JP5477096B2 - Floating body - Google Patents

Floating body Download PDF

Info

Publication number
JP5477096B2
JP5477096B2 JP2010064394A JP2010064394A JP5477096B2 JP 5477096 B2 JP5477096 B2 JP 5477096B2 JP 2010064394 A JP2010064394 A JP 2010064394A JP 2010064394 A JP2010064394 A JP 2010064394A JP 5477096 B2 JP5477096 B2 JP 5477096B2
Authority
JP
Japan
Prior art keywords
floating body
pressure
buoyancy
shell
float
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010064394A
Other languages
Japanese (ja)
Other versions
JP2011195027A (en
Inventor
信一 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010064394A priority Critical patent/JP5477096B2/en
Publication of JP2011195027A publication Critical patent/JP2011195027A/en
Application granted granted Critical
Publication of JP5477096B2 publication Critical patent/JP5477096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Description

本発明は、海中に投下され、目標到達深度まで沈降し、その後、海中の温度、塩分濃度などの海洋データを観測しながら海上に自己浮上できる浮沈体に関するものである。   The present invention relates to a floating body that is dropped into the sea, sinks to a target depth, and can then float on the sea while observing ocean data such as sea temperature and salinity.

海洋開発、海洋環境調査、海洋監視のために海中の温度等の海洋データを観測するには、特許文献1に示されるように、海底から立ち上げた係留索に各種センサを取り付けた係留型観測装置により観測を実施したり、特許文献2に示されるように海面に浮遊するブイに吊下ケーブルを介して接続した観測装置により観測を実施したりしていた。   To observe ocean data such as the temperature in the sea for ocean development, ocean environment survey, ocean surveillance, etc., as shown in Patent Document 1, mooring-type observation with various sensors attached to a mooring line launched from the sea floor Observation has been carried out with an apparatus, and as shown in Patent Document 2, observation has been carried out with an observation apparatus connected to a buoy floating on the sea surface via a suspended cable.

特開昭62−288594号公報JP-A-62-288594 特開平09−156584号公報JP 09-156484 A

しかしながら、数百mを超える大水深の海域においては、係留型では装置が大掛かり(大重量、昇降機構等)となり費用も大きかった。   However, in the sea area with a depth of more than several hundred meters, the mooring type equipment is large (heavy weight, lifting mechanism, etc.) and the cost is high.

一方、浮遊型は小型軽量で安価に観測を実現できるが、ブイが潮流により漂流するため特定の海域を継続的に観測できない問題がある。また軽量小型のためセンサの吊下装置も小型となり、深深度までセンサを吊下出来ない問題がある。   On the other hand, the floating type is small and lightweight and can be observed at low cost, but there is a problem that a specific sea area cannot be continuously observed because the buoy drifts due to the tidal current. In addition, since the sensor is light and small, the sensor suspension device is also small, and there is a problem that the sensor cannot be suspended to a deep depth.

そこで、本発明の目的は、上記課題を解決し、海中データを観測する際に、目標到達点の深深度まで沈降でき、その後、自力で海上に浮上できる浮沈体を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems and provide a floating body that can sink to a depth of a target arrival point and then float on the sea by itself when observing underwater data.

上記目的を達成するために請求項1の発明は、浮沈本体と、浮沈本体に設けられた海洋データの観測センサと、浮沈本体に設けられた深度計と、その観測データと深度データを送信すると共に測位を計測する通信機器とを備えた浮沈体において、浮沈本体の一部に形成され浮沈本体に浮力を付与する耐圧殻と、その耐圧殻に設けられ、その耐圧殻から出没自在に設けられた浮量調整ロッドと、その浮量調整ロッドの出没量を制御する浮量調整機構と、前記耐圧殻内に設けられた慣性航法装置及び制御装置とを備え、前記浮沈本体は縦長円筒状に形成され、その浮沈本体の中央部に前記耐圧殻が形成され、その耐圧殻の下方の浮沈本体は、海水が導入されるよう海中に開放され、前記浮量調整ロッドは、前記耐圧殻の下面からその浮沈本体内の海水中に出没するようにされ、浮沈本体の下部外側には、沈降中に目標海中到達点に向かって沈降位置を調整する可動翼が設けられると共にその翼角度を調整する沈降姿勢制御モータが設けられ、前記制御装置は、前記観測センサの観測値と深度計の深度が入力されると共に前記慣性航法装置のデータが入力され、通信機器で受信した目標とする海中到達点が入力され、現在の測位位置と海中到達位置との位置関係を把握して前記浮量調整ロッドを制御して沈降を開始すると共に、前記姿勢制御モータを制御して目標海中到達点に沈降することを特徴とする浮沈体である。 In order to achieve the above-mentioned object, the invention according to claim 1 transmits a floating body, a marine data observation sensor provided in the floating body, a depth meter provided in the floating body, and observation data and depth data thereof. In addition, in a floating body including a communication device for measuring positioning, a pressure-resistant shell formed on a part of the floating body and imparting buoyancy to the floating body, a pressure-resistant shell provided on the pressure-resistant shell, and provided so as to be able to protrude and retract from the pressure-resistant shell It was a浮量adjusting rod, and浮量adjusting mechanism for controlling the infested amount of浮量adjustment rod, and an inertial navigation system and a control device provided in the pressure-resistant shell, the ups and downs body vertically long cylindrical shape Formed, the pressure-resistant shell is formed at the center of the floating body, the floating body below the pressure shell is opened to the sea so that seawater is introduced, and the buoyancy adjustment rod is formed on the bottom surface of the pressure shell. From within its body A movable wing that adjusts the sinking position toward the target underwater arrival point and a sinking attitude control motor that adjusts the blade angle are provided outside the bottom of the main body. The control device receives the observation value of the observation sensor and the depth of the depth meter as well as the data of the inertial navigation device, the target undersea arrival point received by the communication device, and the current positioning A floating body that grasps a positional relationship between a position and an underwater arrival position, controls the buoyancy adjustment rod to start subsidence, and controls the attitude control motor to sink to a target underwater arrival point It is.

請求項の発明は、前記浮量調整ロッドは、耐圧殻内に設けられた浮量調整機構で可動され、その浮量調整機構は、浮量調整ロッドの出没量を調節して沈降・浮上速度を調節する請求項1に記載の浮沈体である。 According to a second aspect of the present invention, the buoyancy adjustment rod is moved by a buoyancy adjustment mechanism provided in the pressure-resistant shell, and the buoyancy adjustment mechanism adjusts the amount of protrusion and depression of the buoyancy adjustment rod to settle and float. a sink-float body according to claim 1 for adjusting the speed.

請求項の発明は、前記浮沈本体の上部外側には固定翼が設けられる請求項1に記載の浮沈体である。 The invention of claim 3, wherein the upper outer side of sink-float body is floating and sinking of claim 1 in which the fixed blades are provided.

請求項の発明は、前記通信機器は、浮沈本体の上部に設けられ、浮上時にその通信機器が海上に位置するように耐圧殻の容積が設定される請求項1〜いずれかに記載の浮沈体である。 The invention according to claim 4 is the communication device according to any one of claims 1 to 3 , wherein the communication device is provided on an upper part of a floating body, and the volume of the pressure-resistant shell is set so that the communication device is located on the sea at the time of ascent. It is a floating body.

本発明によれば、潮流に左右されず浮沈本体自体を浮沈できることから、吊り下げ装置がなくても目標深深度まで沈降でき、その後、海洋の観測データを測定しながら海面まで自己浮上できると共にその観測データを送信できるという優れた効果を発揮するものである。   According to the present invention, since the main body itself can float and sink without being influenced by the tidal current, it can sink to the target depth without a suspension device, and then can self-float up to the sea surface while measuring ocean observation data. It has the excellent effect of being able to transmit observation data.

本発明の一実施の形態を示す図である。It is a figure which shows one embodiment of this invention. 図1における浮沈体の制御システム構成図である。It is a control system block diagram of the floating body in FIG. 本発明において、浮量調整ロッドによる耐圧殻の沈降速度を説明する図である。In this invention, it is a figure explaining the sedimentation speed | rate of the pressure | voltage resistant shell by a buoyancy adjustment rod.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明の浮沈体10の海面Sに浮かんだ状態の概略と、その海面Sから沈降・浮上する浮沈状態の概略を示したものである。   FIG. 1 shows an outline of a floating state of the floating body 10 according to the present invention and an outline of a floating state where it sinks and floats from the sea surface S.

図1(a)において、浮沈体10は、縦長円筒状の浮沈本体11からなり、その上下中央部に浮沈本体11と一体に耐圧殻12が設けられて形成される。   In FIG. 1A, a floating body 10 is composed of a vertically long cylindrical floating body 11, and is formed by providing a pressure-resistant shell 12 integrally with the floating body 11 at the upper and lower central portions thereof.

耐圧殻12の上部の上部浮沈本体11aの周囲には、例えば4枚の固定翼13が設けられ、その上部浮沈本体11aの上部には、観測データを衛星通信や無線LANなどで送信する送信機と浮沈体10の海面Sでの位置をGPSで測位する測位計とを備えた通信機器14が設けられ、その通信機器14の周囲に保護カバー15が設けられる。   For example, four fixed wings 13 are provided around the upper floating body 11a above the pressure shell 12, and a transmitter that transmits observation data by satellite communication, wireless LAN, or the like is provided above the upper floating body 11a. And a positioning device that measures the position of the floating body 10 on the sea surface S with GPS, and a protective cover 15 is provided around the communication device 14.

耐圧殻12の下部の下部浮沈本体11bは、有底縦長円筒状に形成され、その外周に、浮沈体10の沈降時の姿勢を制御する2〜4枚の可動翼16が設けられ、下部浮沈本体11b内には、これら可動翼16の翼角度を調整する沈降姿勢制御モータ17が設けられる。   The lower floating body 11b at the lower part of the pressure shell 12 is formed in a bottomed vertically long cylindrical shape, and 2 to 4 movable wings 16 for controlling the posture of the floating body 10 during settling are provided on the outer periphery thereof. A settling attitude control motor 17 that adjusts the blade angle of these movable blades 16 is provided in the main body 11b.

また下部浮沈本体11bは、その内部に海水が導入できるように開放され、その下部浮沈本体11b内に海水の温度、塩分濃度、電気伝導度、pH等の海洋データを観測する観測センサ18が設けられると共に深度を計測する深度計19が設けられる。   The lower floatation body 11b is opened so that seawater can be introduced therein, and an observation sensor 18 for observing ocean data such as seawater temperature, salinity, electrical conductivity, and pH is provided in the lower floatation body 11b. And a depth meter 19 for measuring the depth is provided.

耐圧殻12は、その厚さが、数100〜数1000mの深深度の圧力に耐え得る肉厚で形成され、その内部にジャイロからなる慣性航法装置20、制御装置21、バッテリ22が収納される。   The pressure-resistant shell 12 is formed with a thickness that can withstand a depth of several hundred to several thousand meters, and an inertial navigation device 20 including a gyro, a control device 21, and a battery 22 are housed therein. .

この耐圧殻12には、その耐圧殻12から下部浮沈本体11b内に出没自在な浮量調整ロッド23が設けられる。耐圧殻12内には、浮量調整ロッド23の出没量を調整する浮量調整機構24が設けられる。浮量調整機構24は、浮量調整ロッド23が、例えばボールネジで形成した場合にはナット、ラックで形成した場合にはピニオンで形成されると共にそのナットやピニオンを回転する浮量調整用モータで構成される。また、浮量調整ロッド23は、耐圧殻12から出没する際に耐圧殻12内に海水が浸入しないように耐圧シール25を通して出没できるようになっている。   The pressure-resistant shell 12 is provided with a buoyancy adjustment rod 23 that can be moved into and out of the main body 11b from the pressure-resistant shell 12. In the pressure-resistant shell 12, a buoyancy adjustment mechanism 24 that adjusts the amount of the buoyancy adjustment rod 23 is provided. The buoyancy adjustment mechanism 24 is a buoyancy adjustment motor that rotates the nut and the pinion while the buoyancy adjustment rod 23 is formed of a nut when the buoyancy adjustment rod 23 is formed of a ball screw, for example. Composed. In addition, the buoyancy adjustment rod 23 can be moved in and out through the pressure-resistant seal 25 so that seawater does not enter the pressure-resistant shell 12 when it appears and disappears from the pressure-resistant shell 12.

耐圧殻12は、浮沈体10の通信機器14が海面S上になるように浮沈体10に浮力を付与する容積に形成されると共に、浮沈体10が海中で垂直に保つように、浮力中心Bが、浮沈体10の重心Gより上になるように浮沈本体11の上部に形成される。   The pressure shell 12 is formed in a volume that imparts buoyancy to the floating body 10 so that the communication device 14 of the floating body 10 is on the sea surface S, and the buoyancy center B is maintained so that the floating body 10 is kept vertical in the sea. Is formed above the floating body 11 so as to be above the center of gravity G of the floating body 10.

図2は、浮沈体10に搭載された各種機器の制御システム構成図を示したものである。   FIG. 2 shows a control system configuration diagram of various devices mounted on the floating body 10.

制御装置21は、バッテリ22から電源供給されて、可動翼16、浮力調整機構23を駆動制御できるようにされる。この制御装置21には、観測センサ18の観測値と深度計19の深度が入力されると共に慣性航法装置20のデータが入力される。また制御装置21は、通信機器14からの測位データが、慣性航法装置20を介して或いは直接入力され、さらに観測センサ18と深度計19の観測値と深度が通信機器14から衛星通信や無線LANなどで送信できるようになっている。 The control device 21 is supplied with power from the battery 22 so that the movable blade 16 and the buoyancy adjusting mechanism 23 can be driven and controlled. The control device 21 receives the observation value of the observation sensor 18 and the depth of the depth meter 19 and the data of the inertial navigation device 20. The control device 21 receives the positioning data from the communication device 14 via the inertial navigation device 20 or directly, and the observation values and depths of the observation sensor 18 and the depth meter 19 are transmitted from the communication device 14 to the satellite communication or wireless LAN. It is possible to send by.

次にこの浮沈体10による海洋観測を説明する。   Next, ocean observation by the floating body 10 will be described.

先ず図1(a)に示したように、浮上時にはGPSにより通信機器14で、現在位置を測位する。   First, as shown in FIG. 1A, at the time of ascent, the current position is measured by the communication device 14 by GPS.

制御装置21は、通信機器14で受信した目標とする海中到達点が入力され、現在の測位位置と海中到達点の位置との位置関係を把握した後、沈降を開始する。   The control device 21 receives the target undersea arrival point received by the communication device 14, grasps the positional relationship between the current positioning position and the position of the underwater arrival point, and then starts subsidence.

沈降を開始する際には、制御装置21が、浮力調整機構24を介して、浮量調整ロッド23を耐圧殻12内に引き上げることで、耐圧殻12の浮力が小さくなり、沈降を開始する。この沈降は、1.5〜3.0m/sec程度の沈降速度となるように浮量調整ロッド23を調整する。この沈降速度を利用して、制御装置21は、可動翼16を制御して、図1(b)に示すように浮沈体10が、図1(c)の目標海中到達点に沈降できるように浮沈体10の姿勢を制御して沈降位置を調整する。   When starting the sedimentation, the control device 21 pulls up the buoyancy adjusting rod 23 into the pressure-resistant shell 12 via the buoyancy adjusting mechanism 24, whereby the buoyancy of the pressure-resistant shell 12 becomes small and the sedimentation starts. This sedimentation adjusts the buoyancy adjusting rod 23 so that the sedimentation speed is about 1.5 to 3.0 m / sec. Using this settling velocity, the control device 21 controls the movable blade 16 so that the floating body 10 can sink to the target underwater arrival point in FIG. 1C as shown in FIG. The posture of the floating body 10 is controlled to adjust the sinking position.

この際、沈降速度を1.5〜3.0m/secとすることで、潮流に抗してその上流側にも、横断するようにも沈降させることが可能であり、これにより目標海中到達点に向かって沈降させることができる。   At this time, by setting the subsidence speed to 1.5 to 3.0 m / sec, it is possible to subsidize both upstream and crossing against the tidal current. Can be allowed to settle.

図1(c)に示した目標深度と位置に到達すると、制御装置21は、可動翼16により減速し、浮量調整ロッド23の浮力調整により沈降を停止する。   When the target depth and position shown in FIG. 1C are reached, the control device 21 decelerates by the movable blade 16 and stops sedimentation by adjusting the buoyancy of the buoyancy adjustment rod 23.

次に、制御装置21は、正浮量状態で、図1(d)に示すように目標海中到達点の直上海面に向かって、かつ慣性航法装置20で検出したデータを基に可動翼16を制御して垂直を保ちながら浮上する。この浮上中に、制御装置21は、観測センサ18と深度計19により計測される深度に応じた海中の科学諸量を記憶し、図1(e)に示すように海面Sに浮上後、GPSにより位置を確認し、通信により位置情報及び記憶した計測結果を伝送する。   Next, the control device 21 is in the normal flying height state, as shown in FIG. 1 (d), toward the directly underwater surface of the target underwater arrival point and based on the data detected by the inertial navigation device 20. Control and move up while keeping vertical. During the ascent, the control device 21 stores various scientific quantities in the sea according to the depth measured by the observation sensor 18 and the depth meter 19, and after ascending to the sea surface S as shown in FIG. The position is confirmed by, and the position information and the stored measurement result are transmitted by communication.

この図1(a)と図1(e)の測位位置の結果から、潮流の方向とその速さも認識でき、潮流の影響による目標海中到達点の正確な位置も決定することができる。   From the results of the positioning positions in FIGS. 1 (a) and 1 (e), the direction and speed of the tidal current can be recognized, and the precise position of the target underwater arrival point due to the influence of the tidal current can be determined.

その後、浮沈体10は、点線の矢印で示したように潮流に流され、再度その位置を測位し、再度沈降と浮上を上述のように自律的に繰り返して海洋観測を行う。   After that, the floating body 10 is flowed to the tidal current as shown by the dotted arrows, and the position thereof is again measured, and the ocean observation is performed by repeating the subsidence and rising again autonomously as described above.

この沈降・浮上は例えば4時間を1サイクルとして、1日当たり4,5回の観測を行う。   This settling / floating is observed 4 to 5 times per day, for example, with 4 hours as one cycle.

この浮沈体10の沈降速度の制御は、目標海中到達点に到達させるために重要なファクターである。そこで、この沈降速度uを説明する。   Control of the sinking speed of the floating body 10 is an important factor for reaching the target undersea arrival point. Therefore, the sedimentation speed u will be described.

図3に示すように、浮沈体の質量をM、耐圧殻の容積をV、断面積をAとし、浮沈体の浮力をB、沈降力をW、沈降の際の抗力をDとし、重力加速度をgとすると、
浮沈体の沈降力Wは、
W=Mg
また浮沈体の浮力Bは、海水の密度をρとすると、
B=ρVg
次に、沈降時に浮沈体が受ける抗力Dは、抗力係数をCDとし、沈降速度をuとすると、
D=CD×1/2×ρu2
となる。
As shown in FIG. 3, the mass of the floating body is M, the volume of the pressure-resistant shell is V, the cross-sectional area is A, the buoyancy of the floating body is B, the settling force is W, the drag force during settling is D, and the gravitational acceleration Is g,
The settling force W of the floating body is
W = Mg
In addition, the buoyancy B of the floating body is expressed as follows:
B = ρVg
Next, the drag D received by the floating body at the time of sedimentation is represented by a drag coefficient C D and a sedimentation velocity u.
D = C D × 1/2 × ρu 2 A
It becomes.

よって、力のつり合いFは、次式(数1)   Therefore, the force balance F is given by the following equation (Equation 1).

Figure 0005477096
Figure 0005477096

となる。 It becomes.

いま、沈降力Wが浮力Bより大きい場合、浮沈体は沈降するが、沈降速度が上昇するに従い抗力D(圧力抵抗、等)が発生し、沈降速度は一定に収束する。   Now, when the settling force W is greater than the buoyancy B, the floated body sinks, but as the settling speed increases, a drag D (pressure resistance, etc.) is generated, and the settling speed converges at a constant level.

この時、沈降力、浮力と抗力がつりあっており、F=0であり、上式では括弧内が0となる。   At this time, the settling force, buoyancy, and drag are balanced, F = 0, and the value in parentheses is 0 in the above equation.

この時の沈降速度uは、次式(数2)を満たす。   The sedimentation velocity u at this time satisfies the following equation (Equation 2).

Figure 0005477096
Figure 0005477096

よって沈降速度uは次式(数3)で求められる。   Therefore, the sedimentation velocity u is obtained by the following equation (Equation 3).

Figure 0005477096
Figure 0005477096

上式より、浮沈体10の質量M、耐圧殻の断面積Aは一定であり、海水密度ρも略一定とみなすことができるため、浮沈体10の形状に基づく抗力係数CDを予め決定しておけば、耐圧殻の容積Vを変えることで沈降速度uを求めることができる。 From the above equation, the mass M, the cross-sectional area A of the pressure hull of the floating and sinking body 10 is constant, it is possible to also seawater density ρ regarded as substantially constant, pre-determined drag coefficient C D based on the shape of the sink-float body 10 In this case, the sedimentation velocity u can be obtained by changing the volume V of the pressure-resistant shell.

そこで、制御装置21で、浮量調整ロッド23の出没量による耐圧殻10内の容積Vの変化を入力し、また海面Sから目標深度に達するまでの時間を測定すれば、沈降速度uは決定でき、これにより抗力係数CDも決定することができる。 Therefore, if the control device 21 inputs the change in the volume V in the pressure-resistant shell 10 due to the amount of protrusion and depression of the buoyancy adjustment rod 23 and measures the time from the sea level S to the target depth, the settling velocity u is determined. Thus, the drag coefficient C D can also be determined.

よって、制御装置21は、潮流や到達目標深度に応じて沈降速度uを自在に設定することが可能となり、浮上している位置と目標到達点の位置と深度に応じて、可動翼16の調整で、目標到達点に沈降できる最適な沈降速度uも決定できる。   Therefore, the control device 21 can freely set the subsidence velocity u according to the tidal current and the target reaching depth, and adjust the movable blade 16 according to the ascending position and the position and depth of the target reaching point. Thus, the optimum sedimentation speed u that can settle to the target arrival point can also be determined.

このように、本発明は、浮量調整機構24を設けることで浮沈体10を浮沈できることから、吊下装置が無くても深深度に観測センサ18を移動できるようになる。また、浮遊型であり潮流に流されるが、可動翼16を制御し、沈降時の沈降速度uを制御し、また浮上時の浮上速度を利用し、潮流の上流方向に浮沈体10を移動させることが可能であり、浮沈体10を目標到達地点の位置に到達させることが可能となる。   As described above, according to the present invention, since the floating body 10 can be floated and lowered by providing the floating amount adjusting mechanism 24, the observation sensor 18 can be moved to a deep depth without a suspension device. Moreover, although it is a floating type and is carried by the tide, the movable wing 16 is controlled, the settling velocity u at the time of settling is controlled, and the buoyancy body 10 is moved in the upstream direction of the tide using the ascent rate at the time of ascent. It is possible to make the floating body 10 reach the position of the target arrival point.

なお、上述の実施の形態では目標到達点に達した後、海面に浮上する間に海洋観測する例で説明したが、沈降中に海洋観測するようにしても、沈降と浮上の両方で観測するようにしてもよい。   In the above-described embodiment, the example of observing the ocean while reaching the target level and then ascending to the sea surface has been described. However, even if the ocean is observed during the subsidence, the observation is performed both at the subsidence and the ascent. You may do it.

10 浮沈体
11 浮沈本体
12 耐圧殻
14 通信機器
18 観測センサ
19 深度計
23 浮量調整ロッド
24 浮量調整機構
DESCRIPTION OF SYMBOLS 10 Floating body 11 Floating body 12 Pressure-resistant shell 14 Communication apparatus 18 Observation sensor 19 Depth meter 23 Float adjustment rod 24 Float adjustment mechanism

Claims (4)

浮沈本体と、浮沈本体に設けられた海洋データの観測センサと、浮沈本体に設けられた深度計と、その観測データと深度データを送信すると共に測位を計測する通信機器とを備えた浮沈体において、浮沈本体の一部に形成され浮沈本体に浮力を付与する耐圧殻と、その耐圧殻に設けられ、その耐圧殻から出没自在に設けられた浮量調整ロッドと、その浮量調整ロッドの出没量を制御する浮量調整機構と、前記耐圧殻内に設けられた慣性航法装置及び制御装置とを備え、
前記浮沈本体は縦長円筒状に形成され、その浮沈本体の中央部に前記耐圧殻が形成され、その耐圧殻の下方の浮沈本体は、海水が導入されるよう海中に開放され、前記浮量調整ロッドは、前記耐圧殻の下面からその浮沈本体内の海水中に出没するようにされ、
浮沈本体の下部外側には、沈降中に目標海中到達点に向かって沈降位置を調整する可動翼が設けられると共にその翼角度を調整する沈降姿勢制御モータが設けられ、
前記制御装置は、前記観測センサの観測値と深度計の深度が入力されると共に前記慣性航法装置のデータが入力され、通信機器で受信した目標とする海中到達点が入力され、現在の測位位置と海中到達位置との位置関係を把握して前記浮量調整ロッドを制御して沈降を開始すると共に、前記姿勢制御モータを制御して目標海中到達点に沈降することを特徴とする浮沈体。
In a floating body including a floating body, an observation sensor for ocean data provided in the floating body, a depth meter provided in the floating body, and a communication device that transmits the observation data and depth data and measures the positioning A pressure-resistant shell that is formed on a part of the main body and that provides buoyancy to the main body, a buoyancy adjustment rod that is provided on the pressure-shell and can be moved in and out of the pressure shell, and the buoyancy of the buoyancy adjustment rod A buoyancy adjustment mechanism for controlling the amount, an inertial navigation device and a control device provided in the pressure-resistant shell ,
The floating body is formed in a vertically long cylindrical shape, the pressure shell is formed in the center of the floating body, and the floating body below the pressure shell is opened to the sea so that seawater is introduced, and the floating amount adjustment is performed. The rod is made to appear in the seawater in the floating body from the lower surface of the pressure shell,
A movable wing that adjusts the sinking position toward the target underwater arrival point during subsidence is provided on the lower outside of the main body, and a sinking attitude control motor that adjusts the blade angle is provided.
The control device receives the observation value of the observation sensor and the depth of the depth meter as well as the data of the inertial navigation device, the target undersea arrival point received by the communication device, and the current positioning position A floating body that grasps a positional relationship between the position and the underwater arrival position and controls the buoyancy adjustment rod to start subsidence, and also controls the attitude control motor to sink to a target underwater arrival point .
前記浮量調整ロッドは、耐圧殻内に設けられた浮量調整機構で可動され、その浮量調整機構は、浮量調整ロッドの出没量を調節して沈降・浮上速度を調節する請求項1に記載の浮沈体。 The浮量adjustment rod is movable in浮量adjusting mechanism provided inside the pressure shell, its浮量adjustment mechanism, according to claim 1 for adjusting an adjustment to settle, flying speed haunt of浮量adjustment rod ups and downs body according to. 前記浮沈本体の上部外側には固定翼が設けられる請求項1に記載の浮沈体。 The float / sink body according to claim 1, wherein a fixed wing is provided on an upper outer side of the float / sink main body. 前記通信機器は、浮沈本体の上部に設けられ、浮上時にその通信機器が海上に位置するように耐圧殻の容積が設定される請求項1〜いずれかに記載の浮沈体。 The float / sink body according to any one of claims 1 to 3 , wherein the communication device is provided on an upper portion of the float / sink main body, and a volume of the pressure-resistant shell is set so that the communication device is positioned on the sea when the float is lifted.
JP2010064394A 2010-03-19 2010-03-19 Floating body Active JP5477096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010064394A JP5477096B2 (en) 2010-03-19 2010-03-19 Floating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010064394A JP5477096B2 (en) 2010-03-19 2010-03-19 Floating body

Publications (2)

Publication Number Publication Date
JP2011195027A JP2011195027A (en) 2011-10-06
JP5477096B2 true JP5477096B2 (en) 2014-04-23

Family

ID=44873761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010064394A Active JP5477096B2 (en) 2010-03-19 2010-03-19 Floating body

Country Status (1)

Country Link
JP (1) JP5477096B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6501341B2 (en) * 2014-08-25 2019-04-17 学校法人金沢工業大学 Search device
CN104655323A (en) * 2015-02-10 2015-05-27 河海大学 Underwater temperature measuring instrument
CN104986311A (en) * 2015-07-08 2015-10-21 中国船舶重工集团公司第七一九研究所 Low-noise high-navigational-speed large-depth underwater unpowered upwards-floating test platform
CN105971868B (en) * 2016-06-24 2017-12-05 天津深之蓝海洋设备科技有限公司 A kind of automatic cycle simulation testing device for axial buoyancy pump
JP6343068B1 (en) * 2017-05-15 2018-06-13 石井 昭良 Underwater transport aircraft
JP6496888B2 (en) * 2017-08-08 2019-04-10 石井 昭良 Underwater transport aircraft
KR102130125B1 (en) * 2018-11-28 2020-07-03 울산과학기술원 Marine gamma-ray isotopes analyzer using scintillation detector and autonomous underwater vehicles and marine gamma-ray isotopes analysis method thereby
CN111765871B (en) * 2020-07-11 2024-07-30 广州探海科技有限公司 Water body profile observation device with gas generating device
CN115743409A (en) * 2022-10-31 2023-03-07 南方海洋科学与工程广东省实验室(珠海) Self-floating and sinking type section observation buoy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123595U (en) * 1981-01-23 1982-08-02
JPS61135797U (en) * 1985-02-14 1986-08-23
JP3532540B2 (en) * 2000-08-09 2004-05-31 株式会社鶴見精機 Float device for ocean data measurement
JP2003227881A (en) * 2002-02-04 2003-08-15 Tsurumi Seiki:Kk Salinity measuring device and drifting buoy provided with salinity measuring function
JP5002760B2 (en) * 2006-10-17 2012-08-15 独立行政法人港湾空港技術研究所 Unmanned floating material monitoring buoy, floating material monitoring system and floating material monitoring method

Also Published As

Publication number Publication date
JP2011195027A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5477096B2 (en) Floating body
US10589829B2 (en) Gliding robotic fish navigation and propulsion
JP6883461B2 (en) Underwater survey system and underwater survey method using unmanned aircraft
US10322783B2 (en) Seismic autonomous underwater vehicle
US9822757B2 (en) Underwater tethered telemetry platform
CN106043632B (en) A kind of application method of deep-sea unmanned submariner device
JP7245988B2 (en) Undersea Mineral Resource Lifting Equipment
EP1937542B1 (en) Buoy
US10322782B1 (en) Combined autonomous underwater vehicle and buoy device
US20100185348A1 (en) Autonomous underwater vehicle with current monitoring
KR101710613B1 (en) Real-time wave and current measurement using Waterproof Drone equipped with hydrofoil
JP5825483B2 (en) Marine information collection system
AU2014279255B2 (en) Underwater mobile body
JP2018069881A (en) Floating-sink observation buoy
JP7053774B2 (en) Underwater survey system and underwater survey method using unmanned aircraft
KR101223551B1 (en) Underwater measurement device for vertical profiling of water column
US6786087B2 (en) Controlled thruster driven profiler for coastal waters
JP4417543B2 (en) Submersible and distribution measuring method
US20190317236A1 (en) Autonomous Marine Survey Nodes
CN106394836A (en) Small submarine
CN112783179B (en) External hanging type deflection control device for submerged buoy of mooring profile
CN114323741A (en) Hoisting-free automatic sediment sampling device and automatic sampling method thereof
KR101092392B1 (en) Posture-stabilizer for submarine-installed equipment
Richardson Drifters and floats
KR20170127700A (en) System for imaging sea road view

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R151 Written notification of patent or utility model registration

Ref document number: 5477096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250