JP5483960B2 - Resonance reducing method and resonance reducing apparatus for rotating machine - Google Patents

Resonance reducing method and resonance reducing apparatus for rotating machine Download PDF

Info

Publication number
JP5483960B2
JP5483960B2 JP2009199645A JP2009199645A JP5483960B2 JP 5483960 B2 JP5483960 B2 JP 5483960B2 JP 2009199645 A JP2009199645 A JP 2009199645A JP 2009199645 A JP2009199645 A JP 2009199645A JP 5483960 B2 JP5483960 B2 JP 5483960B2
Authority
JP
Japan
Prior art keywords
frequency
vibration
shaft
variable speed
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009199645A
Other languages
Japanese (ja)
Other versions
JP2011055583A (en
Inventor
謙次 田中
直彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009199645A priority Critical patent/JP5483960B2/en
Publication of JP2011055583A publication Critical patent/JP2011055583A/en
Application granted granted Critical
Publication of JP5483960B2 publication Critical patent/JP5483960B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、可変速誘導電動機を駆動機として用い、増速歯車を介した回転機械の捩りトルクの共振低減に関する。   The present invention relates to a resonance reduction of torsional torque of a rotating machine using a variable speed induction motor as a driving machine through a speed increasing gear.

可変速誘導電動機を駆動機とする回転機械は、運転回転速度が1点ではなく範囲を持つため、機械の振動低減のため、軸振動の共振のみならず、捩り振動の共振を回避する設計が必要である。そのため、従来から回転機械の捩り振動系の固有周波数が、実運転範囲においては加振トルクを回避する設計が行われており、特に応答倍率の高い捩りの1次固有周波数を、加振トルクの原因である可変速電動機軸の回転速度の周波数及び、可変速誘導電動機の入力電流の基本周波数より、低くする設計を行っている。   Rotating machines driven by a variable speed induction motor have a range of operating rotational speeds rather than a single point, and therefore, in order to reduce machine vibration, a design that avoids not only axial vibration resonance but also torsional vibration resonance is designed. is necessary. For this reason, conventionally, the natural frequency of the torsional vibration system of a rotating machine has been designed to avoid the excitation torque in the actual operating range.In particular, the primary natural frequency of torsion with a high response magnification is set to the excitation torque. It is designed to be lower than the frequency of the rotational speed of the variable speed motor shaft, which is the cause, and the basic frequency of the input current of the variable speed induction motor.

一方、例えば往復動機関においては、軸回転速度以下の周波数の捩り加振トルクが発生することが知られており、その場合には共振を回避せず、制御装置の制御により共振時に存在するトルク振動に対し、これを減少させるトルクを発生させる方法が取られている例がある(特許文献1参照)。   On the other hand, for example, in a reciprocating engine, it is known that a torsional excitation torque having a frequency equal to or lower than the rotational speed of the shaft is generated. There is an example in which a method of generating torque that reduces the vibration is taken (see Patent Document 1).

特開平10-169703号公報JP 10-169703 A

しかしながら、特許文献1のように制御により共振時のトルクを減少させるためのトルクを逆に発生させる手法では、運転状態の変化により制御パラメターの最適性を失い、不安定性を起こす可能性があり、この場合、逆に自励振動によるトルク振動増大にもたらすことがある。   However, in the method of generating the torque for reducing the torque at the time of resonance by control as in Patent Document 1, the optimal control parameter may be lost due to a change in the operating state, which may cause instability. In this case, conversely, torque vibration due to self-excited vibration may be increased.

回転機械の振動低減方法では、機械振動系の固有周波数と、加振周波数との共振を回避することが理想的であり、問題も少ない。しかし実際には、全ての加振トルクの周波数が、1次の捩り固有周波数のみを避けることも困難であることがわかっている。可変速電動機の発生する加振トルクの中には、回転速度の周波数より低い周波数が、ある規則性に基づいて多数発生し、機械の捩り固有周波数と共振を起こすことが知られている。   In the vibration reduction method of the rotating machine, it is ideal to avoid resonance between the natural frequency of the mechanical vibration system and the excitation frequency, and there are few problems. However, in practice, it has been found that it is difficult to avoid only the first-order torsional natural frequency of all excitation torques. It is known that among the excitation torque generated by the variable speed motor, a number of frequencies lower than the frequency of the rotational speed are generated based on a certain regularity and resonate with the torsional natural frequency of the machine.

また、その周波数による加振トルクの振幅は比較的小さく、捩り振動自体を計測する装置を装備している回転機械が少ないため、一般には発見が困難である。軸振動測定装置を装備した回転機械においても、捩りの固有周波数付近での共振に近い状態で加振トルクがある程度増幅され、歯車の歯面の接線力により動力伝達を行う歯車増速機軸の軸振動に卓越して現れることでようやく存在が確認されるか、または、回転機械系で捩りに対する強度の最も低いカップリング等が高サイクル疲労により破壊されるまで存在が確認されない場合も多い。   In addition, since the amplitude of the excitation torque according to the frequency is relatively small and few rotating machines are equipped with a device for measuring the torsional vibration itself, it is generally difficult to find. Even in a rotating machine equipped with a shaft vibration measuring device, the shaft of a gear speed increaser shaft that amplifies the excitation torque to some extent in a state close to resonance near the natural frequency of torsion and transmits power by the tangential force of the gear tooth surface. In many cases, the existence is finally confirmed by appearing predominantly in vibration, or the existence is not confirmed until the coupling having the lowest strength against torsion in a rotating mechanical system is broken by high cycle fatigue.

このような周波数は、電動機入力電流に存在する複数の周波数の振幅変調により生じる側帯波の場合や、可変速制御に用いられる電動機入力電流のサンプリングの不具合による仮想の側帯波周波数のフィードバックにより発生する、側帯波の場合が考えられる。   Such a frequency is generated in the case of a sideband generated by amplitude modulation of a plurality of frequencies existing in the motor input current, or by a feedback of a virtual sideband frequency due to a sampling failure of the motor input current used for variable speed control. The case of sidebands can be considered.

いずれの場合も、電動機入力電流の基本周波数fの倍数に関する1次式(線形)の関係となる。具体的には、(式1)のような関係で表される。
=|fc-mf| (式1)
ここで、fは1次の捩り固有周波数に共振する可能性の加振トルクの周波数で、側帯波の周波数に起因する。fは電動機入力電流の基本周波数で、電動機軸回転速度にほぼ比例する。fcは電動機入力電流に存在する基本波周波数以外の任意の周波数である。前述の通り、fcを前もって特定することは困難である。mは任意の整数で、この倍数mも多くの場合が存在し、どの倍数が卓越するか前もって知ることは困難である。
In either case, the relationship is a linear expression (linear) relating to a multiple of the fundamental frequency f of the motor input current. Specifically, it is represented by a relationship such as (Equation 1).
f t = | f c -mf | (Formula 1)
Here, f t is the frequency of the torque excitation of the possibility of resonance in the primary torsional natural frequency, due to the frequency of the sideband. f is the fundamental frequency of the motor input current and is approximately proportional to the motor shaft rotational speed. f c is any frequency other than the fundamental frequency present in the motor input current. As described above, it is difficult to advance identifying f c. m is an arbitrary integer, and there are many cases where this multiple m is present, and it is difficult to know in advance which multiple is dominant.

本発明は、上記従来の欠点に鑑み、回転機械の振動を周波数分析し、回転機械の1次捩り固有周波数と共振する電動機入力電流基本周波数を予測し、その周波数を含む電動機入力電流基本周波数をジャンプさせて、捩り振動の共振を有効に回避する、回転機械の共振低減方法および共振低減装置を提供することを目的とする。   In view of the above-mentioned conventional drawbacks, the present invention performs frequency analysis of vibration of a rotating machine, predicts a motor input current fundamental frequency that resonates with the primary torsional natural frequency of the rotating machine, and calculates the motor input current fundamental frequency including that frequency. It is an object of the present invention to provide a resonance reduction method and a resonance reduction device for a rotary machine that can effectively avoid resonance of torsional vibration by jumping.

本発明は、増速機を介して可変速誘導電動機に繋がれた回転機械の共振低減方法において、
回転機械のトルクが増速機振動に関係することを利用し、増速機の振動検出器により得た信号を周波数分析し、増大した振幅を持つ周波数成分と、その時の電動機入力電流基本周波数をそれぞれ2点記録し、想定した線形の規則性を用いて回転機械の1次捩り固有周波数と共振する電動機入力電流基本周波数を予測し、その周波数を含む電動機入力電流基本周波数をジャンプさせる指示信号を可変速制御装置に送り、捩り振動の共振を回避することを特徴とする
The present invention relates to a method for reducing resonance of a rotary machine connected to a variable speed induction motor through a speed increaser.
Using the fact that the torque of the rotating machine is related to the gearbox vibration, frequency analysis is performed on the signal obtained by the gearbox vibration detector, and the frequency component with increased amplitude and the motor input current fundamental frequency at that time are obtained. Record two points each, predict the motor input current fundamental frequency that resonates with the primary torsional natural frequency of the rotating machine using the assumed linear regularity, and jump to the motor input current fundamental frequency including that frequency. It is sent to the variable speed control device to avoid torsional vibration resonance

また、本発明は、歯車増速機を介して可変速誘導電動機に繋がれた回転機械の共振低減装置において、
上記可変速誘導電動機を基本周波数で制御する可変速制御装置と、
歯車増速機の軸振動を検出する振動検出器と、
上記振動検出器の振動信号を分析して振動周波数とその振幅を抽出する分析器と、
回転機械の1次捩り固有周波数と、上記可変速制御装置の基本周波数と、この周波数出力時の上記分析器で検出された振動周波数および振幅に基いて、増大した振幅を持つ周波数成分と、その時の電動機入力電流基本周波数をそれぞれ2点記録し、想定した線形の規則性を用いて回転機械の1次捩り固有周波数と共振する電動機入力電流基本周波数を予測し、その周波数を含む電動機入力電流基本周波数をジャンプさせる指示信号を上記可変速制御装置に送る演算器を備えたことを特徴とする。
The present invention also relates to a resonance reduction device for a rotary machine connected to a variable speed induction motor via a gear speed increaser.
A variable speed control device for controlling the variable speed induction motor at a fundamental frequency;
A vibration detector for detecting shaft vibration of the gearbox,
An analyzer for analyzing the vibration signal of the vibration detector and extracting the vibration frequency and its amplitude;
Based on the primary torsion natural frequency of the rotating machine, the fundamental frequency of the variable speed control device, the vibration frequency and amplitude detected by the analyzer at the time of this frequency output, and the frequency component having an increased amplitude, The motor input current basic frequency is recorded at two points, and the motor input current basic frequency that resonates with the primary torsional natural frequency of the rotating machine is predicted using the assumed linear regularity. An arithmetic unit for sending an instruction signal for jumping the frequency to the variable speed control device is provided .

さらに本発明は、増速機軸振動の検出器より得た軸振動の信号の周波数分析を行い、軸回転速度の変化、またそれに比例する関係の電動機入力電流基本周波数の変化により、予め振動計算によって求められた捩り1次固有周波数と、この1次固有周波数を含む前後の予め設定した軸振動周波数範囲にあって、予め設定したしきい値以上の振幅となるときの周波数を抽出し、また、そのときの電動機入力電流基本周波数を可変速制御装置から演算器に収集する。   Further, the present invention performs frequency analysis of the shaft vibration signal obtained from the gearbox shaft vibration detector, and calculates the vibration in advance by changing the shaft rotational speed and the proportional change in the motor input current fundamental frequency. The obtained torsional primary natural frequency and the frequency of the shaft vibration frequency range set before and after the primary natural frequency and having an amplitude equal to or higher than a predetermined threshold value are extracted, The motor input current fundamental frequency at that time is collected from the variable speed control device to the calculator.

そして、軸回転速度が予め設定した範囲で変化をした際に、その振幅の増大した周波数成分が捩り1次固有周波数に近づくように変化し、かつ元の軸回転速度での振幅よりも増大した場合に、その周波数成分の周波数を抽出し、また、そのときの電動機入力電流基本周波数を可変速制御装置から演算器に収集する。   When the shaft rotational speed changes within a preset range, the frequency component with the increased amplitude changes so as to approach the torsional primary natural frequency, and increases more than the amplitude at the original shaft rotational speed. In this case, the frequency of the frequency component is extracted, and the motor input current fundamental frequency at that time is collected from the variable speed control device to the computing unit.

抽出された2つの振幅の周波数と、それぞれが抽出された時の電動機入力電流基本波周波数との関係が1次式(線形)となる規則性を計算し、共振が起こると予想される電動機入力電流基本周波数を求める。   Calculate the regularity in which the relationship between the extracted frequency of the two amplitudes and the fundamental frequency of the motor input current when each is extracted is linear (linear), and the motor input where resonance is expected to occur Find the current fundamental frequency.

共振が起こると予想される電動機入力電流基本周波数を含む、予め設定された幅を持つ電動機入力電流基本周波数範囲をジャンプさせるため、求めた電動機入力電流基本周波数の両側に、予め設定された幅を持つ電動機入力電流基本周波数範囲(またはそれに対応する軸回転速度)を指示する信号を可変速駆動装置に与える。予め設定するジャンプさせる電動機入力電流基本周波数範囲として、捩り振動の応答倍率の十分小さいと判断される捩り加振周波数範囲に対応する、電動機入力電流基本周波数範囲を指定することを特徴とする。これにより、捩り振動の応答倍率の高い共振付近での振幅の増大を回避することが出来る。   In order to jump the motor input current fundamental frequency range having a preset width including the motor input current fundamental frequency at which resonance is expected to occur, a preset width is set on both sides of the obtained motor input current fundamental frequency. A signal indicating the motor input current fundamental frequency range (or the corresponding shaft rotational speed) is given to the variable speed drive device. A motor input current basic frequency range corresponding to a torsional excitation frequency range determined to have a sufficiently small torsional vibration response magnification is designated as a preset motor input current basic frequency range for jumping. As a result, it is possible to avoid an increase in amplitude in the vicinity of resonance where the response magnification of torsional vibration is high.

本発明によれば、共振する電動機入力電流基本周波数を予測することで、有効に回転機械系の捩り振動の共振を回避でき、また、可変速制御装置から何かしらの信号を得てその値を元にフィードバックをすることは無いため、可変速駆動制御による自励振動を起こす可能性もほとんどない。   According to the present invention, it is possible to effectively avoid resonance of torsional vibration of a rotating machine system by predicting the resonating motor input current fundamental frequency, and to obtain some signal from the variable speed control device and to obtain the original value. Therefore, there is almost no possibility of causing self-excited vibration by variable speed drive control.

本発明の実施例1に係わる可変速誘導電動機駆動増速歯車付き回転機械の構成模式図。BRIEF DESCRIPTION OF THE DRAWINGS The structure schematic diagram of the rotary machine with a variable speed induction motor drive speed increasing gear concerning Example 1 of this invention. 機械系の捩り振動の強制振動の応答倍率を表す図。The figure showing the response magnification of the forced vibration of the torsional vibration of a mechanical system. 軸回転速度毎の増速機軸振動振幅の周波数分析を示したカスケード図。The cascade diagram which showed the frequency analysis of the gearbox shaft vibration amplitude for every shaft rotational speed. 図3の拡大図にて軸回転速度の増加により側帯波に起因する軸振動周波数が減少する場合の共振回避手段の説明図。FIG. 4 is an explanatory diagram of resonance avoiding means when the shaft vibration frequency due to the sideband wave decreases due to an increase in shaft rotation speed in the enlarged view of FIG. 3. 同じく軸回転速度の減少により側帯波に起因する軸振動周波数が増加する場合の共振回避手段の説明図。Explanatory drawing of the resonance avoidance means when the axial vibration frequency resulting from a sideband wave similarly increases by the decrease in shaft rotational speed. 同じく軸回転速度の増加により側帯波に起因する軸振動周波数が増加する場合の共振回避手段の説明図。Explanatory drawing of the resonance avoidance means when the axial vibration frequency resulting from a sideband wave similarly increases by the increase in shaft rotational speed. 同じく軸回転速度の減少により側帯波に起因する軸振動周波数が減少する場合の共振回避手段の説明図。Explanatory drawing of the resonance avoidance means when the axial vibration frequency resulting from a sideband wave similarly decreases by the reduction | decrease of an axial rotation speed.

以下、本発明の実施例1に係る、可変速誘導電動機駆動増速歯車付き回転機械の変動捩りトルク低減方法について説明する。   Hereinafter, a variable torsion torque reducing method for a rotary machine with a variable speed induction motor driven speed increasing gear according to a first embodiment of the present invention will be described.

図1は本発明の実施例に係る、可変速誘導電動機駆動増速歯車付き回転機械の構成模式図である。ある目的を果たす負荷回転機械4の軸9は、増速歯車3の高速軸8と高速軸カップリング9を介して繋がれている。歯車高速軸8と歯車低速軸7は、歯車噛合い部14を介して接線力を及ぼしあってトルクを伝達する。伝達されるトルクが変動している場合は、その変動が歯車高速軸8及び、歯車低速軸7の軸振動に現れる。よって歯車高速軸8及び、歯車低速軸7の軸振動の周波数、振幅を検出することは、軸を捩るトルクの周波数と、トルク振幅に関係する値を検出することになる。   FIG. 1 is a schematic configuration diagram of a rotating machine with a variable speed induction motor driven speed increasing gear according to an embodiment of the present invention. The shaft 9 of the load rotating machine 4 that fulfills a certain purpose is connected to the high speed shaft 8 of the speed increasing gear 3 via the high speed shaft coupling 9. The gear high-speed shaft 8 and the gear low-speed shaft 7 transmit torque by exerting a tangential force via the gear meshing portion 14. When the transmitted torque fluctuates, the fluctuation appears in the shaft vibrations of the gear high-speed shaft 8 and the gear low-speed shaft 7. Therefore, detecting the frequency and amplitude of shaft vibrations of the gear high-speed shaft 8 and the gear low-speed shaft 7 detects the frequency of the torque twisting the shaft and the value related to the torque amplitude.

歯車低速軸7は、誘導電動機2の軸5と低速軸カップリング6を介して繋がれている。誘導電動機2は、可変速駆動制御装置1により制御され可変速運転される。歯車低速軸7には非接触の振動検出器13が向けられており、歯車低速軸7の軸振動を信号として検出し、軸振動信号周波数分析器11に送る。本実施例では振動検出器13は歯車低速軸7に向けられて歯車低速軸7の軸振動を検出しているが、歯車高速軸8に振動検出器を向けて歯車高速軸8の軸振動を検出することでも、トルク変動の検出は可能である。   The gear low speed shaft 7 is connected to the shaft 5 of the induction motor 2 via the low speed shaft coupling 6. The induction motor 2 is controlled by the variable speed drive control device 1 and is operated at a variable speed. A non-contact vibration detector 13 is directed to the gear low-speed shaft 7, and the shaft vibration of the gear low-speed shaft 7 is detected as a signal and sent to the shaft vibration signal frequency analyzer 11. In this embodiment, the vibration detector 13 is directed to the gear low-speed shaft 7 to detect the shaft vibration of the gear low-speed shaft 7. However, the vibration detector 13 is directed to the gear high-speed shaft 8 to detect the shaft vibration of the gear high-speed shaft 8. It is also possible to detect torque fluctuations by detection.

軸振動信号周波数分析器11は、歯車低速軸7から得た軸振動を検出信号で周波数分析を行い、各周波数とその成分の振幅のデータを記憶器12に送り記憶する。演算器15は、誘導電動機2の回転速度Nに関連する可変速駆動制御装置1の出力する回転機械運転中の基本周波数fを可変速駆動制御装置1より得て、また、基本周波数fを出力する時の歯車低速軸7の軸振動の各周波数ft(f)、及びその成分の振幅A(ft(f))を記憶器12より得る。 The shaft vibration signal frequency analyzer 11 performs frequency analysis on the shaft vibration obtained from the gear low-speed shaft 7 with a detection signal, and sends each frequency and its amplitude data to the storage device 12 for storage. The computing unit 15 obtains, from the variable speed drive control device 1, the fundamental frequency f during operation of the rotary machine output from the variable speed drive control device 1 related to the rotational speed N of the induction motor 2, and outputs the basic frequency f. Each frequency f t (f) of the shaft vibration of the gear low-speed shaft 7 and the amplitude A ( ft (f)) of the component are obtained from the memory 12.

誘導電動機軸5の回転速度Nと、可変速駆動制御装置1の出力する基本周波数(電動機入力電流基本周波数)fの関係は、(式2)である。
f=N・P/(120(1-s)) (式2)
ここで、Pは誘導電動機2の極数、sは滑りである。極数Pは固定されているとして、誘導電動機軸5の回転速度Nを得るために、可変速駆動制御装置1では滑りsを考慮してfは決められて出力される。本回転運転機械の定常運転時では、滑りsは1より非常に小さい値で一定と考え、基本周波数fと回転速度Nは比例関係にあると考える。
The relationship between the rotational speed N of the induction motor shaft 5 and the basic frequency (motor input current basic frequency) f output by the variable speed drive control device 1 is (Expression 2).
f = N · P / (120 (1-s)) (Formula 2)
Here, P is the number of poles of the induction motor 2, and s is slip. In order to obtain the rotational speed N of the induction motor shaft 5 assuming that the number of poles P is fixed, the variable speed drive control device 1 determines and outputs f in consideration of the slip s. At the time of steady operation of the rotary machine, the slip s is considered to be constant at a value much smaller than 1, and the fundamental frequency f and the rotational speed N are considered to be in a proportional relationship.

図2は機械系の捩り振動の強制振動の応答倍率を表す図であり、歯車低速軸のトルクを縦軸に、加振周波数を横軸にとっている。fn1は予め計算にて求めておいた回転機械の一次捩り固有振動数である。 FIG. 2 is a diagram showing the response magnification of the forced vibration of the torsional vibration of the mechanical system, with the torque of the gear low-speed shaft on the vertical axis and the excitation frequency on the horizontal axis. f n1 is the primary torsional natural frequency of the rotary machine obtained in advance by calculation.

前述のように演算機15は、回転機械の運転中の歯車低速軸7の軸振動の各周波数ft(f)と、その振幅A(ft(f))を記憶器12から入力されている。そして演算機15は、上記軸振動の各周波数ft(f)のうち、1次捩り固有周波数fn1から低い方に予め設定した周波数差Δfs-1だけ離れた周波数ft(f)=fn1-Δfs-1で、振幅A(ft(f))が予め設定したしきい値A-を越えたとき、その軸振動の周波数をft-1として記録し、またそのときの基本周波数をf-1として記録する。 As described above, the calculator 15 receives the frequency ft (f) and the amplitude A ( ft (f)) of the shaft vibration of the low speed gear 7 during operation of the rotary machine from the storage device 12. Yes. The arithmetic unit 15, the shaft vibration of each frequency f t of (f), 1-order torsional natural frequency f frequency difference preset to n1 lower from Delta] f s-1 apart frequency f t (f) = When the amplitude A (f t (f)) exceeds a preset threshold A at f n1 −Δf s−1 , the frequency of the shaft vibration is recorded as f t−1 , and at that time Record the fundamental frequency as f −1 .

さらに、誘導電動機軸5の回転速度Nを変化させるために、可変速駆動制御装置1が基本周波数fを変化させた時に、1次捩り固有周波数fn1から低い方に予め設定する周波数差Δfs-2だけ離れた周波数ft(f)=fn1-Δfs-2での振幅A(ft(f))が、前述の周波数ft(f)=fn1-Δfs-1での振幅A(ft(f-1)=fn1-Δfs-1)よりも大きい場合、その軸振動の周波数成分が1次捩り固有周波数fn1に近づいたと見なし、演算器15はその軸振動の周波数をft-2として記録し、またそのときの基本周波数をf-2として記録する。以上は、図2で1次捩り固有周波数fn1の左側の説明である。 Further, when the variable speed drive control device 1 changes the fundamental frequency f in order to change the rotational speed N of the induction motor shaft 5, the frequency difference Δf s preset in advance from the primary torsional natural frequency f n1. -2 apart frequency f t (f) = f n1 -Δf amplitudes at s-2 a (f t ( f)) is, at the frequency f t (f) = f n1 -Δf s-1 described above When the amplitude A is larger than f t (f −1 ) = f n1 −Δf s−1 ), it is considered that the frequency component of the shaft vibration has approached the primary torsion natural frequency f n1 , and the computing unit 15 determines the shaft vibration. Is recorded as f t-2 , and the fundamental frequency at that time is recorded as f −2 . The above is the description on the left side of the primary torsion natural frequency f n1 in FIG.

前述と同様に、上記軸振動の各周波数ft(f)のうち、1次捩り固有周波数fn1から、高い方に予め設定した周波数差Δfs+1だけ離れた周波数ft(f)=fn1+Δfs+1で、振幅A(ft(f))が、予め設定したしきい値A+を越えたとき、演算器15はその軸振動の周波数をft+1として記録し、またそのときの基本周波数をf+1として記録する。 As before, among the frequency f t of the shaft vibration (f), 1-order torsional natural frequency f from n1, only the frequency difference Delta] f s + 1 set in advance in the higher distant frequency f t (f) = in f n1 + Δf s + 1, the amplitude a (f t (f)) is, when exceeding the threshold value a + a preset arithmetic unit 15 records the frequency of the axial vibration as f t + 1 In addition, the fundamental frequency at that time is recorded as f + 1 .

さらに誘導電動機軸5の回転速度Nを変化させるために、可変速駆動制御装置1が基本周波数fを変化させた時に、1次捩り固有周波数fn1から高い方に予め設定する周波数差Δfs+2だけ離れた周波数ft(f)=fn1+Δfs+2での振幅A(ft(f))が、前述の周波数ft(f)=fn1+Δfs+1での、振幅A(ft(f+1)=fn1+Δfs+1)よりも大きい場合、その軸振動の周波数成分が1次捩り固有周波数fn1に近づいたと見なし、演算器15はその軸振動の周波数をft+2として記録し、またそのときの基本周波数をf+2として記録する。以上は、図2で1次捩り固有周波数fn1の右側の説明である。 Further, when the variable speed drive control device 1 changes the fundamental frequency f in order to change the rotational speed N of the induction motor shaft 5, a frequency difference Δf s + set in advance from the primary torsional natural frequency f n1 to the higher one. 2 apart by the frequency f t (f) = f n1 + Δf s + 2 in the amplitude a (f t (f)) is, at the frequency f t (f) = f n1 + Δf s + 1 described above, If the amplitude a (f t (f +1) = f n1 + Δf s + 1) is greater than, regarded as the frequency components of the shaft vibration has approached the primary torsional natural frequency f n1, calculator 15 that shaft vibration Is recorded as f t + 2 , and the basic frequency at that time is recorded as f +2 . The above is the description on the right side of the primary torsion natural frequency f n1 in FIG. 2.

予め設定するしきい値A-、しきい値A+の決め方は、1次捩り固有周波数fn1から比較的遠い周波数であっても十分逃さない程度に小さく選ぶべきであるが、ノイズのように小さい振幅を拾わない程度に大きく選ぶ必要があり、両者を考慮して最適な値を決める。 The threshold value A and threshold value A + to be set in advance should be selected to be small enough not to miss even if the frequency is relatively far from the primary torsional natural frequency f n1. It is necessary to select large enough not to pick up a small amplitude, and an optimum value is determined in consideration of both.

予め設定する周波数差Δfs-1、Δfs+1の決め方は、回転機械の捩り振動系に関わる。図2に示すように、固有周波数fn1にて最大の応答倍率となり、固有周波数fn1からの差が大きくなるにつれ応答倍率は小さくなる。本発明実施例に係わる捩り振動の周波数成分も、捩りの固有周波数fn1に近づくにつれ振幅が大きくなるが、あまり固有周波数fn1と遠い周波数では応答倍率が小さく、振動振幅が小さくノイズ等と区別がつかない状態になり、この周波数は検出できなくなる場合が出てくる。逆に固有周波数fn1と近すぎる周波数では応答倍率が大きく、振動振幅が大きくなり過ぎ危険な状態で運転することになる。よって、両者を考慮して最適な周波数差Δfs-1、Δfs+1を決める。 The method of determining the frequency differences Δf s−1 and Δf s + 1 set in advance relates to the torsional vibration system of the rotating machine. As shown in FIG. 2, the maximum response ratio at natural frequency f n1, the response magnification as the difference from the natural frequency f n1 increases decreases. The frequency component of the torsional vibration according to the embodiment of the present invention also increases in amplitude as it approaches the torsional natural frequency f n1 , but the response magnification is small at frequencies far from the natural frequency f n1, and the vibration amplitude is small and distinguished from noise. In some cases, this frequency cannot be detected. On the other hand, if the frequency is too close to the natural frequency f n1 , the response magnification is large, and the vibration amplitude becomes too large. Therefore, optimum frequency differences Δf s−1 and Δf s + 1 are determined in consideration of both.

演算器15に記録された軸振動の周波数ft-1、ft-2、基本周波数f-1、f-2、の場合、及び軸振動の周波数ft+1、ft+2、基本周波数f+1、f+2の場合の、軸振動の卓越する周波数が1次捩り固有周波数fn1に共振すると予想される基本周波数frを演算器15で求める。そのためには、規則性を表す1次(線形)の関係式を定義する必要がある。 In the case of the shaft vibration frequencies f t-1 and f t-2 and the fundamental frequencies f −1 and f −2 recorded in the calculator 15, and the shaft vibration frequencies f t + 1 and f t + 2 , the fundamental frequency f +1, in the case of f +2, the fundamental frequency f r to be expected that frequency dominant axis vibration resonates to the primary torsional natural frequency f n1 calculated by calculator 15. To do so, it is necessary to define a linear (linear) relational expression that represents regularity.

図3に極数Pが2の誘導電動機の場合の、軸回転速度毎の増速機軸振動振幅の周波数分析を示したカスケード図を示す。縦軸に誘導電動機の回転速度と振動振幅をとり、横軸に振動周波数をとっている。図3によると、側帯波に起因する軸振動周波数の成分が軸回転速度の変化に対して直線的に変化する様子が示されており、その成分の振幅が1次捩り固有周波数fn1約16Hz付近にて増大する様子が分かる。また、軸回転速度を増加させるにつれて、側帯波に起因する軸振動周波数が減少する場合と、増加する場合が存在する。 FIG. 3 shows a cascade diagram showing a frequency analysis of the speed-up gear shaft vibration amplitude for each shaft rotation speed in the case of an induction motor having two poles P. The vertical axis represents the rotation speed and vibration amplitude of the induction motor, and the horizontal axis represents the vibration frequency. FIG. 3 shows that the component of the shaft vibration frequency caused by the sideband wave changes linearly with respect to the change of the shaft rotation speed, and the amplitude of the component is the primary torsional natural frequency f n1 of about 16 Hz. You can see how it increases in the vicinity. Further, as the shaft rotation speed is increased, there are cases where the shaft vibration frequency due to the sideband wave decreases and increases.

軸回転速度を増加させるにつれて、側帯波に起因する軸振動周波数が減少する場合の、軸振動の周波数ftと基本周波数fの関係は、前述の(式1)の場合分けから、次の(式3)のように表せる。
=fc-mf (式3)
一方、軸回転速度を増加させるにつれて、側帯波に起因する軸振動周波数が増加する場合の、軸振動の周波数ftと基本周波数fの関係は前述の(式1)の場合分けから、次の(式4)のように表せる。
=mf-fc (式4)
(式3)が適用となるのは、図3の一部を拡大した図4に表すように、軸回転速度(基本周波数)が増加する時に、基本周波数が(f+2>f+1)、かつ軸振動の周波数が(ft+1>ft+2)の場合と、図3の別の部分を拡大した図5に表すように、軸回転速度(基本周波数)が減少する時に基本周波数が(f-1>f-2)、かつ軸振動の周波数が(ft-2>ft-1)の場合の2通りである。図4、図5に見られるように、式3は右肩下がりの直線の関係である。
As the shaft rotation speed is increased, the relationship between the shaft vibration frequency f t and the fundamental frequency f when the shaft vibration frequency due to the sideband wave decreases is as follows: It can be expressed as equation 3).
f t = f c -mf (Formula 3)
On the other hand, as the shaft rotational speed is increased, the relationship between the shaft vibration frequency f t and the fundamental frequency f when the shaft vibration frequency due to the sideband wave increases is based on the case of the above (Equation 1). It can be expressed as (Equation 4).
f t = mf−f c (Formula 4)
Become a (Equation 3) is applied, as depicted in FIG. 4 an enlarged portion of FIG. 3, when the shaft rotational speed (the fundamental frequency) increases, the fundamental frequency (f +2> f +1) As shown in FIG. 5 where the frequency of shaft vibration is (f t + 1 > f t + 2 ) and another part of FIG. 3 is enlarged, it is fundamental when the shaft rotational speed (fundamental frequency) decreases. There are two cases where the frequency is (f -1 > f -2 ) and the frequency of the shaft vibration is (f t-2 > f t-1 ). As can be seen in FIGS. 4 and 5, Equation 3 is a straight line relationship with a downward slope.

一方、(式4)が適用となるのは、図3のある部分を拡大した図6に表すように、軸回転速度(基本周波数)が増加する時に、基本周波数が(f-2>f-1)、かつ軸振動の周波数が(ft-2>ft-1)の場合と、図3の別の部分を拡大した図7に表すように軸回転速度(基本周波数)が減少する時に、基本周波数が(f+1>f+2)、かつ軸振動の周波数が(ft+1>ft+2)の場合の2通りである。図6、図7に見られるように、(式4)は右肩上がりの直線の関係である。 On the other hand, (Equation 4) is applied when the shaft rotation speed (fundamental frequency) increases, as shown in FIG. 6 in which a certain part of FIG. 3 is enlarged, the fundamental frequency becomes (f −2 > f − 1 ) and when the shaft rotation frequency (fundamental frequency) decreases as shown in FIG. 7 where the frequency of the shaft vibration is (f t-2 > f t-1 ) and another part of FIG. 3 is enlarged. The basic frequency is (f +1 > f +2 ) and the axial vibration frequency is (f t + 1 > f t + 2 ). As can be seen in FIGS. 6 and 7, (Equation 4) is a straight line relationship that rises to the right.

(式3)、(式4)とも直線の関係であるため、上記の4通りのいずれにおいても、直線上の2点の軸振動の周波数ft及び基本周波数fの値を得ることで、未知数であるfcとmを求めることが出来る。 Since both (Equation 3) and (Equation 4) have a linear relationship, in any of the above four ways, the unknown frequency can be obtained by obtaining the values of the axial vibration frequency ft and the fundamental frequency f at two points on the straight line. Fc and m can be obtained.

cとmが求まれば、式3、式4の関係における1次捩り固有周波数fn1に共振すると予想される基本周波数frを求める事が出来る。すなわち、(式3)の関係の場合は次式となる。
r=(fc-fn1)/m (式5)
式4の関係の場合は次式となる。
r=(fn1+fc)/m (式6)
以上により演算器15で求めた1次捩り固有周波数fn1に共振すると予想される基本周波数frと、予め設定する基本周波数fのジャンプさせる周波数幅Δfの指示信号を演算器15から可変速駆動制御装置1に送り、可変速駆動制御装置1は基本周波数frを中心とする上下周波数幅Δfの基本周波数fの範囲をジャンプさせて、誘導電動機2に制御信号として入力周波数(入力電流基本周波数)を供給し可変速運転する。従って、誘導電動機2には、1次捩り固有周波数fn1を避けた制御信号が送られるため、その共振を避けることができる。
If f c and m are determined, Equation 3, it is possible to determine the fundamental frequency f r which is expected to resonate in the primary torsional natural frequency f n1 in relation to formula 4. That is, in the case of the relationship of (Formula 3), it becomes the following formula.
f r = (f c −f n1 ) / m (Formula 5)
In the case of the relationship of Formula 4, it becomes the following formula.
f r = (f n1 + f c ) / m (Formula 6)
As described above, the calculation signal from the calculation unit 15 is sent to the calculation signal of the basic frequency f r expected to resonate with the primary torsional natural frequency f n1 obtained by the calculation unit 15 and the frequency width Δf j for jumping the preset basic frequency f. feed to the drive control device 1, variable speed drive control device 1 by jumping the scope of the fundamental frequency f of the upper and lower frequency width Delta] f j around the fundamental frequency f r, the input frequency (input current as a control signal to the induction motor 2 Basic frequency) and variable speed operation. Therefore, since the control signal avoiding the primary torsional natural frequency f n1 is sent to the induction motor 2, the resonance can be avoided.

図4〜図7において、上記ジャンプは点線矢印で示される。即ち、図4では振動振幅A(ft+2)が検出されたときに上方にジャンプし、図5では振動振幅A(ft-2)が検出されたときに下方にジャンプし、図6では振動振幅A(ft-2)が検出されたときに上方にジャンプし、図7では振動振幅A(ft+2)が検出されたときに下方にジャンプしている。 4 to 7, the jump is indicated by a dotted arrow. 4 jumps upward when the vibration amplitude A ( ft + 2 ) is detected, and jumps downward when the vibration amplitude A ( ft-2 ) is detected in FIG. In FIG. 7, the jump is made upward when the vibration amplitude A ( ft-2 ) is detected, and in FIG. 7, the jump is made downward when the vibration amplitude A ( ft + 2 ) is detected.

なお、1次捩り固有周波数fn1を避けた制御信号が送られても、回転機械は連続して回転速度が変化するため、1次捩り固有周波数fn1を一瞬通過する。しかし、駆動信号に1次捩り固有周波数fn1が含まれないので、大きな共振が起ることはない。 Even if a control signal that avoids the primary torsional natural frequency f n1 is sent, the rotational speed of the rotating machine continuously changes, so that the primary torsional natural frequency f n1 passes for a moment. However, since the primary torsion natural frequency f n1 is not included in the drive signal, a large resonance does not occur.

基本周波数fのジャンプ(回避)周波数幅はΔfとなり、歯車低速軸7、歯車高速軸8の軸振動と(また同じ周波数の回転機械の捩り振動と)、1次捩り固有周波数fn1との回避周波数範囲は上下それぞれmΔfとなる。 The jump (avoidance) frequency width of the basic frequency f is Δf j , and the shaft vibrations of the gear low-speed shaft 7 and the gear high-speed shaft 8 (and the torsional vibration of the rotating machine of the same frequency) and the primary torsion natural frequency f n1 The avoidance frequency range is mΔf j above and below.

予め設定する基本周波数fのジャンプさせる周波数幅Δfの決め方は、捩り振動の応答倍率の十分小さいと判断される加振周波数まで、1次捩り固有周波数fn1を遠ざけることを第一に考えるが、範囲が広くなり過ぎると可能運転回転速度範囲を制限しすぎて運用上の問題が出ることもあるため、両者を考慮して最適な周波数幅Δfを決める。 As a method of determining the frequency width Δf j for jumping the preset basic frequency f, it is first considered that the primary torsion natural frequency f n1 is moved away to an excitation frequency at which it is determined that the response magnification of torsional vibration is sufficiently small. If the range becomes too wide, the possible operating rotation speed range is limited too much, which may cause operational problems. Therefore, the optimum frequency width Δf j is determined in consideration of both.

可変速制御装置には一般的に周波数範囲(または軸回転速度範囲)ジャンプ機能が予め付加されているものが殆どであり、本発明の方法とこの機能と組み合わせて実施できる可能性が高い。   Most of the variable speed control devices generally have a frequency range (or shaft rotation speed range) jump function added in advance, and there is a high possibility that the variable speed control device can be implemented in combination with the method of the present invention.

1…可変速駆動制御装置、2…誘導電動機、3…増速歯車、4…負荷回転機械、5…誘導電動機軸、6…低速軸カップリング、7…歯車低速軸、8…歯車高速軸、9…高速軸カップリング、10…負荷回転機械軸、11…軸振動信号周波数分析器、12…記憶器、13…歯車低速軸振動検出器、14…歯車噛合い部、15…演算器。   DESCRIPTION OF SYMBOLS 1 ... Variable speed drive control device, 2 ... Induction motor, 3 ... Speed increasing gear, 4 ... Load rotating machine, 5 ... Induction motor shaft, 6 ... Low speed shaft coupling, 7 ... Gear low speed shaft, 8 ... Gear high speed shaft, DESCRIPTION OF SYMBOLS 9 ... High-speed shaft coupling, 10 ... Load rotary machine shaft, 11 ... Shaft vibration signal frequency analyzer, 12 ... Memory | storage device, 13 ... Gear low-speed shaft vibration detector, 14 ... Gear meshing part, 15 ... Calculator.

Claims (2)

増速機を介して可変速誘導電動機に繋がれた回転機械の共振低減方法において、
回転機械のトルクが増速機振動に関係することを利用し、増速機の振動検出器により得た信号を周波数分析し、増大した振幅を持つ周波数成分と、その時の電動機入力電流基本周波数をそれぞれ2点記録し、想定した線形の規則性を用いて回転機械の1次捩り固有周波数と共振する電動機入力電流基本周波数を予測し、その周波数を含む電動機入力電流基本周波数をジャンプさせる指示信号を可変速制御装置に送り、捩り振動の共振を回避することを特徴とする回転機械の共振低減方法。
In a method for reducing resonance of a rotating machine connected to a variable speed induction motor via a speed increaser ,
Using the fact that the torque of the rotating machine is related to the gearbox vibration, frequency analysis is performed on the signal obtained by the gearbox vibration detector, and the frequency component with increased amplitude and the motor input current fundamental frequency at that time are obtained. Record two points each, predict the motor input current fundamental frequency that resonates with the primary torsional natural frequency of the rotating machine using the assumed linear regularity, and jump to the motor input current fundamental frequency including that frequency. A method for reducing resonance of a rotary machine, wherein the resonance is transmitted to a variable speed control device to avoid torsional resonance.
歯車増速機を介して可変速誘導電動機に繋がれた回転機械の共振低減装置において、In a resonance reducing device for a rotating machine connected to a variable speed induction motor via a gear speed increaser,
上記可変速誘導電動機を基本周波数で制御する可変速制御装置と、A variable speed control device for controlling the variable speed induction motor at a fundamental frequency;
歯車増速機の軸振動を検出する振動検出器と、A vibration detector for detecting shaft vibration of the gearbox,
上記振動検出器の振動信号を分析して振動周波数とその振幅を抽出する分析器と、An analyzer for analyzing the vibration signal of the vibration detector and extracting the vibration frequency and its amplitude;
回転機械の1次捩り固有周波数と、上記可変速制御装置の基本周波数と、この周波数出力時の上記分析器で検出された振動周波数および振幅に基いて、増大した振幅を持つ周波数成分と、その時の電動機入力電流基本周波数をそれぞれ2点記録し、想定した線形の規則性を用いて回転機械の1次捩り固有周波数と共振する電動機入力電流基本周波数を予測し、その周波数を含む電動機入力電流基本周波数をジャンプさせる指示信号を上記可変速制御装置に送る演算器を備えたことを特徴とする回転機械の共振低減装置。Based on the primary torsion natural frequency of the rotating machine, the fundamental frequency of the variable speed control device, the vibration frequency and amplitude detected by the analyzer at the time of this frequency output, and the frequency component having an increased amplitude, The motor input current basic frequency is recorded at two points, and the motor input current basic frequency that resonates with the primary torsional natural frequency of the rotating machine is predicted using the assumed linear regularity. An apparatus for reducing resonance of a rotary machine, comprising: an arithmetic unit that sends an instruction signal for jumping a frequency to the variable speed control device.
JP2009199645A 2009-08-31 2009-08-31 Resonance reducing method and resonance reducing apparatus for rotating machine Expired - Fee Related JP5483960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199645A JP5483960B2 (en) 2009-08-31 2009-08-31 Resonance reducing method and resonance reducing apparatus for rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199645A JP5483960B2 (en) 2009-08-31 2009-08-31 Resonance reducing method and resonance reducing apparatus for rotating machine

Publications (2)

Publication Number Publication Date
JP2011055583A JP2011055583A (en) 2011-03-17
JP5483960B2 true JP5483960B2 (en) 2014-05-07

Family

ID=43944016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199645A Expired - Fee Related JP5483960B2 (en) 2009-08-31 2009-08-31 Resonance reducing method and resonance reducing apparatus for rotating machine

Country Status (1)

Country Link
JP (1) JP5483960B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6659384B2 (en) * 2016-02-02 2020-03-04 株式会社神戸製鋼所 Rotary machine abnormality detection device and rotating machine abnormality detection system
CN107437911B (en) * 2016-05-25 2019-10-11 中车株洲电力机车研究所有限公司 Inhibit the method and device of doubly-fed wind turbine system resonance
JP6172349B1 (en) * 2016-06-27 2017-08-02 株式会社明電舎 Motor drive system
JP6783498B2 (en) * 2017-10-03 2020-11-11 東芝三菱電機産業システム株式会社 Shaft torsion vibration suppression control device
DE102018209253B4 (en) * 2018-06-11 2020-06-18 Bayerische Motoren Werke Aktiengesellschaft Fourier diagnosis of a gas exchange behavior of an internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330796U (en) * 1989-07-28 1991-03-26
JPH06113592A (en) * 1992-09-30 1994-04-22 Toshiba Corp Inverter

Also Published As

Publication number Publication date
JP2011055583A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP5483960B2 (en) Resonance reducing method and resonance reducing apparatus for rotating machine
JP5738711B2 (en) Rotating machine state monitoring device, rotating machine state monitoring method, and rotating machine state monitoring program
CN103548253B (en) Motor control assembly
DK2470782T3 (en) The operating control system for a wind turbine and method of operation using the control system
CN103608282B (en) For making movable crane element low method and the control device of motion quiveringly of crane system
Wenzhi et al. Active control and simulation test study on torsional vibration of large turbo-generator rotor shaft
CN103119291A (en) Method for adjusting the rotational speed of a wind turbine and wind turbine
EP3707375B1 (en) Method and system for controlling a wind turbine to manage edgewise blade vibrations
JP2018017589A (en) Engine tester
EP2216896B1 (en) Torque oscillation monitoring
TWI734225B (en) Motor control device and belt tension state detection device
EP2553805B1 (en) Sensorless torsional mode damping system and method
JP6806754B2 (en) Machine tool and vibration diagnosis support method
JP5602318B2 (en) Vehicle control device
JP2007221887A (en) Method and device for estimating load of stepping motor
CN103148162B (en) Vibration is from steady controlling method, device and system and hoist
JP2009217822A6 (en) MACHINE OPERATION METHOD, COMPUTER PROGRAM, MACHINE CONTROL DEVICE, AND MACHINE
JP2009217822A (en) Method of operating machine, computer program, controller of machine and machine
JP2012211623A (en) Compressor
CN102906992A (en) Avoidance of torsional excitations in converter-controlled compressor runs
WO2011114006A1 (en) Health monitoring method and system for drives
Orkisz et al. Detecting mechanical problems by examining variable speed drive signals
JP4196975B2 (en) Crack detection method for drive mechanism
CN1332766C (en) Suspension centrifugal machine and drive control method for motor thereof
JP4390049B2 (en) Servo control device and limit gain extraction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent or registration of utility model

Ref document number: 5483960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees