JP5477617B2 - Organic-inorganic hybrid composite material and method for producing the same - Google Patents
Organic-inorganic hybrid composite material and method for producing the same Download PDFInfo
- Publication number
- JP5477617B2 JP5477617B2 JP2008520606A JP2008520606A JP5477617B2 JP 5477617 B2 JP5477617 B2 JP 5477617B2 JP 2008520606 A JP2008520606 A JP 2008520606A JP 2008520606 A JP2008520606 A JP 2008520606A JP 5477617 B2 JP5477617 B2 JP 5477617B2
- Authority
- JP
- Japan
- Prior art keywords
- organic
- inorganic hybrid
- composite material
- hybrid composite
- beads
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000011324 bead Substances 0.000 claims description 42
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 150000003839 salts Chemical class 0.000 claims description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 16
- 239000003446 ligand Substances 0.000 claims description 16
- 239000010949 copper Substances 0.000 claims description 14
- 239000010410 layer Substances 0.000 claims description 14
- 239000003054 catalyst Substances 0.000 claims description 13
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 claims description 10
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 claims description 10
- 125000000524 functional group Chemical group 0.000 claims description 10
- 239000002344 surface layer Substances 0.000 claims description 10
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 claims description 6
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 claims description 5
- MWVTWFVJZLCBMC-UHFFFAOYSA-N 4,4'-bipyridine Chemical compound C1=NC=CC(C=2C=CN=CC=2)=C1 MWVTWFVJZLCBMC-UHFFFAOYSA-N 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- -1 paraxylenediamine Chemical compound 0.000 claims description 5
- XYFCBTPGUUZFHI-UHFFFAOYSA-N phosphine group Chemical group P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 5
- 125000003277 amino group Chemical group 0.000 claims description 4
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 238000004132 cross linking Methods 0.000 claims 2
- FTTATHOUSOIFOQ-UHFFFAOYSA-N 1,2,3,4,6,7,8,8a-octahydropyrrolo[1,2-a]pyrazine Chemical compound C1NCCN2CCCC21 FTTATHOUSOIFOQ-UHFFFAOYSA-N 0.000 claims 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000004985 diamines Chemical class 0.000 description 4
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000012973 diazabicyclooctane Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000007885 magnetic separation Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000007036 catalytic synthesis reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/1616—Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/70—Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/10—Complexes comprising metals of Group I (IA or IB) as the central metal
- B01J2531/16—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/845—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/847—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/1691—Coordination polymers, e.g. metal-organic frameworks [MOF]
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Compounds Of Iron (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は、有機−無機ハイブリッド複合材料及びその製造方法に関する。 The present invention relates to an organic-inorganic hybrid composite material and a method for producing the same.
触媒的合成は少量の添加剤で反応を促進させることができることから経済的にも環境的にも有用である。より高い収率を促す触媒を合成することは、有機合成上重要な課題である。さらに、高価な触媒の回収と再利用を可能にする技術は、21世紀の環境調和型合成プロセスを確立するために極めて重要である。 Catalytic synthesis is economically and environmentally useful because the reaction can be accelerated with a small amount of additives. Synthesizing catalysts that promote higher yields is an important issue in organic synthesis. In addition, technologies that enable the recovery and reuse of expensive catalysts are extremely important to establish a 21st century environmentally conscious synthesis process.
より高い収率を促す触媒に関する技術の一つとして、例えば下記非特許文献1に、有機−無機ハイブリッド複合材料を用いた触媒に関する技術が記載されている。この文献には、α−ヒドロキシケトンの合成において触媒として用いることが記載されている。 As one of technologies related to a catalyst that promotes a higher yield, for example, the following Non-Patent Document 1 describes a technology related to a catalyst using an organic-inorganic hybrid composite material. This document describes the use as a catalyst in the synthesis of α-hydroxy ketones.
{[Cu(bpy)(BF4)2(H2O)2](bpy)}nからなる有機−無機ハイブリッドの構造に関して、例えば下記非特許文献2に、二次元シートが複数積み重なった構造が記載されている。またこの文献では、二次元シート1枚において、銅イオンに対し直接配位結合しているbpyと、水分子を介して水素結合しているbpyの2種類のbpyにより細孔(7.7×11.6Å2)が形成されていること、そしてその細孔は、隣接する二次元シート同士がずれて積み重なることで隠された状態となっていること、二次元シートの積み重なった複数の層のうち、偶数層、奇数層がそれぞれF−Hによる水素結合でつながっていること、が記載されている。{[Cu (bpy) (BF 4 ) 2 (H 2 O) 2 ] (bpy)} Regarding the structure of the organic-inorganic hybrid composed of n , for example, the following Non-Patent Document 2 has a structure in which a plurality of two-dimensional sheets are stacked. Have been described. Further, in this document, in one sheet of two-dimensional sheet, pores (7.7 ×) are formed by two kinds of bpy, bpy directly coordinated to copper ions and bpy hydrogen-bonded through water molecules. 11.6Å 2 ) is formed, and the pores are concealed by shifting and stacking adjacent two-dimensional sheets, and two or more layers of two-dimensional sheets are stacked. Among them, it is described that even-numbered layers and odd-numbered layers are connected by hydrogen bonds by FH.
確かに、上記非特許文献1に記載の技術は、α−ヒドロキシケトンの合成において有用である。しかしながら触媒として用いた場合の収率についてはいまだ課題を残している。上記非特許文献2において同様である。 Certainly, the technique described in Non-Patent Document 1 is useful in the synthesis of α-hydroxyketone. However, there are still problems with the yield when used as a catalyst. The same applies to Non-Patent Document 2.
そこで、本発明は、上記課題を解決し新規でより有用な有機−無機ハイブリッド複合材料を提供することを目的とする。 Accordingly, an object of the present invention is to solve the above problems and provide a new and more useful organic-inorganic hybrid composite material.
上記課題に対し、本発明者らは鋭意検討を行ったところ、アミノ基末端を表層に有するビーズに金属塩と架橋型配位子とを作用させて有用な有機−無機ハイブリッド複合材料を製造することができることに想到し、本発明を完成させるに至った。 As a result of diligent studies, the present inventors have produced a useful organic-inorganic hybrid composite material by allowing a metal salt and a bridging ligand to act on beads having amino group ends on the surface layer. The present invention has been completed.
即ち、本発明の一手段に係る有機−無機ハイブリッド複合材料の製造方法は、配位官能基を表層に有するビーズに金属塩と架橋型配位子とを作用させる。ここで「配位官能基」とは、金属塩に配位する官能基を意味する。またここで「架橋型配位子」とは、複数の金属イオンを橋渡す様に配位する配位子を意味する。またここで「作用させる」とは、ビーズ上で金属とジアミンとを自己組織化させて有機−無機ハイブリッド層を形成させることを意味する。 That is, in the method for producing an organic-inorganic hybrid composite material according to one means of the present invention, a metal salt and a bridging ligand are allowed to act on beads having a coordination functional group on the surface layer. Here, the “coordinating functional group” means a functional group that coordinates to a metal salt. Here, the “bridged ligand” means a ligand that coordinates so as to bridge a plurality of metal ions. Here, “act” means that a metal and a diamine are self-assembled on a bead to form an organic-inorganic hybrid layer.
なお本手段において、限定されるわけではないが、ビーズは磁気ビーズであることが好ましい。これにより、例えば有機合成反応に用いた場合、磁石等の磁力を用いて容易に回収することができるようになる。 In this means, although not limited, the beads are preferably magnetic beads. Thereby, for example, when used in an organic synthesis reaction, it can be easily recovered using a magnetic force such as a magnet.
また本手段に係る有機−無機ハイブリッド複合材料は、限定されるわけではないが、触媒として優れた効果を有する。 The organic-inorganic hybrid composite material according to the present means is not limited, but has an excellent effect as a catalyst.
また本手段において、限定されるわけではないが、配位官能基としては、アミノ基、ヒドロキシル基、ホスフィン、カルボキシル基の少なくともいずれかであることが好ましい。 In this means, although not limited, the coordination functional group is preferably at least one of an amino group, a hydroxyl group, a phosphine, and a carboxyl group.
また本手段において、限定されるわけではないが、金属塩は銅、コバルト、及びニッケルの少なくともいずれかの金属の塩であることが好ましく、Cu(BF4)2、Cu(OTf)2、Co(BF4)2、Co(OTf)2、Ni(BF4)2、及びNi(OTf)2の少なくともいずれかであることがより好ましい。In this means, the metal salt is preferably a salt of at least one of copper, cobalt and nickel, although not limited thereto, Cu (BF 4 ) 2 , Cu (OTf) 2 , Co More preferably, it is at least one of (BF 4 ) 2 , Co (OTf) 2 , Ni (BF 4 ) 2 , and Ni (OTf) 2 .
また本手段において、限定されるわけではないが、架橋型配位子は4,4’−ビピリジン、ピラジン、パラキシレンジアミン、パラフェニレンジアミン、DABCO、及びピペラジンの少なくともいずれかであることが好ましい。 Moreover, in this means, although not limited, it is preferable that the bridging ligand is at least one of 4,4'-bipyridine, pyrazine, paraxylenediamine, paraphenylenediamine, DABCO, and piperazine.
また上記課題を解決する他の一手段に係る有機−無機ハイブリッド複合材料は、有機−無機ハイブリッド層を表層に有するビーズを含んだものである。 An organic-inorganic hybrid composite material according to another means for solving the above problems includes beads having an organic-inorganic hybrid layer as a surface layer.
また本手段において、限定されるわけではないが、ビーズは磁気ビーズであることが好ましい。 Moreover, in this means, although it is not necessarily limited, it is preferable that a bead is a magnetic bead.
また、本手段において、限定されるわけではないが、有機−無機ハイブリッド層は、金属に架橋型配位子が配位結合したものであることが好ましく、金属としては銅、コバルト、及びニッケルの少なくともいずれかの金属であることがより好ましく、架橋型配位子は、ジアミンは4,4’−ビピリジン、ピラジン、パラキシレンジアミン、パラフェニレンジアミン、DABCO、及びピペラジンの少なくともいずれかであることが好ましい。 Moreover, in this means, although not necessarily limited, the organic-inorganic hybrid layer is preferably one in which a bridging ligand is coordinated to a metal, and the metal includes copper, cobalt, and nickel. More preferably, at least one of the metals is used, and the bridging ligand is such that the diamine is at least one of 4,4′-bipyridine, pyrazine, paraxylenediamine, paraphenylenediamine, DABCO, and piperazine. preferable.
以上本発明によると新規でより有用な有機−無機ハイブリッド複合材料を提供することができる。 As described above, according to the present invention, a novel and more useful organic-inorganic hybrid composite material can be provided.
以下、本発明の実施の形態について、詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例に狭く限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention can be implemented in many different forms, and is not limited to the following embodiments and examples.
図1は、本実施形態に係る有機−無機ハイブリッド複合材料の一例についての概念図である。本実施形態に係る有機−無機ハイブリッド複合材料は、配位官能基を表層に有するビーズに金属塩と架橋型配位子とを作用させて製造する。 FIG. 1 is a conceptual diagram of an example of an organic-inorganic hybrid composite material according to this embodiment. The organic-inorganic hybrid composite material according to the present embodiment is produced by allowing a metal salt and a bridging ligand to act on beads having a coordination functional group on the surface layer.
本実施形態において用いられるビーズの表面は配位官能基を有するものであるが、配位官能基としては、ヘテロ原子である限りにおいて限定されず、例えば、アミノ基末端、ヒドロキシル基末端、ホスフィン、カルボキシル基末端の少なくともいずれかを好適に用いることができる。 The surface of the bead used in the present embodiment has a coordination functional group, but the coordination functional group is not limited as long as it is a hetero atom, and for example, an amino group terminal, a hydroxyl group terminal, a phosphine, At least one of the carboxyl group terminals can be suitably used.
また、本実施形態において用いられる架橋型配位子は上記のとおりであり、限定されるわけではないが、より具体的には4,4’−ビピリジン、ピラジン、パラキシレンジアミン、パラフェニレンジアミン、DABCO、及びピペラジンの少なくともいずれかであることがより好ましい。また架橋型配位子の量としては、限定されるわけではないが、上記の金属塩の使用量に対し、1等量以上10等量以下の範囲内にあることが好ましく、2等量以上5等量以下の範囲内にあることがより好ましい。 In addition, the bridging ligand used in the present embodiment is as described above and is not limited. More specifically, 4,4′-bipyridine, pyrazine, paraxylenediamine, paraphenylenediamine, More preferably, it is at least one of DABCO and piperazine. The amount of the bridging ligand is not limited, but is preferably in the range of 1 to 10 equivalents relative to the amount of the metal salt used, and preferably 2 or more equivalents. More preferably, it is in the range of 5 equivalents or less.
また、本実施形態に係る有機−無機ハイブリッド複合材料は、反応等において用いられた後、回収する等の観点から、ビーズとしては希土類磁石や酸化鉄等磁気を帯びたビーズであることも好ましい。また、本実施形態に係るビーズの形状としては、特に限定はされないが、球状、棒状もしくは板状であることが好ましい。更に、この大きさとしては特に限定されるわけではないが、例えば球状の場合、直径として8nm以上300nm以下の範囲内にあることが安定性と分散性の観点から好ましく、80nm以上200nm以下の範囲内にあることがより好ましい。 In addition, the organic-inorganic hybrid composite material according to the present embodiment is preferably a magnetic bead such as a rare earth magnet or iron oxide from the viewpoint of recovery after being used in a reaction or the like. The shape of the beads according to this embodiment is not particularly limited, but is preferably spherical, rod-shaped or plate-shaped. Further, the size is not particularly limited. For example, in the case of a spherical shape, the diameter is preferably in the range of 8 nm to 300 nm from the viewpoint of stability and dispersibility, and in the range of 80 nm to 200 nm. More preferably, it is within.
また、本実施形態において用いられる金属塩としては、限定されるわけではないが、銅、コバルト、及びニッケルの少なくともいずれかの金属の塩であることが好ましく、更にはCu(BF4)2、Cu(OTf)2、Co(BF4)2、Co(OTf)2、Ni(BF4)2、及びNi(OTf)2の少なくともいずれかであることがより好ましい。またこの金属塩としては、限定されるわけではないが、上記のビーズ上の配位官能基の含量に対して5等量以上100等量以下であることが好ましく、10等量以上20等量重量部以下であることがより好ましい。In addition, the metal salt used in the present embodiment is not limited, but is preferably a metal salt of at least one of copper, cobalt, and nickel, and more preferably Cu (BF 4 ) 2 , More preferably, it is at least one of Cu (OTf) 2 , Co (BF 4 ) 2 , Co (OTf) 2 , Ni (BF 4 ) 2 , and Ni (OTf) 2 . Further, the metal salt is not limited, but is preferably 5 equivalents or more and 100 equivalents or less, preferably 10 equivalents or more and 20 equivalents or less with respect to the content of the coordination functional group on the beads. It is more preferable that the amount is not more than parts by weight.
また配位官能基を表層に有するビーズに金属塩と架橋型配位子とを作用させる工程としては、限定されるわけではないが、ビーズを含んだ水溶液に架橋型配位子のメタノール溶液、金属塩の水溶液の順に加えることにより行うことができる。 The step of allowing the metal salt and the bridged ligand to act on the beads having a coordination functional group on the surface layer is not limited, but a methanol solution of the bridged ligand in an aqueous solution containing beads, It can carry out by adding in order of the aqueous solution of a metal salt.
また本工程において、限定されるわけではないが、温度としては0℃以上50℃以下であることが好ましく、例えば室温近傍でも十分作用させることができる。 In this step, although not limited, the temperature is preferably 0 ° C. or more and 50 ° C. or less. For example, sufficient action can be obtained even in the vicinity of room temperature.
またこの工程において作用させる時間は、限定されるわけではないが、例えば8時間以上24時間以下の範囲で行うことが好ましい。 In addition, the time for acting in this step is not limited, but it is preferably performed in the range of 8 hours to 24 hours, for example.
以上により、本実施形態に係る方法により、有機−無機ハイブリッド複合材料を得ることができる。 As described above, the organic-inorganic hybrid composite material can be obtained by the method according to the present embodiment.
本実施形態に係る有機−無機ハイブリッド複合材料は、図1の例で示すように、ビーズ表層に有機−無機ハイブリッド層を有していると考えることができる。ビーズ表面を有機−無機ハイブリッド層が覆うことで、ポリマー活性表面を増大させることができる。しかも活性部位が外に開いた形となっており、より高い触媒活性を得ることができる。また特に、ビーズが磁気ビーズであれば、触媒として反応に用いた場合、磁力により容易に回収することができるようになるという利点がある。 The organic-inorganic hybrid composite material according to this embodiment can be considered to have an organic-inorganic hybrid layer on the bead surface layer as shown in the example of FIG. By covering the bead surface with an organic-inorganic hybrid layer, the polymer active surface can be increased. In addition, the active site is open to the outside, and higher catalytic activity can be obtained. In particular, if the beads are magnetic beads, there is an advantage that they can be easily recovered by magnetic force when used as a catalyst in the reaction.
本有機−無機ハイブリッド複合材料は、触媒として用いた場合、様々な反応に用いることができる。限定されるわけではないが、例えばシリルエノラートを基質に用いるα−ヒドロキシケトンの合成など有機合成上重要な反応に好適に用いることができとくに有用である。 The organic-inorganic hybrid composite material can be used for various reactions when used as a catalyst. Although not limited, it is particularly useful because it can be suitably used for reactions important in organic synthesis such as synthesis of α-hydroxy ketones using silyl enolate as a substrate.
以上、本実施形態によると新規でより有用な有機−無機ハイブリッド複合材料を提供することができる。 As described above, according to this embodiment, a new and more useful organic-inorganic hybrid composite material can be provided.
以下、上記実施形態に係る有機−無機ハイブリッド複合材料を実際に作製し、その効果について確認を行った。以下具体的に示すが、もちろん下記実施例に限定されるものではない。 Hereinafter, the organic-inorganic hybrid composite material according to the above embodiment was actually produced, and the effect was confirmed. Although it shows concretely below, of course, it is not limited to the following Example.
(実施例1)
本実施例ではビーズとして、直径約200nmの形状の酸化鉄からなる磁気ビーズ(Ademtech社製、Magnetic Beads)を300μl準備した。Example 1
In this example, 300 μl of magnetic beads (Magnetic Beads made by Ademtech) made of iron oxide having a diameter of about 200 nm were prepared as beads.
次に、金属塩として、Cu(BF4)2を0.94mg、ジアミンとして4,4’−ビピリジンを1.2mg用意し、Cu(BF4)2を0.4mlの水に溶かし、4,4’−ビピリジンを0.75mlのメタノールに溶かし、磁気ビーズにジアミン、金属塩の順に作用させた。Next, 0.94 mg of Cu (BF 4 ) 2 as a metal salt and 1.2 mg of 4,4′-bipyridine as a diamine are prepared, and Cu (BF 4 ) 2 is dissolved in 0.4 ml of water. 4′-bipyridine was dissolved in 0.75 ml of methanol, and the magnetic beads were allowed to act in the order of diamine and metal salt.
そして穏やかに攪拌を8時間を行い、その後磁気分離することにより、表層に有機−無機ハイブリッド層で覆われた磁気ビーズを得た。なおこの結果得た作用後のビーズのFE−SEM写真を図2に示す。本FE−SEMの測定により、ビーズ表面に有機−無機ハイブリッド層が形成され、その一部が突起状の構造体を形成している様相が確認できる。また、比較のため、処理する前の磁気ビーズのSEM写真を図3に示す。なお図2、図3それぞれにおいて、左側は20万倍の写真であり、右側は5万倍の写真である。 The magnetic beads were gently stirred for 8 hours and then magnetically separated to obtain magnetic beads covered with an organic-inorganic hybrid layer on the surface layer. In addition, the FE-SEM photograph of the bead after the action obtained as a result is shown in FIG. By the measurement of this FE-SEM, it can be confirmed that an organic-inorganic hybrid layer is formed on the bead surface and a part thereof forms a projecting structure. For comparison, an SEM photograph of the magnetic beads before processing is shown in FIG. 2 and 3, the left side is a 200,000 times photograph, and the right side is a 50,000 times photograph.
この結果、有機−無機ハイブリッド層が形成されたビーズ(以下「有機−無機ハイブリッド複合材料」という。)を得ることができていることを確認した。 As a result, it was confirmed that beads having an organic-inorganic hybrid layer (hereinafter referred to as “organic-inorganic hybrid composite material”) could be obtained.
(触媒としての用途)
次に、得られた有機−無機ハイブリッド複合材料を用い、下記式(1)で示されるα−ヒドロキシケトンの触媒的合成反応を行った。具体的には、実施例1で調製した有機−無機ハイブリッド複合材料にエタノール1.5ml、2−Methyl−1−tetraloneのシリルエノラート9.1mgを加え、室温・酸素雰囲気下・7時間穏やかに攪拌した。トリエチルフォスファイト7μl加え、1.5時間シェイカーで攪拌した後、磁気分離して有機−無機ハイブリッド複合材料を取り除き、反応溶液を精製した。(Use as a catalyst)
Next, a catalytic synthesis reaction of α-hydroxyketone represented by the following formula (1) was performed using the obtained organic-inorganic hybrid composite material. Specifically, 1.5 ml of ethanol and 9.1 mg of 2-methyl-1-tetralone silyl enolate were added to the organic-inorganic hybrid composite material prepared in Example 1, and gently stirred at room temperature in an oxygen atmosphere for 7 hours. did. After adding 7 μl of triethyl phosphite and stirring with a shaker for 1.5 hours, the organic-inorganic hybrid composite material was removed by magnetic separation to purify the reaction solution.
この結果、目的のα−ヒドロキシケトンを6.5g得ることができ、その収率は94%であった。また、本実施例におけるビーズは磁気分離により回収した。なおこのビーズは洗浄後、同様の反応において繰り返し用いたが同様の収率を維持できることを確認した。 As a result, 6.5 g of the target α-hydroxyketone could be obtained, and the yield was 94%. Further, the beads in this example were recovered by magnetic separation. The beads were repeatedly used in the same reaction after washing, but it was confirmed that the same yield could be maintained.
(比較例1)
本比較例では、ビーズを用いずに有機−無機ハイブリッド複合材料を作製し、これを実施例1における有機−無機ハイブリッド層の量と同様の量用いて実施例1と同様の反応を行い、収率を確認した。(Comparative Example 1)
In this comparative example, an organic-inorganic hybrid composite material was prepared without using beads, and the same reaction as in Example 1 was performed using the same amount as the amount of the organic-inorganic hybrid layer in Example 1. The rate was confirmed.
この結果、収率は85%であり、ビーズを用いた有機−無機ハイブリッド複合材料の場合よりも低収率であることが確認できた。また、本有機−無機ハイブリッドは、遠心分離により回収できたが、その操作は極めて煩雑であり完全な回収には至らなかった。 As a result, the yield was 85%, and it was confirmed that the yield was lower than that of the organic-inorganic hybrid composite material using beads. Further, the organic-inorganic hybrid could be recovered by centrifugation, but the operation was extremely complicated and did not lead to complete recovery.
以上、本実施例により、本有機−無機ハイブリッド複合材料が有用であることを確認できた。 As described above, according to this example, it was confirmed that the present organic-inorganic hybrid composite material was useful.
本実施例によって、磁気分離による触媒の回収と再利用が著しく簡便になるであることが確認できた。 According to this example, it was confirmed that the recovery and reuse of the catalyst by magnetic separation was remarkably simplified.
本発明に係る有機−無機ハイブリッド複合材料は、例えば触媒として産業上利用可能性があり、またガス吸着やナノコンタクトの制御法としても応用も考えることができ、有用である。 The organic-inorganic hybrid composite material according to the present invention is useful because it can be industrially used as, for example, a catalyst, and can be considered as a gas adsorption or nanocontact control method.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008520606A JP5477617B2 (en) | 2006-06-07 | 2007-06-06 | Organic-inorganic hybrid composite material and method for producing the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006158373 | 2006-06-07 | ||
JP2006158373 | 2006-06-07 | ||
JP2008520606A JP5477617B2 (en) | 2006-06-07 | 2007-06-06 | Organic-inorganic hybrid composite material and method for producing the same |
PCT/JP2007/061465 WO2007142269A1 (en) | 2006-06-07 | 2007-06-06 | Organic-inorganic hybrid composite material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2007142269A1 JPWO2007142269A1 (en) | 2009-10-29 |
JP5477617B2 true JP5477617B2 (en) | 2014-04-23 |
Family
ID=38801516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008520606A Expired - Fee Related JP5477617B2 (en) | 2006-06-07 | 2007-06-06 | Organic-inorganic hybrid composite material and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5477617B2 (en) |
WO (1) | WO2007142269A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003072247A1 (en) * | 2002-02-28 | 2003-09-04 | Far East Asia Corporation | Organometallic catalyst immobilized on magnetic nanoparticle and process for the production thereof |
-
2007
- 2007-06-06 WO PCT/JP2007/061465 patent/WO2007142269A1/en active Application Filing
- 2007-06-06 JP JP2008520606A patent/JP5477617B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003072247A1 (en) * | 2002-02-28 | 2003-09-04 | Far East Asia Corporation | Organometallic catalyst immobilized on magnetic nanoparticle and process for the production thereof |
Non-Patent Citations (3)
Title |
---|
JPN6012045582; Aiguo Hu et al.: 'Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydr' J. Am. Chem. Soc. vol.127, No.36, 2005, p.12486-12487 * |
JPN6012045583; Raed Abu-Reziq et al.: 'Metal Supported on Dendronized MagneticNanoparticles: Highly Selective Hydroformylation Catalysts' J. Am. Chem. Soc. vol.128, No.15, 200603, p.5279-5282 * |
JPN6012045584; Takayoshi Arai et al.: 'Catalytic Synthesis of alpha-Hydroxy Ketones Using Organic-Inorganic Hybrid Polymer' Chem. Lett. vol.34, No.12, 2005, p.1590-1591 * |
Also Published As
Publication number | Publication date |
---|---|
WO2007142269A1 (en) | 2007-12-13 |
JPWO2007142269A1 (en) | 2009-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chatterjee et al. | Enabling storage and utilization of low-carbon electricity: power to formic acid | |
Prabhu et al. | Metallenes as functional materials in electrocatalysis | |
Parmeggiani et al. | A step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on transition metals on solid supports | |
Jiao et al. | Metal–organic frameworks as platforms for catalytic applications | |
Wang et al. | Two-dimensional nonlayered materials for electrocatalysis | |
Liu et al. | Recent progress on single-atom catalysts for CO2 electroreduction | |
Esrafili et al. | Theoretical insights into hydrogenation of CO2 to formic acid over a single Co atom incorporated nitrogen-doped graphene: A DFT study | |
Dai et al. | Recent progresses in metal–organic frameworks based core–shell composites | |
Li et al. | Synthetic chemistry and multifunctionality of an amorphous Ni-MOF-74 shell on a Ni/SiO2 hollow catalyst for efficient tandem reactions | |
Broicher et al. | A bipyridine-based conjugated microporous polymer for the Ir-catalyzed dehydrogenation of formic acid | |
Wang et al. | Nanospace engineering of metal‐organic frameworks for heterogeneous catalysis | |
Gong et al. | Synthesis of a new type of immobilized chiral salen Mn (III) complex as effective catalysts for asymmetric epoxidation of unfunctionalized olefins | |
JP5838249B2 (en) | Method for producing a catalyst in which surface-modified metal nanoparticles are immobilized on a stationary phase on which a polymer electrolyte thin film is formed, and a method for producing hydrogen peroxide using the catalyst produced thereby | |
CN114075676B (en) | Quaternary high-entropy alloy nanomaterial, preparation method and application thereof | |
WO2005028408A1 (en) | Process for reduction of carbon dioxide with organometallic complex | |
Satpute et al. | Organic reactions in aqueous media catalyzed by nickel | |
Cano et al. | Heterolytic cleavage of dihydrogen (HCD) in metal nanoparticle catalysis | |
JP5044815B2 (en) | Method for producing metal complex | |
US9663434B1 (en) | Method for hydroformylating an olefin | |
Jin et al. | Imparting magnetic functionality to iron-based MIL-101 via facile Fe 3 O 4 nanoparticle encapsulation: an efficient and recoverable catalyst for aerobic oxidation | |
CN116235326A (en) | For direct electrochemical CO 2 Lewis/Bronsted acid/base and nickel phosphide binary catalyst system (cocatalyst) for reduction into hydrocarbon | |
CN107597192B (en) | Catalyst for hydroformylation reaction and hydroformylation reaction method | |
Abdelnaby et al. | Photo/electrochemical carbon dioxide conversion into C3+ hydrocarbons: reactivity and selectivity | |
Ahmed Malik et al. | A facile synthesis of CeO2 from the GO@ Ce-MOF precursor and its efficient performance in the oxygen evolution reaction | |
Deng et al. | Superfast hydrous-molten salt erosion to fabricate large-size self-supported electrodes for industrial-level current OER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120925 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131029 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131112 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20131112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5477617 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |