフニウムに置き換えた化合物も好適な化合物として例示される。なお、触媒成分は本発明の重要要素ではないので、煩雑な列記を避け、代表的な例示に限定しているが、これにより本発明の有効範囲が制限されることが無いのは自明のことである。
Non-limiting examples include
Dimethylsilylene bis (2-methyl-4-phenylindenyl) zirconium dichloride,
Diphenylsilylenebis (2-methyl-4-phenylindenyl) zirconium dichloride,
Dimethylsilylenebis (2-methylbenzoindenyl) zirconium dichloride,
Dimethylsilylenebis {2-isopropyl-4- (3,5-diisopropylphenyl) indenyl} zirconium dichloride,
Dimethylsilylene bis (2-propyl-4-phenanthrylindenyl) zirconium dichloride,
Dimethylsilylenebis (2-methyl-4-phenylazurenyl) zirconium dichloride,
Dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) azurenyl} zirconium dichloride,
Dimethylsilylenebis (2-ethyl-4-phenylazurenyl) zirconium dichloride,
Dimethylsilylenebis (2-isopropyl-4-phenylazurenyl) zirconium dichloride,
Dimethylsilylenebis {2-ethyl-4- (2-fluorobiphenyl) azurenyl} zirconium dichloride,
Examples include dimethylsilylene bis {2-ethyl-4- (4-t-butyl-3-chlorophenyl) azurenyl} zirconium dichloride.
A compound in which the silylene group of these specific examples is replaced with a germylene group and zirconium is replaced with hafnium is also exemplified as a suitable compound. In addition, since the catalyst component is not an important element of the present invention, it avoids complicated listing and is limited to a representative example, but it is obvious that the effective range of the present invention is not limited thereby. It is.

成分(y)
成分(y)としては、上述した成分(y−1)〜成分(y−4)から選ばれる少なくとも1種の固体成分を使用する。これらの各成分は公知のものであり、公知技術の中から適宜選択して使用することができる。その具体的な例示や製造方法については、特開2002−284808号公報、特開2002−53609号公報、特開2002−69116号公報、特開2003−105015号公報などに詳細な例示がある。
ここで、成分(y−1)及び成分(y−2)に用いられる微粒子状担体としては、シリカ、アルミナ、マグネシア、シリカアルミナ、シリカマグネシアなどの無機酸化物、塩化マグネシウム、オキシ塩化マグネシウム、塩化アルミニウム、塩化ランタンなどの無機ハロゲン化物、さらには、ポリプロピレン、ポリエチレン、ポリスチレン、スチレンジビニルベンセン共重合体、アクリル酸系共重合体などの多孔質の有機担体を挙げることができる。
Ingredient (y)
As the component (y), at least one solid component selected from the components (y-1) to (y-4) described above is used. Each of these components is a known component, and can be appropriately selected from known technologies and used. Specific examples and manufacturing methods thereof are described in detail in JP-A No. 2002-284808, JP-A No. 2002-53609, JP-A No. 2002-69116, JP-A No. 2003-105015, and the like.
Here, as the particulate carrier used for the component (y-1) and the component (y-2), inorganic oxides such as silica, alumina, magnesia, silica alumina, silica magnesia, magnesium chloride, magnesium oxychloride, chloride Examples thereof include inorganic halides such as aluminum and lanthanum chloride, and porous organic carriers such as polypropylene, polyethylene, polystyrene, styrene divinyl benzene copolymer, and acrylic acid copolymer.

また、成分(y)の非限定的な具体例としては、成分(y−1)として、メチルアルモキサン、イソブチルアルモキサン、メチルイソブチルアルモキサン、ブチルボロン酸アルミニウムテトライソブチルなどが担持された微粒子状担体を、成分(y−2)として、トリフェニルボラン、トリス(3,5−ジフルオロフェニル)ボラン、トリス(ペンタフルオロフェニル)ボラン、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートなどが担持された微粒子状担体を、成分(y−3)として、アルミナ、シリカアルミナ、塩化マグネシウムなどを、成分(y−4)として、モンモリロナイト、ザコウナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト、ベントナイト、テニオライトなどのスメクタイト族、バーミキュライト族、雲母族などが挙げられる。これらは、混合層を形成しているものでもよい。
上記成分(y)の中で特に好ましいものは、成分(y−4)のイオン交換性層状珪酸塩であり、さらに好ましい物は、酸処理、アルカリ処理、塩処理、有機物処理などの化学処理が施されたイオン交換性層状珪酸塩である。
Further, as a non-limiting specific example of the component (y), as the component (y-1), a fine particle carrier on which methylalumoxane, isobutylalumoxane, methylisobutylalumoxane, aluminum butylboronate tetraisobutyl, etc. are supported As component (y-2), triphenylborane, tris (3,5-difluorophenyl) borane, tris (pentafluorophenyl) borane, triphenylcarbonium tetrakis (pentafluorophenyl) borate, N, N-dimethyl Particulate carrier carrying anilinium tetrakis (pentafluorophenyl) borate, etc. as component (y-3), alumina, silica alumina, magnesium chloride, etc. as component (y-4), montmorillonite, zakonite, beidellite , Nontronic , Saponite, hectorite, stevensite, bentonite, smectite group such as taeniolite, vermiculite, and the like mica group. These may form a mixed layer.
Particularly preferred among the above components (y) is the ion-exchange layered silicate of component (y-4), and more preferred are chemical treatments such as acid treatment, alkali treatment, salt treatment, and organic matter treatment. It is an ion exchange layered silicate applied.

成分(z)
必要に応じて成分(z)として用いられる有機アルミニウム化合物の例は、下記一般式
AlR3−a
(式中、Rは、炭素数1から20の炭化水素基、Xは、水素、ハロゲン、アルコキシ基、aは0<a≦3の数)
で示されるトリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウムなどのトリアルキルアルミニウム又はジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノメトキシドなどのハロゲンもしくはアルコキシ含有アルキルアルミニウムである。またこの他に、メチルアルミノキサンなどのアルミノキサン類なども使用できる。
これらのうち特にトリアルキルアルミニウムが好ましい。
Ingredient (z)
Examples of the organoaluminum compound used as the component (z) as necessary include the following general formula AlR a X 3-a
(Wherein R is a hydrocarbon group having 1 to 20 carbon atoms, X is hydrogen, halogen, alkoxy group, a is a number of 0 <a ≦ 3)
Or a trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum or triisobutylaluminum, or a halogen or alkoxy-containing alkylaluminum such as diethylaluminum monochloride or diethylaluminum monomethoxide. In addition, aluminoxanes such as methylaluminoxane can also be used.
Of these, trialkylaluminum is particularly preferred.

触媒の形成は、成分(x)と成分(y)及び必要に応じて成分(z)を接触させて触媒とする。その接触方法は特に限定されないが、以下のような順序で接触させることができる。また、この接触は、触媒調製時だけでなく、オレフィンによる予備重合時又はオレフィンの重合時に行ってもよい。
(i)成分(x)と成分(y)を接触させる
(ii)成分(x)と成分(y)を接触させた後に成分(z)を添加する
(iii)成分(x)と成分(z)を接触させた後に成分(y)を添加する
(iv)成分(y)と成分(z)を接触させた後に成分(x)を添加する
(v)三成分を同時に接触させる
The catalyst is formed by bringing the component (x), the component (y) and, if necessary, the component (z) into contact with each other. The contact method is not particularly limited, but the contact can be made in the following order. Moreover, this contact may be performed not only at the time of catalyst preparation but also at the time of prepolymerization with olefin or at the time of polymerization of olefin.
(I) Component (x) is contacted with component (y) (ii) Component (x) is contacted with component (y), and then component (z) is added (iii) Component (x) and component (z) ) Is added and then component (y) is added. (Iv) Component (y) and component (z) are contacted and then component (x) is added. (V) The three components are contacted simultaneously.

本発明で使用する成分(x)と(y)及び(z)の使用量は任意である。例えば、成分(y)に対する成分(x)の使用量は、成分(y)1gに対して、好ましくは0.1μmol〜1,000μmol、特に好ましくは0.5〜500μmolの範囲である。成分(y)に対する成分(z)の使用量は、成分(z)1gに対し、好ましくは遷移金属の量が0.001〜100μmol、特に好ましくは0.005〜50μmolの範囲である。したがって、成分(x)に対する成分(z)の量は、遷移金属のモル比で、好ましくは10−5〜50、特に好ましくは10−4〜5の範囲内である。 The amount of components (x), (y) and (z) used in the present invention is arbitrary. For example, the amount of component (x) used relative to component (y) is preferably in the range of 0.1 to 1,000 μmol, particularly preferably 0.5 to 500 μmol, relative to 1 g of component (y). The amount of component (z) used relative to component (y) is preferably such that the amount of transition metal is 0.001 to 100 μmol, particularly preferably 0.005 to 50 μmol, relative to 1 g of component (z). Therefore, the amount of the component (z) to the component (x) is preferably in the range of 10 −5 to 50, particularly preferably 10 −4 to 5 in terms of the molar ratio of the transition metal.

本発明の触媒は、予めオレフィンを接触させて少量重合されることからなる予備重合処理に付すことが好ましい。使用するオレフィンは、特に限定はないが、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン、スチレンなどを使用することが可能であり、特にプロピレンを使用することが好ましい。
オレフィンの供給方法は、オレフィンを反応槽に定速的にあるいは定圧状態になるように維持する供給方法やその組み合わせ、段階的な変化をさせるなど、任意の方法が可能である。予備重合の温度と時間は、特に限定されないが、各々−20℃〜100℃、5分〜24時間の範囲であることが好ましい。また、予備重合量は、予備重合ポリマー量が成分(y)に対し、好ましくは0.01〜100、さらに好ましくは0.1〜50である。予備重合を終了した後に、触媒の使用形態に応じ、そのまま使用することが可能であるが、必要ならば乾燥を行ってもよい。
さらに、上記各成分の接触の際、もしくは接触の後に、ポリエチレン、ポリプロピレン、ポリスチレンなどの重合体やシリカ、チタニアなどの無機酸化物固体を共存させることも可能である。
It is preferable that the catalyst of the present invention is subjected to a prepolymerization treatment comprising a small amount of polymerization by contacting an olefin in advance. The olefin to be used is not particularly limited, but ethylene, propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-butene, vinylcycloalkane, styrene and the like can be used. It is possible to use, and it is particularly preferable to use propylene.
The olefin can be supplied by any method, such as a supply method for maintaining the olefin at a constant speed or in a constant pressure state, a combination thereof, or a stepwise change. The temperature and time of the prepolymerization are not particularly limited, but are preferably in the range of −20 ° C. to 100 ° C. and 5 minutes to 24 hours, respectively. The amount of prepolymerization is preferably 0.01 to 100, more preferably 0.1 to 50 with respect to the component (y). After completion of the prepolymerization, the catalyst can be used as it is, depending on the usage form of the catalyst, but may be dried if necessary.
Furthermore, a polymer such as polyethylene, polypropylene, or polystyrene, or an inorganic oxide solid such as silica or titania can be allowed to coexist during or after the contact of the above components.

本発明に使用するプロピレン−エチレンブロック共重合体(A)を製造するには、結晶性プロピレン単独重合体または結晶性プロピレン−エチレンランダム共重合体の成分(A1)と、低結晶性或いは非晶性プロピレン−エチレンランダム共重合体成分(A2)を逐次重合することが必要である。
プロピレン−エチレンブロック共重合体が単にプロピレンにエチレンを共重合させたランダム共重合体のときには、エチレン含量が少ない場合には柔軟性と耐衝撃性が充分でなく、これらの物性を向上させるためにエチレン含量を増加させると耐熱性が極めて悪化し製造が困難になるばかりでなく、要求される品質の全てを満たすことは困難である。
そこで、本発明においてプロピレン−エチレンブロック共重合体は、第1工程と第2工程でエチレン含量が異なる成分を逐次重合したブロック共重合体であることが柔軟性及び耐熱性の全てをバランスさせるために必要である。
また、成分(A2)として分子量が低く単独ではべたつきやすい共重合体を用いる場合があるので、反応器への付着などの問題を防止するために、成分(A1)を重合した後で成分(A2)を重合する方法を用いることが望ましい。
In order to produce the propylene-ethylene block copolymer (A) used in the present invention, a crystalline propylene homopolymer or a crystalline propylene-ethylene random copolymer component (A1) and a low crystalline or amorphous material are used. It is necessary to sequentially polymerize the propylene-ethylene random copolymer component (A2).
When the propylene-ethylene block copolymer is a random copolymer obtained by simply copolymerizing ethylene with propylene, if the ethylene content is low, the flexibility and impact resistance are not sufficient, so that these physical properties can be improved. Increasing the ethylene content not only makes the heat resistance extremely poor and difficult to manufacture, but also makes it difficult to meet all required qualities.
Therefore, in the present invention, the propylene-ethylene block copolymer is a block copolymer obtained by sequentially polymerizing components having different ethylene contents in the first step and the second step in order to balance all of flexibility and heat resistance. Is necessary.
Further, since a copolymer having a low molecular weight and easily sticking alone may be used as the component (A2), the component (A2) is polymerized after the component (A1) is polymerized in order to prevent problems such as adhesion to the reactor. It is desirable to use a method of polymerizing).

(i)逐次重合
本発明の成分プロピレン−エチレンブロック共重合体(A)を製造するに際しては、プロピレン単独重合体又は結晶性プロピレン−エチレンランダム共重合体成分(A1)と低結晶性或いは非晶性プロピレン−エチレンランダム共重合体成分(A2)を逐次重合することが前述した理由により必要である。
逐次重合を行う際には、バッチ法と連続法のいずれを用いることも可能であるが、一般的には生産性の観点から連続法を用いることが望ましい。
バッチ法の場合には時間と共に重合条件を変化させることにより単一の反応器を用いて成分(A1)と成分(A2)を個別に重合することが可能である。本発明の効果を阻害しない限り、複数の反応器を並列に接続して用いてもよい。
連続法の場合には成分(A1)と成分(A2)を個別に重合する必要から、2個以上の反応器を直列に接続した製造設備を用いる必要があるが、本発明の効果を阻害しない限り成分(A1)、成分(A2)のそれぞれについて複数の反応器を直列及び/又は並列に接続して用いても良い。
(I) Sequential polymerization In producing the component propylene-ethylene block copolymer (A) of the present invention, the propylene homopolymer or the crystalline propylene-ethylene random copolymer component (A1) and the low crystalline or amorphous The propylene-ethylene random copolymer component (A2) is sequentially polymerized for the reasons described above.
When performing sequential polymerization, either a batch method or a continuous method can be used, but it is generally desirable to use a continuous method from the viewpoint of productivity.
In the case of a batch method, it is possible to polymerize component (A1) and component (A2) separately using a single reactor by changing the polymerization conditions with time. As long as the effects of the present invention are not impaired, a plurality of reactors may be connected in parallel.
In the case of a continuous process, since it is necessary to polymerize component (A1) and component (A2) separately, it is necessary to use a production facility in which two or more reactors are connected in series, but this does not impair the effects of the present invention. As long as each of the component (A1) and the component (A2) is used, a plurality of reactors may be connected in series and / or in parallel.

(ii)重合プロセス
重合プロセス(重合方法)は、スラリー法、バルク法、気相法など任意の重合方法を用いることができる。バルク法と気相法の中間的な条件として超臨界条件を用いることも可能であるが、実質的には気相法と同等であるため、特に区別することなく気相法に含める。
低結晶性或いは非晶性プロピレン−エチレンランダム共重合体成分(A2)は炭化水素などの有機溶媒や液化プロピレンに溶け易いため、成分(A2)の製造に際しては気相法を用いることが望ましい。
結晶性プロピレン−エチレンランダム共重合体成分(A1)の製造に対してはどのプロセスを用いても特に問題はないが、比較的結晶性の低い成分(A1)を製造する場合には、付着などの問題を避けるために気相法を用いることが望ましい。
したがって、連続法を用いて、まずプロピレン単独重合体又は結晶性プロピレン−エチレンランダム共重合体成分(A1)をバルク法もしくは気相法にて重合し、引き続き低結晶性あるいは非晶性プロピレン−エチレンランダム共重合体エラストマー成分(A2)を気相法にて重合することが最も望ましい。
(Ii) Polymerization process As the polymerization process (polymerization method), any polymerization method such as a slurry method, a bulk method, and a gas phase method can be used. Although supercritical conditions can be used as intermediate conditions between the bulk method and the gas phase method, they are substantially the same as the gas phase method, and are therefore included in the gas phase method without particular distinction.
Since the low crystalline or amorphous propylene-ethylene random copolymer component (A2) is easily soluble in organic solvents such as hydrocarbons and liquefied propylene, it is desirable to use a gas phase method for the production of the component (A2).
There is no particular problem in using any process for the production of the crystalline propylene-ethylene random copolymer component (A1). In order to avoid this problem, it is desirable to use a gas phase method.
Therefore, using a continuous method, first, a propylene homopolymer or a crystalline propylene-ethylene random copolymer component (A1) is polymerized by a bulk method or a gas phase method, followed by low crystalline or amorphous propylene-ethylene. It is most desirable to polymerize the random copolymer elastomer component (A2) by a gas phase method.

(iii)その他の重合条件
重合温度は通常用いられている温度範囲であれば特に問題なく用いることができる。具体的には、0℃〜200℃、より好ましくは40℃〜100℃の範囲を用いることができる。重合圧力は選択するプロセスによって差異が生じるが、通常用いられている圧力範囲であれば特に問題なく用いることができる。具体的には、0より大きく200MPaまで、より好ましくは0.1MPa〜50MPaの範囲を用いることができる。この際、窒素などの不活性ガスを共存させることもできる。
第一工程で成分(A1)、第二工程で成分(A2)の逐次重合を行う場合、第二工程にて系中に重合抑制剤を添加することが望ましい。プロピレン−エチレンブロック共重合体を製造する場合には、第二工程のエチレン−プロピレンランダム共重合を行う反応器に重合抑制剤を添加すると、得られるパウダーの粒子性状(流動性など)やゲルなどの製品品質を改良することができる。この手法については各種技術検討がなされており、一例として特公昭63−54296号、特開平7−25960号、特開2003−2939号などの各公報を例示することができる。本発明にも当該手法を適用することが望ましい。
(Iii) Other polymerization conditions The polymerization temperature can be used without any particular problem as long as it is within a commonly used temperature range. Specifically, a range of 0 ° C. to 200 ° C., more preferably 40 ° C. to 100 ° C. can be used. The polymerization pressure varies depending on the process to be selected, but can be used without any problem as long as it is in a pressure range usually used. Specifically, a range of greater than 0 to 200 MPa, more preferably 0.1 MPa to 50 MPa can be used. At this time, an inert gas such as nitrogen can be coexisted.
In the case where the sequential polymerization of the component (A1) in the first step and the component (A2) in the second step is performed, it is desirable to add a polymerization inhibitor into the system in the second step. In the case of producing a propylene-ethylene block copolymer, if a polymerization inhibitor is added to a reactor that performs ethylene-propylene random copolymerization in the second step, the particle properties (fluidity, etc.) of the resulting powder, gel, etc. Product quality can be improved. Various technical studies have been made on this technique, and examples thereof include Japanese Patent Publication Nos. 63-54296, 7-25960, and 2003-2939. It is desirable to apply the method to the present invention.

なお、本発明のポリプロピレン系フィルムに用いられるプロピレン−エチレンブロック共重合体(A)の各要素は、以下のように制御され、本発明のプロピレン−エチレンブロック共重合体(A)に必要とされる構成要件を満たすよう製造することができる。   In addition, each element of the propylene-ethylene block copolymer (A) used for the polypropylene film of the present invention is controlled as follows, and is required for the propylene-ethylene block copolymer (A) of the present invention. Can be manufactured to meet the structural requirements.

(イ)成分(A1)について
結晶性プロピレン−エチレンランダム共重合体成分(A1)については、エチレン含量([E]A1)とT(A1)を制御する必要がある。
本発明では、[E]A1を所定の範囲に制御するためには、第1工程における重合槽に供給するプロピレンとエチレンの量比を、適宜調整すればよい。供給比率と得られるプロピレン−エチレンランダム共重合体中のエチレン含量の関係は、用いるメタロセン系触媒の種類によって異なるが、供給比率の調整により必要とするエチレン含量[E]A1を有する成分(A1)を製造することができる。例えば、[E]A1を0〜7重量%に制御する場合には、プロピレンに対するエチレンの供給重量比を0〜0.3の範囲、好ましくは0〜0.2の範囲とすればよい。
このとき、成分(A1)は結晶性分布が狭く、T(A1)は[E]A1の増加に伴い低下する。そこで、T(A1)が本発明の範囲を満たすようにするためには、[E]A1とこれらの関係を把握し、目標とする範囲を取るよう調整する。
(A) Component (A1) For the crystalline propylene-ethylene random copolymer component (A1), it is necessary to control the ethylene content ([E] A1 ) and T (A1).
In the present invention, in order to control [E] A1 within a predetermined range, the amount ratio of propylene and ethylene supplied to the polymerization tank in the first step may be appropriately adjusted. The relationship between the supply ratio and the ethylene content in the resulting propylene-ethylene random copolymer varies depending on the type of metallocene catalyst used, but the component (A1) having an ethylene content [E] A1 required by adjusting the supply ratio Can be manufactured. For example, when [E] A1 is controlled to 0 to 7 wt%, the supply weight ratio of ethylene to propylene may be in the range of 0 to 0.3, preferably in the range of 0 to 0.2.
At this time, the component (A1) has a narrow crystallinity distribution, and T (A1) decreases with an increase in [E] A1 . Therefore, in order for T (A1) to satisfy the scope of the present invention, [E] A1 and the relationship between these are grasped and adjusted to take the target range.

(ロ)成分(A2)について
低結晶性或いは非晶性プロピレン−エチレンランダム共重合体成分(A2)については、エチレン含量[E]A2とピーク温度T(A2)とキシレン可溶分固有粘度[η]cxsを制御する必要がある。
本発明では、[E]A2を所定の範囲に制御するためには、[E]A1と同様に、第二工程におけるプロピレンに対するエチレンの供給量比を制御すればよい。例えば、[E]A2を5〜20重量%に制御する場合には、プロピレンに対するエチレンの供給重量比を0.01〜5の範囲、好ましくは0.05〜2の範囲とすればよい。このとき、成分(A2)もエチレン含量の増加に伴い若干結晶性分布の増加が見られるものの、成分(A1)と同様に、T(A2)は[E]A2の増加に伴い低下する。
そこでT(A2)が本発明の範囲を満たすようにするためには、[E]A2とT(A2)との関係を把握し、[E]A2を所定の範囲になるように制御すればよい。
なお、[η]cxsについては、後述する。
(B) Component (A2) Regarding the low crystalline or amorphous propylene-ethylene random copolymer component (A2), the ethylene content [E] A2 , the peak temperature T (A2), the xylene-soluble intrinsic viscosity [ [η] cxs needs to be controlled.
In the present invention, in order to control [E] A2 within a predetermined range, the ratio of ethylene supply to propylene in the second step may be controlled in the same manner as [E] A1 . For example, when [E] A2 is controlled to 5 to 20% by weight, the supply weight ratio of ethylene to propylene may be in the range of 0.01 to 5, preferably in the range of 0.05 to 2. At this time, although the crystallinity distribution of the component (A2) is slightly increased with the increase of the ethylene content, T (A2) is decreased with the increase of [E] A2 as in the case of the component (A1).
Therefore, in order for T (A2) to satisfy the scope of the present invention, the relationship between [E] A2 and T (A2) is grasped, and [E] A2 is controlled to be within a predetermined range. Good.
[Η] cxs will be described later.

(ハ)W(A1)とW(A2)について
成分(A1)の量W(A1)と成分(A2)の量W(A2)は、成分(A1)を製造する第一工程の製造量と成分(A2)の製造量の比を変化させることにより制御することができる。例えば、W(A1)を増やしてW(A2)を減らすためには、第一工程の製造量を維持したまま第二工程の製造量を減らせばよく、それは、第二工程の滞留時間を短くしたり、重合温度を下げたり、重合抑制剤の量を増やしたりすることにより容易に制御することができる。その逆も又同様である。
実際に条件を設定する際には、活性減衰を考慮する必要がある。すなわち、本発明にて実施するエチレン含有量[E]A1及び[E]A2の範囲においては、一般にエチレン含有量を高くするためにプロピレンに対するエチレン供給量比を高くすると重合活性が高くなり、同時に活性減衰が大きくなる傾向にある。したがって、第二工程の活性を維持するために第一工程の重合活性を抑制する必要があり、具体的には、第一工程にて生産量W(A1)を下げ、必要に応じて、重合温度を下げる及び/又は重合時間(滞留時間)を短くする、あるいは第二工程にてエチレン含有量[E]A2を上げ、生産量W(A2)を上げ、必要に応じて、重合温度を上げる及び/又は重合時間(滞留時間)を長くするような方法で条件を設定すればよい。
(C) About W (A1) and W (A2) The amount W (A1) of component (A1) and the amount W (A2) of component (A2) are the production amounts of the first step for producing component (A1). It can be controlled by changing the ratio of the production amount of the component (A2). For example, in order to increase W (A1) and decrease W (A2), the production amount of the second step may be reduced while maintaining the production amount of the first step, which shortens the residence time of the second step. It can be easily controlled by lowering the polymerization temperature or increasing the amount of the polymerization inhibitor. The reverse is also true.
When actually setting the conditions, it is necessary to consider the activity decay. That is, in the range of the ethylene contents [E] A1 and [E] A2 to be carried out in the present invention, generally, when the ratio of ethylene supply to propylene is increased in order to increase the ethylene content, the polymerization activity is increased. The activity decay tends to increase. Therefore, in order to maintain the activity of the second step, it is necessary to suppress the polymerization activity of the first step. Specifically, the production amount W (A1) is lowered in the first step, and the polymerization is performed as necessary. Lower the temperature and / or shorten the polymerization time (residence time), or increase the ethylene content [E] A2 in the second step, increase the production W (A2), and raise the polymerization temperature as necessary And / or conditions may be set in such a way as to increase the polymerization time (residence time).

(ニ)ガラス転移温度Tgについて
本発明に用いられるプロピレン−エチレンブロック共重合体(A)では、ガラス転移温度Tgは、単一のピークを持つ必要がある。Tgが単一のピークを持つためには、成分(A1)中のエチレン含有量[E]A1と成分(A2) 中のエチレン含有量[E]A2の差の[E]gap、すなわち[E]A2−[E]A1を20重量%以下、好ましくは18重量%、より好ましくは15重量%以下にし、実際の測定においてTgが単一のピークとなる範囲まで[E]gapを小さくすればよい。
結晶性の共重合体成分(A1)のエチレン含有量[E]A1に応じて、低結晶性或いは非晶性の共重合体成分(A2)のエチレン含量[E]A2を適正範囲に入るよう、成分(A2)の重合時のプロピレンに対するエチレンの供給重量比を設定することで、所定の[E]gapを有する重合体を得ることが可能である。
また、本発明のような相分離構造を取らないブロック共重合体のTgは、成分(A1)中のエチレン含有量[E]A1と成分(A2)中のエチレン含有量[E]A2、及び両成分の量比の影響を受ける。本発明においては、成分(A2)の量は5〜70重量%であるが、この範囲においてTgは成分(A2)中のエチレン含有量[E]A2の影響をより強く受ける。すなわち、Tgは非晶部のガラス転移を反映するものであるが、本発明のブロック共重合体成分(A)において成分(A1)は結晶性を持ち比較的非晶部が少ないのに対し、成分(A2)は低結晶性あるいは非晶性であり、そのほとんどが非晶部であるためである。
したがって、Tgの値は、ほぼ[E]A2によって制御され、[E]A2の制御法は前述したとおりである。
(D) Glass transition temperature Tg In the propylene-ethylene block copolymer (A) used in the present invention, the glass transition temperature Tg needs to have a single peak. In order for Tg to have a single peak, the difference [E] gap between the ethylene content [E] A1 in component (A1) and the ethylene content [E] A2 in component (A2), ie [E ] A2- [E] If A1 is 20% by weight or less, preferably 18% by weight, more preferably 15% by weight or less, and [E] gap is reduced to a range where Tg becomes a single peak in actual measurement. Good.
Depending on the ethylene content [E] A1 of the crystalline copolymer component (A1), the ethylene content [E] A2 of the low crystalline or amorphous copolymer component (A2) should be within the proper range. By setting the supply weight ratio of ethylene to propylene during the polymerization of component (A2), it is possible to obtain a polymer having a predetermined [E] gap.
The Tg of the block copolymer which does not take a phase separation structure as in the present invention is the ethylene content [E] A1 in the component (A1) and the ethylene content [E] A2 in the component (A2), and It is affected by the ratio of both components. In the present invention, the amount of the component (A2) is 5 to 70% by weight, but in this range, Tg is more strongly affected by the ethylene content [E] A2 in the component (A2). That is, Tg reflects the glass transition of the amorphous part, whereas in the block copolymer component (A) of the present invention, the component (A1) has crystallinity and relatively few amorphous parts, This is because component (A2) is low crystalline or amorphous and most of it is an amorphous part.
Therefore, the value of Tg is controlled by substantially [E] A2, the control method of [E] A2 are as described above.

(ホ)メルトフローレート(MFR)について
本発明のプロピレン−エチレンブロック共重合体(A)では、フィッシュアイの発生を抑制するために、結晶性の共重合体成分(A1)と低結晶性或いは非晶性の共重合体エラストマー成分(A2)が相溶しているため、成分(A1)の粘度[η]A1、成分(A2)の粘度[η]A2、プロピレン−エチレンブロック共重合体(A)全体の粘度[η]Wの間には、見かけ上の粘度の混合則が概ね成立する。すなわち、
Log[η]W={W(A1)×Log[η]A1+W(A2)×Log[η]A2}/100
が概ね成立する。一般にMFRと[η]の間には一定の相関があるから、最初に柔軟性や耐熱性などの観点から、[η]A2、W(A1)、W(A2)を設定しておけば、上記の式に従って[η]A1を変化させることによって、MFRを自在に制御することができる。
(E) Melt Flow Rate (MFR) In the propylene-ethylene block copolymer (A) of the present invention, the crystalline copolymer component (A1) and the low crystallinity or Since the amorphous copolymer elastomer component (A2) is compatible, the viscosity [η] A1 of the component (A1), the viscosity [η] A2 of the component (A2), a propylene-ethylene block copolymer ( A) The apparent viscosity mixing rule generally holds between the overall viscosity [η] W. That is,
Log [η] W = {W (A1) × Log [η] A1 + W (A2) × Log [η] A2} / 100
Is generally established. In general, there is a certain correlation between MFR and [η], so from the viewpoint of flexibility and heat resistance, [η] A2, W (A1), and W (A2) are set first. The MFR can be freely controlled by changing [η] A1 according to the above equation.

(ヘ)T(A4)について
99重量%が溶出する温度T(A)は結晶性分布を示す指標である。成分(A1)の結晶性分布が狭いほどT(A4)はT(A1)に近くなるため(低くなり)、(A4)を低く制御することは、成分(A1)と成分(A2)の結晶性分布を狭く制御することに他ならない。
一般的には、メタロセン系触媒を用いることにより、チーグラー・ナッタ系触媒を用いる場合より、結晶性分布の狭いポリマーを得ることができるが、本発明のような逐次重合を行う系においては、結晶性分布を狭くするためにはメタロセン系触媒を用いる。
(F) About T (A4) The temperature T (A) at which 99% by weight is eluted is an index indicating the crystallinity distribution. Since T (A4) is closer to T (A1) (lower) as the crystallinity distribution of component (A1) is narrower, controlling (A4) to be lower is the crystal of component (A1) and component (A2). It is none other than controlling the sex distribution narrowly.
In general, by using a metallocene catalyst, a polymer having a narrower crystallinity distribution can be obtained than when using a Ziegler-Natta catalyst. In order to narrow the property distribution, a metallocene catalyst is used.

さらに、最終的なプロピレン−エチレンブロック共重合体(A)を望ましい物性を持ったものに調整するためには、成分(A1)と成分(A2)はそれぞれ異なった特定のポリマー組成を有する必要がある。つまり、第一工程と第二工程ではそれぞれのポリマー組成に対応する重合条件、特にモノマーガス組成をそれぞれ異なる特定の値に保つ必要がある。したがって、採用するプロセスにおいて成分(A2)の結晶性分布が広い場合は、第一工程から、第一工程に対応する特定のモノマーガス混合物を第二工程に持ち込まないように、移送工程を調整するなどの工夫も必要である。具体的には、移送工程に於けるパージ量を増加し、あるいは窒素などの不活性ガスで希釈もしくは置換することにより、成分(A2)の結晶性分布を狭くすることができる。   Furthermore, in order to adjust the final propylene-ethylene block copolymer (A) to those having desirable physical properties, the component (A1) and the component (A2) must have different specific polymer compositions. is there. That is, in the first step and the second step, it is necessary to keep the polymerization conditions corresponding to the respective polymer compositions, particularly the monomer gas composition, at different specific values. Therefore, when the crystallinity distribution of the component (A2) is wide in the adopted process, the transfer step is adjusted so that the specific monomer gas mixture corresponding to the first step is not brought into the second step from the first step. It is necessary to devise such as. Specifically, the crystallinity distribution of the component (A2) can be narrowed by increasing the purge amount in the transfer step, or by diluting or substituting with an inert gas such as nitrogen.

(ト)分子量5,000以下の成分W(Mw≦5,000)について
一般的に、メタロセン系触媒を用いることによりチーグラー・ナッタ系触媒の場合より分子量分布の狭いポリマーを得ることができる。しかし、本発明のような逐次重合を行う系においては、分子量分布を狭くするためにはメタロセン系触媒を用いるだけでは必ずしも充分ではない。特に、低分子量成分の生成を防ぐためには、第一工程から第二工程へ移送する時間を短くしたり、移送工程に於いて第一工程に対応するモノマーガス混合物を窒素などの不活性ガスで完全に置換したりすることにより、重合条件とは独立に、W(Mw≦5,000)を小さく制御することができる。
(G) Component W having a molecular weight of 5,000 or less (Mw ≦ 5,000) Generally, a polymer having a narrower molecular weight distribution than that of a Ziegler-Natta catalyst can be obtained by using a metallocene catalyst. However, in a system that performs sequential polymerization as in the present invention, it is not always sufficient to use a metallocene catalyst in order to narrow the molecular weight distribution. In particular, in order to prevent the formation of low molecular weight components, the time for transferring from the first step to the second step can be shortened, or the monomer gas mixture corresponding to the first step can be replaced with an inert gas such as nitrogen in the transfer step. By completely substituting, W (Mw ≦ 5,000) can be controlled to be small independently of the polymerization conditions.

(チ)固有粘度[η]cxsについて
[η]cxsについては、本発明のプロピレン−エチレンブロック共重合体(A)はメタロセン系触媒を用いることで、成分(A1)中に殆んどCXS成分を含まないため、成分(A2)の分子量を変化させる事により制御することができる。[η]cxsを制御するためには、常法通り第二工程におけるモノマーに対する水素の供給量比を制御すればよい。また、一般にメタロセン系触媒は重合温度が高いほど得られるポリマーの分子量が低くなる傾向があるため、重合温度を変化させることによっても[η]cxsを制御することが可能である。また、水素供給量比と重合温度の両方を組み合わせて[η]cxsを制御することもできる。
(H) Intrinsic Viscosity [η] cxs For [η] cxs, the propylene-ethylene block copolymer (A) of the present invention uses a metallocene catalyst, so that the CXS component is mostly contained in the component (A1). Therefore, it can be controlled by changing the molecular weight of the component (A2). In order to control [η] cxs, the ratio of hydrogen supply to the monomer in the second step may be controlled as usual. In general, a metallocene catalyst tends to have a lower molecular weight of the polymer as the polymerization temperature is higher. Therefore, it is possible to control [η] cxs by changing the polymerization temperature. [Η] cxs can also be controlled by combining both the hydrogen supply ratio and the polymerization temperature.

2.粘着層
本発明の表面保護用フィルムは、上記プロピレン−エチレンブロック共重合体(A)よりなる基材層の一方の面に粘着層が形成される。
粘着剤としては、エチレン−酢酸ビニル共重合樹脂(B)が用いられる。
本発明で用いられるエチレン−酢酸ビニル共重合樹脂(B)は、下記の特性(b1)〜(b2)を有する。
2. Adhesive layer In the surface protective film of the present invention, an adhesive layer is formed on one surface of the base material layer made of the propylene-ethylene block copolymer (A).
As the adhesive, ethylene-vinyl acetate copolymer resin (B) is used.
The ethylene-vinyl acetate copolymer resin (B) used in the present invention has the following characteristics (b1) to (b2).

(b1)メルトフローレート
本発明で用いられるエチレン−酢酸ビニル共重合樹脂のメルトフローレート(MFR)は、2〜200g/10分であり、好ましくは3〜100g/10分、さらに好ましくは3〜50g/10分である。
メルトフローレート(MFR)が2g/10分未満であると溶融粘度が高すぎフィルム化が難しくなり、200g/10分を超えると溶融粘度が低すぎフィルム化の過程で穴明き等の不具合が生じる。
(B1) Melt flow rate The melt flow rate (MFR) of the ethylene-vinyl acetate copolymer resin used in the present invention is 2 to 200 g / 10 min, preferably 3 to 100 g / 10 min, and more preferably 3 to 3 g / 10 min. 50 g / 10 min.
If the melt flow rate (MFR) is less than 2 g / 10 minutes, the melt viscosity is too high, making it difficult to form a film, and if it exceeds 200 g / 10 minutes, the melt viscosity is too low, and defects such as punching may occur in the film formation process. Arise.

(b2)酢酸ビニル含有量
本発明で用いられるエチレン−酢酸ビニル共重合樹脂の酢酸ビニル含有量は、10〜40重量%であり、好ましくは10〜30重量%である。
酢酸ビニル含有量が10重量%未満であると必要な粘着力が発現されず、40重量%を超えると粘着力が強くなりすぎ被着体に糊残りが発生することとなる。酢酸ビニルの含有量は、糊残りと粘着力のバランスから10〜40重量%である。
(B2) Vinyl acetate content The vinyl acetate content of the ethylene-vinyl acetate copolymer resin used in the present invention is 10 to 40% by weight, preferably 10 to 30% by weight.
If the vinyl acetate content is less than 10% by weight, the necessary adhesive strength is not expressed, and if it exceeds 40% by weight, the adhesive strength becomes too strong and adhesive residue is generated on the adherend. The content of vinyl acetate is 10 to 40% by weight from the balance of adhesive residue and adhesive strength.

なお、本発明において採用しているメルトフローレート(MFR:単位g/10分)は、JIS K7210−1995に準拠し、190℃、荷重21.18N荷重で測定する値である。
また、酢酸ビニルの含有量は、赤外分析法により1740cm−1と1460cm−1のピークに基づいて測定する。
In addition, the melt flow rate (MFR: unit g / 10min) employ | adopted in this invention is a value measured by 190 degreeC and a load of 21.18N load based on JISK7210-1995.
The content of vinyl acetate is measured based on the peak of 1740 cm -1 and 1460 cm -1 by infrared analysis.

このようなエチレン−酢酸ビニル共重合樹脂は、公知の方法によって容易に得ることができる。また、市販品として入手することもできる。
エチレン−酢酸ビニル共重合樹脂の市販品としては、日本ポリエチレン(株)製のノバテックEVAシリーズ、三井デュポン社製のエバフレックスシリーズなどが好適に用いられる。
Such an ethylene-vinyl acetate copolymer resin can be easily obtained by a known method. It can also be obtained as a commercial product.
As commercially available products of ethylene-vinyl acetate copolymer resin, Novatec EVA series manufactured by Nippon Polyethylene Co., Ltd., Everflex series manufactured by Mitsui DuPont, etc. are preferably used.

3.剥離処理層
本発明の表面保護フィルムは、上記プロピレン−エチレンブロック共重合体よりなる基材層の一方に形成される粘着層の他方の面に剥離処理層が形成される。剥離処理層としては、シリコーン系又は長鎖アルキル系剥離処理剤(C)にて形成した層を用いることにより、粘着層と剥離処理層の両方が固体状態で接するロール巻状態から、ロールを解くときにはスムースに剥がれ、使用時には繰り出し性が向上するという特性を有する表面保護用フィルムとすることができる。また、剥離処理層の表面を荒らすことなく繰り出し性を向上させることができるため、優れた透明性を維持したままの表面保護フィルムとすることができる。
3. Release treatment layer In the surface protective film of the present invention, a release treatment layer is formed on the other surface of the pressure-sensitive adhesive layer formed on one of the base material layers made of the propylene-ethylene block copolymer. By using a layer formed of a silicone-based or long-chain alkyl-based release treatment agent (C) as the release treatment layer, the roll is unwound from the roll winding state where both the adhesive layer and the release treatment layer are in contact with each other in a solid state. Sometimes the film can be peeled off smoothly, and when used, it can be made into a film for surface protection having the characteristics that the drawability is improved. Moreover, since it is possible to improve the feedability without roughening the surface of the release treatment layer, it is possible to obtain a surface protective film while maintaining excellent transparency.

シリコーン系又は長鎖アルキル系剥離処理剤にて形成した層に用いられるシリコーン系剥離処理剤としては、ジメチルポリシロキサンを主体とする通常用いられるシリコーン系剥離処理剤も使用可能である。上記シリコーン系剥離処理剤に3次元化オルガノポリシロキサンを含有させたものも使用可能である。
具体的には、オルガノポリシロキサンを主成分とし、これにメチルセルロース、エチルセルロース、アセチルセルロース等のセルロース誘導体やアルキッド樹脂等を配合したシリコーン系剥離処理剤が好適に使用される。セルロース誘導体やアルキッド樹脂等を配合することにより、シリコーン系剥離処理剤の剥離性をコントロールすることができる。セルロース誘導体やアルキッド樹脂は、シリコーン系剥離処理剤中、好ましくは5〜50重量%配合される。
As the silicone-based release treatment agent used in the layer formed of the silicone-based or long-chain alkyl release treatment agent, a commonly used silicone-based release treatment agent mainly composed of dimethylpolysiloxane can also be used. It is also possible to use a silicone release treatment agent containing a three-dimensional organopolysiloxane.
Specifically, a silicone-based release treatment agent containing organopolysiloxane as a main component and blended with cellulose derivatives such as methyl cellulose, ethyl cellulose, acetyl cellulose, alkyd resin, or the like is preferably used. By blending a cellulose derivative or an alkyd resin, the releasability of the silicone-based release treatment agent can be controlled. The cellulose derivative and alkyd resin are preferably blended in an amount of 5 to 50% by weight in the silicone-based release treatment agent.

オルガノポリシロキサンの硬化反応(架橋反応)の形式により、縮合反応型と付加反応型に大別されるが、本発明においては、いずれの反応型であってもよい。
例えば、縮合反応型シリコーン系剥離処理剤としては、例えば、分子末端にシラノール基を有するオルガノポリシロキサンに、セロルース誘導体やアルキッド樹脂を配合したシリコーン系剥離処理剤が挙げられる。ここで分子末端にシラノール基を有するオルガノポリシロキサンとしては、側鎖の官能基としてメチル基やエチル基等のアルキル基やフェニル基が導入されたポリシロキサン(例えば、ジメチル・ジフェニルポリシロキサン)を使用することが好ましく、これにより、セルロース誘導体やアルキッド樹脂との相溶性が良好となり、剥離特性が安定した剥離処理剤を得ることができる。またこの分子末端にシラノール基を有するオルガノポリシロキサンには、アルコキシ基含有オルガノポリシロキサン等の架橋剤や、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブヂル錫ジオクテート、オクチル酸亜鉛等の触媒を適宜配合してもよい。
また必要に応じて第三成分としてアクリル樹脂等の樹脂も適宜配合できる。シリコーン系剥離処理剤中、上記架橋剤は、好ましくは4〜20重量%、触媒は、好ましくは5〜10重量%、第3成分としての樹脂は好ましくは5〜26重量%配合される。
Depending on the type of curing reaction (crosslinking reaction) of the organopolysiloxane, it is roughly divided into a condensation reaction type and an addition reaction type, but in the present invention, any reaction type may be used.
For example, as the condensation reaction type silicone release treatment agent, for example, a silicone release treatment agent in which a cellulose derivative or an alkyd resin is blended with an organopolysiloxane having a silanol group at a molecular end can be mentioned. Here, as the organopolysiloxane having a silanol group at the molecular end, a polysiloxane in which an alkyl group such as a methyl group or an ethyl group or a phenyl group is introduced as a side chain functional group (eg, dimethyl diphenylpolysiloxane) is used. It is preferable that the release treatment agent has a good compatibility with the cellulose derivative and the alkyd resin, and a stable release property. In addition, the organopolysiloxane having a silanol group at the molecular end is appropriately blended with a crosslinking agent such as an alkoxy group-containing organopolysiloxane, or a catalyst such as dibutyltin dilaurate, dibutyltin diacetate, dibutylditin dioctate, or zinc octylate. May be.
Moreover, resin, such as an acrylic resin, can also be suitably mix | blended as a 3rd component as needed. In the silicone release treatment agent, the cross-linking agent is preferably 4 to 20% by weight, the catalyst is preferably 5 to 10% by weight, and the resin as the third component is preferably 5 to 26% by weight.

付加反応型シリコーン系剥離処理剤としては、例えば、1分子中にケイ素原子に結合したビニル基等のアルケニル基を少なくとも2個有するオルガノポリシロキサンに、セロルース誘導体やアルキッド樹脂を配合したシリコーン系剥離処理剤が挙げられる。ここで上記のオルガノポリシロキサンとしては、側鎖の官能基として、メチル基やエチル基等のアルキル基やフェニル基が導入されたオルガノポリシロキサンを使用することが好ましく、これにより、セルロース誘導体やアルキッド樹脂との相溶性が良好となり、剥離特性が安定した剥離処理剤を得ることができる。また上記オルガノポリシロキサンには、オルガノハイドロジエンポリシロキサン等の架橋剤や、塩化第一白金酸等の白金系化合物等の触媒を適宜配合してもよい。   As an addition reaction type silicone release treatment agent, for example, a silicone release treatment in which a cellulose derivative or alkyd resin is blended with an organopolysiloxane having at least two alkenyl groups such as vinyl groups bonded to silicon atoms in one molecule. Agents. Here, as the above-mentioned organopolysiloxane, it is preferable to use an organopolysiloxane having an alkyl group such as a methyl group or an ethyl group or a phenyl group introduced as a functional group of the side chain, whereby cellulose derivatives or alkyds are used. A release treatment agent having good compatibility with the resin and stable release characteristics can be obtained. The organopolysiloxane may be appropriately blended with a crosslinking agent such as an organohydrodiene polysiloxane and a catalyst such as a platinum compound such as chloroplatinic acid.

上記のシリコーン系剥離処理剤は、市販されているものの中から適宜選択して使用することができ、例えば、縮合反応型シリコーン系剥離処理剤としては、信越化学工業(株)から入手できる、KS−723A/B(ジメチル・ジフェニルポリシロキサン、メトキシシリコーンおよびエチルセルロースからなる)が、付加反応型シリコーン剥離処理剤としては、信越化学工業(株)から入手できる、X−62−9201A/Bを使用することができる。   The silicone-based release treatment agent can be appropriately selected from commercially available products. For example, as a condensation reaction type silicone release treatment agent, KS available from Shin-Etsu Chemical Co., Ltd. -723A / B (consisting of dimethyl diphenylpolysiloxane, methoxysilicone and ethylcellulose) is X-62-9201A / B available from Shin-Etsu Chemical Co., Ltd. as an addition reaction type silicone release treatment agent. be able to.

また、シリコーン系又は長鎖アルキル系剥離処理剤にて形成した層に用いられる長鎖アルキル系剥離処理剤としては、好ましくは炭素数12以上の長鎖アルキル基を有する、アルキルアクリレートの重合物や共重合物、長鎖アルキルアクリレートと他のビニルモノマーとの共重合物、あるいはポリビニルアルコールに長鎖アルキルイソシアネートなどの長鎖アルキル成分を反応させて得られる反応物等から得られる剥離処理剤が挙げられる。ここで、長鎖アルキルとは、好ましくは、炭素数が12以上の長鎖アルキル基をいい、炭素数の好ましい上限は炭素数22程度が好ましい。長鎖アルキル基を有する(メタ)アクリレートの例でいうと、例えば、メタ)アクリル酸ラウリル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸パルミチル、(メタ)アクリル酸ステアリルなどが挙げられる。
長鎖アルキル系剥離処理剤の具体例としては、例えば、日東電工株式会社製商品名BPタイプ、アシオ産業株式会社製商品名アシオレジン、一方社油脂株式会社製商品名ピーロイルなどを用いることができる。
また、剥離処理層は、シリコーン系又は長鎖アルキル系剥離処理剤を塗布して剥離処理層を形成する方法が挙げられるが、基材層との密着性を考慮し、前述のプロピレン−エチレンブロック共重合体(A)に剥離処理剤を配合し剥離処理層として使用することができる。プロピレン−エチレンブロック共重合体に上記剥離処理剤を配合して使用する場合、プロピレン−エチレンブロック共重合体および剥離処理剤の合計を100重量%としたとき、プロピレン−エチレンブロック共重合体の含有量が99〜99.95重量%であり、剥離処理剤の含有量が1〜0.05重量%である。
In addition, as the long-chain alkyl release agent used in the layer formed of the silicone-based or long-chain alkyl-based release treatment agent, a polymer of an alkyl acrylate, preferably having a long-chain alkyl group having 12 or more carbon atoms, Examples include release treatment agents obtained from copolymers, copolymers of long-chain alkyl acrylates with other vinyl monomers, or reactants obtained by reacting polyvinyl alcohol with long-chain alkyl components such as long-chain alkyl isocyanates. It is done. Here, the long-chain alkyl preferably refers to a long-chain alkyl group having 12 or more carbon atoms, and the preferable upper limit of the carbon number is preferably about 22 carbon atoms. Examples of (meth) acrylates having a long-chain alkyl group include lauryl methacrylate), myristyl (meth) acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, and the like.
As specific examples of the long-chain alkyl release agent, for example, Nitto Denko Corporation trade name BP type, Ashio Sangyo Co., Ltd. trade name Ashioresin, on the other hand, Oji Oil Co., Ltd. trade name Pyroyl can be used.
In addition, the release treatment layer includes a method of forming a release treatment layer by applying a silicone-based or long-chain alkyl release treatment agent. In consideration of adhesion to the base material layer, the above-described propylene-ethylene block is used. A release treatment agent can be blended with the copolymer (A) and used as a release treatment layer. When blending and using the above-mentioned release treatment agent in a propylene-ethylene block copolymer, when the total of the propylene-ethylene block copolymer and the release treatment agent is 100% by weight, the content of the propylene-ethylene block copolymer The amount is 99 to 99.95% by weight, and the content of the release treatment agent is 1 to 0.05% by weight.

4.各層で用いることのできる樹脂配合剤
本発明におけるプロピレン−エチレンブロック共重合体よりなる基材層、エチレン−酢酸ビニル共重合樹脂よりなる粘着層、および剥離処理層には、フィルムの製膜安定性、2次加工時の取り扱い及び表面保護用フィルムとしての品質維持から、本発明の目的が損なわれない範囲で、公知の樹脂配合剤として使用される各種添加剤、例えば、酸化防止剤、アンチブロッキング剤、スリップ剤、核剤、中和剤、光安定剤、帯電防止剤、粘着付与剤等を含有していてもよい。各種添加剤について以下に詳しく述べる。
4). Resin compounding agent that can be used in each layer In the base material layer made of the propylene-ethylene block copolymer, the adhesive layer made of ethylene-vinyl acetate copolymer resin, and the release treatment layer in the present invention, the film formation stability of the film Various additives used as a known resin compounding agent, such as antioxidants and anti-blocking, within the range in which the object of the present invention is not impaired from handling during secondary processing and maintaining the quality as a surface protective film. Agents, slip agents, nucleating agents, neutralizing agents, light stabilizers, antistatic agents, tackifiers and the like may be contained. Various additives are described in detail below.

(1)酸化防止剤
酸化防止剤として、フェノール系酸化防止剤の具体例としては、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレート、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ペンタエリスリチル−テトラキス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート}、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌル酸などを挙げることができる。
(1) Antioxidants As antioxidants, specific examples of phenolic antioxidants include tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate, 1,1,3- Tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, pentaerythrityl-tetrakis {3- ( 3,5-di-tert-butyl-4-hydroxyphenyl) propionate}, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene 3,9-bis [2- {3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4,8,10- Examples thereof include tetraoxaspiro [5,5] undecane, 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid and the like.

燐系酸化防止剤の具体例としては、トリス(ミックスド、モノ及びジノニルフェニルホスファイト)、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェニル−ジ−トリデシル)ホスファイト、1,1,3−トリス(2−メチル−4−ジ−トリデシルホスファイト−5−t−ブチルフェニル)ブタン、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトール−ジ−ホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4´−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチル−5−メチルフェニル)−4,4’−ビフェニレンジホスホナイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイトなどを挙げることができる。
硫黄系酸化防止剤の具体例としては、ジ−ステアリル−チオ−ジ−プロピオネート、ジ−ミリスチル−チオ−ジ−プロピオネート、ペンタエリスリトール−テトラキス−(3−ラウリル−チオ−プロピオネート)などを挙げることができる。
これら酸化防止剤は、本目的の効果を損なわない範囲で、1種または2種以上組み合わせて使用することができる。
Specific examples of phosphorus antioxidants include tris (mixed, mono and dinonylphenyl phosphite), tris (2,4-di-t-butylphenyl) phosphite, 4,4′-butylidenebis (3- Methyl-6-tert-butylphenyl-di-tridecyl) phosphite, 1,1,3-tris (2-methyl-4-di-tridecylphosphite-5-tert-butylphenyl) butane, bis (2, 4-di-t-butylphenyl) pentaerythritol-di-phosphite, tetrakis (2,4-di-t-butylphenyl) -4,4'-biphenylenediphosphonite, tetrakis (2,4-di-t -Butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-di-phos You can list s fights.
Specific examples of the sulfur-based antioxidant include di-stearyl-thio-di-propionate, di-myristyl-thio-di-propionate, pentaerythritol-tetrakis- (3-lauryl-thio-propionate), and the like. it can.
These antioxidants can be used singly or in combination of two or more as long as the effects of the present object are not impaired.

酸化防止剤の配合量は、基材層、粘着層および剥離処理層の各層に用いられる各々の樹脂100重量部に対して0.01〜1.0重量部、好ましくは0.02〜0.5重量部、より好ましくは0.05〜0.1重量部である。酸化防止剤の配合量が前記範囲内では熱安定性が向上し、フィッシュアイの原因となる樹脂の劣化が抑制される。   The compounding quantity of antioxidant is 0.01-1.0 weight part with respect to 100 weight part of each resin used for each layer of a base material layer, an adhesion layer, and a peeling process layer, Preferably it is 0.02-0. 5 parts by weight, more preferably 0.05 to 0.1 parts by weight. When the blending amount of the antioxidant is within the above range, the thermal stability is improved and the deterioration of the resin causing fish eyes is suppressed.

(2)アンチブロッキング剤
アンチブロッキング剤としては、平均粒子径1〜7μm、好ましくは1〜5μm、さらに好ましくは、1〜4μmのものが好ましく使用できる。平均粒子径が1μm未満では、得られるフィルムの滑り性、開口性が劣り好ましくない。一方、7μmを越えると、透明性、傷つき性が著しく劣り好ましくない。ここで平均粒子径は、コールターカウンター計測による値である。
(2) Antiblocking agent As the antiblocking agent, an average particle diameter of 1 to 7 μm, preferably 1 to 5 μm, and more preferably 1 to 4 μm can be preferably used. If the average particle diameter is less than 1 μm, the slipperiness and openability of the resulting film are inferior. On the other hand, if it exceeds 7 μm, the transparency and scratching property are remarkably inferior. Here, the average particle diameter is a value obtained by Coulter counter measurement.

アンチブロッキング剤の具体例としては、たとえば無機系としては、合成または天然のシリカ(二酸化珪素)、ケイ酸マグネシウム、アルミノシリケート、タルク、ゼオライト、硼酸アルミニウム、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、燐酸カルシウム等が使用される。
また、有機系としては、ポリメチルメタクリレート、ホリメチルシリルトセスキオキサン(シリコーン)、ポリアミド、ポリテトラフルオロエチレン、エポキシ樹脂、ポリエステル樹脂、ベンゾグアナミン・ホルムアルデヒド(ユリア樹脂)、フェノール樹脂等を用いることができる。
特に合成シリカ、ポリメチルメタクリレートが分散性、透明性、耐ブロッキング性、傷つき性のバランスから好適である。
また、アンチブロッキング剤は表面処理されたものを用いてもよく、表面処理剤としては、界面活性剤、金属石鹸、アクリル酸、シュウ酸、クエン酸、酒石酸等の有機酸、高級アルコール、エステル、シリコーン、フッ素樹脂、シランカップリング剤、ヘキサメタリン酸ソーダ、ピロリン酸ソーダ、トリポリリン酸ソーダ、トリメタリン酸ソーダ等の縮合リン酸塩等を用いることができ、特に有機酸処理なかでもクエン酸処理されたものが好適である。処理方法は特に限定されるものではなく、表面噴霧、浸漬等公知の方法を採用することができる。
アンチブロッキング剤はいかなる形状であってもよく球状、角状、柱状、針状、板状、不定形状等任意の形状とすることができる。
これらアンチブロッキング剤は、本目的の効果を損なわない範囲で、1種または2種以上組み合わせて使用することができる。
アンチブロッキング剤を配合する場合の配合量は、基材層、粘着層および剥離処理層の各層に用いられる各々の樹脂100重量部に対して0.01〜1.0重量部、好ましくは0.05〜0.7重量部、より好ましくは0.1〜0.5重量部である。アンチブロッキング剤の配合量が前記範囲内ではブロッキング性が向上し、繰り出し性が向上する。
Specific examples of the anti-blocking agent include, for example, inorganic or synthetic silica (silicon dioxide), magnesium silicate, aluminosilicate, talc, zeolite, aluminum borate, calcium carbonate, calcium sulfate, barium sulfate, calcium phosphate. Etc. are used.
Moreover, as an organic type, polymethyl methacrylate, polymethylsilyltosesquioxane (silicone), polyamide, polytetrafluoroethylene, epoxy resin, polyester resin, benzoguanamine / formaldehyde (urea resin), phenol resin, etc. may be used. it can.
In particular, synthetic silica and polymethyl methacrylate are preferable from the balance of dispersibility, transparency, blocking resistance, and scratch resistance.
The anti-blocking agent may be surface-treated, and as the surface treating agent, surfactant, metal soap, acrylic acid, oxalic acid, citric acid, tartaric acid and other organic acids, higher alcohols, esters, Condensed phosphates such as silicone, fluororesin, silane coupling agent, sodium hexametaphosphate, sodium pyrophosphate, sodium tripolyphosphate, sodium trimetaphosphate, etc. can be used, especially those treated with citric acid among organic acids Is preferred. The treatment method is not particularly limited, and a known method such as surface spraying or dipping can be employed.
The anti-blocking agent may have any shape, and can be any shape such as a spherical shape, a square shape, a columnar shape, a needle shape, a plate shape, and an indefinite shape.
These anti-blocking agents can be used singly or in combination of two or more in a range that does not impair the effects of this object.
When the antiblocking agent is blended, the blending amount is 0.01 to 1.0 part by weight with respect to 100 parts by weight of each resin used in each of the base layer, the adhesive layer and the release treatment layer, preferably 0.00. It is 05-0.7 weight part, More preferably, it is 0.1-0.5 weight part. When the blending amount of the anti-blocking agent is within the above range, the blocking property is improved and the feeding property is improved.

(3)スリップ剤
スリップ剤としては、モノアマイド類、置換アマイド類、ビスアマイド類等が挙げられ、1種又は2種以上組み合わせて使用することができる。
モノアマイド類の具体例としては、飽和脂肪酸モノアマイドとして、ラウリン酸アマイド、パルチミン酸アマイド、ステアリン酸アマイド、ベヘニン酸アマイド、ヒドロキシステアリン酸アマイド等が挙げられる。
不飽和脂肪酸モノアマイドとしては、オレイン酸アマイド、エルカ酸アマイド、リシノール酸アマイド等が挙げられる。
置換アマイド類の具体例としては、N−ステアリルステアリン酸アマイド、N−オレイルオレイン酸アマイド、N−ステアリルオレイン酸アマイド、N−オレイルステアリン酸アマイド、N−ステアリルエルカ酸アマイド、N−オレイルパルチミン酸アマイド等が挙げられる。
ビスアマイド類の具体例としては、飽和脂肪酸ビスアマイドとして、メチレンビスステアリン酸アマイド、エチレンビスカプリン酸アマイド、エチレンビスラウリン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスイソステアリン酸アマイド、エチレンビスヒドロキシステアリン酸アマイド、エチレンビスベヘニン酸アマイド、ヘキサメチレンビスステアリン酸アマイド、ヘキサメチレンビスベヘニン酸アマイド、ヘキサメチレンビスヒドロキシステアリン酸アマイド、N,N’−ジステアリルアジピン酸アマイド、N,N’−ジステアリルセパシン酸アマイドなどが挙げられる。
不飽和脂肪酸ビスアマイドとしては、エチレンビスオレイン酸アマイド、ヘキサメチレンビスオレイン酸アマイド、N,N’−ジオレイルアジピン酸アマイド、N,N’−ジオレイルセパシン酸アマイドなどが挙げられる。
芳香族系ビスアマイドとしては、m−キシリレンビスステアリン酸アマイド、N,N’−ジステアリルイソフタル酸アマイドなどが挙げられる。
これらの中では、特に、脂肪酸アマイドのうち、オレイン酸アマイド、エルカ酸アマイド、ベヘニン酸アマイドが好適に使用される。
(3) Slip agent Examples of the slip agent include monoamides, substituted amides, bisamides, and the like, which can be used alone or in combination of two or more.
Specific examples of monoamides include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxystearic acid amide and the like as saturated fatty acid monoamides.
Examples of the unsaturated fatty acid monoamide include oleic acid amide, erucic acid amide, ricinoleic acid amide and the like.
Specific examples of substituted amides include N-stearyl stearic acid amide, N-oleyl oleic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide, N-oleyl palmitic acid amide Etc.
Specific examples of bisamides include, as saturated fatty acid bisamides, methylene bis stearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bis stearic acid amide, ethylene bisisostearic acid amide, ethylene bishydroxystearic acid amide, Ethylene bisbehenic acid amide, hexamethylene bis stearic acid amide, hexamethylene bis behenic acid amide, hexamethylene bishydroxy stearic acid amide, N, N'-distearyl adipic acid amide, N, N'-distearyl Sepacic acid amide and the like can be mentioned.
Examples of the unsaturated fatty acid bisamide include ethylene bisoleic acid amide, hexamethylene bisoleic acid amide, N, N′-dioleyl adipic acid amide, N, N′-dioleyl sepasin acid amide and the like.
Examples of the aromatic bisamide include m-xylylene bis stearic acid amide and N, N′-distearylisophthalic acid amide.
Among these, oleic acid amide, erucic acid amide, and behenic acid amide are particularly preferably used among the fatty acid amides.

スリップ剤を配合する場合の配合量としては、基材層、粘着層および剥離処理層の各層に用いられる各々の樹脂100重量部に対して、0.01〜1.0重量部、好ましくは0.05〜0.7重量部、より好ましくは0.1〜0.4重量部である。スリップ剤の配合量が前記範囲内では滑り性が向上し、繰り出し性が向上する。   The amount of the slip agent to be blended is 0.01 to 1.0 part by weight, preferably 0 with respect to 100 parts by weight of each resin used for each of the base layer, the adhesive layer and the release treatment layer. 0.05 to 0.7 parts by weight, more preferably 0.1 to 0.4 parts by weight. When the blending amount of the slip agent is within the above range, the slipping property is improved and the feeding property is improved.

(4)核剤
核剤の具体例としては、2,2−メチレン−ビス(4,6−ジ−t−ブチルフェニル)燐酸ナトリウム、タルク、1,3,2,4−ジ(p−メチルベンジリデン)ソルビトールなどのソルビトール系化合物、ヒドロキシ−ジ(t−ブチル安息香酸アルミニウム、2,2−メチレン−ビス(4,6−ジ−t−ブチルフェニル)燐酸と炭素数8〜20の脂肪族モノカルボン酸リチウム塩混合物((株)ADEKA製、商品名NA21)等が挙げられる。
上記核剤を配合する場合の配合量としては、基材層、粘着層および剥離処理層の各層に用いられる各々の樹脂100重量部に対して、0.0005〜0.5重量部、好ましくは0.001〜0.1重量部、より好ましくは0.005〜0.05重量部である。核剤の配合量が前記範囲内では結晶化速度が速くなり、透明性が向上する。
(4) Nucleating agent Specific examples of the nucleating agent include sodium 2,2-methylene-bis (4,6-di-t-butylphenyl) phosphate, talc, 1,3,2,4-di (p-methyl). A sorbitol compound such as benzylidene) sorbitol, hydroxy-di (t-butylaluminum benzoate), 2,2-methylene-bis (4,6-di-t-butylphenyl) phosphoric acid and an aliphatic mono-carbon having 8 to 20 carbon atoms. Examples thereof include a carboxylic acid lithium salt mixture (manufactured by ADEKA, trade name NA21).
The blending amount when blending the nucleating agent is 0.0005 to 0.5 parts by weight, preferably 100 parts by weight of each resin used in each layer of the base material layer, the adhesive layer and the release treatment layer. 0.001 to 0.1 parts by weight, more preferably 0.005 to 0.05 parts by weight. When the blending amount of the nucleating agent is within the above range, the crystallization speed is increased and the transparency is improved.

また、上記以外の核剤として高密度ポリエチレン樹脂を挙げることができる。高密度ポリエチレン樹脂としては、密度が、0.94〜0.98g/cm、好ましくは、0.95〜0.97g/10cmである。密度がこの範囲を外れると透明性改良効果が得られない。高密度ポリエチレン樹脂の190℃メルトフローレイト(MFR)は、5g/10分以上、好ましくは7〜500g/10分、さらに好ましくは、10〜100g/10分である。MFRが5g/10分より小さいときは高密度ポリエチレン樹脂の分散径が充分に小さくならず、それ自体が異物となってフィッシュアイの原因となり好ましくない。また、高密度ポリエチレン樹脂が微分散するためには好ましくは高密度ポリエチレン樹脂のMFRが本発明のプロピレン−エチレンブロック共重合体のMFRより大きい方がよい。 Moreover, a high density polyethylene resin can be mentioned as a nucleating agent other than the above. The density of the high-density polyethylene resin is 0.94 to 0.98 g / cm 3 , preferably 0.95 to 0.97 g / 10 cm 3 . If the density is out of this range, the effect of improving transparency cannot be obtained. The 190 degreeC melt flow rate (MFR) of a high density polyethylene resin is 5 g / 10min or more, Preferably it is 7-500 g / 10min, More preferably, it is 10-100 g / 10min. When the MFR is less than 5 g / 10 min, the dispersion diameter of the high-density polyethylene resin is not sufficiently small, and it itself becomes a foreign matter and causes fish eyes. In order to finely disperse the high-density polyethylene resin, the MFR of the high-density polyethylene resin is preferably larger than the MFR of the propylene-ethylene block copolymer of the present invention.

核剤として使用される高密度ポリエチレン樹脂の製造は、目的の物性を有する重合体を製造し得る限りその重合方法や触媒について特に制限はない。触媒については、チーグラー型触媒(すなわち、担持または非担持ハロゲン含有チタン化合物と有機アルミニウム化合物の組み合わせに基づくもの)、カミンスキー型触媒(すなわち、担持または非担持メタロセン化合物と有機アルミニウム化合物、特にアルモキサンの組み合わせに基づくもの)が挙げられる。高密度ポリエチレン系樹脂の形状については制限がなく、ペレット状であってもよく、また、粉末状であってもよい。   The production of the high-density polyethylene resin used as the nucleating agent is not particularly limited with respect to the polymerization method and catalyst as long as a polymer having the desired physical properties can be produced. For catalysts, Ziegler type catalysts (ie, based on a combination of supported or unsupported halogen-containing titanium compounds and organoaluminum compounds), Kaminsky type catalysts (ie, supported or unsupported metallocene compounds and organoaluminum compounds, especially alumoxanes). Based on the combination). There is no restriction | limiting about the shape of a high density polyethylene-type resin, A pellet form may be sufficient and a powder form may be sufficient.

核剤として使用する場合、高密度ポリエチレンの配合量としては基材層、粘着層および剥離処理層の各層に用いられる各々の樹脂100重量部に対して、0.01〜5重量部、好ましくは0.05〜3重量部、より好ましくは0.1〜1重量部である。高密度ポリエチレンの配合量が前記範囲内では結晶化速度が速くなり、透明性が向上する。また、共押出成形の場合、スイーパーロールの転写がなくなる。   When used as a nucleating agent, the blending amount of the high-density polyethylene is 0.01 to 5 parts by weight, preferably 100 parts by weight of each resin used in each layer of the base material layer, the adhesive layer and the release treatment layer. 0.05 to 3 parts by weight, more preferably 0.1 to 1 part by weight. When the blending amount of the high density polyethylene is within the above range, the crystallization speed is increased and the transparency is improved. Further, in the case of coextrusion molding, there is no transfer of the sweeper roll.

(5)中和剤
中和剤の具体例としては、ステアリン酸カルシウム、ステアリン酸亜鉛、ハイドロタルサイト、ミズカラック(水沢化学工業(株)製)などを挙げることができる。
中和剤を配合する場合の配合量は、基材層、粘着層および剥離処理層の各層に用いられる各々の樹脂100重量部に対して0.01〜1.0重量部、好ましくは0.02〜0.5重量部、より好ましくは0.05〜0.1重量部である。中和剤の配合量が前記範囲内では内部滑剤としての効果が向上し、押出機内部の劣化物の掻き出しを抑制する。
(5) Neutralizing agent Specific examples of the neutralizing agent include calcium stearate, zinc stearate, hydrotalcite, Mizukarak (manufactured by Mizusawa Chemical Co., Ltd.), and the like.
The blending amount in the case of blending the neutralizing agent is 0.01 to 1.0 part by weight, preferably 0.00 with respect to 100 parts by weight of each resin used for each of the base layer, the adhesive layer and the release treatment layer. It is 02-0.5 weight part, More preferably, it is 0.05-0.1 weight part. When the blending amount of the neutralizing agent is within the above range, the effect as an internal lubricant is improved, and scraping of deteriorated materials inside the extruder is suppressed.

(6)光安定剤
光安定剤としては、ヒンダードアミン系安定剤が好適に使用され、従来公知のピペリジンの2位および6位の炭素に結合しているすべての水素がメチル基で置換された構造を有する化合物が特に限定されることなく用いられるが、具体的には以下のような化合物が用いられる。
具体例としては、琥珀酸ジメチルと1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジンとの重縮合物、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)1,2,3,4−ブタンテトラカルボキシレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、N,N−ビス(3−アミノプロピル)エチレンジアミン・2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ]−6−クロロ−1,3,5−トリアジン縮合物、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ポリ[{6−(1,1,3,3−テトラメチルブチル)イミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{2,2,6,6−テトラメチル−4−ピペリジル}イミノ]、ポリ[(6−モルホリノ−s−トリアジン−2,4−ジイル)[(2,2,6,6−テトラメチル−4−ピペリジル)イミノ]ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]などを挙げることができる。
これらのヒンダードアミン系安定剤は、本目的の効果を損なわない範囲で、1種または2種以上組み合わせて使用することができる。
(6) Light Stabilizer As the light stabilizer, a hindered amine stabilizer is preferably used, and a structure in which all hydrogen bonded to carbons at the 2-position and 6-position of a conventionally known piperidine is substituted with a methyl group. Although the compound which has this is used without being specifically limited, the following compounds are specifically used.
Specific examples include polycondensates of dimethyl oxalate and 1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine, tetrakis (1,2,2,6,6). -Pentamethyl-4-piperidyl) 1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, N, N-bis (3-aminopropyl) ) Ethylenediamine · 2,4-bis [N-butyl-N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, poly [{6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4- Jil} {(2,2, , 6-tetramethyl-4-piperidyl) imino} hexamethylene {2,2,6,6-tetramethyl-4-piperidyl} imino], poly [(6-morpholino-s-triazine-2,4-diyl) And [(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}].
These hindered amine stabilizers can be used singly or in combination of two or more in a range not impairing the effect of the present object.

ヒンダードアミン系安定剤を配合する場合の配合量は、基材層、粘着層および剥離処理層の各層に用いられる各々の樹脂100重量部に対して0.005〜2重量部、好ましくは0.01〜1重量部、さらに好ましくは0.05〜0.5重量部とするのが望ましい。
ヒンダードアミン系安定剤の含有量が、前記範囲内では耐熱性、耐老化性等の安定性が向上する。
When the hindered amine stabilizer is blended, the blending amount is 0.005 to 2 parts by weight, preferably 0.01 to 100 parts by weight of each resin used in each layer of the base material layer, the adhesive layer and the release treatment layer. -1 part by weight, more preferably 0.05-0.5 part by weight.
When the content of the hindered amine stabilizer is within the above range, stability such as heat resistance and aging resistance is improved.

(7)帯電防止剤
帯電防止剤としては、従来から静電防止剤または帯電防止剤として使用されている公知のものであれば特に限定されることなく使用でき、例えばアニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤などが挙げられる。
(7) Antistatic agent The antistatic agent can be used without particular limitation as long as it is a known antistatic agent or antistatic agent conventionally used, and examples thereof include anionic surfactants and cations. Ionic surfactants, nonionic surfactants, amphoteric surfactants and the like.

上記アニオン性界面活性剤としては、脂肪酸またはロジン酸セッケン、N−アシルカルボン酸塩、エーテルカルボン酸塩、脂肪酸アミン塩等のカルボン酸塩;スルホコハク酸塩、エステルスルホン酸塩、N−アシルスルホン酸塩等のスルホン酸塩;硫酸化油、硫酸エステル塩、硫酸アルキル塩、硫酸アルキルポリオキシエチレン塩、硫酸エーテル塩、硫酸アミド塩等の硫酸エステル塩;リン酸アルキル塩、リン酸アルキルポリオキシエチレン塩、リン酸エーテル塩、リン酸アミド塩等のリン酸エステル塩などが挙げられる。   Examples of the anionic surfactant include fatty acid or rosin acid soap, N-acyl carboxylate, ether carboxylate, carboxylate such as fatty acid amine salt; sulfosuccinate, ester sulfonate, N-acyl sulfonate Sulfonates such as salts; sulfated oils, sulfate esters, alkyl sulfate salts, sulfate sulfate polyoxyethylene salts, sulfate ether salts, sulfate ester salts such as sulfate amide salts; alkyl phosphate salts, alkyl polyoxyethylene phosphates Examples thereof include phosphoric ester salts such as salts, phosphoric acid ether salts and phosphoric acid amide salts.

上記カチオン性界面活性剤としては、アルキルアミン塩等のアミン塩;アルキルトリメチルアンモニウムクロリド、アルキルベンジルジメチルアンモニウムクロリド、アルキルジヒドロキシエチルメチルアンモニウムクロリド、ジアルキルジメチルアンモニウムクロリド、テトラアルキルアンモニウム塩、N,N−ジ(ポリオキシエチレン)ジアルキルアンモニウム塩、N−アルキルアルカンアミドアンモニウムの塩等の第4級アンモニウム塩;1−ヒドロキシエチル−2−アルキル−2−イミダゾリン、1−ヒドロキシエチル−1−アルキル−2−アルキル−2−イミダゾリン等のアルキルイミダゾリン誘導体;イミダゾリニウム塩、ピリジニウム塩、イソキノリニウム塩などが挙げられる。   Examples of the cationic surfactant include amine salts such as alkylamine salts; alkyltrimethylammonium chloride, alkylbenzyldimethylammonium chloride, alkyldihydroxyethylmethylammonium chloride, dialkyldimethylammonium chloride, tetraalkylammonium salt, N, N-di Quaternary ammonium salts such as (polyoxyethylene) dialkylammonium salts and N-alkylalkanamide ammonium salts; 1-hydroxyethyl-2-alkyl-2-imidazoline, 1-hydroxyethyl-1-alkyl-2-alkyl Examples include alkyl imidazoline derivatives such as -2-imidazoline; imidazolinium salts, pyridinium salts, isoquinolinium salts, and the like.

上記非イオン性界面活性剤としては、アルキルポリオキシエチレンエーテル、p−アルキルフェニルポリオキシエチレンエーテル等のエーテル形;脂肪酸ソルビタンポリオキシエチレンエーテル、脂肪酸ソルビトールポリオキシエチレンエーテル、脂肪酸グリセリンポリオキシエチレンエーテル等のエーテルエステル形;脂肪酸ポリオキシエチレンエステル、モノグリセリド、ジグリセリド、ソルビタンエステル、ショ糖エステル、2価アルコールエステル、ホウ酸エステル等のエステル形;ジアルコールアルキルアミン、ジアルコールアルキルアミンエステル、脂肪酸アルカノールアミド、N,N−ジ(ポリオキシエチレン)アルカンアミド、アルカノールアミンエステル、N,N−ジ(ポリオキシエチレン)アルカンアミン、アミンオキシド、アルキルポリエチレンイミン等の含窒素形などが挙げられる。   Examples of the nonionic surfactant include ether forms such as alkyl polyoxyethylene ether and p-alkylphenyl polyoxyethylene ether; fatty acid sorbitan polyoxyethylene ether, fatty acid sorbitol polyoxyethylene ether, fatty acid glycerin polyoxyethylene ether, etc. Ether ester form of fatty acid polyoxyethylene ester, monoglyceride, diglyceride, sorbitan ester, sucrose ester, dihydric alcohol ester, boric acid ester, etc .; dialcohol alkylamine, dialcohol alkylamine ester, fatty acid alkanolamide, N, N-di (polyoxyethylene) alkanamide, alkanolamine ester, N, N-di (polyoxyethylene) alkaneamine, amine oxy De, a nitrogen-formed and fabricated and alkyl polyethylene imine.

上記両性界面活性剤としては、モノアミノカルボン酸、ポリアミノカルボン酸等のアミノ酸形;N−アルキルアミノプロピオン酸塩、N,N−ジ(カルボキシエチル)アルキルアミン塩等のN−アルキル−β−アラニン形;N−アルキルベタイン、N−アルキルアミドベタイン、N−アルキルスルホベタイン、N,N−ジ(ポリオキシエチレン)アルキルベタイン、イミダゾリニウムベタイン等のベタイン形;1−カルボキシメチル−1−ヒドロキシ−1−ヒドロキシエチル−2−アルキル−2−イミダゾリン、1−スルホエチル−2−アルキル−2−イミダゾリン等のアルキルイミダゾリン誘導体などが挙げられる。   Examples of the amphoteric surfactant include amino acid forms such as monoaminocarboxylic acid and polyaminocarboxylic acid; N-alkyl-β-alanine such as N-alkylaminopropionate and N, N-di (carboxyethyl) alkylamine salt. Forms: Betaine forms such as N-alkylbetaines, N-alkylamidobetaines, N-alkylsulfobetaines, N, N-di (polyoxyethylene) alkylbetaines, imidazolinium betaines; 1-carboxymethyl-1-hydroxy- And alkyl imidazoline derivatives such as 1-hydroxyethyl-2-alkyl-2-imidazoline and 1-sulfoethyl-2-alkyl-2-imidazoline.

これらの中では、非イオン性界面活性剤、両性界面活性剤が好ましく、中でもモノグリセリド、ジグリセリド、ホウ酸エステル、ジアルコールアルキルアミン、ジアルコールアルキルアミンエステル、アミド等のエステル形または含窒素形の非イオン性界面活性剤;ベタイン形の両性界面活性剤が好ましい。   Among these, nonionic surfactants and amphoteric surfactants are preferable. Among them, monoglycerides, diglycerides, boric acid esters, dialcohol alkylamines, dialcohol alkylamine esters, amides and the like or nitrogen-containing non-type surfactants are preferred. Ionic surfactants; betaine amphoteric surfactants are preferred.

なお、帯電防止剤としては、市販品を使用することができ、例えば、エレクトロストリッパーTS5(花王(株)製、商標、グリセリンモノステアレート)、エレクトロストリッパーTS6(花王(株)製、商標、ステアリルジエタノールアミン)、エレクトロストリッパーEA(花王(株)製、商標、ラウリルジエタノールアミン)、エレクトロストリッパーEA−7(花王(株)製、商標、ポリオキシエチレンラウリルアミンカプリルエステル)、デノン331P(丸菱油化(株)製、商標、ステアリルジエタノールアミンモノステアレート)、デノン310(丸菱油化(株)製、商標、アルキルジエタノールアミン脂肪酸モノエステル)、レジスタットPE−139(第一工業製薬(株)製、商標、ステアリン酸モノ&ジグリセリドホウ酸エステル)、ケミスタット4700(三洋化成(株)製、商標、アルキルジメチルベタイン)、レオスタットS(ライオン(株)製、商標、アルキルジエタノールアミド)などが挙げられる。   In addition, as an antistatic agent, a commercial item can be used, for example, electro stripper TS5 (trade name, glycerin monostearate manufactured by Kao Corporation), electro stripper TS6 (trade name, stearyl manufactured by Kao Corporation). Diethanolamine), electrostripper EA (trade name, lauryl diethanolamine, manufactured by Kao Corporation), electrostripper EA-7 (trade name, polyoxyethylene laurylamine capryl ester, manufactured by Kao Corporation), Denon 331P (maruhishi oil ( Co., Ltd., trademark, stearyl diethanolamine monostearate), Denon 310 (manufactured by Maruhishi Oil Chemical Co., Ltd., trademark, alkyldiethanolamine fatty acid monoester), Register PE-139 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trademark) , Stearic acid mono & diglyceride Ester), Chemistat 4700 (Sanyo Chemical Industries Co., Ltd., trademark, alkyl dimethyl betaine), rheostat S (Lion Co., Ltd., trademark, alkyl diethanolamide), and the like.

帯電防止剤を配合する場合の配合量は基材層、粘着層および剥離処理層の各層に用いられる各々の樹脂100重量部に対して0.01〜2重量部、好ましくは0.05〜1重量部、さらに好ましくは0.1〜0.8重量部、もっとも好ましくは0.2〜0.5重量部である。これら帯電防止剤は、本目的の効果を損なわない範囲で、1種または2種以上組み合わせて使用することができる。帯電防止剤の配合量が、前記範囲内では帯電を防止し埃等の付着物を抑制することができる。   When blending the antistatic agent, the blending amount is 0.01 to 2 parts by weight, preferably 0.05 to 1 with respect to 100 parts by weight of each resin used in the base layer, the adhesive layer and the release treatment layer. Parts by weight, more preferably 0.1 to 0.8 parts by weight, most preferably 0.2 to 0.5 parts by weight. These antistatic agents can be used singly or in combination of two or more in a range that does not impair the effects of this object. When the blending amount of the antistatic agent is within the above range, it is possible to prevent electrification and suppress deposits such as dust.

(8)粘着性付与剤
粘着性付与剤としては、例えば、脂肪族系石油樹脂、脂環族系水添石油樹脂、芳香族系石油樹脂、C5系石油樹脂、テルペン樹脂、クマロン・インデン樹脂、フェノール樹脂、ロジン樹脂、タッキファイヤー、水添スチレン系エラストマーなど、公知の粘着性付与剤が挙げられ、これらは、本発明の効果を著しく損なわない範囲で、1種または2種以上組み合わせて使用することができる。水添スチレン系エラストマーの具体例としては、JSR(株)製「ダイナロン」シリーズ等が例示できるが、これらに限定されるものではない。
(8) Tackifier The tackifier includes, for example, aliphatic petroleum resins, alicyclic hydrogenated petroleum resins, aromatic petroleum resins, C5 petroleum resins, terpene resins, coumarone / indene resins, Known tackifiers such as phenol resins, rosin resins, tackifiers, hydrogenated styrene elastomers and the like can be mentioned, and these are used singly or in combination of two or more in a range not significantly impairing the effects of the present invention. be able to. Specific examples of the hydrogenated styrenic elastomer include “Dynalon” series manufactured by JSR Corporation, but are not limited thereto.

粘着性付与剤を配合する場合の配合量は、本発明の効果を損なわない限り特に限定されるものではないが、基材層、粘着層および剥離処理層の各層に用いられる各々の樹脂100重量部に対し、0.0001〜200重量部である。好ましくは0.01〜150重量部、さらに好ましくは1〜150重量部、もっとも好ましくは10〜100重量部である。粘着性付与剤の配合量が前記範囲内では粘着力が向上する。   The blending amount in the case of blending the tackifier is not particularly limited as long as the effects of the present invention are not impaired, but 100 weights of each resin used for each of the base layer, the tacky layer and the release treatment layer. 0.0001 to 200 parts by weight with respect to parts. Preferably it is 0.01-150 weight part, More preferably, it is 1-150 weight part, Most preferably, it is 10-100 weight part. When the compounding amount of the tackifier is within the above range, the adhesive strength is improved.

(9)その他
さらに、本発明の効果を著しく損なわない範囲内で、柔軟性、粘着性を適宜調整する成分としてエラストマーを配合したり、紫外線吸収剤、金属不活性剤、過酸化物、充填剤、抗菌防黴剤、蛍光増白剤、防曇剤、難燃剤、着色剤、顔料、天然油、合成油、ワックスなどを配合することができ、その配合割合は適宜量である。
(9) Others Further, an elastomer is blended as a component for appropriately adjusting flexibility and tackiness within a range that does not significantly impair the effects of the present invention, an ultraviolet absorber, a metal deactivator, a peroxide, and a filler. Antibacterial and antifungal agents, fluorescent whitening agents, antifogging agents, flame retardants, colorants, pigments, natural oils, synthetic oils, waxes, and the like can be blended, and the blending ratio is an appropriate amount.

上記の各種添加剤の配合は、重合により得られた本発明のプロピレン−エチレンブロック共重合体に直接添加し溶融混練して使用することも可能であるし、溶融混練中に添加してもよい。さらには溶融混練後に直接添加、或いは、本発明の効果を著しく損なわない範囲においてマスターバッチとして添加することも可能である。また、これらの複合的な手法により添加してもよい。
一般的には、酸化防止剤や中和剤などの添加剤を配合して、混合、溶融、混練された後、製品に成形され使用される。成形時に本発明の効果を著しく損なわない範囲で他樹脂、或いは、その他の付加的成分(マスターバッチを含む)を添加し使用することも可能である。
The blending of the above various additives can be directly added to the propylene-ethylene block copolymer of the present invention obtained by polymerization and melt kneaded for use, or may be added during melt kneading. . Furthermore, it can be added directly after melt-kneading, or can be added as a masterbatch within a range that does not significantly impair the effects of the present invention. Moreover, you may add by these composite methods.
In general, additives such as an antioxidant and a neutralizing agent are blended, mixed, melted and kneaded, and then molded into a product for use. It is also possible to add and use other resins or other additional components (including a masterbatch) as long as the effects of the present invention are not significantly impaired during molding.

上記の混合、溶融、混練は、従来公知のあらゆる方法を用いることができるが、通常、ヘンシェルミキサー、スーパーミキサー、Vブレンダー、タンブラーミキサー、リボンブレンダー、バンバリーミキサー、ニーダーブレンダー、一軸又は二軸の混練押出機にて実施することができる。これらの中でも一軸又は二軸の混練押出機により混合或いは溶融混練を行なうことが好ましい。   For the above mixing, melting, and kneading, any conventionally known method can be used. Usually, a Henschel mixer, a super mixer, a V blender, a tumbler mixer, a ribbon blender, a Banbury mixer, a kneader blender, a uniaxial or biaxial kneading. It can be carried out in an extruder. Among these, it is preferable to perform mixing or melt-kneading with a uniaxial or biaxial kneading extruder.

5.表面保護用フィルムの製造
本発明の表面保護用フィルムは、公知の積層フィルムの製造方法で製造することができる。
例えば、Tダイキャスト法、水冷インフレーション法、空冷インフレーション法等の公知の技術によって製造する。
Tダイキャスト法としては、押出機で溶融混練された樹脂がTダイから押し出され、水等の冷媒を通したロールに接触させられることにより冷却されて、一般に透明性が良く、厚み精度の良いフィルムを製造することができる。この様な方法はフィルムにとって好ましい製造方法である。
5. Production of Surface Protection Film The surface protection film of the present invention can be produced by a known method for producing a laminated film.
For example, it manufactures by well-known techniques, such as a T die-cast method, a water cooling inflation method, an air cooling inflation method.
In the T-die casting method, the resin melt-kneaded by an extruder is extruded from the T-die and cooled by being brought into contact with a roll through which a coolant such as water is passed, and generally has good transparency and good thickness accuracy. A film can be produced. Such a method is a preferable manufacturing method for the film.

ここで、表面保護用フィルムの厚みは、特に限定されないが、好ましくは10〜500μm、より好ましくは20〜200μm、さらに好ましくは30〜100μm、もっとも好ましくは40〜80μmである。厚みがこの範囲外では加工が困難となる。   Here, the thickness of the surface protective film is not particularly limited, but is preferably 10 to 500 μm, more preferably 20 to 200 μm, still more preferably 30 to 100 μm, and most preferably 40 to 80 μm. If the thickness is outside this range, processing becomes difficult.

粘着層を基材層の片面に設ける手段としては、溶液塗工法等で塗布により得る方法として、基材層の片面に対し、トルエン溶液等の有機溶剤に溶かした粘着剤をロールコーター等により塗布後、乾燥して粘着層を形成する方法を挙げることができる。その際、基材層と粘着層との親和力を向上させるため、基材層の片面(粘着層との接着面)に、従来公知のコロナ放電処理、プラズマ放電処理、プライマー処理などが施されていてもよい。
また、粘着層を積層により得る方法として、押出機により、粘着剤を加熱溶融させて、Tダイよりフィルム状に押し出し、基材層の片面に積層する方法、あるいは、押出機により、基材層及び粘着剤を加熱溶融させて、基材層と共にTダイよりフィルム状に共押出しする方法などを挙げることができる。
本発明では、粘着層を基材層と共にTダイよりフィルム状に共押出し形成する方法を採用すると、汚染性の問題、経済上の点で有利である。
As a means of providing the adhesive layer on one side of the base material layer, as a method obtained by application by a solution coating method or the like, an adhesive dissolved in an organic solvent such as a toluene solution is applied to one side of the base material layer by a roll coater or the like Thereafter, a method of forming an adhesive layer by drying can be mentioned. At that time, in order to improve the affinity between the base material layer and the pressure-sensitive adhesive layer, conventionally known corona discharge treatment, plasma discharge treatment, primer treatment, etc. are performed on one surface of the base material layer (adhesion surface with the pressure-sensitive adhesive layer). May be.
In addition, as a method for obtaining the adhesive layer by lamination, the adhesive is heated and melted by an extruder, extruded into a film form from a T die, and laminated on one side of the substrate layer, or the substrate layer is obtained by an extruder. And a method in which the pressure-sensitive adhesive is heated and melted and coextruded into a film shape from a T-die together with the base material layer.
In the present invention, adopting a method in which the adhesive layer is coextruded with the base material layer in the form of a film from a T-die is advantageous in terms of contamination problems and economical points.

粘着層の厚さは、用途により粘着強度が異なることから、特に限定されないが、後工程で粘着剤を塗布して粘着層を形成する方法の場合、また、押出機より加熱溶融させてなる粘着層を形成する方法の場合とも、通常0.1〜100μm、好ましくは1〜50μm、さらに好ましくは5〜30μm、最も好ましくは10〜20μmである。   The thickness of the adhesive layer is not particularly limited because the adhesive strength varies depending on the application, but in the case of a method of forming an adhesive layer by applying an adhesive in a later step, the adhesive layer is heated and melted from an extruder. Also in the case of the method of forming a layer, it is 0.1-100 micrometers normally, Preferably it is 1-50 micrometers, More preferably, it is 5-30 micrometers, Most preferably, it is 10-20 micrometers.

本発明の表面保護フィルムの粘着層とは他方の面に設ける剥離処理層の形成手段としては、塗布、硬化、積層などの公知の方法を挙げることができる。
剥離処理層を塗布により得る方法としては、基材層の片面に対し、トルエン溶液等の有機溶剤に溶かした剥離処理剤をロールコーター等により塗布後、乾燥して剥離処理剤を硬化させて剥離処理層を形成する方法を挙げることができる。その際、基材層と剥離処理層との親和力を向上させるため、基材層の片面(剥離処理層との接着面)に、従来公知のコロナ放電処理、プラズマ放電処理、プライマー処理などが施されていてもよい。
また、剥離処理層を積層により得る方法としては、押出機により、剥離処理層を加熱溶融させて、Tダイよりフィルム状に、基材層の片面に積層する方法、あるいは、押出機により、基材層及び剥離処理層を加熱溶融させて、基材層と共にTダイよりフィルム状に共押出しする方法などを挙げることができる。
本発明では、シリコーン系又は長鎖アルキル系剥離処理剤をプロピレン−エチレンブロック共重合体に配合してなる剥離処理層を基材層と共にTダイよりフィルム状に共押出し形成する方法を採用すると、汚染性の問題、経済上の点で有利である。さらに、シリコーン系又は長鎖アルキル系剥離処理剤を配合するプロピレン系樹脂として本発明の基材層に使用するメタロセン系触媒から重合された特定のプロピレン−エチレンブロック共重合体を用いるとフィッシュアイが非常に少ない優れた表面保護フィルムとなる。
Examples of means for forming the release treatment layer provided on the other surface of the pressure-sensitive adhesive layer of the surface protective film of the present invention include known methods such as coating, curing, and lamination.
As a method for obtaining the release treatment layer by coating, a release treatment agent dissolved in an organic solvent such as a toluene solution is applied to one side of the base material layer with a roll coater, and then dried to cure the release treatment agent and release. The method of forming a process layer can be mentioned. At that time, in order to improve the affinity between the base material layer and the release treatment layer, conventionally known corona discharge treatment, plasma discharge treatment, primer treatment, etc. are performed on one side of the base material layer (adhesion surface with the release treatment layer). May be.
In addition, as a method for obtaining a release treatment layer by lamination, a method in which the release treatment layer is heated and melted by an extruder and laminated in a film shape from a T die on one side of a base material layer, or by an extruder, Examples thereof include a method in which the material layer and the release treatment layer are heated and melted and coextruded into a film shape from a T die together with the base material layer.
In the present invention, when a method of coextrusion forming a release treatment layer formed by blending a silicone-based or long-chain alkyl release treatment agent with a propylene-ethylene block copolymer into a film shape from a T-die together with a base material layer, This is advantageous in terms of pollution and economy. Further, when a specific propylene-ethylene block copolymer polymerized from a metallocene catalyst used in the base material layer of the present invention is used as a propylene resin containing a silicone-based or long-chain alkyl-based release treatment agent, It becomes an excellent surface protective film with very few.

上記剥離処理層の厚さは、特に限定されないが、後工程で剥離処理剤を塗布して剥離処理層を形成する方法の場合、剥離処理剤の塗布量は、通常、シリコーン系の場合、0.01〜10g/m、好ましくは0.5〜0.7g/m、さらに好ましくは0.1〜0.4g/mである。また長鎖アルキル系の場合、0.005〜10g/m、好ましくは0.02〜0.3g/m、特に好ましくは0.01〜0.1g/mが好ましい。
また、剥離処理剤をプロピレン系樹脂に配合し、押出機より加熱溶融させてなる剥離処理層を形成する方法の場合、通常0.1〜100μm、好ましくは1〜50μm、さらに好ましくは5〜30μm、最も好ましくは10〜20μmである。
The thickness of the release treatment layer is not particularly limited, but in the case of a method of forming a release treatment layer by applying a release treatment agent in a later step, the amount of the release treatment agent applied is usually 0 in the case of a silicone-based material. 0.01 to 10 g / m 2 , preferably 0.5 to 0.7 g / m 2 , and more preferably 0.1 to 0.4 g / m 2 . In the case of long-chain alkyl-based, 0.005~10g / m 2, preferably 0.02~0.3g / m 2, particularly preferably preferably 0.01 to 0.1 g / m 2.
Moreover, in the case of the method of mix | blending a peeling agent with a propylene-type resin and forming the peeling process layer formed by heating and melting from an extruder, it is 0.1-100 micrometers normally, Preferably it is 1-50 micrometers, More preferably, it is 5-30 micrometers. Most preferably, it is 10-20 micrometers.

6.表面保護フィルムの用途
本発明の表面保護用フィルムの用途としては、公知のあらゆる表面保護を必要とする製品が含まれ、分野別では、例えば、電子部品搬送用保護用フィルムおよびプリント基板用保護フィルム等のエレクトロニクス分野、窓ガラス保護用フィルム、焼付塗装用フィルム、自動車をユーザーにわたるまで保護するためのガードフィルム、表示用マーキングフルム、装飾用マーキングフィルムおよび緩衝・保護・断熱・防音用のスポンジフィルム等の自動車分野、絆創膏や経皮吸収貼付薬等の医療・衛生材料分野、ならびに電気絶縁用、識別用、ダクト工事用、窓ガラス保護用、養生用、包装用、梱包用、事務用、家庭用、固定用、結束用および、補修用の保護フィルム等の住宅・建設分野が挙げられる。
これらの中では、特に合成樹脂板、化粧板、金属板、ガラス板などの建築部材の表面保護用、偏光板や位相差板などの液晶表示装置の構成部材の表面保護用に好適に用いることができる。
6). Applications of the surface protective film Applications of the surface protective film of the present invention include all known products that require surface protection. By field, for example, protective films for transporting electronic components and protective films for printed boards Electronics field such as window glass protective film, baking coating film, guard film for protecting automobiles to users, marking film for display, marking film for decoration, sponge film for buffering, protection, heat insulation and soundproofing, etc. Automotive field, medical and hygiene materials field such as adhesive bandages and transdermal patches, and electrical insulation, identification, duct construction, window glass protection, curing, packaging, packaging, office use, home use And housing / construction field such as protective film for fixing, bundling and repair.
Among these, particularly suitable for surface protection of building members such as synthetic resin plates, decorative plates, metal plates, and glass plates, and surface protection of components of liquid crystal display devices such as polarizing plates and retardation plates. Can do.

以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例で用いた物性測定法、特性評価法、樹脂材料は以下の通りである。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. The physical property measurement methods, characteristic evaluation methods, and resin materials used in Examples and Comparative Examples are as follows.

1.物性測定法、特性評価法
(1)MFR:プロピレン−エチレンブロック共重合体は、JIS K−7210−1995に準拠し、230℃、荷重21.18N荷重で測定した。
1. Physical property measurement method, characteristic evaluation method (1) MFR: A propylene-ethylene block copolymer was measured at 230 ° C. under a load of 21.18 N in accordance with JIS K-7210-1995.

(2)密度:JIS K6922−2:1997付属書(23℃)に準拠して測定した。 (2) Density: Measured according to JIS K6922-2: 1997 appendix (23 ° C.).

(3)融解ピーク温度:示差走査型熱量計(セイコー社製DSC)を用い、サンプル量5.0mgを採り、200℃で5分間保持した後、40℃まで10℃/分の降温スピードで結晶化させ、さらに10℃/分の昇温スピードで融解させたときの融解ピーク温度(Tmp)を測定した。 (3) Melting peak temperature: Using a differential scanning calorimeter (Seiko DSC), a sample amount of 5.0 mg was taken, held at 200 ° C. for 5 minutes, and then crystallized at a rate of temperature decrease of 10 ° C./min to 40 ° C. And the melting peak temperature (Tmp) when melted at a heating rate of 10 ° C./min was measured.

(4)重量平均分子量(Mw)、数平均分子量(Mn):基材層および粘着層の説明で述べた方法で測定した。 (4) Weight average molecular weight (Mw), number average molecular weight (Mn): measured by the method described in the explanation of the base material layer and the adhesive layer.

(5)TREF測定:試料を140℃でo−ジクロロベンゼン(0.5mg/mlのBHTを含む)に溶解し溶液とする。これを140℃のTREFカラムに導入した後に8℃/分の降温速度で100℃まで冷却し、引き続き4℃/分の降温速度で−15℃まで冷却し、60分間保持する。その後、溶媒であるo−ジクロロベンゼン(0.5mg/mlのBHTを含む)を1ml/分の流速でカラムに流し、TREFカラム中で−15℃のo−ジクロロベンゼンに溶解している成分を10分間溶出させ、次に昇温速度100℃/時間にてカラムを140℃までリニアに昇温し、溶出曲線を得る。 (5) TREF measurement: A sample is dissolved in o-dichlorobenzene (containing 0.5 mg / ml BHT) at 140 ° C. to obtain a solution. This is introduced into a 140 ° C. TREF column, cooled to 100 ° C. at a rate of 8 ° C./min, subsequently cooled to −15 ° C. at a rate of 4 ° C./min, and held for 60 minutes. Thereafter, o-dichlorobenzene (containing 0.5 mg / ml BHT) as a solvent is caused to flow through the column at a flow rate of 1 ml / min, and components dissolved in o-dichlorobenzene at −15 ° C. in the TREF column. Elution is performed for 10 minutes, and then the column is linearly heated to 140 ° C. at a heating rate of 100 ° C./hour to obtain an elution curve.

(イ)装置
(イ−1)TREF部
TREFカラム:4.3mmφ × 150mmステンレスカラム
カラム充填材:100μm 表面不活性処理ガラスビーズ
加熱方式:アルミヒートブロック
冷却方式:ペルチェ素子(ペルチェ素子の冷却は水冷)
温度分布:±0.5℃
温調器:(株)チノー デジタルプログラム調節計KP1000(バルブオーブン)
加熱方式:空気浴式オーブン
測定時温度:140℃
温度分布:±1℃
バルブ:6方バルブ 4方バルブ
(A) Apparatus (A-1) TREF part TREF column: 4.3 mmφ × 150 mm stainless steel column Column packing material: 100 μm Surface inactive glass beads )
Temperature distribution: ± 0.5 ° C
Temperature controller: Chino Corporation Digital Program Controller KP1000 (Valve Oven)
Heating method: Air bath oven Measurement temperature: 140 ° C
Temperature distribution: ± 1 ° C
Valve: 6-way valve 4-way valve

(イ−2)試料注入部
注入方式:ループ注入方式
注入量:ループサイズ 0.1ml
注入口加熱方式:アルミヒートブロック
測定時温度:140℃
(イ−3)検出部
検出器:波長固定型赤外検出器 FOXBORO社製 MIRAN 1A
検出波長:3.42μm
高温フローセル:LC−IR用ミクロフローセル 光路長1.5mm 窓形状2φ×4mm長丸 合成サファイア窓板
測定時温度:140℃
(イ−4)ポンプ部
送液ポンプ:センシュウ科学社製 SSC−3461ポンプ
(ロ)測定条件
溶媒:o−ジクロロベンゼン(0.5mg/mlのBHTを含む)
試料濃度:5mg/ml
試料注入量:0.1ml
溶媒流速 :1ml/分
(I-2) Sample injection part injection method: loop injection method Injection amount: loop size 0.1 ml
Inlet heating method: Aluminum heat block measurement temperature: 140 ° C
(I-3) Detector detector: fixed wavelength infrared detector MIRAN 1A manufactured by FOXBORO
Detection wavelength: 3.42 μm
High-temperature flow cell: Micro flow cell for LC-IR Optical path length: 1.5 mm Window shape: 2φ x 4 mm long circle Synthetic sapphire window measurement temperature: 140 ° C
(A-4) Pump unit liquid feed pump: SSC-3461 pump (b) manufactured by Senshu Kagaku Co., Ltd. (b) Measurement conditions Solvent: o-dichlorobenzene (including 0.5 mg / ml BHT)
Sample concentration: 5 mg / ml
Sample injection volume: 0.1 ml
Solvent flow rate: 1 ml / min

(6)固体粘弾性測定
試料は、下記条件により射出成形した厚さ2mmのシートから、10mm幅×18mm長×2mm厚の短冊状に切り出したものを用いた。装置はレオメトリック・サイエンティフィック社製のARESを用いた。周波数は1Hzである。測定温度は−60℃から段階状に昇温し、試料が融解して測定不能になるまで測定を行った。歪みは0.1〜0.5%の範囲で行った。
試験片の作成条件
規格番号:JIS−K7152(ISO294−1)
成形機:東洋機械金属社製TU−15射出成形機
成形機設定温度:ホッパ下から 80,80,160,200,200,200℃
金型温度:40℃
射出速度:200mm/秒(金型キャビティー内の速度)
射出圧力:800kgf/cm
保持圧力:800kgf/cm
保圧時間:40秒
金型形状:平板(厚さ2mm 幅30mm 長さ90mm)
(6) Measurement of solid viscoelasticity A sample cut into a strip shape of 10 mm width × 18 mm length × 2 mm thickness from a 2 mm thick sheet injection-molded under the following conditions was used. The apparatus used was ARES manufactured by Rheometric Scientific. The frequency is 1 Hz. The measurement temperature was raised stepwise from −60 ° C., and the measurement was performed until the sample melted and became impossible to measure. The strain was performed in the range of 0.1 to 0.5%.
Test piece preparation conditions Standard number: JIS-K7152 (ISO294-1)
Molding machine: TU-15 injection molding machine manufactured by Toyo Machine Metal Co., Ltd. Molding machine set temperature: 80, 80, 160, 200, 200, 200 ° C.
Mold temperature: 40 ℃
Injection speed: 200 mm / sec (speed in the mold cavity)
Injection pressure: 800 kgf / cm 2
Holding pressure: 800 kgf / cm 2
Holding time: 40 seconds Mold shape: Flat plate (thickness 2 mm, width 30 mm, length 90 mm)

(7)常温キシレン可溶成分(CXS)の極限粘度(固有粘度と同義)
2gの試料を300mlのp−キシレン(0.5mg/mlのBHTを含む)に130℃で溶解させ溶液とした後、23℃で12時間放置する。その後、析出したポリマーを濾別し、濾液からp−キシレンを蒸発させ、さらに100℃で12時間減圧乾燥しCXSを回収して、秤量する。得られたCXS成分の極限粘度をウベローデ型粘度計を用いてデカリンを溶媒として用い温度135℃で測定した。
(7) Intrinsic viscosity (synonymous with intrinsic viscosity) of normal temperature xylene soluble component (CXS)
A 2 g sample is dissolved in 300 ml of p-xylene (containing 0.5 mg / ml BHT) at 130 ° C. to make a solution, and then left at 23 ° C. for 12 hours. Thereafter, the precipitated polymer is filtered off, p-xylene is evaporated from the filtrate, and further dried under reduced pressure at 100 ° C. for 12 hours, and CXS is collected and weighed. The intrinsic viscosity of the obtained CXS component was measured at 135 ° C. using Decalin as a solvent using an Ubbelohde viscometer.

(8)エチレン含有量の算出
基材層の説明で述べた方法で測定した。
(8) Calculation of ethylene content It measured by the method described by description of the base material layer.

(9)ヘイズ:
フィルムを23℃、50%RHの雰囲気下にて24時間状態調整した後、JIS−K7136−2000に準拠してヘイズメーターで測定した。
得られた値が小さいほど透明性がよい。
(9) Haze:
The film was conditioned for 24 hours in an atmosphere of 23 ° C. and 50% RH, and then measured with a haze meter in accordance with JIS-K7136-2000.
The smaller the value obtained, the better the transparency.

(10)引張弾性率:
フィルムをISO527に準拠し、下記の条件にて、フィルムの流れ方向(MD)についての引張弾性率を測定した。
得られた数値が高い方がフィルムの剛性が高く、表面保護用のフィルムとして取り扱いやすい。
サンプル長さ:150mm
サンプル幅:10mm
チャック間距離:100mm
クロスヘッド速度:25mm/min
(10) Tensile modulus:
The tensile elasticity modulus about the flow direction (MD) of the film was measured according to the following conditions based on ISO527.
The higher the obtained numerical value, the higher the rigidity of the film and the easier it is to handle it as a surface protecting film.
Sample length: 150mm
Sample width: 10mm
Distance between chucks: 100mm
Crosshead speed: 25mm / min

(11)フィッシュアイ:
フィルムを20cm×15cmのサイズに切り出し、目視にて5枚のフィルムを観察し、フィッシュアイの個数を数え、面積1m当たりの個数を算出した。フィッシュアイのサイズを長径で0.4mm以上(≧0.4mm)、0.4mmより小さく0.2mm以上(<0.4mm〜≧0.2mm)、0.2mmより小さく0.1mm以上(<0.2mm〜≧0.1mm)の各サイズに分類し、それぞれの個数を分けた(単位:個/m)。
フィッシュアイの数が少ない方が、表面保護フィルムを被保護物に貼付けて段積み保管しても、被保護物に凹みが生じることがなく表面保護フィルムとして良好である。
(11) Fisheye:
The film was cut into a size of 20 cm × 15 cm, five films were visually observed, the number of fish eyes was counted, and the number per 1 m 2 of area was calculated. The size of the fish eye is 0.4 mm or more in the major axis (≧ 0.4 mm), 0.2 mm or less smaller than 0.4 mm (<0.4 mm to ≧ 0.2 mm), 0.1 mm or larger smaller than 0.2 mm (< 0.2 mm to ≧ 0.1 mm), and the number of each was divided (unit: pieces / m 2 ).
When the number of fish eyes is small, even if the surface protective film is attached to the object to be protected and stacked and stored, the object to be protected does not dent, and is better as the surface protective film.

(12)粘着性:
フィルムのタテ方向を長手方向にとり、幅25mm、長さ20cmに切断し、予め60℃に加温したアクリル樹脂板(鏡面状のアクリル板(三菱レイヨン(株)製『アクリライトL001』3mm板)に貼りつけた。貼りつけたフィルムを温度23℃湿度50%の中で12時間エージングした後、JIS Z0237に準拠して引張速度300mm/min、引きはがし角度180℃にて25mm幅あたりの粘着強度を測定した。
数値が高ければ粘着強度が高い。粘着強度は非着体により目標の強度は異なるが、一般的には1〜400g/25mmの範囲で使用される。粘着強度低すぎると、被着体への貼りあわせができない。また、粘着強度が高すぎると被着体から容易に剥離することができない。
(12) Tackiness:
Acrylic resin plate (mirror surface acrylic plate (“Acrylite L001” 3 mm plate manufactured by Mitsubishi Rayon Co., Ltd.)) cut into a longitudinal direction of the film, cut to a width of 25 mm and a length of 20 cm, and preheated to 60 ° C. After the pasted film was aged for 12 hours at a temperature of 23 ° C. and a humidity of 50%, the adhesive strength per 25 mm width was measured at a pulling speed of 300 mm / min and a peeling angle of 180 ° C. in accordance with JIS Z0237. Was measured.
The higher the value, the higher the adhesive strength. Although the target strength varies depending on the non-adherent body, the adhesive strength is generally used in the range of 1 to 400 g / 25 mm. If the adhesive strength is too low, bonding to the adherend cannot be performed. If the adhesive strength is too high, it cannot be easily peeled off from the adherend.

(13)剥離処理層−粘着層間剥離性:
通常表面保護フィルムは、剥離処理層と粘着層が接した形で紙管に巻き取られ、繰り出されて製品に接着して使用される。繰り出し性の評価として、成形したフィルムを3インチの紙管に剥離処理層と粘着層が接した形で巻き取り、繰り出し機に取り付け20m/分で繰り出した際にシワ、たるみ等入らずに滑らかに繰り出せるかを目視で確認し、滑らかに繰り出せるものを○、滑らかに繰り出せないものを×とした。
(13) Peeling treatment layer-adhesive delamination property:
Usually, the surface protective film is wound around a paper tube in a form in which the release treatment layer and the adhesive layer are in contact with each other, and is used by being fed out and adhered to a product. As an evaluation of unwinding property, the molded film is rolled up in a form in which the release treatment layer and the adhesive layer are in contact with a 3-inch paper tube, and attached to the unwinding machine and smoothed without wrinkles or sagging when unrolled at 20 m / min. It was visually confirmed whether it could be fed out smoothly, and ○ that could be smoothly fed out was marked with ○, and that that could not be smoothly fed out was marked with ×.

(14)被着体耐汚染性:
前記粘着性評価に於いて、アクリル板からフィルムを剥がした際、剥離痕が残らないものを○、剥離痕や、粘着層樹脂がアクリル板に残るものを×とした。
(14) Contamination resistance of adherend:
In the adhesive evaluation, when the film was peeled off from the acrylic plate, the case where no peeling marks remained was marked with “◯”, and the case where the peeling marks or the adhesive layer resin remained on the acrylic plate was marked with “x”.

2.樹脂材料
(1)基材層樹脂
基材層樹脂のプロピレン−エチレンブロック共重合体として、後述の製造例1〜9で得られたプロピレン−エチレンブロック共重合体(PEB−1〜9)を用いた。
重合条件及び重合結果を表3に、物性を表4に示す。
2. Resin Material (1) Base Layer Resin As the propylene-ethylene block copolymer of the base layer resin, the propylene-ethylene block copolymers (PEB-1 to 9) obtained in Production Examples 1 to 9 described later are used. It was.
The polymerization conditions and polymerization results are shown in Table 3, and the physical properties are shown in Table 4.

(製造例1)
(i)予備重合触媒の調製
(イ)珪酸塩の化学処理
10リットルの撹拌翼の付いたガラス製セパラブルフラスコに、蒸留水3.75リットル、続いて濃硫酸(96%)2.5kgをゆっくりと添加した。50℃で、さらにモンモリロナイト(水澤化学社製ベンクレイSL;平均粒径=25μm 粒度分布=10〜60μm)を1kg分散させ、90℃に昇温し、6.5時間その温度を維持した。50℃まで冷却後、このスラリーを減圧濾過し、ケーキを回収した。このケーキに蒸留水を7リットル加え再スラリー化後、濾過した。この洗浄操作を、洗浄液(濾液)のpHが、3.5を越えるまで実施した。回収したケーキを窒素雰囲気下110℃で終夜乾燥した。乾燥後の重量は707gであった。
(ロ)珪酸塩の乾燥
先に化学処理した珪酸塩は、キルン乾燥機により乾燥を実施した。仕様、乾燥条件は以下の通りである。
回転筒:円筒状 内径50mm 加温帯550mm(電気炉) かき上げ翼付き回転数:2rpm 傾斜角:20/520 珪酸塩の供給速度:2.5g/分 ガス流速:窒素 96リットル/時間 向流乾燥温度:200℃(粉体温度)
(Production Example 1)
(I) Preparation of prepolymerization catalyst (a) Chemical treatment of silicate In a 10-liter glass separable flask equipped with a stirring blade, 3.75 liters of distilled water, followed by 2.5 kg of concentrated sulfuric acid (96%) Slowly added. At 50 ° C., 1 kg of montmorillonite (Menzawa Chemical Co., Ltd. Benclay SL; average particle size = 25 μm, particle size distribution = 10-60 μm) was dispersed, heated to 90 ° C., and maintained at that temperature for 6.5 hours. After cooling to 50 ° C., the slurry was filtered under reduced pressure to recover the cake. 7 liters of distilled water was added to this cake to reslurry it, and then filtered. This washing operation was performed until the pH of the washing solution (filtrate) exceeded 3.5. The collected cake was dried at 110 ° C. overnight under a nitrogen atmosphere. The weight after drying was 707 g.
(B) Drying of silicate The silicate previously chemically treated was dried with a kiln dryer. Specifications and drying conditions are as follows.
Rotating cylinder: Cylindrical inner diameter 50 mm Heating zone 550 mm (Electric furnace) Speed with rotating blade: 2 rpm Tilt angle: 20/520 Silicate feed rate: 2.5 g / min Gas flow rate: Nitrogen 96 liters / hour Countercurrent drying Temperature: 200 ° C (powder temperature)

(ハ)触媒の調製
撹拌及び温度制御装置を有する内容積16リットルのオートクレーブを窒素で充分置換した。ここに、乾燥珪酸塩200gを導入し、混合ヘプタン1,160ml、さらにトリエチルアルミニウムのヘプタン溶液(0.60M)840mlを加え、室温で攪拌した。1時間後、混合ヘプタンにて洗浄し、珪酸塩スラリーを2,000mlに調製した。次に、先に調製した珪酸塩スラリーにトリイソブチルアルミニウムのヘプタン溶液(0.71ML)9.6mlを添加し、25℃で1時間反応させた。平行して、(r)−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4H−アズレニル}]ジルコニウム2,180mg(0.3mM)と混合ヘプタン870mlに、トリイソブチルアルミニウムのヘプタン溶液(0.71M)33.1mlを加えて、室温にて1時間反応させた混合物を、珪酸塩スラリーに加え、1時間攪拌後、混合ヘプタンを追加して5,000mlに調製した。
(C) Preparation of catalyst An autoclave having an internal volume of 16 liters having a stirring and temperature control device was sufficiently substituted with nitrogen. To this, 200 g of dry silicate was introduced, 1,160 ml of mixed heptane and 840 ml of a heptane solution of triethylaluminum (0.60 M) were added and stirred at room temperature. After 1 hour, the mixture was washed with mixed heptane to prepare 2,000 ml of silicate slurry. Next, 9.6 ml of a heptane solution of triisobutylaluminum (0.71 ML) was added to the silicate slurry prepared above and reacted at 25 ° C. for 1 hour. In parallel, 187 ml of (r) -dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4H-azurenyl}] zirconium and 2,180 mg (0.3 mM) of mixed heptane Then, 33.1 ml of a heptane solution of triisobutylaluminum (0.71 M) was added and the mixture reacted at room temperature for 1 hour was added to the silicate slurry. After stirring for 1 hour, 5,000 ml was added with mixed heptane. Prepared.

(ニ)予備重合/洗浄
続いて、槽内温度を40℃昇温し、温度が安定したところでプロピレンを100g/時間の速度で供給し、温度を維持した。4時間後プロピレンの供給を停止し、さらに2時間維持した。
予備重合終了後、残モノマーをパージし、撹拌を停止させ約10分間静置後、上澄みを2,400mlデカントした。続いてトリイソブチルアルミニウム(0.71ML)のヘプタン溶液9.5ml、さらに混合ヘプタンを5600ml添加し、40℃で30分間撹拌し、10分間静置した後に、上澄みを5600ml除いた。さらにこの操作を3回繰り返した。最後の上澄み液の成分分析を実施したところ有機アルミニウム成分の濃度は、1.23mモル/リットル、Zr濃度は8.6×10−6g/Lであり、仕込み量に対する上澄み液中の存在量は0.016%であった。続いて、トリイソブチルアルミニウム(0.71ML)のヘプタン溶液を170ml添加した後に、45℃で減圧乾燥を実施した。触媒1g当たりポリプロピレンを2.0g含む予備重合触媒が得られた。
(D) Preliminary polymerization / washing Subsequently, the temperature in the tank was raised by 40 ° C., and when the temperature was stabilized, propylene was supplied at a rate of 100 g / hour to maintain the temperature. After 4 hours, the supply of propylene was stopped and maintained for another 2 hours.
After completion of the prepolymerization, the remaining monomer was purged, the stirring was stopped and the mixture was allowed to stand for about 10 minutes, and then the supernatant was decanted to 2,400 ml. Subsequently, 9.5 ml of a heptane solution of triisobutylaluminum (0.71 ML) and 5600 ml of mixed heptane were further added, stirred at 40 ° C. for 30 minutes, allowed to stand for 10 minutes, and then 5600 ml of the supernatant was removed. This operation was further repeated 3 times. When the component analysis of the final supernatant was performed, the concentration of the organoaluminum component was 1.23 mmol / liter, the Zr concentration was 8.6 × 10 −6 g / L, and the abundance in the supernatant relative to the charged amount was It was 0.016%. Subsequently, 170 ml of a heptane solution of triisobutylaluminum (0.71 ML) was added, followed by drying at 45 ° C. under reduced pressure. A prepolymerized catalyst containing 2.0 g of polypropylene per 1 g of catalyst was obtained.

(ii)第一工程
第一工程では、内容積0.4mの攪拌装置付き液相重合槽を用いてプロピレン−エチレンランダム共重合を実施した。液化プロピレンと液化エチレン、トリイソブチルアルミニウムをそれぞれ90kg/時、4.2kg/時、21.2g/時で連続的に供給した。水素供給量は第一工程のMFRが目標の値となるように調節した。
さらに、上記の予備重合触媒を、触媒として(予備重合ポリマーの重量は除く)、6.9g/時となるように供給した。また、重合温度が45℃となるように重合槽を冷却した。
第一工程で得られたプロピレン−エチレンランダム共重合を分析したところ、BD(嵩密度)は0.46g/cc、MFRは7.0g/10分、エチレン含有量は3.7重量%であった。
(Ii) First Step In the first step, propylene-ethylene random copolymerization was carried out using a liquid phase polymerization tank with an agitator having an internal volume of 0.4 m 3 . Liquefied propylene, liquefied ethylene, and triisobutylaluminum were continuously fed at 90 kg / hour, 4.2 kg / hour, and 21.2 g / hour, respectively. The hydrogen supply amount was adjusted so that the MFR in the first step became a target value.
Further, the above prepolymerized catalyst was supplied as a catalyst (excluding the weight of the prepolymerized polymer) so as to be 6.9 g / hour. The polymerization tank was cooled so that the polymerization temperature was 45 ° C.
When the propylene-ethylene random copolymer obtained in the first step was analyzed, BD (bulk density) was 0.46 g / cc, MFR was 7.0 g / 10 min, and ethylene content was 3.7% by weight. It was.

(iii)第二工程
第二工程では、内容積0.5mの攪拌式気相重合槽を用いてプロピレン−エチレンランダム共重合を実施した。第一工程の液相重合槽より重合体粒子を含んだスラリーを連続的に抜き出し、液化プロピレンをフラッシングした後、窒素で昇圧して気相重合槽へ連続的に供給した。
重合槽は温度が80℃、プロピレンとエチレンと水素の分圧の合計が1.5MPaとなるように制御した。その際にプロピレンとエチレンと水素の分圧の合計に占めるプロピレンとエチレン及び水素の濃度は、それぞれ66.97vol%、32.99vol%、420volppmとなるように制御した。
さらに、活性抑制剤としてエタノールを気相重合槽に供給した。エタノールの供給量は、気相重合槽に供給される重合体粒子に随伴して供給されるTIBA中のアルミニウムに対して、0.3mol/molとなるようにした。
こうして得られたプロピレン−エチレンブロック共重合体を分析したところ、活性は8.7kg/g−触媒、BDは0.41g/cc、MFRは7.0g/10分、エチレン含有量は8.7重量%であった。
(Iii) Second Step In the second step, propylene-ethylene random copolymerization was carried out using a stirred gas phase polymerization tank having an internal volume of 0.5 m 3 . The slurry containing polymer particles was continuously withdrawn from the liquid phase polymerization tank in the first step, flushed with liquefied propylene, and then pressurized with nitrogen and continuously supplied to the gas phase polymerization tank.
The polymerization tank was controlled so that the temperature was 80 ° C. and the total partial pressure of propylene, ethylene, and hydrogen was 1.5 MPa. At that time, the concentration of propylene, ethylene and hydrogen in the total partial pressure of propylene, ethylene and hydrogen was controlled to be 66.97 vol%, 32.99 vol% and 420 volppm, respectively.
Furthermore, ethanol was supplied to the gas phase polymerization tank as an activity inhibitor. The supply amount of ethanol was set to 0.3 mol / mol with respect to aluminum in TIBA supplied along with the polymer particles supplied to the gas phase polymerization tank.
When the propylene-ethylene block copolymer thus obtained was analyzed, the activity was 8.7 kg / g-catalyst, the BD was 0.41 g / cc, the MFR was 7.0 g / 10 min, and the ethylene content was 8.7. % By weight.

(iv)造粒
上記で得られたプロピレンーエチレンブロック共重合体パウダーに、ブレンダーに下記の酸化防止剤を添加し、充分に撹拌混合した。
酸化防止剤:テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン(チバ・スペシャルティ・ケミカルズ(株)製、イルガノックス1010)0.05重量部、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト(チバ・スペシャルティ・ケミカルズ(株)社製、イルガホス168)0.10重量部
添加剤を加えたプロピレンーエチレンブロック共重合体パウダーをヘンシェルミキサーにより750rpmで1分間室温で高速混合した後、スクリュー口径30mmの池貝製作所製PCM二軸押出機にて、スクリュー回転数200rpm、吐出量10kg/hr、押出機温度190℃で溶融混練し、ストランドダイから押し出された溶融樹脂を、冷却水槽で冷却固化させながら引き取り、ストランドカッターを用いてストランドを直径約2mm、長さ約3mmに切断することでプロピレン−エチレンブロック共重合体の原料ペレット(PEB−1)を得た。
(Iv) Granulation To the propylene-ethylene block copolymer powder obtained above, the following antioxidant was added to a blender, and the mixture was sufficiently stirred and mixed.
Antioxidant: Tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane (manufactured by Ciba Specialty Chemicals, Inc., Irganox 1010) 0.05 Parts by weight, tris (2,4-di-t-butylphenyl) phosphite (manufactured by Ciba Specialty Chemicals Co., Ltd., Irgafos 168) 0.10 parts by weight Propylene-ethylene block copolymer with additives After high-speed mixing of the powder at 750 rpm for 1 minute at room temperature using a Henschel mixer, the mixture was melt-kneaded at a screw diameter of 30 mm, a PCM twin screw extruder manufactured by Ikegai Seisakusho at a screw speed of 200 rpm, a discharge rate of 10 kg / hr, and an extruder temperature of 190 ° C. The molten resin extruded from the strand die is drawn while being cooled and solidified in the cooling water tank. The raw material pellet (PEB-1) of a propylene-ethylene block copolymer was obtained by scraping and cutting the strand into a diameter of about 2 mm and a length of about 3 mm using a strand cutter.

(製造例2〜5)
重合条件を表3に記載の条件に変化させた以外は製造例1と同様にして、プロピレンーエチレンブロック共重合体を製造した。
得られたプロピレンーエチレンブロック共重合体パウダーから、製造例1と同様の添加剤配合、造粒条件により、原料ペレット(PEB−2〜5)を得た。
(Production Examples 2 to 5)
A propylene-ethylene block copolymer was produced in the same manner as in Production Example 1 except that the polymerization conditions were changed to those shown in Table 3.
From the resulting propylene-ethylene block copolymer powder, raw material pellets (PEB-2 to 5) were obtained under the same additive formulation and granulation conditions as in Production Example 1.

(製造例6)
(i)固体触媒成分の調製
充分に窒素置換したフラスコに、脱水および脱酸素したn−ヘプタン2,000ミリリットルを導入し、次いでMgClを2.6モル、Ti(O−n−Cを5.2モル導入し、95℃で2時間反応させた。反応終了後、40℃に温度を下げ、次いでメチルヒドロポリシロキサン(20センチストークスのもの)を320ミリリットル導入し、3時間反応させた。生成した固体成分をn−ヘプタンで洗浄した。
次いで、充分に窒素置換したフラスコに、上記と同様に精製したn−ヘプタンを4,000ミリリットル導入し、上記で合成した固体成分をMg原子換算で1.46モル導入した。次いでn−ヘプタン25ミリリットルにSiCl 2.62モルを混合して30℃において30分間でフラスコへ導入し、70℃で3時間反応させた。反応終了後、n−ヘプタンで洗浄した。次いでn−ヘプタン25ミリリットルにフタル酸クロライド0.15モルを混合して、70℃において30分間でフラスコへ導入し、90℃で1時間反応させた。反応終了後、n−ヘプタンで洗浄した。次いでTiCl 11.4molを導入して110℃で3時間反応させた。反応終了後、n−ヘプタンで洗浄して固体成分を得た。この固体成分のチタン含有量は2.0重量%であった。
次いで、撹拌及び温度制御装置を有する内容積16リットルのオートクレーブを窒素で充分置換し、ここへ、上記と同様に精製したn−ヘプタンを5,000ミリリットル導入して上記で合成した固体成分を100グラム導入し、SiCl 0.875molを導入して90℃で2時間反応させた。反応終了後、さらに(CH=CH)Si(CH 0.15mol、(t−C)(CH)Si(OCH 0.075mol及びAl(C 0.4molを順次導入して30℃で2時間接触させた。接触終了後、n−ヘプタンで充分に洗浄し、塩化マグネシウムを主体とする固体触媒成分を得た。このもののチタン含有量は、1.8重量%であった。
(Production Example 6)
(I) Preparation of solid catalyst component 2,000 ml of dehydrated and deoxygenated n-heptane was introduced into a fully nitrogen-substituted flask, and then 2.6 mol of MgCl 2 and Ti (On-C 4 H) were introduced. 9 ) 5.2 mol of 4 was introduced and reacted at 95 ° C. for 2 hours. After completion of the reaction, the temperature was lowered to 40 ° C., and then 320 ml of methylhydropolysiloxane (20 centistokes) was introduced and reacted for 3 hours. The resulting solid component was washed with n-heptane.
Next, 4,000 milliliters of n-heptane purified in the same manner as described above was introduced into a sufficiently nitrogen-substituted flask, and 1.46 mol of the solid component synthesized above was introduced in terms of Mg atoms. Next, 25 ml of n-heptane was mixed with 2.62 mol of SiCl 4 , introduced into the flask at 30 ° C. for 30 minutes, and reacted at 70 ° C. for 3 hours. After completion of the reaction, washing with n-heptane was performed. Next, 0.15 mol of phthalic acid chloride was mixed with 25 ml of n-heptane, introduced into the flask at 70 ° C. for 30 minutes, and reacted at 90 ° C. for 1 hour. After completion of the reaction, washing with n-heptane was performed. Next, 11.4 mol of TiCl 4 was introduced and reacted at 110 ° C. for 3 hours. After completion of the reaction, the solid component was obtained by washing with n-heptane. The titanium content of this solid component was 2.0% by weight.
Next, an autoclave having an internal volume of 16 liters having a stirring and temperature control device was sufficiently replaced with nitrogen, and 5,000 milliliters of n-heptane purified in the same manner as above was introduced into the autoclave to synthesize the solid component synthesized above. Gram was introduced, and 0.875 mol of SiCl 4 was introduced and reacted at 90 ° C. for 2 hours. After completion of the reaction, further (CH 2 ═CH) Si (CH 3 ) 3 0.15 mol, (t-C 4 H 9 ) (CH 3 ) Si (OCH 3 ) 2 0.075 mol and Al (C 2 H 5 ) 3 0.4 mol was sequentially introduced and contacted at 30 ° C. for 2 hours. After completion of the contact, the catalyst was thoroughly washed with n-heptane to obtain a solid catalyst component mainly composed of magnesium chloride. The titanium content of this product was 1.8% by weight.

(ii)予備重合
撹拌及び温度制御装置を有する内容積16リットルのオートクレーブを窒素で充分置換した。ここへ、上記で調製した固体触媒成分のn−ヘプタンスラリーを固体触媒成分として100g導入し、更にn−ヘプタンを導入して液レベルを5,000ミリリットルに調整した。次に、槽内温度を15℃に調節し、トリエチルアルミニウム・n−ヘプタン溶液(10重量%)をAl(Cとして0.1mol添加した。その後、プロピレンを50g/時間の速度で2時間供給して予備重合を行った。予備重合終了後、残モノマーをパージし、固体触媒をn−ヘプタンで充分に洗浄した。洗浄終了後、減圧乾燥を行い、予備重合触媒を得た。この予備重合触媒中には、触媒1g当たり2.0gのポリプロピレンが含まれていた。
(iii)重合
こうして得られた予備重合触媒を用い、かつ、トリイソブチルアルミニウムの代わりにトリエチルアルミニウムを10g/時で連続的に供給し、更に、表3に示す重合条件を用いた以外は製造例5と同様にしてプロピレン−エチレンブロック共重合体の製造を行った。
得られた重合体パウダーから、製造例1と同様の添加剤配合、造粒条件により、原料ペレット(PEB−6)を得た。
(Ii) Prepolymerization An autoclave having an internal volume of 16 liters equipped with a stirring and temperature control device was sufficiently replaced with nitrogen. To this, 100 g of the n-heptane slurry of the solid catalyst component prepared above was introduced as a solid catalyst component, and n-heptane was further introduced to adjust the liquid level to 5,000 ml. Next, the temperature in the tank was adjusted to 15 ° C., and 0.1 mol of triethylaluminum / n-heptane solution (10 wt%) was added as Al (C 2 H 5 ) 3 . Thereafter, prepolymerization was performed by supplying propylene at a rate of 50 g / hour for 2 hours. After completion of the prepolymerization, the residual monomer was purged and the solid catalyst was thoroughly washed with n-heptane. After the washing, drying under reduced pressure was performed to obtain a prepolymerized catalyst. The prepolymerized catalyst contained 2.0 g of polypropylene per 1 g of the catalyst.
(Iii) Polymerization Production Example except that the prepolymerized catalyst thus obtained was used, and triethylaluminum was continuously fed at 10 g / hour instead of triisobutylaluminum, and the polymerization conditions shown in Table 3 were used. In the same manner as in No. 5, a propylene-ethylene block copolymer was produced.
From the obtained polymer powder, raw material pellets (PEB-6) were obtained by the same additive formulation and granulation conditions as in Production Example 1.

(製造例7)
製造例1において、第二工程を行わずに第一工程のみを行った点以外は重合製造例1と同様にして重合を実施し、プロピレン−エチレンランダム共重合体の製造を行った。
得られたプロピレン−エチレンランダム共重合体パウダーから、製造例1と同様の添加剤配合、造粒条件により、原料ペレット(PEB−7)を得た。
重合条件と重合結果を表3に、また各ペレットPEB−1〜7の特性を表4に示す。
(Production Example 7)
In Production Example 1, polymerization was carried out in the same manner as in Polymerization Production Example 1 except that only the first step was carried out without carrying out the second step, and a propylene-ethylene random copolymer was produced.
From the resulting propylene-ethylene random copolymer powder, raw material pellets (PEB-7) were obtained under the same additive formulation and granulation conditions as in Production Example 1.
Table 3 shows the polymerization conditions and polymerization results, and Table 4 shows the characteristics of the pellets PEB-1 to PEB-7.

Figure 0005484033
Figure 0005484033

Figure 0005484033
Figure 0005484033

(2)粘着層樹脂
粘着層のエチレン−酢酸ビニル共重合樹脂として、三井デュポン社製のエバフレックス EV450(EVA−1)、三井デュポン社製のエバフレックス EV220(EVA−2)、日本ポリプロピレン社製ノバテックEVA LV244(EVA−3)を用いた。物性を表2に示す。
(2) Adhesion layer resin As the ethylene-vinyl acetate copolymer resin of the adhesion layer, Mitsui DuPont's EVAFLEX EV450 (EVA-1), Mitsui DuPont's EVAFLEX EV220 (EVA-2), Nippon Polypropylene Novatec EVA LV244 (EVA-3) was used. The physical properties are shown in Table 2.

Figure 0005484033
Figure 0005484033

(3)剥離処理層
剥離処理層としては、シリコーン系剥離剤としてX−62−2378(信越化学株式会社製)、ポリジメチルシロキサンSH200(東レ・ダウコーニング(株)製)、3次元化オルガノポリシロキサンとしてX−92−140(信越化学株式会社製)、長鎖アルキル系剥離処理剤として、ピーロイル1010(一方社油脂株式会社製)を用いた。
(3) Release treatment layer As the release treatment layer, as a silicone release agent, X-62-2378 (manufactured by Shin-Etsu Chemical Co., Ltd.), polydimethylsiloxane SH200 (manufactured by Dow Corning Toray), three-dimensional organopoly X-92-140 (manufactured by Shin-Etsu Chemical Co., Ltd.) was used as siloxane, and Pyroyl 1010 (manufactured by Yushi Co., Ltd.) was used as a long-chain alkyl release agent.

(実施例1)
基材層として、PEB−1を、粘着層としてEVA−1を、剥離処理層として付加型のシリコーン系剥離剤としてX−62−2378(信越化学株式会社製)のトルエン溶液(固形分30%)に3次元化オルガノポリシロキサンとしてX−92−140(信越化学株式会社製)のトルエン/キシレン溶液(固形分30%)を、3次元化オルガノポリシロキサン含有量が30%となるように混合した溶液を用いた。
基材層の押出機35mmφ、粘着層の押出機20mmφ、エアナイフおよび冷却ロールを有する多層Tダイ成形機を使用して成形温度230℃、冷却ロール温度を30℃の条件で、基材層厚み40μm、粘着層厚み10μmの2層Tダイフィルムからなる共押2層フィルムを作製した。得られた多層フィルムの基材層の粘着層とは他方の表面に、付加型のシリコーン系剥離剤としてX−62−2378(信越化学株式会社製)のトルエン溶液(固形分30%)に3次元化オルガノポリシロキサンとしてX−92−140(信越化学株式会社製)のトルエン/キシレン溶液(固形分30%)を、3次元化オルガノポリシロキサン含有量が30%となるように混合した溶液を、0.38g /mとなるように塗布した後、 120℃×1分間加熱処理して剥離処理層を形成した表面保護フィルムを作製した。得られた表面保護フィルムの評価結果を表6に示す。
Example 1
PEB-1 as the base material layer, EVA-1 as the adhesive layer, X-62-2378 (manufactured by Shin-Etsu Chemical Co., Ltd.) as an addition type silicone release agent as the release treatment layer (solid content 30%) ) Toluene / xylene solution (solid content 30%) of X-92-140 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a three-dimensional organopolysiloxane was mixed so that the three-dimensional organopolysiloxane content was 30%. The solution used was used.
Extruder 35 mmφ for substrate layer, 20 mmφ for adhesive layer, multilayer T-die molding machine with air knife and cooling roll, forming temperature 230 ° C, cooling roll temperature 30 ° C, substrate layer thickness 40 µm A co-pressed two-layer film composed of a two-layer T-die film having an adhesive layer thickness of 10 μm was prepared. On the other side of the adhesive layer of the base material layer of the obtained multilayer film, 3 in a toluene solution (solid content 30%) of X-62-2378 (manufactured by Shin-Etsu Chemical Co., Ltd.) as an addition type silicone release agent. A solution obtained by mixing a toluene / xylene solution (solid content 30%) of X-92-140 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a three-dimensional organopolysiloxane so that the three-dimensional organopolysiloxane content is 30%. Then, after coating so as to be 0.38 g / m 2 , a surface protective film having a release treatment layer formed by heat treatment at 120 ° C. for 1 minute was produced. Table 6 shows the evaluation results of the obtained surface protective film.

(実施例2)
実施例1において用いた基材層樹脂PEB−1をPEB−2に代えた以外は実施例1と同じ方法で製膜し評価を行った。結果を表6に示す。
(Example 2)
A film was formed and evaluated in the same manner as in Example 1 except that the base layer resin PEB-1 used in Example 1 was replaced with PEB-2. The results are shown in Table 6.

(実施例3)
実施例1において用いた粘着層樹脂EVA−1をEVA−2に代えた以外は実施例1と同じ方法で製膜し評価を行った。結果を表6に示す。
(Example 3)
A film was formed and evaluated in the same manner as in Example 1 except that the adhesive layer resin EVA-1 used in Example 1 was replaced with EVA-2. The results are shown in Table 6.

(実施例4)
実施例1において用いた剥離処理剤を、長鎖アルキル系剥離処理剤として、ピーロイル101(一方社油脂株式会社製)の2%トルエン溶液を用い塗布後、処理して形成した層に代えた以外は実施例1と同じ方法で製膜し評価を行った。尚、処理方法はピーロイル101(一方社油脂株式会社製)の2%トルエン溶液を0.02g/mとなるように塗布し、80℃×1分間加熱処理して剥離処理層を形成した。結果を表6に示す。
(Example 4)
Except that the release treatment used in Example 1 was replaced with a layer formed by applying a 2% toluene solution of Pyroyl 101 (manufactured by Yushi Co., Ltd.) as a long-chain alkyl release treatment. The film was formed by the same method as in Example 1 and evaluated. In addition, the processing method apply | coated 2% toluene solution of Pyroyl 101 (made on the other hand company oil and fat Co., Ltd.) so that it might become 0.02 g / m < 2 >, and heat-processed at 80 degreeC x 1 minute, and formed the peeling process layer. The results are shown in Table 6.

(実施例5)
基材層として、PEB−1を、粘着層としてEVA−1を、剥離処理層としてメタロセン触媒を用いて重合したプロピレン系樹脂のWFX4を99.75重量%とシリコーン系剥離剤としてポリジメチルシロキサンSH200(東レ・ダウコーニング(株)製)を0.25重量%の溶融押出混合組成物を用いた。
基材層の押出機35mmφ、粘着層の押出機20mmφ、剥離処理層の押出機20mmφを有する3層Tダイ成形機を使用して成形温度230℃で剥離処理層厚み10μm、基材層厚み30μm、粘着層厚み10μmの共押3層Tダイフィルムからなる表面保護フィルムを作製した。得られた表面保護フィルムの評価結果を表6に示す。
(Example 5)
The base material layer is PEB-1, the adhesive layer is EVA-1, the release treatment layer is 99.75% by weight of propylene-based resin polymerized using a metallocene catalyst, and the silicone-based release agent is polydimethylsiloxane SH200. (Toray Dow Corning Co., Ltd.) used was a 0.25 wt% melt-extruded mixed composition.
Extrusion treatment layer thickness of 10 μm and substrate layer thickness of 30 μm at a molding temperature of 230 ° C. using a three-layer T-die molding machine having a substrate layer extruder of 35 mmφ, an adhesive layer extruder of 20 mmφ, and a release treatment layer extruder of 20 mmφ A surface protective film made of a co-pressed three-layer T-die film having an adhesive layer thickness of 10 μm was prepared. Table 6 shows the evaluation results of the obtained surface protective film.

(比較例1)
実施例1において用いた基材層樹脂PEB−1をPEB−3に代えた以外は実施例1と同じ方法で製膜し評価を行った。結果を表7に示す。
(Comparative Example 1)
A film was formed and evaluated in the same manner as in Example 1 except that the base layer resin PEB-1 used in Example 1 was replaced with PEB-3. The results are shown in Table 7.

(比較例2)
実施例1において用いた基材層樹脂PEB−1をPEB−4に代えた以外は実施例1と同じ方法で製膜し評価を行った。結果を表7に示す。
(Comparative Example 2)
A film was formed and evaluated in the same manner as in Example 1 except that the base layer resin PEB-1 used in Example 1 was replaced with PEB-4. The results are shown in Table 7.

(比較例3)
実施例1において用いた基材層樹脂PEB−1をPEB−5に代えた以外は実施例1と同じ方法で製膜し評価を行った。結果を表7に示す。
(Comparative Example 3)
A film was formed and evaluated in the same manner as in Example 1 except that the base layer resin PEB-1 used in Example 1 was replaced with PEB-5. The results are shown in Table 7.

(比較例4)
実施例1において用いた基材層樹脂PEB−1をPEB−6に代えた以外は実施例1と同じ方法で製膜し評価を行った。結果を表7に示す。
(Comparative Example 4)
A film was formed and evaluated in the same manner as in Example 1 except that the base layer resin PEB-1 used in Example 1 was replaced with PEB-6. The results are shown in Table 7.

(比較例5)
実施例1において用いた基材層樹脂PEB−1をPEB−7に代えた以外は実施例1と同じ方法で製膜し評価を行った。結果を表7に示す。
(Comparative Example 5)
A film was formed and evaluated in the same manner as in Example 1 except that the base layer resin PEB-1 used in Example 1 was replaced with PEB-7. The results are shown in Table 7.

(比較例6)
実施例1において用いた粘着層樹脂EVA−1をEVA−3に代えた以外は実施例1と同じ方法で製膜し評価を行った。結果を表7に示す。
(Comparative Example 6)
A film was formed and evaluated in the same manner as in Example 1 except that the adhesive layer resin EVA-1 used in Example 1 was replaced with EVA-3. The results are shown in Table 7.

Figure 0005484033
Figure 0005484033

Figure 0005484033
Figure 0005484033

表6および表7の結果から本発明の表面保護用フィルムは、べたつき成分ブリードがないため、被着体への汚染性、外層と粘着層間の剥離性にも影響なく、柔軟性に優れ、フィッシュアイが少ないことがわかる(実施例1〜5)。
一方、チーグラー触媒で得られたMw/Mnが本発明の範囲外であるプロピレン−エチレンブロック共重合体は、フィッシュアイが多すぎる(比較例4)。また、MFRが本発明のプロピレン−エチレンブロック共重合体の範囲より高いと、成形時にドローレゾナンスが発生し、膜厚が不安定で均一な厚みのフィルムを得ることができない(比較例2)。また、MFRが低すぎると、フィルム表面にシャークスキン(肌荒れ)が発生し外観良好なフィルムが製膜できない(比較例3)。また、成分(A2)が多すぎるとべたつき成分によるブリードが顕著なため、被着体への汚染や外層と粘着層間の剥離性にも影響を及ぼすため、繰り出し性が悪化する(比較例1)。また、成分(A2)を含まないプロピレン−エチレンランダム共重合体を基材層に用いたフィルムは、本発明のプロピレン−エチレンブロック共重合体を基材層に用いたフィルムより剛性が高く柔軟性が劣る(比較例5)。また、酢酸ビニル含有量が本発明のエチレン−酢酸ビニル共重合樹脂の範囲より少ないと、充分な接着性が得られない(比較例6)。
From the results of Tables 6 and 7, the surface protective film of the present invention has no sticky component bleed, so it does not affect the adherence to the adherend, and does not affect the peelability between the outer layer and the adhesive layer. It turns out that there are few eyes (Examples 1-5).
On the other hand, the propylene-ethylene block copolymer in which Mw / Mn obtained by the Ziegler catalyst is outside the scope of the present invention has too many fish eyes (Comparative Example 4). On the other hand, if the MFR is higher than the range of the propylene-ethylene block copolymer of the present invention, draw resonance occurs during molding, and a film having an unstable thickness and a uniform thickness cannot be obtained (Comparative Example 2). On the other hand, if the MFR is too low, a shark skin (rough skin) is generated on the film surface, and a film having a good appearance cannot be formed (Comparative Example 3). In addition, if the amount of the component (A2) is too large, bleeding due to the sticky component is remarkable, and this affects the contamination of the adherend and the peelability between the outer layer and the adhesive layer. . Moreover, the film using the propylene-ethylene random copolymer which does not contain the component (A2) for the base material layer has higher rigidity and flexibility than the film using the propylene-ethylene block copolymer of the present invention for the base material layer. Is inferior (Comparative Example 5). Further, when the vinyl acetate content is less than the range of the ethylene-vinyl acetate copolymer resin of the present invention, sufficient adhesiveness cannot be obtained (Comparative Example 6).

本発明の表面保護用フィルムは、特定のプロピレン−エチレンブロック共重合体を基材層に用い、特定のエチレン−酢酸ビニル共重合樹脂を粘着層に用い、シリコーン系又は長鎖アルキル系剥離処理剤を剥離処理層に用いているので、フィルム成形時に未溶融のフィッシュアイが非常に少なく、表面保護フィルムを被保護物に貼付けて段積み保管しても、被保護物に凹みが生じることがなく、かつ透明性に優れ、さらに、被着体への耐汚染性に優れる。さらにまた、シリコーン系又は長鎖アルキル系剥離処理剤を剥離処理層に用いているので、粘着層と剥離処理層の両方が固体状態で接するロール巻状態から、ロールを解くときにはスムースにはがれ、使用時には繰り出し性が向上するという特性を有する表面保護用フィルムとすることができ、合成樹脂板、化粧板、金属板、ガラス板などの建築部材の表面保護用、偏光板や位相差板などの液晶表示の構成部材の表面保護のフィルムとして好適に使用することができる。   The surface protective film of the present invention uses a specific propylene-ethylene block copolymer as a base layer, a specific ethylene-vinyl acetate copolymer resin as an adhesive layer, and a silicone-based or long-chain alkyl-based release treatment agent. Is used for the release treatment layer, so there is very little unmelted fish eye when forming the film, and even if the surface protection film is stuck on the object to be stacked and stored, there will be no dent in the object to be protected In addition, it is excellent in transparency and in addition, is excellent in stain resistance to the adherend. Furthermore, since a silicone-based or long-chain alkyl-based release treatment agent is used for the release treatment layer, when the roll is unwound from the roll winding state where both the adhesive layer and the release treatment layer are in contact with each other in a solid state, it is used. Sometimes it can be used as a surface protective film having the property of improving the feeding performance, and for protecting the surface of building members such as synthetic resin plates, decorative plates, metal plates, glass plates, and liquid crystals such as polarizing plates and retardation plates. It can be suitably used as a film for protecting the surface of the constituent member of the display.

Claims (5)

基材層の一方の面に粘着層が形成され、他方の面に剥離処理層が形成された表面保護用フィルムにおいて、基材層がメタロセン触媒を用いて重合され下記(a1)〜(a3)、(a5)、(a8)及び(a9)の特性を有するプロピレン−エチレンブロック共重合体(A)で形成され、粘着層が下記(b1)〜(b2)の特性を有するエチレン−酢酸ビニル共重合樹脂(B)で形成され、剥離処理層がシリコーン系又は長鎖アルキル系剥離処理剤(C)で形成されていることを特徴とする表面保護用フィルム。
(A)プロピレン−エチレンブロック共重合体
(a1)メタロセン系触媒を用いて、第1工程でエチレン含量が0.5〜6重量%のプロピレン−エチレンランダム共重合体成分(A1)を30〜95重量%、第2工程で成分(A1)よりも6〜20重量%多くのエチレンを含有するプロピレン−エチレンランダム共重合体成分(A2)を70〜5重量%逐次重合して得られるプロピレン−エチレンブロック共重合体
(a2)メルトフローレート(MFR:230℃、2.16kg)が1〜30g/10分
(a3)ゲルパーミエーションクロマトグラフィー(GPC)測定により得られる分子量5,000以下の成分量Wが、全体の0.8重量%以下
(a5)o−ジクロロベンゼン溶媒を用いた−15℃〜+140℃の温度範囲での温度昇温溶離分別法(TREF)による温度に対する溶出量(dWt%/dT)のプロットとして得られるTREF溶出曲線において、
高温側に観測されるピーク温度T(A1)が55℃〜96℃の範囲にあり、
低温側に観測されるピーク温度T(A2)が45℃以下にあるか、またはピーク温度T(A2)が観測されず、
プロピレン−エチレンブロック共重合体の99重量%が溶出する温度T(A4)が98℃以下である
(a8)23℃キシレン可溶分を、135℃デカリン中で測定した固有粘度[η]cxsが1〜2dl/gである
(a9)固体粘弾性測定(DMA)により得られる温度−損失正接(tanδ)曲線において、tanδ曲線が0℃以下に単一のピークを有する
(B)エチレン−酢酸ビニル共重合樹脂
(b1)メルトフローレート(MFR:230℃、2.16kg)が2〜200g/10分
(b2)酢酸ビニルの含有量が10〜40重量%
In the surface protective film in which the adhesive layer is formed on one surface of the base material layer and the release treatment layer is formed on the other surface, the base material layer is polymerized using a metallocene catalyst, and the following (a1) to (a3) , (A5), (a8) and (a9) formed of a propylene-ethylene block copolymer (A) having an adhesive layer having the following characteristics (b1) to (b2): A surface protecting film formed of a polymer resin (B) and having a release treatment layer formed of a silicone-based or long-chain alkyl release agent (C).
(A) Propylene-ethylene block copolymer (a1) 30-95 propylene-ethylene random copolymer component (A1) having an ethylene content of 0.5-6 wt% in the first step using a metallocene catalyst. Propylene-ethylene obtained by sequential polymerization of 70 to 5 wt% of propylene-ethylene random copolymer component (A2) containing 6 to 20 wt% more ethylene than component (A1) in the second step. Block copolymer (a2) Melt flow rate (MFR: 230 ° C., 2.16 kg) is 1 to 30 g / 10 min
(A3) The component amount W having a molecular weight of 5,000 or less obtained by gel permeation chromatography (GPC) is 0.8% by weight or less of the whole.
(A5) TREF elution curve obtained as a plot of elution amount (dWt% / dT) against temperature by the temperature rising elution fractionation method (TREF) in the temperature range of −15 ° C. to + 140 ° C. using an o-dichlorobenzene solvent In
The peak temperature T (A1) observed on the high temperature side is in the range of 55 ° C. to 96 ° C.,
The peak temperature T (A2) observed on the low temperature side is 45 ° C. or lower, or the peak temperature T (A2) is not observed,
The temperature T (A4) at which 99% by weight of the propylene-ethylene block copolymer elutes is 98 ° C. or lower.
(A8) Intrinsic viscosity [η] cxs measured in a 135 ° C. decalin for 23 ° C. xylene solubles is 1 to 2 dl / g
(A9) In the temperature-loss tangent (tan δ) curve obtained by solid viscoelasticity measurement (DMA), the tan δ curve has a single peak at 0 ° C. or less (B) ethylene-vinyl acetate copolymer resin (b1) melt Flow rate (MFR: 230 ° C., 2.16 kg) is 2 to 200 g / 10 min. (B2) Vinyl acetate content is 10 to 40% by weight.
プロピレン−エチレンブロック共重合体(A)が、さらに下記(a4)の特性を満たすことを特徴とする請求項1に記載の表面保護用フィルム。
(a4)第1工程で得られる成分(A1)は、プロピレン−エチレンブロック共重合体全体における割合が30〜85重量%の範囲にあり、
第2工程で得られる成分(A2)は、プロピレン−エチレンブロック共重合体全体における割合が70〜15重量%の範囲にある
The film for surface protection according to claim 1, wherein the propylene-ethylene block copolymer (A) further satisfies the following property (a4).
(A4) In the component (A1) obtained in the first step, the proportion of the entire propylene-ethylene block copolymer is in the range of 30 to 85% by weight,
In the component (A2) obtained in the second step, the proportion of the entire propylene-ethylene block copolymer is in the range of 70 to 15% by weight.
プロピレン−エチレンブロック共重合体(A)が、下記(a6)〜(a7)の特性を満たすことを特徴とする請求項1又は2に記載の表面保護用フィルム。
(a6)第1工程で得られる成分(A1)は、エチレン含量が1.5〜6重量%のプロピレン−エチレンランダム共重合体で、プロピレン−エチレンブロック共重合体全体における割合が30〜70重量%の範囲にあり、
第2工程で得られる成分(A2)は、成分(A1)よりも8〜15重量%多いエチレン含量を有し、プロピレン−エチレンブロック共重合体全体における割合が70〜30重量%の範囲にある
(a7)o−ジクロロベンゼン溶媒を用いた−15℃〜+140℃の温度範囲での温度昇温溶離分別法(TREF)による温度に対する溶出量(dWt%/dT)のプロットとして得られるTREF溶出曲線において、
高温側に観測されるピーク温度T(A1)が60℃〜88℃の範囲にあり、
低温側に観測されるピーク温度T(A2)が40℃以下にあるか、またはピーク温度T(A2)が観測されず、
プロピレン−エチレンブロック共重合体の99重量%が溶出する温度T(A4)が90℃以下である
The film for surface protection according to claim 1 or 2 , wherein the propylene-ethylene block copolymer (A) satisfies the following properties (a6) to (a7).
(A6) The component (A1) obtained in the first step is a propylene-ethylene random copolymer having an ethylene content of 1.5 to 6% by weight, and the proportion of the propylene-ethylene block copolymer is 30 to 70% by weight. % Range,
The component (A2) obtained in the second step has an ethylene content that is 8 to 15% by weight higher than that of the component (A1), and the proportion of the entire propylene-ethylene block copolymer is in the range of 70 to 30% by weight. (A7) TREF elution curve obtained as a plot of elution amount (dWt% / dT) against temperature by the temperature rising elution fractionation method (TREF) in the temperature range of −15 ° C. to + 140 ° C. using an o-dichlorobenzene solvent In
The peak temperature T (A1) observed on the high temperature side is in the range of 60 ° C. to 88 ° C.,
The peak temperature T (A2) observed on the low temperature side is 40 ° C. or lower, or the peak temperature T (A2) is not observed,
The temperature T (A4) at which 99% by weight of the propylene-ethylene block copolymer elutes is 90 ° C. or lower.
建築部材の表面保護用に使用されることを特徴とする請求項1〜のいずれか1項に記載の表面保護用フィルム。 It is used for the surface protection of a building member, The film for surface protection of any one of Claims 1-3 characterized by the above-mentioned. 液晶表示装置構成部材の表面保護に使用されることを特徴とする請求項1〜のいずれか1項に記載の表面保護用フィルム。 It is used for the surface protection of a liquid crystal display device structural member, The film for surface protection of any one of Claims 1-3 characterized by the above-mentioned.
JP2009288911A 2009-12-21 2009-12-21 Surface protection film Active JP5484033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288911A JP5484033B2 (en) 2009-12-21 2009-12-21 Surface protection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288911A JP5484033B2 (en) 2009-12-21 2009-12-21 Surface protection film

Publications (2)

Publication Number Publication Date
JP2011126231A JP2011126231A (en) 2011-06-30
JP5484033B2 true JP5484033B2 (en) 2014-05-07

Family

ID=44289345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288911A Active JP5484033B2 (en) 2009-12-21 2009-12-21 Surface protection film

Country Status (1)

Country Link
JP (1) JP5484033B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5932463B2 (en) * 2012-04-26 2016-06-08 日東電工株式会社 Adhesive tape
JP6369199B2 (en) * 2014-07-31 2018-08-08 日本ポリプロ株式会社 Propylene-ethylene block copolymer production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4928741B2 (en) * 2005-04-29 2012-05-09 日本ポリプロ株式会社 Propylene-based resin film, propylene-based resin laminated film, and uses thereof
JP2009274231A (en) * 2008-05-12 2009-11-26 Japan Polypropylene Corp Propylene-based surface protective film

Also Published As

Publication number Publication date
JP2011126231A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5244428B2 (en) Propylene surface protective film
JP5066507B2 (en) Propylene surface protective film
JP5537790B2 (en) Propylene surface protective film
JP4929213B2 (en) Surface protection film
JP4920049B2 (en) Propylene surface protective film
JP5484028B2 (en) Surface protection film
JP2009255552A (en) Propylene resin film for surface protection
JP5244425B2 (en) Propylene surface protective film
JP5222773B2 (en) Propylene surface protective film
JP5484031B2 (en) Surface protection film
JP5484032B2 (en) Surface protection film
JP2011122039A (en) Surface protective film
JP5484022B2 (en) Surface protection film
JP5198194B2 (en) Propylene surface protective film
JP2008265302A (en) Propylene resin film for surface protection
JP5484033B2 (en) Surface protection film
JP2009196334A (en) Film for surface protection
JP5297995B2 (en) Surface protection film
JP5581015B2 (en) Propylene surface protective film
JP5264571B2 (en) Propylene surface protective film
JP5322760B2 (en) Propylene surface protective film
JP5380136B2 (en) Propylene surface protective film
JP2010076187A (en) Polypropylene-based surface protecting film
JP5198349B2 (en) Propylene surface protective film
JP2009255525A (en) Surface protective film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent or registration of utility model

Ref document number: 5484033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250