JP5477219B2 - Corrosion inhibitor used for acid cleaning of metal, cleaning liquid composition and metal cleaning method - Google Patents

Corrosion inhibitor used for acid cleaning of metal, cleaning liquid composition and metal cleaning method Download PDF

Info

Publication number
JP5477219B2
JP5477219B2 JP2010175889A JP2010175889A JP5477219B2 JP 5477219 B2 JP5477219 B2 JP 5477219B2 JP 2010175889 A JP2010175889 A JP 2010175889A JP 2010175889 A JP2010175889 A JP 2010175889A JP 5477219 B2 JP5477219 B2 JP 5477219B2
Authority
JP
Japan
Prior art keywords
acid
cleaning
metal
corrosion
corrosion inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010175889A
Other languages
Japanese (ja)
Other versions
JP2012036431A (en
Inventor
宏之 高山
泰仁 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP2010175889A priority Critical patent/JP5477219B2/en
Publication of JP2012036431A publication Critical patent/JP2012036431A/en
Application granted granted Critical
Publication of JP5477219B2 publication Critical patent/JP5477219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Detergent Compositions (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

本発明は、腐食抑制効果及びその安定性に優れた、金属の酸洗浄に用いる腐食抑制剤(以下、「酸洗浄用腐食抑制剤」ともいう)及びその用途に関する。   The present invention relates to a corrosion inhibitor used for acid cleaning of metals (hereinafter, also referred to as “corrosion inhibitor for acid cleaning”) and its use, which are excellent in corrosion inhibition effect and stability.

金属鋼板等の金属表面には、ミルスケールなどの黒色酸化物皮膜が付着している。そこで、最終製品の性能を向上させるためなどの目的で、金属鋼板等に防錆、めっきなどの処理をする際には、その前に酸化物皮膜を除去することにより、鋼板表面に防錆性を均一に付与したり、鋼板表面とめっき皮膜等との密着性を向上させたりすることが、広く行われている。   A black oxide film such as a mill scale adheres to a metal surface such as a metal steel plate. Therefore, when processing rust prevention, plating, etc. on a metal steel sheet for the purpose of improving the performance of the final product, etc., the oxide film is removed before that to prevent rust on the steel sheet surface. It is widely practiced to impart a uniform thickness or to improve the adhesion between the steel sheet surface and the plating film.

スケール、錆などの除去には、金属酸洗浄液(以下、「酸液」ともいう。)を用いる酸洗を行うのが一般的である。金属酸洗浄液としては、たとえば、硫酸、塩酸、硝酸などの無機酸、リン酸、スルファミン酸、フッ酸、シュウ酸、クエン酸、グリコール酸、蟻酸などの有機酸、エチレンジアミン四酢酸などのキレート剤、及びこれらの混合物などの水溶液等が挙げられる。金属酸洗浄液による酸洗においては、通常、スケール、錆などが金属表面に極めて強固に付着していることから、これらを完全に除去するためにはかなりの長時間を要する。また、酸洗を行うと、スケール、錆だけでなく金属素地をも溶解され腐食される。そこで、このような問題を解消するため、従来から、酸に添加する腐食抑制剤が用いられている。そのような腐食抑制剤としては、例えば、含窒素有機化合物が代表的である。   In order to remove scale, rust, etc., pickling using a metal pickling solution (hereinafter also referred to as “acid solution”) is generally performed. Examples of the metal acid cleaning liquid include inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, phosphoric acid, sulfamic acid, hydrofluoric acid, oxalic acid, citric acid, glycolic acid, organic acids such as formic acid, chelating agents such as ethylenediaminetetraacetic acid, And aqueous solutions of these and the like. In pickling with a metal pickling solution, scales, rust, etc. are usually very firmly attached to the metal surface, and therefore it takes a considerable amount of time to completely remove them. In addition, when pickling, not only the scale and rust, but also the metal substrate is dissolved and corroded. Therefore, in order to solve such problems, conventionally, a corrosion inhibitor added to an acid has been used. As such a corrosion inhibitor, for example, a nitrogen-containing organic compound is representative.

腐食抑制剤として使用される含窒素有機化合物として、4級アンモニウム塩が知られている(たとえば、特許文献1参照)。そのような4級アンモニウム塩としては、1−ビニル−3−エチルイミダゾリニウムブロミド、3−エチルベンゾチアゾリウムブロミド、エチルトリエタノールアンモニウムブロミドなどが用いられる。これらの4級アンモニウム塩に加え、4級アンモニウム塩以外の窒素含有有機化合物を併用することも知られ、たとえば、ヘキサメチレンテトラミンが使用される(特許文献1)。このような含窒素有機化合物は、酸洗速度を遅らせるという欠点を有する。したがって、これらの含窒素有機化合物を金属酸洗浄液に含有させると、酸洗時間がさらに長くなり、作業能率の低下が避けられない。その腐食抑制効果も充分満足できるとはいえない。
また、腐食抑制剤である含窒素有機化合物として、チオ尿素及びその誘導体が提案されている(たとえば、特許文献2参照)。しかしながら、チオ尿素及びその誘導体も4級アンモニウム塩と同様の欠点を有する。
A quaternary ammonium salt is known as a nitrogen-containing organic compound used as a corrosion inhibitor (see, for example, Patent Document 1). As such a quaternary ammonium salt, 1-vinyl-3-ethylimidazolinium bromide, 3-ethylbenzothiazolium bromide, ethyltriethanolammonium bromide, or the like is used. In addition to these quaternary ammonium salts, it is also known to use a nitrogen-containing organic compound other than the quaternary ammonium salts. For example, hexamethylenetetramine is used (Patent Document 1). Such nitrogen-containing organic compounds have the disadvantage of slowing the pickling rate. Therefore, when these nitrogen-containing organic compounds are contained in the metal acid cleaning solution, the pickling time is further increased, and a reduction in work efficiency is inevitable. It cannot be said that the corrosion inhibiting effect is sufficiently satisfactory.
Moreover, thiourea and its derivative are proposed as a nitrogen-containing organic compound which is a corrosion inhibitor (for example, refer patent document 2). However, thiourea and its derivatives have the same drawbacks as quaternary ammonium salts.

一方、腐食抑制剤である含窒素有機化合物として、4級アンモニウム塩置換ビニル化合物のホモポリマー、カチオン単位と二酸化硫黄単位とを有するポリアミン化合物などのカチオン系重合体(たとえば、特許文献3参照)などが知られている。このうちポリアミン化合物は、従来の含窒素有機化合物に比べて腐食抑制効果が高く、金属酸洗浄液の添加剤として有用である。しかしながら、最近では、酸洗の効率化のために酸洗時間を短縮化が図られており、そのために、金属酸洗浄液における酸含有量が増量されたりしている。そのため、腐食抑制効果のさらに強い腐食抑制剤の開発が求められている。
また、腐食抑制を効果的にするため、複数の金属腐食抑制剤を組み合わせて使用することも考えられるが、この場合、使用するにつれて各腐食剤の濃度比が変わり、腐食抑制効果に変化がおこりやすく、その結果、最終製品のバラツキにつながる可能性もあるという問題がある。
また、現在、使用されているカチオン単位と二酸化イオウ単位とを有する共重合体も、その濃度変化により、腐食抑制効果が変化する場合があり、これを用いた金属酸洗浄液の腐食抑制剤の濃度変化が経時的に起こるときには、最終製品のバラツキにつながる可能性もある、という問題がある。
On the other hand, as a nitrogen-containing organic compound that is a corrosion inhibitor, a quaternary ammonium salt-substituted vinyl compound homopolymer, a cationic polymer such as a polyamine compound having a cation unit and a sulfur dioxide unit (for example, see Patent Document 3), etc. It has been known. Of these, polyamine compounds have a higher corrosion-inhibiting effect than conventional nitrogen-containing organic compounds, and are useful as additives for metal acid cleaning solutions. However, recently, the pickling time has been shortened to improve the efficiency of pickling, and as a result, the acid content in the metal pickling solution has been increased. Therefore, development of a corrosion inhibitor having a stronger corrosion inhibition effect is demanded.
In order to effectively suppress corrosion, it is conceivable to use a plurality of metal corrosion inhibitors in combination, but in this case, the concentration ratio of each corrosive changes as it is used, and the corrosion inhibition effect changes. There is a problem that it may easily lead to variations in the final product.
In addition, the presently used copolymer having a cation unit and a sulfur dioxide unit may also change the corrosion inhibitory effect due to a change in the concentration thereof, and the concentration of the corrosion inhibitor in the metal acid cleaning solution using this copolymer. There is a problem that when changes occur over time, it may lead to variations in the final product.

特開昭61−037988号公報Japanese Patent Laid-Open No. 61-037988 特開平11−050280号公報Japanese Patent Laid-Open No. 11-050280 特開2000−96049号公報JP 2000-96049 A

上記の背景技術に鑑み、本発明者らは、金属表面を酸洗する際、腐食抑制効果が強く、しかも抑制剤濃度が変化しても腐食抑制効果の変化が小さい金属の酸洗浄用腐食抑制剤の開発を試みた。その結果、意外にも、ポリアルキレンポリアミンの特定のアシル化誘導体を用いるとその課題を達成できることを見出した。すなわち、本発明の目的は、金属表面を酸洗する際、腐食抑制効果が強く、抑制剤濃度が変化しても腐食抑制率の変化が小さい金属の酸洗浄用腐食抑制剤を提供することである。   In view of the above background art, the present inventors, when pickling a metal surface, have a strong corrosion inhibitory effect, and even if the inhibitor concentration changes, the corrosion inhibitory effect for metal pickling is small. An attempt was made to develop an agent. As a result, it was surprisingly found that the problem can be achieved by using a specific acylated derivative of polyalkylene polyamine. That is, an object of the present invention is to provide a corrosion inhibitor for pickling metals that has a strong corrosion inhibiting effect when pickling a metal surface and has a small change in corrosion inhibition rate even if the inhibitor concentration changes. is there.

すなわち本発明は、以下、(1)から(4)のいずれかに関する。
(1)第一アミノ基及び/又は第二アミノ基を有するポリアルキレンポリアミン(a)のC−C15アシル化誘導体(α)を含んでなる金属の酸洗浄用腐食抑制剤。
(2)前記ポリアルキレンポリアミン(a)がポリアルキレンイミンである上記(1)に記載の金属の酸洗浄用腐食抑制剤。
(3)酸液及び上記(1)又は(2)に記載の腐食抑制剤を含んでなる洗浄液組成物であって、前記アシル化誘導体(α)の含有量が、該酸液1Lに対して0.1〜50000mgであることを特徴とする、上記洗浄液組成物。
(4)上記(3)に記載の洗浄液組成物を金属表面に吹付けあるいは金属表面を該洗浄液組成物で浸漬することにより洗浄することを特徴とする金属の洗浄方法。
That is, the present invention relates to any one of (1) to (4) below.
(1) A corrosion inhibitor for acid cleaning of a metal comprising a C 3 -C 15 acylated derivative (α) of a polyalkylene polyamine (a) having a primary amino group and / or a secondary amino group.
(2) The corrosion inhibitor for acid cleaning of a metal according to the above (1), wherein the polyalkylene polyamine (a) is a polyalkyleneimine.
(3) A cleaning liquid composition comprising the acid solution and the corrosion inhibitor according to the above (1) or (2), wherein the content of the acylated derivative (α) is 1 L of the acid solution. The cleaning liquid composition described above, wherein the cleaning liquid composition is 0.1 to 50000 mg.
(4) A method for cleaning a metal, comprising cleaning by spraying the cleaning liquid composition according to the above (3) on a metal surface or immersing the metal surface in the cleaning liquid composition.

本発明の金属の酸洗浄用腐食抑制剤によれば、金属表面を酸洗浄する際、金属の腐食が有効に抑制できる。加えて、本発明の金属の酸洗浄用腐食抑制剤は、抑制剤濃度が変化しても腐食抑制率の変化が極めて小さいので、最終製品の品質が一定に維持されやすい。それらの結果、本発明の金属の酸洗浄用腐食抑制剤は、金属工業分野等の各種工業の発展に寄与すること大である。   According to the corrosion inhibitor for acid cleaning of a metal of the present invention, corrosion of the metal can be effectively suppressed when the metal surface is acid cleaned. In addition, the metal acid cleaning corrosion inhibitor of the present invention has a very small change in the corrosion inhibition rate even when the inhibitor concentration changes, so that the quality of the final product is easily maintained constant. As a result, the metal acid cleaning corrosion inhibitor of the present invention greatly contributes to the development of various industries such as the metal industry.

ポリアルキレンポリアミン(a)
本発明において、第一アミノ基及び/又は第二アミノ基を有するポリアルキレンポリアミン(a)としては、ポリアルキレンイミン、アルキレンジハライドとアルキレンジアミンとの縮合物、及びポリエチレンポリアミンなどを例示できる。
Polyalkylene polyamine (a)
In the present invention, examples of the polyalkylene polyamine (a) having a primary amino group and / or a secondary amino group include polyalkylene imines, condensates of alkylene dihalides and alkylene diamines, and polyethylene polyamines.

ポリアルキレンイミンとしては、例えば、ポリエチレンイミン、ポリプロピレンイミン、及び少なくとも1個のアミド化し得るアミノ基を残してエチレンオキサイドを付加したポリエチレンイミンのエチレンオキサイド付加物などを挙げることができる。
ポリエチレンイミンは、分子量の異なるさまざまな製品が入手できる。アシル化ポリエチレンイミンに用いるポリエチレンイミンを製造する場合、原料としてエチレンイミンを用いるが、エチレンイミンを重合しても、通常、完全に直鎖の構造を持つポリマーにはならず、酸濃度、重合温度などの製造条件により依存する分岐度を持ち、かつ、第一アミノ基及び第二アミノ基以外に第三アミノ基を有するポリエチレンイミンが得られる。
Examples of the polyalkyleneimine include polyethyleneimine, polypropyleneimine, and an ethylene oxide adduct of polyethyleneimine obtained by adding ethylene oxide leaving at least one amino group capable of amidation.
Polyethyleneimine is available in various products with different molecular weights. When producing polyethyleneimine to be used for acylated polyethyleneimine, ethyleneimine is used as a raw material. However, even when ethyleneimine is polymerized, it does not usually become a completely linear polymer, but the acid concentration, polymerization temperature. A polyethyleneimine having a degree of branching that depends on the production conditions such as and having a tertiary amino group in addition to the primary amino group and the secondary amino group is obtained.

ポリエチレンイミンの好ましい分子量は約600から約80000で、最も好ましくは約600から約25,000である。   The preferred molecular weight of polyethyleneimine is from about 600 to about 80,000, most preferably from about 600 to about 25,000.

ポリエチレンポリアミン類としてはジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、及びペンタエチレンヘキサミンなどを例示できる。   Examples of polyethylene polyamines include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine.

アルキレンジアミンとアルキレンジハライドの縮合物の製造に用いるアルキレンジアミンとしては、例えば、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、及びピペラジンなどを挙げることができる。
一方、上記縮合物の製造に用いるアルキレンジハライドとしては、例えば、ジクロロエタン、ジブロモエタン、及びビスクロロメチルシクロヘキサンなどを挙げることができる。
アルキレンジアミンとアルキレンジハライドの縮合物の製造方法に特に制限はなく、例えば、アルキレンジハライドとアルキレンジアミンなどとを、必要に応じて溶剤を用いて、40〜100℃で反応させることができる。使用する溶剤としては、例えば、水、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、アセトン、メチルエチルケトン、ジオキサン、テトラヒドロフラン、ジメチルホルムアミドなどを挙げることができる。アルキレンジアミンとアルキレンジハライドとは縮合しやすいので、第一アミノ基及び/又は第二アミノ基を有するポリアルキレンポリアミン(a)を、生産性、及び制御性良く生産することができる。
Examples of the alkylene diamine used in the production of the alkylene diamine and alkylene dihalide condensate include ethylene diamine, propylene diamine, butylene diamine, hexamethylene diamine, and piperazine.
On the other hand, examples of the alkylene dihalide used for the production of the condensate include dichloroethane, dibromoethane, and bischloromethylcyclohexane.
There is no restriction | limiting in particular in the manufacturing method of the condensate of alkylenediamine and alkylene dihalide, For example, alkylene dihalide, alkylenediamine, etc. can be made to react at 40-100 degreeC using a solvent as needed. Examples of the solvent used include water, methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, dioxane, tetrahydrofuran, and dimethylformamide. . Since alkylene diamine and alkylene dihalide are easily condensed, polyalkylene polyamine (a) having a primary amino group and / or a secondary amino group can be produced with good productivity and controllability.

本発明においては、ポリアルキレンポリアミン(a)は、化合物中に第一アミノ基及び/又は第二アミノ基を有することを必須要件とする。   In the present invention, the polyalkylene polyamine (a) is required to have a primary amino group and / or a secondary amino group in the compound.

−C 15 アシル化誘導体(α)
本発明においては、腐食抑制剤として、ポリアルキレンポリアミン(a)中に存在する反応性アミノ基(第一アミノ基及び/又は第二アミノ基)の少なくとも一部、すなわち一部又は全部において、そのアミノ基の水素が炭素数3から15のアシル基で置換されている、C−C15アシル化誘導体、すなわち、ポリアルキレンポリアミン(a)のC−C15アシル化誘導体(α)を含む。アミノ基の水素が炭素数3から15のアシル基で置換されることにより、アミノ基中の窒素と、アシル基中のカルボニル基とがアミド結合を形成する。
ポリアルキレンポリアミン(a)が、腐食抑制剤として必ずしも良好な腐食抑制率を示さないところ、アシル化によって良好な腐食抑制率を実現することができる。
C 3 -C 15 acylated derivative (α)
In the present invention, as a corrosion inhibitor, at least a part of the reactive amino group (primary amino group and / or secondary amino group) present in the polyalkylene polyamine (a), that is, a part or all of the reactive amino group. Including C 3 -C 15 acylated derivatives in which the hydrogen of the amino group is substituted with an acyl group having 3 to 15 carbon atoms, that is, C 3 -C 15 acylated derivatives (α) of polyalkylene polyamines (a) . When the hydrogen of the amino group is substituted with an acyl group having 3 to 15 carbon atoms, the nitrogen in the amino group and the carbonyl group in the acyl group form an amide bond.
Where the polyalkylene polyamine (a) does not necessarily show a good corrosion inhibition rate as a corrosion inhibitor, a good corrosion inhibition rate can be realized by acylation.

このC−C15アシル化誘導体(α)の場合、炭素数3から15のアシル基R−(CO)−は、好ましくは以下のアシル基から選択される少なくとも一種を含んでなる(なお、Rは、炭素数2から14の炭化水素基であり、不飽和結合を有していてもよい。)。すなわち、アシル基は、C(2n+1)−(CO)−(式中、nは2以上14以下であり、好ましくは2以上13以下、特に好ましくは、2以上12以下である。炭素数が多すぎないことで、優れた腐食抑制率を実現することができる。なお、式中、C(2n+1)−は、直鎖状であっても、分岐を有していてもよい。);フェニル−(CO)−;置換フェニル−(CO)−;フェニル−CH−(CO)−;置換フェニル−CH−(CO)−;フェニル−C−(CO)−;及び置換フェニル−C−(CO)−から選択されるのが好ましい。なお、ここで「置換フェニル−」とは、フェニル基の水素原子の一部又は全部が、他の基又は原子で置換されたものをいい、メチル基、エチル基、及びクロル基からなる群から選ばれる少なくとも1の基で置換されたものであることが好ましい。アセチル基CH−(CO)−でN−アシル化されたポリアルキレンポリアミンは、疎水性が低く、水に溶解しやすい。一方、上記アシル基C(2n+1)−(CO)−(式中、nは2以上である)によりN−アシル化されたポリアルキレンポリアミンは、炭素数の増加に伴い疎水性が高まる。同様に、アリール基を含有するアシル基でN−アシル化されたポリアミンは疎水性が高い。 In the case of this C 3 -C 15 acylated derivative (α), the acyl group R— (CO) — having 3 to 15 carbon atoms preferably comprises at least one selected from the following acyl groups ( R is a hydrocarbon group having 2 to 14 carbon atoms, and may have an unsaturated bond. That is, the acyl group is C n H (2n + 1) -(CO) — (wherein n is 2 or more and 14 or less, preferably 2 or more and 13 or less, particularly preferably 2 or more and 12 or less. In the formula, C n H (2n + 1) − may be linear or branched. ); phenyl - (CO) -; substituted phenyl - (CO) -; phenyl -CH 2 - (CO) -; substituted phenyl -CH 2 - (CO) -; phenyl--C 2 H 4 - (CO) -; and substituted phenyl -C 2 H 4 - (CO) - is preferably selected from. Here, “substituted phenyl-” refers to a group in which part or all of the hydrogen atoms of the phenyl group are substituted with other groups or atoms, and includes a group consisting of a methyl group, an ethyl group, and a chloro group. It is preferably one substituted with at least one selected group. A polyalkylene polyamine N-acylated with an acetyl group CH 3 — (CO) — has low hydrophobicity and is easily dissolved in water. On the other hand, the polyalkylene polyamine N-acylated with the acyl group C n H (2n + 1) -(CO) — (wherein n is 2 or more) becomes more hydrophobic as the number of carbon atoms increases. Similarly, polyamines N-acylated with an acyl group containing an aryl group are highly hydrophobic.

ポリアルキレンポリアミン(a)をN−アシル化をするには、アミノ基よりアシルアミノ基(アミド)を形成するための試薬、すなわち、アシル化剤を用いることができる。アシル化剤としては、アシルハライド、アシルシアニド、カルボン酸とアルコールとの縮合エステル、ラクトン及びカルボン酸無水物から選択される対応するアシル基を形成するためのアシル化剤を例示することができる。   In order to N-acylate the polyalkylene polyamine (a), a reagent for forming an acylamino group (amide) from an amino group, that is, an acylating agent can be used. Examples of the acylating agent include an acylating agent for forming a corresponding acyl group selected from acyl halide, acyl cyanide, condensed ester of carboxylic acid and alcohol, lactone and carboxylic anhydride.

また、本発明に用いるポリアルキレンポリアミン(a)のC−C15アシル化誘導体(α)は、ポリアルキレンポリアミン(a)とC−C15のカルボン酸とを縮合、好ましくは加熱縮合することによっても、製造することができる。 Further, the C 3 -C 15 acylated derivative (α) of the polyalkylene polyamine (a) used in the present invention condenses, preferably heat-condenses, the polyalkylene polyamine (a) and the C 3 -C 15 carboxylic acid. Can also be manufactured.

洗浄剤組成物
本発明の洗浄液組成物は、酸液1Lに対して、本発明の金属の酸洗浄用腐食抑制剤であるポリアルキレンポリアミン(a)のC−C15アシル化誘導体(α)を、固体又は純体換算で、通常0.1〜50000mg、好ましくは1〜10000mg、さらに好ましくは1〜5000mg含む。含有量が酸液1Lに対して0.1mg以上なので必要な腐食抑制効果を得ることができ、また50000mg以下なので添加量に応じて腐食抑制効果を向上させることができる。
Cleaning composition The cleaning composition of the present invention is a C 3 -C 15 acylated derivative (α) of polyalkylene polyamine (a), which is a corrosion inhibitor for acid cleaning of metals of the present invention, with respect to 1 L of acid solution. Is usually 0.1 to 50000 mg, preferably 1 to 10000 mg, and more preferably 1 to 5000 mg in terms of solid or pure form. Since the content is 0.1 mg or more with respect to 1 L of the acid solution, the necessary corrosion inhibiting effect can be obtained, and since it is 50000 mg or less, the corrosion inhibiting effect can be improved according to the added amount.

酸液に用いる酸としては特に限定されないが、塩酸、硫酸、スルファミン酸、フッ酸などの無機酸、ギ酸、蓚酸、クエン酸、リンゴ酸、ヒドロキシ酢酸、グルコン酸などの有機酸、エチレンジアミン四酢酸などのキレート剤が好ましい。
本発明の腐食抑制剤は、使用に際して酸液に添加してもよく、また予め酸液に添加して本発明の洗浄液組成物とし、そのまま、又はこれを水で希釈して用いてもよい。さらに洗浄液との混合を良くするため界面活性剤や溶剤を使用してもよく、このために用いられる界面活性剤や溶剤は予め本発明の腐食抑制剤と混合しておいてもよく、別々に本発明の洗浄剤組成物に添加してもよい。
The acid used for the acid solution is not particularly limited, but inorganic acids such as hydrochloric acid, sulfuric acid, sulfamic acid, and hydrofluoric acid, organic acids such as formic acid, succinic acid, citric acid, malic acid, hydroxyacetic acid, and gluconic acid, ethylenediaminetetraacetic acid, and the like These chelating agents are preferred.
The corrosion inhibitor of the present invention may be added to the acid solution at the time of use, or may be added to the acid solution in advance to obtain the cleaning solution composition of the present invention, which may be used as it is or after being diluted with water. Furthermore, surfactants and solvents may be used to improve the mixing with the cleaning liquid, and the surfactants and solvents used for this purpose may be previously mixed with the corrosion inhibitor of the present invention, separately. You may add to the cleaning composition of this invention.

また、本発明の腐食抑制剤は他の腐食抑制剤と併用してもよく、これら他の腐食抑制剤は予め本発明の腐食抑制剤と混合しておいてもよく、別々に本発明の洗浄剤組成物に添加してもよい。
併用する他の腐食抑制剤の具体例としては、1−ビニル−3−エチルイミダゾリニウムブロミド、3−エチルベンゾチアゾリウムブロミド、エチルトリエタノールアンモニウムブロミドなどが挙げられるがこれらの具体例に限定されるものではない。
さらにまた本発明の洗浄剤組成物においては酸洗速度を向上するための亜硫酸塩等の酸洗促進剤を併用することもできる。
In addition, the corrosion inhibitor of the present invention may be used in combination with other corrosion inhibitors, and these other corrosion inhibitors may be previously mixed with the corrosion inhibitor of the present invention, and separately washed according to the present invention. It may be added to the agent composition.
Specific examples of other corrosion inhibitors used in combination include 1-vinyl-3-ethylimidazolinium bromide, 3-ethylbenzothiazolium bromide, ethyltriethanolammonium bromide, and the like, but are not limited to these specific examples. Is not to be done.
Furthermore, in the cleaning composition of the present invention, pickling accelerators such as sulfites for improving the pickling rate can be used in combination.

金属の洗浄方法
本発明の金属の洗浄方法は、本発明の洗浄液組成物を金属表面に吹付けあるいは金属表面を該洗浄液組成物に浸漬することによって金属表面を洗浄することを特徴とする。
本発明の腐食抑制剤を含んだ洗浄液組成物は、洗浄すべき金属表面に吹付け、又はこの洗浄液組成物に洗浄すべき金属片を浸漬することによって金属表面が洗浄される。洗浄対象となる金属は特に限定されないが、鉄鋼に対して用いると、特に有効である。
Metal Cleaning Method The metal cleaning method of the present invention is characterized in that the metal surface is cleaned by spraying the cleaning liquid composition of the present invention on the metal surface or immersing the metal surface in the cleaning liquid composition.
The cleaning liquid composition containing the corrosion inhibitor of the present invention is cleaned by spraying the metal surface to be cleaned or immersing the metal piece to be cleaned in the cleaning liquid composition. The metal to be cleaned is not particularly limited, but it is particularly effective when used for steel.

以下、実施例を参照しながら、本発明をさらに詳細に説明する。なお、本発明の範囲は、いかなる意味においても、これらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The scope of the present invention is not limited by these examples in any way.

(合成例1) ノナノイルポリエチレンイミン[ポリエチレンイミンとペラルゴン酸との反応物(1.0:0.07)]
攪拌機、冷却管、温度計を備えた500ml四ツ口セパラブルフラスコに、ポリエチレンイミン(数平均分子量2,000)163.3g(3.72モル)を仕込み、内温を130℃まで昇温させた。温度が安定した後、ペラルゴン酸38.8g(0.24モル)を添加し、130℃で48時間、アシル化反応を実施した。反応終了後の溶液をFTIRにて測定したところ、1400cm−1のカルボン酸(C−O伸縮)由来の吸収が消滅し、1650cm−1にアミド吸収が確認され、目的の構造であることを支持していた。また、1710cm−1等のカルボン酸に由来する吸収はないので定量的にアシル化が進行したことが判明した。
Synthesis Example 1 Nonanoyl polyethyleneimine [reaction product of polyethyleneimine and pelargonic acid (1.0: 0.07)]
A 500 ml four-necked separable flask equipped with a stirrer, a condenser and a thermometer was charged with 163.3 g (3.72 mol) of polyethyleneimine (number average molecular weight 2,000), and the internal temperature was raised to 130 ° C. It was. After the temperature was stabilized, 38.8 g (0.24 mol) of pelargonic acid was added, and the acylation reaction was carried out at 130 ° C. for 48 hours. When the solution after completion of the reaction was measured by FTIR, absorption derived from 1400 cm −1 carboxylic acid (C—O stretching) disappeared and amide absorption was confirmed at 1650 cm −1 , supporting the target structure. Was. Moreover, since there was no absorption derived from carboxylic acid, such as 1710 cm < -1 >, it became clear that acylation advanced quantitatively.

(合成例2〜4) ノナノイルポリエチレンイミン[ポリエチレンイミンとペラルゴン酸との反応物(1.0:0.07)]
ポリエチレンイミンとペラルゴン酸との反応比率を変更させた以外は、合成例1と同じ操作により製造を実施した。
(Synthesis Examples 2 to 4) Nonanoyl polyethyleneimine [reaction product of polyethyleneimine and pelargonic acid (1.0: 0.07)]
Manufacture was carried out by the same operation as in Synthesis Example 1 except that the reaction ratio of polyethyleneimine and pelargonic acid was changed.

(合成例5) ドデカノイルポリエチレンイミン[ポリエチレンイミンとドデカン酸との反応物(1.0:0.07)の製造例]
攪拌機、冷却管、温度計を備えた500ml四ツ口セパラブルフラスコに、ポリエチレンイミン(数平均分子量2,000)265.3g(6.04モル)を仕込み、内温を130℃まで昇温させた。温度が安定した後、ドデカン酸85.8g(0.42モル)を添加し、130℃で48時間、アシル化反応を実施した。反応終了後の溶液をFTIRにて測定したところ、1400cm−1のカルボン酸(C−O伸縮)由来の吸収が消滅し、1650cm−1にアミド吸収が確認され、目的の構造であることを支持していた。また、1710cm−1等のカルボン酸に由来する吸収はないので定量的にアシル化が進行したことが判明した。
(Synthesis example 5) Dodecanoyl polyethyleneimine [Production example of reaction product of polyethylenimine and dodecanoic acid (1.0: 0.07)]
A 500 ml four-necked separable flask equipped with a stirrer, a condenser, and a thermometer was charged with 265.3 g (6.04 mol) of polyethyleneimine (number average molecular weight 2,000), and the internal temperature was raised to 130 ° C. It was. After the temperature was stabilized, 85.8 g (0.42 mol) of dodecanoic acid was added, and an acylation reaction was carried out at 130 ° C. for 48 hours. When the solution after completion of the reaction was measured by FTIR, absorption derived from 1400 cm −1 carboxylic acid (C—O stretching) disappeared and amide absorption was confirmed at 1650 cm −1 , supporting the target structure. Was. Moreover, since there was no absorption derived from carboxylic acid, such as 1710 cm < -1 >, it became clear that acylation advanced quantitatively.

(合成例6〜8) ドデカノイルポリエチレンイミン[ポリエチレンイミンとドデカン酸との反応物]
ポリエチレンイミンとドデカン酸との反応比率を変更させた以外は、合成例1と同じ操作により製造を実施した。
(Synthesis Examples 6 to 8) Dodecanoyl polyethyleneimine [reaction product of polyethyleneimine and dodecanoic acid]
Manufacture was performed by the same operation as Synthesis Example 1 except that the reaction ratio of polyethyleneimine and dodecanoic acid was changed.

(合成例9) ジアリルアミン塩酸塩と二酸化イオウとの1:1共重合体の合成例
攪拌機、冷却管、温度計を備えた500ml四ツ口セパラブルフラスコにて、66質量%のジアリルアミン塩酸塩水溶液202.5g(1.0モル)、及びSO64.1g(1.0モル)を、水206.7gに溶解させた。次に28.5質量%の過硫酸アンモニウム水溶液13.7g(対モノマーで1.5質量%)を添加し、18〜60℃で24時間、重合を行い、比較例1に用いる標記の共重合体を製造した。重合終了後の溶液をGPC法にて測定したところ、重量平均分子量は5,000、重合率は96.0%であった。
(合成例10) ジアリルアミン酢酸塩と二酸化イオウとの1:1共重合体の合成例
攪拌機、冷却管、温度計を備えた500ml四ツ口セパラブルフラスコにて、ジアリルアミン塩酸塩と二酸化イオウの1:1共重合体494.20g(0.50mol)及び酢酸ナトリウム54.41g(0.65mol)を仕込み、攪拌溶解させ混合水溶液を得た。
上記混合溶液を、イオン交換膜電気透析に付した。電気透析装置として旭硝子製−DU−Ob槽を用い、この中に、同じく旭硝子製の陽イオン交換膜CMVと陰イオン交換膜AMVを配列させ、原液槽には原液として、上記の操作により得られた混合水溶液を入れた。また濃縮液槽には塩化ナトリウム水溶液を仕込んだ。これらの液を循環しながら、電極間に16−17ボルトの直流電圧を印加し、比較例2に用いる標記の共重合体を製造した。
処理後の溶液をGPC法にて測定したところ、重量平均分子量は5,000、歩留まりは95%であった。
(合成例11) メチルジアリルアミン塩酸塩と二酸化イオウとの1:1共重合体の合成例
攪拌機、冷却管、温度計を備えた500ml四ツ口セパラブルフラスコにて、68質量%メチルジアリルアミン塩酸塩水溶液217.1g(1.0mol)、及びSO64.1g(1.0モル)を、水103.7gに溶解させた。次に28.5質量%の過硫酸アンモニウム水溶液11.1g(対モノマーで1.5質量%)を添加し、18〜60℃で24時間、重合を行い、比較例3に用いる標記の共重合体を製造した。重合終了後の溶液をGPC法にて測定したところ、重量平均分子量は4,000、重合率は96.5%であった。
(合成例12) ジアリルジメチルアンモニウムクロリドと二酸化イオウとの1:1共重合体の合成例
攪拌機、冷却管、温度計を備えた500ml四ツ口セパラブルフラスコにて、65質量%のDADMAC(ジアリルジメチルアンモニウムクロリド)248.7g(1.0モル)、及びSO64.1g(1.0モル)を、水210.0gに溶解させた。次に28.5質量%の過硫酸アンモニウム水溶液16.5g(対モノマーで1.5質量%)を添加し、18〜60℃で72時間、重合を行い、比較例4に用いる標記の共重合体を製造した。重合終了後の溶液をGPC法にて測定したところ、重量平均分子量は4,200、重合率は95.0%であった。
(Synthesis Example 9) Synthesis Example of 1: 1 Copolymer of Diallylamine Hydrochloride and Sulfur Dioxide In a 500 ml four-necked separable flask equipped with a stirrer, a condenser tube, and a thermometer, a 66 mass% diallylamine hydrochloride aqueous solution 202.5 g (1.0 mol) and SO 2 64.1 g (1.0 mol) were dissolved in water 206.7 g. Next, 13.7 g of an aqueous ammonium persulfate solution of 28.5% by mass (1.5% by mass with respect to the monomer) was added, and polymerization was carried out at 18 to 60 ° C. for 24 hours. Manufactured. When the solution after completion of the polymerization was measured by the GPC method, the weight average molecular weight was 5,000 and the polymerization rate was 96.0%.
Synthesis Example 10 Synthesis Example of 1: 1 Copolymer of Diallylamine Acetate and Sulfur Dioxide 1 In a 500 ml four-necked separable flask equipped with a stirrer, a condenser, and a thermometer, 1 of diallylamine hydrochloride and sulfur dioxide : 1 copolymer 494.20 g (0.50 mol) and sodium acetate 54.41 g (0.65 mol) were charged and dissolved by stirring to obtain a mixed aqueous solution.
The mixed solution was subjected to ion exchange membrane electrodialysis. Asahi Glass-DU-Ob tank is used as an electrodialyzer, in which cation exchange membrane CMV and anion exchange membrane AMV also made by Asahi Glass are arranged, and the stock solution tank is obtained by the above operation as a stock solution. The mixed aqueous solution was added. Further, a sodium chloride aqueous solution was charged in the concentrated liquid tank. While circulating these liquids, a DC voltage of 16-17 volts was applied between the electrodes to produce the title copolymer used in Comparative Example 2.
When the solution after the treatment was measured by the GPC method, the weight average molecular weight was 5,000 and the yield was 95%.
Synthesis Example 11 Synthesis Example of 1: 1 Copolymer of Methyldiallylamine Hydrochloride and Sulfur Dioxide In a 500 ml four-necked separable flask equipped with a stirrer, a condenser, and a thermometer, 68% by mass methyldiallylamine hydrochloride An aqueous solution 217.1 g (1.0 mol) and SO 2 64.1 g (1.0 mol) were dissolved in water 103.7 g. Next, 11.1 g of an aqueous ammonium persulfate solution of 28.5% by mass (1.5% by mass with respect to the monomer) was added, and polymerization was carried out at 18 to 60 ° C. for 24 hours. Manufactured. When the solution after completion of the polymerization was measured by the GPC method, the weight average molecular weight was 4,000 and the polymerization rate was 96.5%.
Synthesis Example 12 Synthesis Example of 1: 1 Copolymer of Diallyldimethylammonium Chloride and Sulfur Dioxide In a 500 ml four-necked separable flask equipped with a stirrer, a condenser, and a thermometer, 65% by mass of DADMAC (diallyl 248.7 g (1.0 mol) of dimethylammonium chloride) and 64.1 g (1.0 mol) of SO 2 were dissolved in 210.0 g of water. Next, 16.5 g of an aqueous ammonium persulfate solution of 28.5% by mass (1.5% by mass with respect to the monomer) was added, and polymerization was carried out at 18 to 60 ° C. for 72 hours. Manufactured. When the solution after completion of the polymerization was measured by the GPC method, the weight average molecular weight was 4,200, and the polymerization rate was 95.0%.

(腐食試験)
腐食量測定については、下記の実施例記載の方法により実施した。
(Corrosion test)
The corrosion amount was measured by the method described in the following examples.

(実施例1)
塩酸50gを含む洗浄液水溶液(以下、酸洗浄液)500mlに、合成例1で得た腐食抑制剤を50mg、又は1000mg(固形分換算)をそれぞれ添加し、この液を80℃まで加温した後、熱間圧延鋼板(JIS3131)を180番の耐水研磨紙で研磨したものを10分間浸漬した。腐食量、腐食抑制率及び性能低下率は下記の式により計算した。結果を表1に示した。
腐食量(mg/cm)=[浸漬前試験片重量(mg)−浸漬後試験片重量(mg)]/試験片表面積(cm) − (1)
Example 1
After adding 50 mg or 1000 mg (in terms of solid content) of the corrosion inhibitor obtained in Synthesis Example 1 to 500 ml of a cleaning solution aqueous solution (hereinafter referred to as an acid cleaning solution) containing 50 g of hydrochloric acid, and heating this solution to 80 ° C., A hot-rolled steel sheet (JIS 3131) polished with No. 180 water-resistant abrasive paper was immersed for 10 minutes. The corrosion amount, corrosion inhibition rate, and performance deterioration rate were calculated by the following formulas. The results are shown in Table 1.
Corrosion amount (mg / cm 2 ) = [Test piece weight before immersion (mg) −Test piece weight after immersion (mg)] / Test piece surface area (cm 2 ) − (1)

(腐食抑制率)
上記式(1)で算出した腐食量の結果から、下記式(2)に従って、腐食抑制率を算出した。
腐食抑制率(%)=[比較例5の腐食量(mg/cm)−各実施例又は比較例の腐食量(mg/cm)]×100/比較例5の腐食量(mg/cm) − (2)
(性能低下率)
腐食抑制剤の添加量1000mgのときの腐食抑制率と、同50mgのときの腐食抑制率とから、下記式(3)に従って、性能低下率を算出した。
性能低下率(%)=100−A − (3)
(A=(添加量1000mg時の腐食抑制率(%)×100)/添加量50mg時の腐食抑制率(%))
(Corrosion inhibition rate)
From the result of the corrosion amount calculated by the above formula (1), the corrosion inhibition rate was calculated according to the following formula (2).
Corrosion inhibition rate (%) = [corrosion amount of Comparative Example 5 (mg / cm 2 ) −corrosion amount of each Example or Comparative Example (mg / cm 2 )] × 100 / corrosion amount of Comparative Example 5 (mg / cm 2 )-(2)
(Performance degradation rate)
From the corrosion inhibition rate when the addition amount of the corrosion inhibitor was 1000 mg and the corrosion inhibition rate when the amount was 50 mg, the performance reduction rate was calculated according to the following formula (3).
Performance degradation rate (%) = 100−A − (3)
(A = (corrosion inhibition rate at 1000 mg addition amount (%) × 100) / corrosion inhibition rate at 50 mg addition amount (%))

(実施例2〜8)
腐食抑制剤を変更した以外は実施例1と同じ操作を実施し、腐食量、腐食抑制率及び性能低下率を算出した。結果を表1に示す。
(Examples 2 to 8)
The same operation as Example 1 was implemented except having changed the corrosion inhibitor, and the corrosion amount, the corrosion inhibition rate, and the performance fall rate were computed. The results are shown in Table 1.

(比較例1)
比較合成例1で得た腐食抑制剤を50mg、1000mg(固形分換算)をそれぞれ添加し、実施例1と同じ操作を実施し、腐食量、腐食抑制率及び性能低下率を算出した。結果を表1に示す。
(Comparative Example 1)
50 mg and 1000 mg (in terms of solid content) of the corrosion inhibitor obtained in Comparative Synthesis Example 1 were added, and the same operation as in Example 1 was performed to calculate the corrosion amount, corrosion inhibition rate, and performance reduction rate. The results are shown in Table 1.

(比較例2〜4)
腐食抑制剤を変更した以外は実施例1と同じ操作を実施し、腐食量、腐食抑制率及び性能低下率を算出した。結果を表1に示す。
(Comparative Examples 2 to 4)
The same operation as Example 1 was implemented except having changed the corrosion inhibitor, and the corrosion amount, the corrosion inhibition rate, and the performance fall rate were computed. The results are shown in Table 1.

(比較例5)
腐食抑制剤を使用せずに酸洗浄を行い、実施例1と同じ操作を実施し、腐食量を計算した。結果を表1に示す。
(Comparative Example 5)
Acid cleaning was performed without using a corrosion inhibitor, the same operation as in Example 1 was performed, and the amount of corrosion was calculated. The results are shown in Table 1.

Claims (5)

第一アミノ基及び/又は第二アミノ基を有するポリアルキレンポリアミン(a)のC−C15アシル化誘導体(α)を含んでなる金属の酸洗浄用腐食抑制剤。 A corrosion inhibitor for acid cleaning of a metal comprising a C 3 -C 15 acylated derivative (α) of a polyalkylene polyamine (a) having a primary amino group and / or a secondary amino group. 前記ポリアルキレンポリアミン(a)がポリアルキレンイミンである請求項1記載の金属の酸洗浄用腐食抑制剤。   The corrosion inhibitor for acid cleaning of metals according to claim 1, wherein the polyalkylene polyamine (a) is a polyalkyleneimine. 前記アシル化誘導体(α)が、CThe acylated derivative (α) is C 9 −C-C 1212 アシル化誘導体である、請求項1又は2に記載の金属の酸洗浄用腐食抑制剤。The corrosion inhibitor for acid cleaning of metals according to claim 1 or 2, which is an acylated derivative. 酸液及び請求項1から3のいずれか一項に記載の腐食抑制剤を含んでなる洗浄液組成物であって、前記アシル化誘導体(α)の含有量が、該酸液1Lに対して0.1〜50000mgであることを特徴とする、上記洗浄液組成物。 A cleaning liquid composition comprising the acid solution and the corrosion inhibitor according to any one of claims 1 to 3 , wherein the content of the acylated derivative (α) is 0 with respect to 1 L of the acid solution. The cleaning liquid composition described above, wherein the cleaning liquid composition is 1 to 50000 mg. 請求項に記載の洗浄液組成物を金属表面に吹付けあるいは金属表面を該洗浄液組成物で浸漬することにより洗浄することを特徴とする金属の洗浄方法。 5. A metal cleaning method, comprising: cleaning the metal surface by spraying the cleaning liquid composition according to claim 4 or immersing the metal surface in the cleaning liquid composition.
JP2010175889A 2010-08-05 2010-08-05 Corrosion inhibitor used for acid cleaning of metal, cleaning liquid composition and metal cleaning method Active JP5477219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010175889A JP5477219B2 (en) 2010-08-05 2010-08-05 Corrosion inhibitor used for acid cleaning of metal, cleaning liquid composition and metal cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175889A JP5477219B2 (en) 2010-08-05 2010-08-05 Corrosion inhibitor used for acid cleaning of metal, cleaning liquid composition and metal cleaning method

Publications (2)

Publication Number Publication Date
JP2012036431A JP2012036431A (en) 2012-02-23
JP5477219B2 true JP5477219B2 (en) 2014-04-23

Family

ID=45848734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175889A Active JP5477219B2 (en) 2010-08-05 2010-08-05 Corrosion inhibitor used for acid cleaning of metal, cleaning liquid composition and metal cleaning method

Country Status (1)

Country Link
JP (1) JP5477219B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483713A (en) * 2015-12-05 2016-04-13 西南林业大学 Modified macromolecular combined corrosion inhibitor and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094596A (en) * 2014-11-10 2016-05-26 三洋化成工業株式会社 Hard surface treatment agent
KR101732657B1 (en) 2016-03-17 2017-05-04 주식회사 성창 An acidic compound for cleaning metal material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106440A (en) * 1973-02-15 1974-10-09
JPH10140379A (en) * 1996-11-08 1998-05-26 Nippon Shokubai Co Ltd Corrosion inhibitor for pickling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483713A (en) * 2015-12-05 2016-04-13 西南林业大学 Modified macromolecular combined corrosion inhibitor and preparation method and application thereof
CN105483713B (en) * 2015-12-05 2017-08-29 西南林业大学 A kind of modified high-molecular compound corrosion inhibitor and preparation method and application

Also Published As

Publication number Publication date
JP2012036431A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5630672B2 (en) Corrosion inhibitor for metal acid cleaning, cleaning liquid composition and metal cleaning method
US8685912B2 (en) Detergent for metal
JP2008510603A (en) Method for passivating metal surface using itaconic acid homopolymer or copolymer
KR101044873B1 (en) Rust prevention coating agent and method of rust-proofing
JP5477219B2 (en) Corrosion inhibitor used for acid cleaning of metal, cleaning liquid composition and metal cleaning method
CN1123253A (en) Method of inhibiting corrosion in aqueous systems using poly(amino acids)
US8278258B2 (en) Acid inhibitor compositions for metal cleaning and/or pickling
JP7499576B2 (en) Reaction products of catechol compounds and functionalized coreactants for metal pretreatment applications
AU2007217257B2 (en) Acid inhibitor compositions for metal cleaning and/or pickling
JP3563405B2 (en) Metal cleaning method
JP4454647B2 (en) A rust preventive film forming treatment agent using tannin, a rust preventive film forming method, and a rust preventive metal.
JPH0745678B2 (en) Water-soluble temper rolling liquid and temper rolling method
JP2011252220A (en) Acid cleaning solution for metallic material, and acid cleaning method for metallic material
JP2011046989A (en) Metal plating solution additive and metal plating method
More et al. Synthesis of a novel polyetheramide-polyaniline composite anticorrosive coating from PET waste and jatropha oil
JP2006045646A (en) Discoloring preventive composition for hot-rolled steel sheet, discoloring preventive solution and method for preventing discolor
JPH10130873A (en) Metal corrosion inhibitor, metal corrosion inhibiting solution and metal corrosion inhibiting method using the solution
JP4570738B2 (en) Electrogalvanizing bath and plating method
KR101732657B1 (en) An acidic compound for cleaning metal material
JPH10140379A (en) Corrosion inhibitor for pickling
Badr et al. Corrosion inhibition of new prepared cationic surfactant on carbon steel in acidic media
US6248182B1 (en) Mannich derivatives of epoxy-novolac resins and methods of using the same
KR20010032660A (en) Method for treatment of metal substrates using mannich-derived polyethers
JP2014205885A (en) Yellow discoloration inhibitor during acid cleaning of steel material
MX2007012808A (en) Use of amphoteric polymers for the treatment of hard surfaces to improve the wettability thereof.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5477219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250