JP5478603B2 - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
JP5478603B2
JP5478603B2 JP2011502760A JP2011502760A JP5478603B2 JP 5478603 B2 JP5478603 B2 JP 5478603B2 JP 2011502760 A JP2011502760 A JP 2011502760A JP 2011502760 A JP2011502760 A JP 2011502760A JP 5478603 B2 JP5478603 B2 JP 5478603B2
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
resin composition
epoxy
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011502760A
Other languages
Japanese (ja)
Other versions
JPWO2010101144A1 (en
Inventor
篤彦 片山
スレスタ・ニランジャン・クマール
利英 千崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2011502760A priority Critical patent/JP5478603B2/en
Publication of JPWO2010101144A1 publication Critical patent/JPWO2010101144A1/en
Application granted granted Critical
Publication of JP5478603B2 publication Critical patent/JP5478603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/027Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、低粘度で作業性の優れたエポキシ樹脂組成物、及びそれを硬化した、耐熱性機械特性に優れるエポキシ樹脂硬化物に関するものである。   The present invention relates to an epoxy resin composition having a low viscosity and excellent workability, and an epoxy resin cured product excellent in heat-resistant mechanical properties obtained by curing the epoxy resin composition.

エポキシ樹脂は種々の硬化剤で硬化させることにより、一般的に機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層板、成形材料、注型材料などの幅広い分野に利用されている。従来、液状エポキシ樹脂組成物ではエポキシ樹脂としてビスフェノールA型エポキシ樹脂、或はビスフェノールF型エポキシ樹脂が主に用いられていたが、樹脂の粘度が比較的高いため反応性希釈剤を添加することが多かった。反応性希釈剤としてはブチルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテルが代表的なものとして用いられてきた。   Epoxy resins are generally cured with various curing agents, resulting in cured products with excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc., adhesives, paints, laminates, moldings It is used in a wide range of fields such as materials and casting materials. Conventionally, bisphenol A type epoxy resin or bisphenol F type epoxy resin is mainly used as an epoxy resin in a liquid epoxy resin composition, but a reactive diluent may be added because the viscosity of the resin is relatively high. There were many. As reactive diluents, butyl glycidyl ether, allyl glycidyl ether, and phenyl glycidyl ether have been representatively used.

従来のブチルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル等の希釈剤を添加した場合、添加量が多いと硬化物の耐熱性や機械的強度が低下するなどの問題があった。このため、特許文献1、2に記載のように、2官能以上のエポキシを持つ反応性希釈剤が提案されている。しかし、特許文献1に記載の反応希釈剤は、低い粘度を有するものの、脂環式エポキシ基を有するものである。このため、従来のエピロロヒドリン型のエポキシ化合物と比べると反応性に乏しく、酸無水物でしか硬化できないのは、周知の事実であり、用途が限定される。また、特許文献2には、シクロヘキシル基含有の化合物が提案されているが、これらの化合物の粘度は240cpsから3200cpsと従来の反応性希釈剤に比べて粘度が高く、希釈剤としての機能は十分でない。   When diluents such as conventional butyl glycidyl ether, allyl glycidyl ether, and phenyl glycidyl ether are added, there are problems such as a decrease in heat resistance and mechanical strength of the cured product when the addition amount is large. For this reason, as described in Patent Documents 1 and 2, a reactive diluent having a bifunctional or higher functional epoxy has been proposed. However, the reaction diluent described in Patent Document 1 has a low viscosity but has an alicyclic epoxy group. For this reason, it is a well-known fact that it is poor in reactivity as compared with conventional epichlorohydrin type epoxy compounds and can only be cured with an acid anhydride, and its application is limited. Further, Patent Document 2 proposes compounds having a cyclohexyl group, but the viscosity of these compounds is 240 cps to 3200 cps, which is higher than that of a conventional reactive diluent, and the function as a diluent is sufficient. Not.

特開平7−9431号公報Japanese Patent Laid-Open No. 7-9431 特許第3415047号公報Japanese Patent No. 3415047

従って反応性希釈剤として、組成物全体の粘度を下げることができ、エピクロロヒドリン型エポキシと同等の反応性を有し、かつ、硬化物の耐熱性、機械特性を低下させない、反応性希釈剤の出現が望まれている。また電気・電子部品用途では塩素濃度の低いエポキシ樹脂が望まれており、塩素含有量の低い反応性希釈剤の出現が待ち望まれている。   Therefore, as a reactive diluent, the viscosity of the entire composition can be lowered, it has the same reactivity as epichlorohydrin type epoxy, and does not deteriorate the heat resistance and mechanical properties of the cured product. The appearance of agents is desired. Epoxy resins having a low chlorine concentration are desired for use in electrical and electronic parts, and the emergence of reactive diluents having a low chlorine content is awaited.

本発明者らはこうした実状に鑑み、粘度が十分低く、しかも硬化物の耐熱性、機械特性を低下させず、塩素含有量の低い反応性希釈剤を求めて鋭意研究した結果、下記式(1)で表されるエポキシ化合物が、これらの要求を満たすものであることを見いだし本発明を完成させるに到った。   In view of this situation, the present inventors have intensively studied for a reactive diluent having a sufficiently low viscosity and not lowering the heat resistance and mechanical properties of the cured product and having a low chlorine content. It was found that the epoxy compound represented by) satisfies these requirements, and the present invention was completed.

すなわち本発明は、25℃での粘度が1000mPa・s以上であるエポキシ樹脂と、下式(1)で表されるエポキシ化合物とを含み、前記エポキシ化合物の含有量が前記エポキシ樹脂100重量部に対し1重量部以上90重量部以下であることを特徴とするエポキシ樹脂組成物に関する。

Figure 0005478603
(式中、Gはエポキシ基、Rは水素又はアルキル基、nは2〜4の整数を表す) That is, the present invention includes an epoxy resin having a viscosity at 25 ° C. of 1000 mPa · s or more and an epoxy compound represented by the following formula (1), and the content of the epoxy compound is 100 parts by weight of the epoxy resin. The present invention relates to an epoxy resin composition characterized by being 1 part by weight or more and 90 parts by weight or less.
Figure 0005478603
(In the formula, G represents an epoxy group, R represents hydrogen or an alkyl group, and n represents an integer of 2 to 4)

また、本発明は上記のエポキシ樹脂組成物に、硬化剤を配合し、硬化させてなることを特徴とするエポキシ樹脂硬化物に関する。   The present invention also relates to an epoxy resin cured product obtained by blending and curing a curing agent in the above epoxy resin composition.

以下、本発明を詳細に説明する。
本発明のエポキシ樹脂組成物は、25℃での粘度が1000mPa・s以上であるエポキシ樹脂と、上記式(1)で表されるエポキシ化合物とを含む。
Hereinafter, the present invention will be described in detail.
The epoxy resin composition of this invention contains the epoxy resin whose viscosity in 25 degreeC is 1000 mPa * s or more, and the epoxy compound represented by the said Formula (1).

式(1)で表されるエポキシ化合物としては、対応するビニル化合物を過酸化物によりエポキシ化したものを使用できる。この方法により得られるエポキシ化合物は、合成の際にエピクロロヒドリンを用いないため、塩素含有量が少ないという特徴を有する。エポキシ化に使用する過酸化物としては、通常の過酸又は有機過酸化物を使用することができる。   As an epoxy compound represented by Formula (1), what epoxidized the corresponding vinyl compound with the peroxide can be used. The epoxy compound obtained by this method has a feature that the chlorine content is low because epichlorohydrin is not used in the synthesis. As a peroxide used for epoxidation, a normal peracid or an organic peroxide can be used.

式(1)において、Gはエポキシ基、Rは水素又はアルキル基、nは2〜4の整数を表すが、nは好ましくは2であり、Rは好ましくは水素、メチル基又はエチル基である。上記のように、このエポキシ化合物はビニルベンゼン類の酸化によるエポキシ化によって有利に得ることができる。この際、ビニルベンゼン類が混合物である場合、このエポキシ化合物も混合物となるが、差し支えない。   In the formula (1), G is an epoxy group, R is hydrogen or an alkyl group, n represents an integer of 2 to 4, n is preferably 2, and R is preferably hydrogen, a methyl group or an ethyl group. . As mentioned above, this epoxy compound can be advantageously obtained by epoxidation by oxidation of vinylbenzenes. At this time, when vinylbenzenes are a mixture, this epoxy compound is also a mixture, but there is no problem.

過酸は、例えば、カルボン酸と過酸化水素の反応により得られる。カルボン酸としては、ギ酸、酢酸、プロピオン酸、安息香酸等が使用可能である。特に酸化効率の点からギ酸、酢酸が好ましい。過酸化水素としては、25〜75%濃度のものが使用可能であるが、特には、50〜70%のものを使用するのが良い。過酸は、単離したものを用いることもできるが、エポキシ化する反応系中で過酸生成後、エポキシ化させるin−situ法も用いることができる。この場合、ビニル化合物のエポキシ化は、ビニル化合物とカルボン酸を仕込み、その混合溶液中に過酸化水素水を滴下することで、過酸化物生成と同時にエポキシ化する方法によって行われる。   The peracid is obtained, for example, by a reaction between carboxylic acid and hydrogen peroxide. As the carboxylic acid, formic acid, acetic acid, propionic acid, benzoic acid and the like can be used. In particular, formic acid and acetic acid are preferable from the viewpoint of oxidation efficiency. Hydrogen peroxide having a concentration of 25 to 75% can be used, but 50 to 70% is particularly preferable. As the peracid, an isolated one can be used, but an in-situ method in which epoxidation is carried out after the production of peracid in a reaction system for epoxidation can also be used. In this case, the epoxidation of the vinyl compound is performed by a method in which a vinyl compound and a carboxylic acid are charged and a hydrogen peroxide solution is dropped into the mixed solution to epoxidize the peroxide at the same time as the peroxide is generated.

過酸のビニル化合物に対する使用量は特に限定しないが、ビニル化合物のビニル基に対して通常0.1〜5モル倍量が好ましく、1〜2モル倍量がより好ましい。過酸の使用量が、0.1モル倍量未満の場合、エポキシ化物の収率が著しく低くなり、未反応物が増える。また、5モル倍量を超えて使用してもエポキシ化物の収率への影響はほとんど認められないが、残存過酸の回収のために経済性が損なわれる傾向にある。通常は溶媒無しで実施されるが、必要な場合には、適当な溶媒を使用することは、全く支障ない。反応温度は、0〜150℃が良く、好ましくは、20〜100℃である。0℃以下では、反応が遅く、150℃以上では、過酸の安全性の問題が生じる。また、硫酸等を過酸の反応促進剤として使用することも可能である。   Although the usage-amount with respect to the vinyl compound of a peracid is not specifically limited, 0.1-5 mole times amount is preferable normally with respect to the vinyl group of a vinyl compound, and 1-2 mole times amount is more preferable. When the amount of the peracid used is less than 0.1 mol times, the yield of the epoxidized product is remarkably lowered and the amount of unreacted product increases. Moreover, even if it uses exceeding 5 mol times amount, the influence on the yield of an epoxidized substance is hardly recognized, but it exists in the tendency for economical efficiency to be impaired for collection | recovery of a residual peracid. Usually, it is carried out without a solvent, but if necessary, it is perfectly satisfactory to use an appropriate solvent. The reaction temperature is preferably 0 to 150 ° C, and preferably 20 to 100 ° C. Below 0 ° C., the reaction is slow, and above 150 ° C., the problem of peracid safety arises. Also, sulfuric acid or the like can be used as a peracid reaction accelerator.

また、有機過酸化物としては、ROOHで表される化合物が使用できる。ここで、Rはアルキル基又はアラルキル基であることが好ましく、炭素数は好ましくは1〜12、より好ましくは2〜10である。In addition, as the organic peroxide, a compound represented by R 1 OOH can be used. Here, R 1 is preferably an alkyl group or an aralkyl group, and preferably has 1 to 12 carbon atoms, more preferably 2 to 10 carbon atoms.

具体的には、t−ブチルハイドロパーオキサイド、t−アミルハイドロパーオキサイド、t−ヘキシルハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、エチルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンモノハイドロパーオキサイド、ジイソプロピルベンゼンジハイドロパーオキサイドなどの1種又は2種以上の混合物が挙げられる。これらの中で好ましい有機ハイドロパーオキサイドは、反応後に生成するアルコールの沸点が低く、エポキシ化反応後の分離精製が容易な点からt−ブチルハイドロパーオキサイドである。   Specifically, t-butyl hydroperoxide, t-amyl hydroperoxide, t-hexyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, ethylbenzene hydroperoxide, cumene hydroperoxide , Diisopropylbenzene monohydroperoxide, diisopropylbenzene dihydroperoxide and the like, or a mixture of two or more thereof. Among these, preferable organic hydroperoxide is t-butyl hydroperoxide because the alcohol produced after the reaction has a low boiling point and is easy to separate and purify after the epoxidation reaction.

これらの有機ハイドロパーオキサイドは、オレフィン類又は第三級アルコール類の過酸化水素酸化、又は第二級水素及び第三級水素の少なくとも1種を有する炭化水素類の酸素酸化によって製造される。   These organic hydroperoxides are produced by hydrogen peroxide oxidation of olefins or tertiary alcohols, or oxygen oxidation of hydrocarbons having at least one of secondary hydrogen and tertiary hydrogen.

有機ハイドロパーオキサイドには製造時に原料として用いられるオレフィン類、第三級アルコール類、炭化水素類及び有機ハイドロパーオキサイドから副生するアルコール類が含まれてもよい。例えば、t−ブタノール及びイソブタンを含むt−ブチルハイドロパーオキサイド、クミルアルコール及びクメンを含むクメンハイドロパーオキサイド、α−フェニルエチルアルコール及びエチルベンゼンを含むエチルベンゼンハイドロパーオキサイド等が利用できる。さらに、これを公知の濃縮方法や精製方法によって処理したものである高純度の有機ハイドロパーオキサイドであってもよい。   The organic hydroperoxide may contain olefins, tertiary alcohols, hydrocarbons and alcohols by-produced from the organic hydroperoxide used as raw materials during production. For example, t-butyl hydroperoxide containing t-butanol and isobutane, cumene hydroperoxide containing cumyl alcohol and cumene, ethylbenzene hydroperoxide containing α-phenylethyl alcohol and ethylbenzene, and the like can be used. Further, it may be a high-purity organic hydroperoxide obtained by treating this with a known concentration method or purification method.

有機ハイドロパーオキサイドのビニル化合物対する使用量は特に限定しないが、ビニル化合物ビニル化合物のビニル基に対して通常0.8〜5モル倍量が好ましく、1〜2モル倍量がより好ましい。過酸の使用量が、0.8モル倍量未満の場合、エポキシ化物の収率が著しく低くなり、未反応物が増える。また、5モル倍量を超えて使用してもエポキシ化物の収率への影響はほとんど認められないが、残存有機ハイドロパーオキサイドの回収のために経済性が損なわれる傾向にある。   Although the usage-amount with respect to the vinyl compound of organic hydroperoxide is not specifically limited, 0.8-5 mol times amount is preferable normally with respect to the vinyl group of a vinyl compound vinyl compound, and 1-2 mol times amount is more preferable. When the amount of the peracid used is less than 0.8 mole times, the yield of the epoxidized product is remarkably lowered and the amount of unreacted product increases. Moreover, even if it uses exceeding 5 mol times amount, the influence on the yield of an epoxidized substance is hardly recognized, but it exists in the tendency for economical efficiency to be impaired for collection | recovery of residual organic hydroperoxide.

有機ハイドロパーオキサイドによるエポキシ化に用いる触媒は、モリブデン化合物として、モリブデンアセチルアセトナート、モリブデン酸アンモニウム、塩化モリブデン、酸化モリブデン等が例示できるが、反応活性が高い触媒としてモリブデンアセチルアセトナート、モリブデン酸アンモニウムが好ましく、触媒の分離、回収や経済性の点からはモリブデン酸アンモニウムがより好ましい。   Examples of the catalyst used for epoxidation with organic hydroperoxide include molybdenum acetylacetonate, ammonium molybdate, molybdenum chloride, and molybdenum oxide as the molybdenum compound, but molybdenum acetylacetonate and ammonium molybdate as the catalyst having high reaction activity. Ammonium molybdate is more preferable from the viewpoints of catalyst separation, recovery and economy.

触媒の使用量は、ビニル化合物と有機ハイドロパーオキサイドの仕込み比により異なるが、通常は有機ハイドロパーオキサイドに対して0.1〜70重量%である。0.1重量%未満では反応が遅くなるので、長時間反応させることになり、副反応生成物が増え、エポキシ化合物の収率が下がる。70重量%を超えると副反応が増加し選択率が低下する傾向にある。   The amount of the catalyst used varies depending on the charging ratio of the vinyl compound and the organic hydroperoxide, but is usually 0.1 to 70% by weight with respect to the organic hydroperoxide. If the amount is less than 0.1% by weight, the reaction is slowed down, so that the reaction is continued for a long time, the side reaction products increase, and the yield of the epoxy compound decreases. If it exceeds 70% by weight, side reactions increase and the selectivity tends to decrease.

エポキシ化の反応は無溶媒で実施できるが、ベンゼン、クロロベンゼンのような芳香族炭化水素溶剤;オクタン、デカンのような脂肪族炭化水素溶剤;アルコール類、エステル類、エーテル類のような不活性な公知の溶媒を使用することもできる。   The epoxidation reaction can be carried out without a solvent, but an aromatic hydrocarbon solvent such as benzene or chlorobenzene; an aliphatic hydrocarbon solvent such as octane or decane; an inert solvent such as alcohols, esters or ethers. A known solvent can also be used.

エポキシ化反応の温度は、通常50〜120℃であり、より好ましくは80〜110℃である。50℃未満では反応速度が遅いため反応時間が長くなり、そして120℃を超えると有機ハイドロパーオキサイド自身の分解が生じ、また、エポキシ基の開環反応などの副反応によりエポキシ化物の選択性が低下する傾向にある。エポキシ化反応の時間については、有機ハイドロパーオキサイドの濃度、反応温度、触媒の使用量によって最適条件は変化するが、通常は0.5〜10時間、好ましくは2〜5時間である。反応方法は、回分式の反応や、複数の反応釜を有する多段式連続反応など任意の公知の方法により実施される。   The temperature of the epoxidation reaction is usually 50 to 120 ° C, more preferably 80 to 110 ° C. Below 50 ° C, the reaction rate is slow and the reaction time becomes long. When it exceeds 120 ° C, the organic hydroperoxide itself decomposes, and the selectivity of the epoxidized product is increased by side reactions such as the ring-opening reaction of the epoxy group. It tends to decrease. Regarding the time for the epoxidation reaction, the optimum conditions vary depending on the concentration of the organic hydroperoxide, the reaction temperature, and the amount of the catalyst used, but it is usually 0.5 to 10 hours, preferably 2 to 5 hours. The reaction method is carried out by any known method such as a batch reaction or a multistage continuous reaction having a plurality of reaction kettles.

また、有機化酸化物としては、下式(2)で表わされるペルオキシカルボキシイミジン酸を用いることができる。ペルオキシカルボキシイミジン酸は、中性又は弱アルカリ性でニトリル類と過酸化水素を反応させることにより生じる。ペルオキシカルボキシイミジン酸とビニル化合物を反応させることにより、エポキシ化物が生じる。ニトリル類とビニル化合物の共存下に過酸化水素を添加する方法で行われる。   Moreover, as the organic oxide, peroxycarboxyimidine acid represented by the following formula (2) can be used. Peroxycarboxyimidine acid is neutral or weakly alkaline and is produced by reacting nitriles with hydrogen peroxide. An epoxidized product is produced by reacting peroxycarboxyimidine acid with a vinyl compound. This is performed by adding hydrogen peroxide in the presence of a nitrile and a vinyl compound.

Figure 0005478603
(式中、Rはアルキル基を表す)
Figure 0005478603
(Wherein R 2 represents an alkyl group)

ニトリルとしてはアセトニトリルが一般的に用いられており好適である。ニトリルの使用量は特に限定しないが、ビニル基に対して通常0.8〜20モル倍量が好ましく、使用されるビニル化合物に対してニトリルの使用量が、0.8モル倍量未満の場合、エポキシ化物の収率が著しく低くなる傾向がある。また、20モル倍量を超えて使用してもエポキシ化物の収率への影響はほとんど認められないが、ニトリルの回収のために経済性が損なわれる傾向にある。   As the nitrile, acetonitrile is generally used and is preferable. The amount of nitrile used is not particularly limited, but usually 0.8 to 20 mole times the vinyl group is preferred, and when the amount of nitrile used is less than 0.8 mole times the vinyl compound used , The yield of the epoxidized product tends to be extremely low. Moreover, even if it uses exceeding 20 mol times amount, the influence on the yield of an epoxidized substance is hardly recognized, but it exists in the tendency for economical efficiency to be impaired for collection | recovery of a nitrile.

過酸化水素の使用量は特に限定しないが、ビニル基に対して通常0.8〜5モル倍量が好ましく、使用されるビニル化合物に対して過酸化水素の使用量が、0.8モル倍量未満の場合、エポキシ化物の収率が著しく低くなる傾向がある。また、5モル倍量を超えて使用してもエポキシ化物の収率への影響はほとんど認められないが、経済性が損なわれる傾向にある。   The amount of hydrogen peroxide used is not particularly limited, but is usually preferably 0.8 to 5 mole times the vinyl group, and the amount of hydrogen peroxide used is 0.8 mole times the vinyl compound used. If it is less than the amount, the yield of the epoxidized product tends to be remarkably lowered. Moreover, even if it uses exceeding 5 mol times amount, the influence on the yield of an epoxidized substance is hardly recognized, but it exists in the tendency for economical efficiency to be impaired.

ペルオキシカルボキシイミジン酸を用いるエポキシ化の反応はアルコール類を溶媒として用いるのが一般的である。好ましくは、メタノールである。   In the epoxidation reaction using peroxycarboxyimidine acid, alcohols are generally used as a solvent. Preferably, it is methanol.

エポキシ化反応の温度は、通常20〜120℃であり、より好ましくは30〜60℃である。20℃未満では反応速度が遅いため反応時間が長くなり、そして120℃を超えると有機ペルオキシカルボキシイミジン酸身の分解が生じ、また、エポキシ基の開環反応などの副反応によりエポキシ化物の選択性が低下する傾向にある。エポキシ化反応の時間については、ペルオキシカルボキシイミジン酸の濃度、反応温度によって最適条件は変化するが、通常は0.5〜10時間、好ましくは2〜5時間である。反応方法は、回分式の反応や、複数の反応釜を有する多段式連続反応など任意の公知の方法により実施される。   The temperature of the epoxidation reaction is usually 20 to 120 ° C, more preferably 30 to 60 ° C. If the reaction temperature is lower than 20 ° C, the reaction time is slow and the reaction time becomes longer. If the reaction temperature exceeds 120 ° C, decomposition of the organic peroxycarboxyimidine acid occurs, and selection of epoxidized products by side reactions such as ring-opening reaction of epoxy groups Tend to decrease. Regarding the time for the epoxidation reaction, the optimum condition varies depending on the concentration of peroxycarboxyimidine acid and the reaction temperature, but it is usually 0.5 to 10 hours, preferably 2 to 5 hours. The reaction method is carried out by any known method such as a batch reaction or a multistage continuous reaction having a plurality of reaction kettles.

本発明のエポキシ樹脂組成物に使用される25℃での粘度が1000mPa・s以上であるエポキシ樹脂としては、粘度が1000mPa・s以上であれば特に制限はない。例えば、ビスフェノールA系、ビスフェノールF系、ビスフェノールAD系、ブロム含有ビスフェノールA系、フェノールノボラック系、クレゾールノボラック系、ポリフェノール系、直鎖脂肪族系、ブタジエン系、ウレタン系等のグリシジルエーテル型エポキシ樹脂;ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステル、芳香族系、環状脂肪族系、脂肪族系グリシジルエステル型エポキシ樹脂;ビスフェノール系、エステル系、高分子量エーテルエステル系、エーテルエステル系、ブロム系、ノボラック系、メチル置換型エポキシ樹脂;複素環型エポキシ樹脂;トリグリシジルイソシアヌレート、あるいはテトラグリシジルジアミノジフェニルメタン等のグリシジルアミン型エポキシ樹脂;エポキシ化ポリブタジエンあるいはエポキシ大豆油等の線状脂肪族型エポキシ樹脂;環状脂肪族型エポキシ樹脂、ナフタレン系ノボラック型エポキシ樹脂、ジグリシジルオキシナフタレン型エポキシ樹脂などのエポキシ樹脂の中で25℃での粘度が1000mPa・s以上であるものが挙げられるが、性能並びに経済性上、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、クレゾールノボラック型のグリシジルエーテル型エポキシ樹脂が特に好ましい。25℃での粘度が1000mPa・s未満のエポキシ樹脂に関しては、式(1)のエポキシ化合物による粘度低下効果が低い。   The epoxy resin having a viscosity at 25 ° C. of 1000 mPa · s or more used in the epoxy resin composition of the present invention is not particularly limited as long as the viscosity is 1000 mPa · s or more. For example, glycidyl ether type epoxy resins such as bisphenol A, bisphenol F, bisphenol AD, bromo-containing bisphenol A, phenol novolac, cresol novolac, polyphenol, straight chain aliphatic, butadiene, and urethane; Hexahydrophthalic acid glycidyl ester, dimer acid glycidyl ester, aromatic, cycloaliphatic, aliphatic glycidyl ester type epoxy resin; bisphenol, ester, high molecular weight ether ester, ether ester, bromine, novolak System, methyl-substituted epoxy resin; heterocyclic epoxy resin; glycidyl amine type epoxy resin such as triglycidyl isocyanurate or tetraglycidyl diaminodiphenylmethane; epoxidized polybutadiene Or a linear aliphatic epoxy resin such as epoxy soybean oil; a viscosity of 1000 mPa · at 25 ° C. among epoxy resins such as cycloaliphatic epoxy resin, naphthalene novolac epoxy resin, diglycidyloxynaphthalene epoxy resin Among them, bisphenol A type, bisphenol F type, bisphenol AD type, and cresol novolac type glycidyl ether type epoxy resins are particularly preferable in view of performance and economy. Regarding the epoxy resin having a viscosity at 25 ° C. of less than 1000 mPa · s, the effect of reducing the viscosity by the epoxy compound of the formula (1) is low.

本発明のエポキシ樹脂組成物に使用される式(1)で表わされるエポキシ化合物はエポキシ樹脂組成物の粘度を低下させる機能を有する。一方、25℃での粘度が1000mPa・s以上であるエポキシ樹脂は、比較的一般的なエポキシ樹脂であるためそのエポキシ樹脂特有の性能を有するが、粘度が高い。以下、25℃での粘度が1000mPa・s以上であるエポキシ樹脂を高粘度エポキシ樹脂ともいう。   The epoxy compound represented by the formula (1) used in the epoxy resin composition of the present invention has a function of reducing the viscosity of the epoxy resin composition. On the other hand, an epoxy resin having a viscosity at 25 ° C. of 1000 mPa · s or higher is a relatively general epoxy resin and has performance specific to the epoxy resin, but has a high viscosity. Hereinafter, an epoxy resin having a viscosity at 25 ° C. of 1000 mPa · s or more is also referred to as a high viscosity epoxy resin.

式(1)で表されるエポキシ化合物の添加量としては、前記高粘度エポキシ樹脂100重量部に対して1〜90重量部の範囲とすることが必要である。好ましくは5〜80重量部、さらに好ましくは10〜60重量部である。添加量が1重量部未満であると粘度低下作用が十分でなく、90重量部を超えると本来のエポキシ樹脂の物性低下を引き起こす。   As an addition amount of the epoxy compound represented by Formula (1), it is necessary to set it as the range of 1-90 weight part with respect to 100 weight part of said high-viscosity epoxy resins. Preferably it is 5-80 weight part, More preferably, it is 10-60 weight part. When the addition amount is less than 1 part by weight, the effect of reducing the viscosity is not sufficient, and when it exceeds 90 parts by weight, the physical properties of the original epoxy resin are reduced.

また、エポキシ樹脂組成物には、必要に応じてさらにその用途分野で一般的に配合されている可とう化剤、カップリング剤、難燃剤、難燃助剤、着色剤、充填剤などの添加剤を、本発明の性能を損なわない範囲で添加されていてもよい。   In addition, the epoxy resin composition may be added with a flexible agent, a coupling agent, a flame retardant, a flame retardant aid, a colorant, a filler, etc. that are generally blended in the application field as necessary. An agent may be added within a range not impairing the performance of the present invention.

本発明のエポキシ樹脂組成物に、硬化剤を加え、硬化させることによりエポキシ樹脂硬化物が得られる。   A cured epoxy resin is obtained by adding a curing agent to the epoxy resin composition of the present invention and curing it.

本発明のエポキシ樹脂組成物に使用される硬化剤としては、一般的なエポキシ樹脂の硬化剤として公知の硬化剤で良く、一例としてエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレントリアミン、ジエチルアミノプロピルアミン、メタフェニレンジアミン、p,p‘−ジアミノジフェニルメタン、ジアミノジフェニルスルフォンなどの第一アミン類;ジエタノールアミン、N−メチルエタノールアミン、ビスヒドロキシエチルジエチレントリアミンなどの第二アミン類;トリエチルアミン、ピペリジン、ベンジルジメチルアミン2−(ジメチルアミノメチル)フェノールなどの第三アミン類;無水フタル酸、ヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、無水トリメリット酸、無水ピロメリット酸、無水ヘット酸などの酸無水物が挙げられ、これらの一種以上が配合される。   The curing agent used in the epoxy resin composition of the present invention may be a known curing agent as a general epoxy resin curing agent, for example, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenetriamine. Primary amines such as diethylaminopropylamine, metaphenylenediamine, p, p′-diaminodiphenylmethane, diaminodiphenylsulfone; secondary amines such as diethanolamine, N-methylethanolamine, bishydroxyethyldiethylenetriamine; triethylamine, piperidine, Tertiary amines such as benzyldimethylamine 2- (dimethylaminomethyl) phenol; phthalic anhydride, hexahydrophthalic anhydride, dodecenyl succinic anhydride, trimellitic anhydride Acid, pyromellitic acid anhydride, include acid anhydrides such as HET acid, or these one or are formulated.

エポキシ樹脂と硬化剤の配合比率は、エポキシ基と硬化剤中の官能基が当量比で0.8〜1.5の範囲であることが好ましい。この範囲外では硬化後も未反応のエポキシ基、または硬化剤中の官能基が残留し、硬化物の物性が低下する。ここで、式(1)で表されるエポキシ化合物は、エポキシ樹脂として扱う。   As for the compounding ratio of the epoxy resin and the curing agent, it is preferable that the epoxy group and the functional group in the curing agent have an equivalent ratio of 0.8 to 1.5. Outside this range, unreacted epoxy groups or functional groups in the curing agent remain even after curing, and the physical properties of the cured product deteriorate. Here, the epoxy compound represented by Formula (1) is handled as an epoxy resin.

本発明のエポキシ樹脂組成物の用途としては、塗料、注入材、注型品、CFRPなどの複合材料、成形品、プリント基板などの積層材及び絶縁材、電気・電子部品の封止材、接着剤、積層板、FRP成形物、土木建築用の補修材・床材・道路舗装材等が挙げられる。   Applications of the epoxy resin composition of the present invention include paints, injection materials, cast products, composite materials such as CFRP, molded products, laminates and insulating materials such as printed boards, sealing materials for electrical and electronic parts, adhesion Agents, laminates, FRP molded products, repair materials, flooring materials, road paving materials for civil engineering and the like.

次に本発明の特徴を更に明確にするため実施例を挙げて具体的に説明する。なお、文中「部」及び「%」は全て重量基準である。   Next, in order to further clarify the characteristics of the present invention, examples will be described in detail. In the text, “parts” and “%” are all based on weight.

合成例1
3L反応器にジビニルベンゼン(新日鐵化学製DVB−960ジビニルベンゼン含有量97%、m−体/p−体=62:38)300g、酢酸エチル1200gを装入し撹拌した。次いで、過酢酸30%含有酢酸エチル溶液1640gを3時間かけて滴下した。滴下中は反応温度を30℃になるように制御を行った。滴下後、さらに30℃にて3時間撹拌を行った。反応液を室温まで冷却した後、20%NaOH水溶液1208gを加え、1時間撹拌後、水層を分離し、未反応の過酢酸及び、生成した酢酸の除去を行った。エバポレーターにて、酢酸エチルを減圧留去した後、精製蒸留(10torr、150℃)を行い、ジエポキシエチルベンゼン(DEpEB)151.6gを得た。得られたジエポキシエチルベンゼンのエポキシ当量は81g/eq、25℃における粘度は18mPa・s、純度は97.1%(ガスクロマトグラフィー面積%)、m−体/p−体=64:36(1H−NMR積分比)であった。加水分解性塩素は検出されなかった。DEpEBは、式(1)において、全部のRがHであり、nが2であるエポキシ化合物である。
Synthesis example 1
A 3 L reactor was charged with 300 g of divinylbenzene (Nippon Steel Chemical's DVB-960 divinylbenzene content 97%, m-isomer / p-isomer = 62: 38) and 1200 g of ethyl acetate and stirred. Next, 1640 g of an ethyl acetate solution containing 30% peracetic acid was added dropwise over 3 hours. During the dropping, the reaction temperature was controlled to 30 ° C. After dropping, the mixture was further stirred at 30 ° C. for 3 hours. After cooling the reaction solution to room temperature, 1208 g of 20% NaOH aqueous solution was added and stirred for 1 hour, and then the aqueous layer was separated, and unreacted peracetic acid and generated acetic acid were removed. After evaporating ethyl acetate under reduced pressure using an evaporator, purification distillation (10 torr, 150 ° C.) was performed to obtain 151.6 g of diepoxyethylbenzene (DEpEB). The epoxy equivalent of the obtained diepoxyethylbenzene was 81 g / eq, the viscosity at 25 ° C. was 18 mPa · s, the purity was 97.1% (gas chromatography area%), m-isomer / p-isomer = 64: 36 (1H -NMR integration ratio). Hydrolyzable chlorine was not detected. DEpEB is an epoxy compound in which all Rs are H and n is 2 in the formula (1).

合成例2
1,3,5−トリエチルベンゼン(東京化成工業株式会社製)を、気相脱水素反応により、約38%のトリビニルベンゼンを含む粗トリビニルベンゼンを得た。
3L反応器に粗トリビニルベンゼン300g、酢酸エチル1200gを装入し撹拌した。次いで、過酢酸30%含有酢酸エチル溶液1640gを3時間かけて滴下した。滴下中は反応温度を30℃になるように制御を行った。滴下後、さらに30℃にて3時間撹拌を行った。反応液を室温まで冷却した後、20%NaOH水溶液1208gを加え、1時間撹拌後、水層を分離し、未反応の過酢酸及び、生成した酢酸の除去を行った。エバポレーターにて、酢酸エチルを減圧留去した後、精製蒸留(5torr、194℃)を行い、トリエポキシエチルベンゼン(TEpEB)90.6gを得た。得られたトリエポキシエチルベンゼンのエポキシ当量は75g/eq、融点は38℃の白色結晶であり、純度は98.2%(ガスクロマトグラフィー面積%)であった。加水分解性塩素は検出されなかった。TEpEBは、式(1)において、全部のRがHであり、nが3であるエポキシ化合物である。
Synthesis example 2
Crude trivinylbenzene containing about 38% trivinylbenzene was obtained from 1,3,5-triethylbenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) by gas phase dehydrogenation reaction.
A 3 L reactor was charged with 300 g of crude trivinylbenzene and 1200 g of ethyl acetate and stirred. Next, 1640 g of an ethyl acetate solution containing 30% peracetic acid was added dropwise over 3 hours. During the dropping, the reaction temperature was controlled to 30 ° C. After dropping, the mixture was further stirred at 30 ° C. for 3 hours. After the reaction solution was cooled to room temperature, 1208 g of 20% NaOH aqueous solution was added and stirred for 1 hour, and then the aqueous layer was separated to remove unreacted peracetic acid and generated acetic acid. After evaporating ethyl acetate under reduced pressure using an evaporator, purification distillation (5 torr, 194 ° C.) was performed to obtain 90.6 g of triepoxyethylbenzene (TEpEB). The epoxy equivalent of the obtained triepoxyethylbenzene was 75 g / eq, melting point was white crystal of 38 ° C., and the purity was 98.2% (gas chromatography area%). Hydrolyzable chlorine was not detected. TEpEB is an epoxy compound in which all Rs are H and n is 3 in the formula (1).

実施例1〜3
ビスフェノールA型エポキシ樹脂(YD−128;東都化成株式会社製)100重量部に対し、合成例1で得たDEpEBを、10重量部、25重量部、50重量部加えて、混合しエポキシ樹脂組成物を得た。B型粘度計にて、25℃における樹脂組成物の粘度を測定した。エポキシ樹脂組成物に、リカシッドMH−700(新日本理化株式会社製)を当量比が0.9となるように加えて均一に混合した後、120℃、1時間、次いで150℃、3時間加熱硬化させ、硬化物を得た。硬化物のTg(TMA法)、曲げ弾性率及び曲げ強度を測定した。曲げ弾性率及び曲げ強度は、JISK6911「熱硬化性プラスチック一般試験法」に従い測定した。結果を表1に示す。
Examples 1-3
10 parts by weight, 25 parts by weight and 50 parts by weight of DEpEB obtained in Synthesis Example 1 are added to 100 parts by weight of bisphenol A type epoxy resin (YD-128; manufactured by Tohto Kasei Co., Ltd.) and mixed to prepare an epoxy resin composition. I got a thing. The viscosity of the resin composition at 25 ° C. was measured with a B-type viscometer. To the epoxy resin composition, Rikacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd.) was added so that the equivalent ratio was 0.9 and mixed uniformly, and then heated at 120 ° C. for 1 hour, then at 150 ° C. for 3 hours. Cured to obtain a cured product. The Tg (TMA method), bending elastic modulus and bending strength of the cured product were measured. The flexural modulus and flexural strength were measured in accordance with JIS K6911 “General Thermosetting Plastic Testing Method”. The results are shown in Table 1.

比較例1〜3
ビスフェノールA型エポキシ樹脂(YD−128)100重量部に対し、フェニルグリシジルエーテル(PGE;東京化成化学工業製)を、10重量部、25重量部、50重量部加えて、混合しエポキシ樹脂組成物を得た。このエポキシ樹脂組成物に、リカシッドMH−700を当量比が0.9となるように加えて均一に混合した後、120℃、1時間、次いで150℃、3時間加熱硬化させ、硬化物を得た。硬化物のTg、曲げ弾性率、曲げ強度を測定した。
Comparative Examples 1-3
10 parts by weight, 25 parts by weight and 50 parts by weight of phenylglycidyl ether (PGE; manufactured by Tokyo Chemical Industry Co., Ltd.) are added to 100 parts by weight of the bisphenol A type epoxy resin (YD-128), and mixed to form an epoxy resin composition. Got. To this epoxy resin composition, Ricacid MH-700 was added so as to have an equivalent ratio of 0.9 and mixed uniformly, and then heated and cured at 120 ° C. for 1 hour, then at 150 ° C. for 3 hours to obtain a cured product. It was. The Tg, bending elastic modulus, and bending strength of the cured product were measured.

比較例4〜6
ビスフェノールA型エポキシ樹脂(YD−128)100重量部に対し、ブチルグリシジルエーテル(BGE;東京化成化学工業製)を、10重量部、25重量部、50重量部加えて、混合しエポキシ樹脂組成物を得た。このエポキシ樹脂組成物に、リカシッドMH−700を当量比が0.9となるように加えて均一に混合した後、120℃、1時間、次いで150℃、3時間加熱硬化させ、硬化物を得た。硬化物のTg、曲げ弾性率、曲げ強度を測定した。
Comparative Examples 4-6
10 parts by weight, 25 parts by weight and 50 parts by weight of butyl glycidyl ether (BGE; manufactured by Tokyo Chemical Industry Co., Ltd.) are added to 100 parts by weight of bisphenol A type epoxy resin (YD-128), and mixed to form an epoxy resin composition. Got. To this epoxy resin composition, Ricacid MH-700 was added so as to have an equivalent ratio of 0.9 and mixed uniformly, and then heated and cured at 120 ° C. for 1 hour, then at 150 ° C. for 3 hours to obtain a cured product. It was. The Tg, bending elastic modulus, and bending strength of the cured product were measured.

実施例4
ビスフェノールF型エポキシ樹脂(YD−170;東都化成株式会社製)100重量部に対し、合成例1で得たDEpEBを50重量部加えて、混合しエポキシ樹脂組成物を得た。エポキシ樹脂組成物に、リカシッドMH−700を当量比が0.9となるように加えて均一に混合した後、120℃、1時間、次いで150℃、3時間加熱硬化させ、硬化物を得た。硬化物のTg、曲げ弾性率、曲げ強度を測定した。
Example 4
50 parts by weight of DEpEB obtained in Synthesis Example 1 was added to 100 parts by weight of bisphenol F type epoxy resin (YD-170; manufactured by Tohto Kasei Co., Ltd.), and mixed to obtain an epoxy resin composition. After adding Ricacid MH-700 to the epoxy resin composition so that the equivalent ratio was 0.9 and mixing it uniformly, it was heat-cured at 120 ° C. for 1 hour, then at 150 ° C. for 3 hours to obtain a cured product. . The Tg, bending elastic modulus, and bending strength of the cured product were measured.

実施例5
フェノールノボラック型エポキシ樹脂(YDPN−638;東都化成株式会社製)100重量部に対し、合成例1で得たDEpEBを50重量部加えて、混合しエポキシ樹脂組成物を得た。このエポキシ樹脂組成物に、リカシッドMH−700を当量比が0.9となるように加えて均一に混合した後、120℃、1時間、次いで150℃、3時間加熱硬化させ、硬化物を得た。硬化物のTg、曲げ弾性率、曲げ強度を測定した。
Example 5
50 parts by weight of DEpEB obtained in Synthesis Example 1 was added to 100 parts by weight of phenol novolac type epoxy resin (YDPN-638; manufactured by Tohto Kasei Co., Ltd.) and mixed to obtain an epoxy resin composition. To this epoxy resin composition, Ricacid MH-700 was added so as to have an equivalent ratio of 0.9 and mixed uniformly, and then heated and cured at 120 ° C. for 1 hour, then at 150 ° C. for 3 hours to obtain a cured product. It was. The Tg, bending elastic modulus, and bending strength of the cured product were measured.

実施例1〜5及び比較例1〜6の樹脂組成物の配合組成とB型粘度計にて、25℃測定した粘度、及び硬化物の物性測定値を表1〜2に示す。なお、添加量はエポキシ樹脂100重量部に対するエポキシ化合物の配合量である。   Tables 1 and 2 show the viscosities measured at 25 ° C. with the blend compositions of the resin compositions of Examples 1 to 5 and Comparative Examples 1 to 6 and a B-type viscometer, and the measured physical properties of the cured products. In addition, the addition amount is a compounding amount of the epoxy compound with respect to 100 parts by weight of the epoxy resin.

Figure 0005478603
Figure 0005478603

Figure 0005478603
Figure 0005478603

比較例7
ビスフェノールA型エポキシ樹脂(YD−128)に、リカシッドMH−700を当量比が0.9となるように加えて均一に混合した後、120℃、1時間、次いで150℃、3時間加熱硬化させ、硬化物を得た。硬化物のTg、曲げ弾性率、曲げ強度を測定した。
Comparative Example 7
Ricacid MH-700 was added to bisphenol A type epoxy resin (YD-128) so that the equivalent ratio was 0.9 and mixed uniformly, and then heat-cured at 120 ° C. for 1 hour, then at 150 ° C. for 3 hours. A cured product was obtained. The Tg, bending elastic modulus, and bending strength of the cured product were measured.

比較例8
ビスフェノールF型エポキシ樹脂(YD−170)に、リカシッドMH−700を当量比が0.9となるように加えて均一に混合した後、120℃、1時間、次いで150℃、3時間加熱硬化させ、硬化物を得た。硬化物のTg、曲げ弾性率、曲げ強度を測定した。
Comparative Example 8
Ricacid MH-700 was added to bisphenol F-type epoxy resin (YD-170) so that the equivalent ratio was 0.9 and mixed uniformly, and then heat-cured at 120 ° C. for 1 hour, then at 150 ° C. for 3 hours. A cured product was obtained. The Tg, bending elastic modulus, and bending strength of the cured product were measured.

比較例9
フェノールノボラック型エポキシ樹脂(YDPN−638)に、リカシッドMH−700を当量比が0.9となるように加えて均一に混合した後、120℃、1時間、次いで150℃、3時間加熱硬化させ、硬化物を得た。硬化物のTg、曲げ弾性率、曲げ強度を測定した。
Comparative Example 9
To the phenol novolac type epoxy resin (YDPN-638), Ricacid MH-700 was added so as to have an equivalent ratio of 0.9 and mixed uniformly, and then heat-cured at 120 ° C. for 1 hour, then at 150 ° C. for 3 hours. A cured product was obtained. The Tg, bending elastic modulus, and bending strength of the cured product were measured.

比較例7〜9で使用したエポキシ樹脂の25℃及び50℃における粘度及び硬化物の物性測定値を表3に示す。   Table 3 shows the viscosity of the epoxy resins used in Comparative Examples 7 to 9 at 25 ° C. and 50 ° C. and the measured physical properties of the cured products.

Figure 0005478603
Figure 0005478603

実施例6〜8
ビスフェノールA型エポキシ樹脂(YD−128)100重量部に対し、合成例1で得たDEpEB及び合成例2で得たTEpEBを、DEpEB=0重量部及びTEpEB=50重量部、DEpEB=25重量部及びTEpEB=25重量部、DEpEB=40重量部及びTEpEB=10重量部の割合でそれぞれ混合しエポキシ樹脂組成物を得た。B型粘度計にて、25℃及び50℃における樹脂組成物の粘度を測定した。エポキシ樹脂組成物に、リカシッドMH−700を当量比が0.9となるように加えて均一に混合した後、120℃、1時間、次いで150℃、3時間加熱硬化させ、硬化物を得た。硬化物のTg、曲げ弾性率、曲げ強度を測定した。結果を表4に示す。
Examples 6-8
DEpEB obtained in Synthesis Example 1 and TEpEB obtained in Synthesis Example 2 were added to 100 parts by weight of a bisphenol A type epoxy resin (YD-128). And TEpEB = 25 parts by weight, DEpEB = 40 parts by weight, and TEpEB = 10 parts by weight, respectively, to obtain an epoxy resin composition. The viscosity of the resin composition at 25 ° C. and 50 ° C. was measured with a B-type viscometer. After adding Ricacid MH-700 to the epoxy resin composition so that the equivalent ratio was 0.9 and mixing it uniformly, it was heat-cured at 120 ° C. for 1 hour, then at 150 ° C. for 3 hours to obtain a cured product. . The Tg, bending elastic modulus, and bending strength of the cured product were measured. The results are shown in Table 4.

Figure 0005478603
Figure 0005478603

参考例
フェニルグリシジルエーテル、ブチルグリシジルエーテル、DEpEB及びTEpBの加水分解性塩素濃度を表5に示す。
Reference Example Table 5 shows hydrolyzable chlorine concentrations of phenyl glycidyl ether, butyl glycidyl ether, DEpEB and TEpB.

Figure 0005478603
Figure 0005478603

加水分解性塩素含量は、以下の方法で分析した。すなわち、試料約1gを100mLすりあわせ三角フラスコにとり、1mgの単位まで正確に秤量する。ジオキサン30mLを加え、超音波洗浄器を用いて完全に溶かした。1N水酸化カリウム・エタノール溶液5mLを正しく加えよく振り混ぜた後、沸騰石を加え冷却管を取り付けた。約180℃に加熱し還流した。還流時間は沸騰が始まってから正しく30分間とした。室温まで冷却した後、冷却管をメタノール5mLで洗浄し、洗液は試料液に加えた。三角フラスコを冷却管から取りはずし、試料液は200mLビーカーに移し入れた。80%アセトン水50mLで3回に分けてフラスコ内を洗浄し、洗液を試料液に加えた。N/400塩化ナトリウム溶液5mLを正しく加え、回転子を入れた。酢酸3mLを加え、2分間攪拌した後、N/100硝酸銀溶液を用いて以下の条件で電位差滴定を行った。以上と同一操作により、空試験を行った。
次式により、加水分解性塩素濃度を求めた。
加水分解性塩素(%)=F×(V−B)×0.0355/S
F;N/100硝酸銀溶液のファクター
V;試料の滴定に要したN/100硝酸銀溶液の量
B;空試験の滴定に要したN/100硝酸銀溶液の量
S;試料量(g)
The hydrolyzable chlorine content was analyzed by the following method. That is, about 1 g of a sample is put in a 100 mL Erlenmeyer flask and accurately weighed to a unit of 1 mg. 30 mL of dioxane was added and dissolved completely using an ultrasonic cleaner. After correctly adding 5 mL of 1N potassium hydroxide / ethanol solution and shaking well, boiling stones were added and a condenser tube was attached. The mixture was heated to about 180 ° C. and refluxed. The reflux time was correctly set to 30 minutes after boiling started. After cooling to room temperature, the cooling tube was washed with 5 mL of methanol, and the washing solution was added to the sample solution. The Erlenmeyer flask was removed from the condenser, and the sample solution was transferred to a 200 mL beaker. The inside of the flask was washed three times with 50 mL of 80% acetone water, and the washing solution was added to the sample solution. 5 mL of N / 400 sodium chloride solution was added correctly and a rotator was added. After adding 3 mL of acetic acid and stirring for 2 minutes, potentiometric titration was performed using the N / 100 silver nitrate solution under the following conditions. A blank test was performed by the same operation as above.
The hydrolyzable chlorine concentration was determined by the following formula.
Hydrolyzable chlorine (%) = F × (V−B) × 0.0355 / S
F; Factor V of N / 100 silver nitrate solution; Amount of N / 100 silver nitrate solution required for titration of sample B; Amount of N / 100 silver nitrate solution required for titration of blank test S; Amount of sample (g)

産業上の利用の可能性Industrial applicability

本発明のエポキシ樹脂組成物は、低粘度で作業性に優れ、それを硬化して得られるエポキシ樹脂硬化物は、耐熱性、機械特性に優れる。   The epoxy resin composition of the present invention has low viscosity and excellent workability, and the cured epoxy resin obtained by curing it has excellent heat resistance and mechanical properties.

Claims (2)

25℃での粘度が1000mPa・s以上であるエポキシ樹脂と、下式(1)で表されるエポキシ化合物とを含み、前記エポキシ化合物の含有量が前記エポキシ樹脂100重量部に対し1重量部以上90重量部以下であることを特徴とするエポキシ樹脂組成物。
Figure 0005478603
式中、Gはエポキシ基、Rは水素又はアルキル基、nは2〜4の整数を表す。
An epoxy resin having a viscosity at 25 ° C. of 1000 mPa · s or more and an epoxy compound represented by the following formula (1), wherein the content of the epoxy compound is 1 part by weight or more with respect to 100 parts by weight of the epoxy resin An epoxy resin composition characterized by being 90 parts by weight or less.
Figure 0005478603
In the formula, G represents an epoxy group, R represents hydrogen or an alkyl group, and n represents an integer of 2 to 4.
請求項1に記載のエポキシ樹脂組成物に、硬化剤を配合し、硬化させてなることを特徴とするエポキシ樹脂硬化物。   A cured epoxy resin obtained by blending and curing a curing agent in the epoxy resin composition according to claim 1.
JP2011502760A 2009-03-05 2010-03-02 Epoxy resin composition Active JP5478603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011502760A JP5478603B2 (en) 2009-03-05 2010-03-02 Epoxy resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009051846 2009-03-05
JP2009051846 2009-03-05
JP2011502760A JP5478603B2 (en) 2009-03-05 2010-03-02 Epoxy resin composition
PCT/JP2010/053327 WO2010101144A1 (en) 2009-03-05 2010-03-02 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPWO2010101144A1 JPWO2010101144A1 (en) 2012-09-10
JP5478603B2 true JP5478603B2 (en) 2014-04-23

Family

ID=42709701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011502760A Active JP5478603B2 (en) 2009-03-05 2010-03-02 Epoxy resin composition

Country Status (4)

Country Link
JP (1) JP5478603B2 (en)
KR (1) KR101616898B1 (en)
CN (1) CN102341426B (en)
WO (1) WO2010101144A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120114295A (en) * 2009-12-09 2012-10-16 다우 글로벌 테크놀로지스 엘엘씨 Epoxy resin compositions
KR20130039330A (en) * 2010-06-28 2013-04-19 다우 글로벌 테크놀로지스 엘엘씨 Curable resin compositions
JP5676008B2 (en) * 2010-11-22 2015-02-25 ダウ グローバル テクノロジーズ エルエルシー Epoxy resin containing adduct of DVBDO as toughening agent
US8716502B2 (en) * 2010-12-17 2014-05-06 Dow Global Technologies Llc Process for preparing divinylarene oxides
EP2707411B1 (en) * 2011-05-13 2015-09-30 Dow Global Technologies LLC Insulation formulations
JP2015502955A (en) 2011-12-07 2015-01-29 ダウ グローバル テクノロジーズ エルエルシー Method for recovering divinylarene dioxide
JP7489775B2 (en) * 2019-12-27 2024-05-24 太陽ホールディングス株式会社 Curable resin composition, dry film, resin-coated copper foil, cured product, and electronic component

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB875017A (en) * 1957-02-14 1961-08-16 Geigy Ag J R Improvements relating to the stabilisation of halogen-containing macromolecular compounds and resulting stable products
EP0878471A1 (en) * 1997-05-16 1998-11-18 National Starch and Chemical Investment Holding Corporation Reactive radiation- or thermally-initiated cationically-curable epoxide monomers and compositions made from those monomers
JPH1171364A (en) * 1997-05-16 1999-03-16 Natl Starch & Chem Investment Holding Corp Reactive radiation-or thermally-initiated cationically curable epoxide monomers and composition produced from the monomers
JP2003176333A (en) * 2001-08-23 2003-06-24 General Electric Co <Ge> Epoxy resin composition, solid element device encapsulated therewith and encapsulating method
JP2004277697A (en) * 2002-10-07 2004-10-07 General Electric Co <Ge> Epoxy resin composition, solid element encapsulated with this composition, and method
JP2008528769A (en) * 2005-06-30 2008-07-31 ゼネラル・エレクトリック・カンパニイ Molding composition, molding method and molded article
JP2008545869A (en) * 2005-06-07 2008-12-18 モーメンティブ・パフォーマンス・マテリアルズ・インク B-stageable film, electronic equipment and related processes
WO2009119513A1 (en) * 2008-03-27 2009-10-01 新日鐵化学株式会社 Epoxy resin composition and cured product
WO2010113784A1 (en) * 2009-03-31 2010-10-07 新日鐵化学株式会社 Epoxy resin, epoxy resin composition, and cured object

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603182A (en) * 1984-10-05 1986-07-29 General Electric Company Low viscosity epoxy resin compositions
JP3415047B2 (en) 1998-11-18 2003-06-09 ジャパンエポキシレジン株式会社 Curable epoxy resin composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB875017A (en) * 1957-02-14 1961-08-16 Geigy Ag J R Improvements relating to the stabilisation of halogen-containing macromolecular compounds and resulting stable products
EP0878471A1 (en) * 1997-05-16 1998-11-18 National Starch and Chemical Investment Holding Corporation Reactive radiation- or thermally-initiated cationically-curable epoxide monomers and compositions made from those monomers
JPH1171364A (en) * 1997-05-16 1999-03-16 Natl Starch & Chem Investment Holding Corp Reactive radiation-or thermally-initiated cationically curable epoxide monomers and composition produced from the monomers
US5962547A (en) * 1997-05-16 1999-10-05 Nikolic; Nikola A. Reactive radiation- or thermally-initiated cationically-curable epoxide monomers and compositions made from those monomers
JP2003176333A (en) * 2001-08-23 2003-06-24 General Electric Co <Ge> Epoxy resin composition, solid element device encapsulated therewith and encapsulating method
JP2004277697A (en) * 2002-10-07 2004-10-07 General Electric Co <Ge> Epoxy resin composition, solid element encapsulated with this composition, and method
JP2008545869A (en) * 2005-06-07 2008-12-18 モーメンティブ・パフォーマンス・マテリアルズ・インク B-stageable film, electronic equipment and related processes
JP2008528769A (en) * 2005-06-30 2008-07-31 ゼネラル・エレクトリック・カンパニイ Molding composition, molding method and molded article
WO2009119513A1 (en) * 2008-03-27 2009-10-01 新日鐵化学株式会社 Epoxy resin composition and cured product
WO2010113784A1 (en) * 2009-03-31 2010-10-07 新日鐵化学株式会社 Epoxy resin, epoxy resin composition, and cured object

Also Published As

Publication number Publication date
CN102341426B (en) 2013-07-24
WO2010101144A1 (en) 2010-09-10
KR20110139242A (en) 2011-12-28
CN102341426A (en) 2012-02-01
KR101616898B1 (en) 2016-04-29
JPWO2010101144A1 (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5478603B2 (en) Epoxy resin composition
TWI440631B (en) Method for manufacturing aliphatic diepoxy compound, method for manufacture epoxy resin composition and method for manufacture cured material
US4789711A (en) Multifunctional epoxide resins
JP5143449B2 (en) Thermal or active energy ray curable adhesive
KR101144420B1 (en) High-purity alicyclic epoxy compound, process for producing the same, curable epoxy resin composition, cured article thereof, and use
KR101716634B1 (en) Epoxy resin, epoxy resin composition, and cured object
JPS63221121A (en) Epoxy resin
JP5973401B2 (en) Glycidyl glycolurils and their use
JP5826751B2 (en) Epoxy resin composition and cured product
KR20090042306A (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
JPH0832696B2 (en) 2,6-Disubstituted 4-epoxypropylphenylglycidyl ether and method for producing the same
JP2013139527A (en) Isocyanurate compound
KR910004902B1 (en) Phenol ethers containing epoxide groups
JP2009209117A (en) Epoxy compound, method for producing the same, epoxy resin composition and cured product thereof
EP1538147B1 (en) Method of producing glycidyl 2-hydroxyisobutyrate
JP4743824B2 (en) Liquid epoxy resin, epoxy resin composition and cured product thereof
JP4390179B2 (en) Method for producing modified epoxy resin
JP2006206652A (en) Epoxy resin composition and its cured product
JP7576680B1 (en) Epoxy compounds and their uses
JP4930967B2 (en) Unsaturated group-containing compound and composition thereof
JP5529707B2 (en) Isocyanurate compounds
JP5249549B2 (en) Monofunctional fluorene skeleton-containing epoxy compound and method for producing the same
JPS6372721A (en) Epoxy resin composition
JPH02199115A (en) Sealing agent
JP2009062431A (en) Epoxy resin, epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5478603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250