JP5475700B2 - Liquid supply method and apparatus - Google Patents

Liquid supply method and apparatus Download PDF

Info

Publication number
JP5475700B2
JP5475700B2 JP2011021701A JP2011021701A JP5475700B2 JP 5475700 B2 JP5475700 B2 JP 5475700B2 JP 2011021701 A JP2011021701 A JP 2011021701A JP 2011021701 A JP2011021701 A JP 2011021701A JP 5475700 B2 JP5475700 B2 JP 5475700B2
Authority
JP
Japan
Prior art keywords
liquid
pump chamber
valve
pump
secondary side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011021701A
Other languages
Japanese (ja)
Other versions
JP2012162269A (en
Inventor
敏男 武石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koganei Corp
Original Assignee
Koganei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koganei Corp filed Critical Koganei Corp
Priority to JP2011021701A priority Critical patent/JP5475700B2/en
Priority to KR1020137020606A priority patent/KR101418529B1/en
Priority to PCT/JP2011/073702 priority patent/WO2012105091A1/en
Publication of JP2012162269A publication Critical patent/JP2012162269A/en
Application granted granted Critical
Publication of JP5475700B2 publication Critical patent/JP5475700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • F04B23/025Pumping installations or systems having reservoirs the pump being located directly adjacent the reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/11Kind or type liquid, i.e. incompressible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Description

本発明は内部を負圧状態とした容器内に液体を供給するために使用する液体供給技術に関する。   The present invention relates to a liquid supply technique used for supplying liquid into a container having a negative pressure inside.

筒型や角型のケース等の容器の内部に液体を注入するときに、液体注入前に容器の内部を負圧にし、ついで液体を注入し、所定時間経過後に容器内部を大気圧に転じている。これによって、容器の内部に気体を残留させることなく液体を容器内に確実に充填させることができる。例えば、電解液を用いる二次電池を製造するときには、正負の電極と両電極間に配置されるセパレータとが電池容器の内部に組み込まれた状態のもとで、電池容器の内部に電解液を充填している。セパレータは微細な孔が多数形成された多孔質の薄膜層であり、この薄膜層に電解液を浸透させるには、電池容器の内部を大気圧以下の真空圧力つまり負圧状態として微細孔の内部から空気を除去しておく必要がある。   When injecting liquid into a container such as a cylindrical or square case, make the inside of the container negative before injecting the liquid, and then inject the liquid. Yes. As a result, the liquid can be reliably filled into the container without causing gas to remain in the container. For example, when manufacturing a secondary battery using an electrolytic solution, the electrolytic solution is placed inside the battery container in a state where positive and negative electrodes and a separator disposed between both electrodes are incorporated into the battery container. Filled. The separator is a porous thin film layer in which a large number of fine pores are formed, and in order to infiltrate the electrolyte into the thin film layer, the inside of the battery vessel is set to a vacuum pressure of atmospheric pressure or lower, that is, a negative pressure state. It is necessary to remove air from.

電池容器の内部に電解液を注入するために、例えば、特許文献1に記載されるような電解液注入装置が使用されている。この電解液注入装置は、電池容器を収容する密閉チャンバーと、密閉チャンバー内に供給される電解液を貯溜するシリンダとを有しており、シリンダには電解液を吐出するためのピストンが設けられている。電池容器内に電解液を注入するには、電池容器を密閉チャンバー内に密閉収容し、真空ポンプにより密閉チャンバー内つまり電池容器内を負圧にした状態のもとで、ピストンにより電解液をシリンダ内からノズルに吐出して、ノズルから電池容器内に電解液が供給される。   In order to inject the electrolyte into the battery container, for example, an electrolyte injecting device as described in Patent Document 1 is used. This electrolyte solution injection device has a sealed chamber for storing a battery container and a cylinder for storing the electrolyte solution supplied into the sealed chamber, and the cylinder is provided with a piston for discharging the electrolyte solution. ing. In order to inject the electrolyte into the battery container, the battery container is hermetically accommodated in a sealed chamber, and the electrolyte is cylinderized by a piston in a state in which the inside of the sealed chamber, that is, the battery container is negatively charged by a vacuum pump. It discharges from the inside to the nozzle, and the electrolytic solution is supplied from the nozzle into the battery container.

一方、特許文献2には、電池容器を収容する密閉チャンバーと電解液を収容する電解液貯溜部とを開閉バルブが設けられた配管により接続するようにした電解液注入装置が記載されている。電池容器内に電解液を注入するには、電池容器を密閉チャンバー内に密閉収容し、真空ポンプにより密閉チャンバー内つまり電池容器内を負圧にした状態のもとで開閉バルブを開放することにより、電解液貯溜部内の電解液をノズルから電池容器に供給するようにしている。   On the other hand, Patent Document 2 describes an electrolyte injection device in which a sealed chamber for storing a battery container and an electrolyte storage part for storing an electrolyte are connected by a pipe provided with an opening / closing valve. In order to inject electrolyte into the battery container, the battery container is hermetically housed in a sealed chamber, and the open / close valve is opened under a negative pressure in the sealed chamber, that is, in the battery container, by a vacuum pump. The electrolytic solution in the electrolytic solution reservoir is supplied from the nozzle to the battery container.

特開2003−217566号公報JP 2003-217666 A 特開2003−217567号公報JP 2003-217567 A

特許文献1に記載される注入装置のように、密閉チャンバー内で負圧状態となった電池容器内に、シリンダ内の電解液をピストンにより注入するようにすると、シリンダ内にも負圧が伝達されることになる。このため、ピストンが負圧によって密閉チャンバー部の方向へ引かれ、ピストンは油圧ピストン軸で駆動されたストロークよりも長いストロークを移動してしまう可能性がある。つまり、電解液の吐出量は油圧ピストン軸で駆動されたストロークに対応しないので、電解液の注入量の精度を高めることができない。   As in the injection device described in Patent Document 1, if the electrolyte in the cylinder is injected into the battery container that is in a negative pressure state in the sealed chamber by the piston, the negative pressure is also transmitted into the cylinder. Will be. For this reason, there is a possibility that the piston is pulled in the direction of the sealed chamber portion by the negative pressure, and the piston moves a stroke longer than the stroke driven by the hydraulic piston shaft. That is, since the discharge amount of the electrolytic solution does not correspond to the stroke driven by the hydraulic piston shaft, the accuracy of the injection amount of the electrolytic solution cannot be increased.

一方、特許文献2に記載される注入装置のように、電解液貯溜部内の電解液を電池容器に注入するようにすると、注入量は予め電解液貯溜部内に供給された電解液の量によって設定されることになり、電解液の注入精度を高めることができない。   On the other hand, when the electrolytic solution in the electrolytic solution storage part is injected into the battery container as in the injection device described in Patent Document 2, the injection amount is set according to the amount of the electrolytic solution supplied into the electrolytic solution storage part in advance. As a result, the accuracy of electrolyte injection cannot be increased.

本発明の目的は、負圧雰囲気内にある容器等の被注入物の内部への液体の注入精度を高めることにある。   An object of the present invention is to improve the accuracy of liquid injection into an object to be injected such as a container in a negative pressure atmosphere.

本発明の液体供給方法は、液体を収容する液体収容タンクに接続される一次側配管と液体を被注入物に注入する吐出ノズルに接続される二次側配管とに連通するポンプ室を有し、当該ポンプ室を膨張させて前記液体収容タンク内の液体を前記ポンプ室に吸入し、前記ポンプ室を収縮させて液体を吐出ノズルから吐出するポンプ駆動部材が設けられた液体供給ポンプを用いて、負圧雰囲気に保持された前記被注入物に液体を供給する液体供給方法であって、前記一次側配管に設けられた一次側開閉弁により前記一次側配管の流路を開放し、前記二次側配管に設けられた二次側開閉弁により前記二次側配管の流路を閉塞した状態のもとで前記ポンプ室を膨張させて前記ポンプ室内に液体を吸入する吸入工程と、前記一次側配管の流路を前記一次側開閉弁により閉塞し、前記二次側配管の流路を前記二次側開閉弁により開放した状態のもとで、前記二次側開閉弁から前記吐出ノズルの先端までの間に設けられた絞り部により負圧が前記ポンプ室に伝達されるのを防止しながら、前記ポンプ室を収縮させて前記ポンプ室内の液体を前記吐出ノズルから前記被注入物に注入供給する注入工程とを有し、前記被注入物内への液体注入開始時に、前記二次側開閉弁の開放動作を前記ポンプ駆動部材の駆動開始よりも遅延させることを特徴とする。本発明の液体供給方法は、前記被注入物内への液体注入停止時に、前記二次側開閉弁の閉塞動作を前記ポンプ駆動部材の駆動停止よりも早めることを特徴とする。本発明の液体供給方法は、液体を収容する液体収容タンクに接続される一次側配管と液体を被注入物に注入する吐出ノズルに接続される二次側配管とに連通するポンプ室を有し、当該ポンプ室を膨張させて前記液体収容タンク内の液体を前記ポンプ室に吸入し、前記ポンプ室を収縮させて液体を吐出ノズルから吐出するポンプ駆動部材が設けられた液体供給ポンプを用いて、負圧雰囲気に保持された前記被注入物に液体を供給する液体供給方法であって、前記一次側配管に設けられた一次側開閉弁により前記一次側配管の流路を開放し、前記二次側配管に設けられた二次側開閉弁により前記二次側配管の流路を閉塞した状態のもとで前記ポンプ室を膨張させて前記ポンプ室内に液体を吸入する吸入工程と、前記一次側配管の流路を前記一次側開閉弁により閉塞し、前記二次側配管の流路を前記二次側開閉弁により開放した状態のもとで、前記二次側開閉弁から前記吐出ノズルの先端までの間に設けられた絞り部により負圧が前記ポンプ室に伝達されるのを防止しながら、前記ポンプ室を収縮させて前記ポンプ室内の液体を前記吐出ノズルから前記被注入物に注入供給する注入工程とを有し、前記被注入物内への液体注入停止時に、前記二次側開閉弁の閉塞動作を前記ポンプ駆動部材の駆動停止よりも早めることを特徴とする。 The liquid supply method of the present invention includes a pump chamber that communicates with a primary side pipe connected to a liquid storage tank that contains a liquid and a secondary side pipe connected to a discharge nozzle that injects the liquid into an injection target. A liquid supply pump provided with a pump drive member that expands the pump chamber and sucks the liquid in the liquid storage tank into the pump chamber and contracts the pump chamber to discharge the liquid from the discharge nozzle. A liquid supply method for supplying a liquid to the injected material held in a negative pressure atmosphere, wherein a flow path of the primary side pipe is opened by a primary side on-off valve provided in the primary side pipe, A suction step of inflating the pump chamber and sucking liquid into the pump chamber under a state in which the flow path of the secondary side pipe is closed by a secondary side on-off valve provided in the secondary side pipe; The flow path of the side piping is the primary side A throttle provided between the secondary side on-off valve and the tip of the discharge nozzle in a state where the secondary side pipe is closed by the valve closing and the flow path of the secondary side pipe is opened by the secondary side on-off valve. while preventing the negative pressure is transmitted to the pump chamber by parts, possess the injection for supplying injection process the liquid in the pump chamber by contracting the pump chamber to said object implant from the discharge nozzle, The opening operation of the secondary side on-off valve is delayed from the start of driving of the pump driving member at the start of liquid injection into the injection target . Liquid supply method of the present invention, the at liquid stop infusion into the implant inside, characterized in that to accelerate the closing operation of the secondary side valve than the drive stop of the pump drive member. The liquid supply method of the present invention includes a pump chamber that communicates with a primary side pipe connected to a liquid storage tank that contains a liquid and a secondary side pipe connected to a discharge nozzle that injects the liquid into an injection target. A liquid supply pump provided with a pump drive member that expands the pump chamber and sucks the liquid in the liquid storage tank into the pump chamber and contracts the pump chamber to discharge the liquid from the discharge nozzle. A liquid supply method for supplying a liquid to the injected material held in a negative pressure atmosphere, wherein a flow path of the primary side pipe is opened by a primary side on-off valve provided in the primary side pipe, A suction step of inflating the pump chamber and sucking liquid into the pump chamber under a state in which the flow path of the secondary side pipe is closed by a secondary side on-off valve provided in the secondary side pipe; The flow path of the side piping is the primary side A throttle provided between the secondary side on-off valve and the tip of the discharge nozzle in a state where the secondary side pipe is closed by the valve closing and the flow path of the secondary side pipe is opened by the secondary side on-off valve. while preventing the negative pressure is transmitted to the pump chamber by parts, possess the injection for supplying injection process the liquid in the pump chamber by contracting the pump chamber to said object implant from the discharge nozzle, When the liquid injection into the injection target is stopped, the closing operation of the secondary side on-off valve is made earlier than the stop of driving of the pump driving member .

本発明の液体供給装置は、負圧雰囲気に保持された被注入物に液体を供給する液体供給装置であって、液体を収容する液体収容タンクに接続される一次側配管と液体を被注入物に注入する吐出ノズルに接続される二次側配管とに連通するポンプ室を有し、当該ポンプ室を膨張させて前記液体収容タンク内の液体を前記ポンプ室に吸入し、前記ポンプ室を収縮させて液体を吐出ノズルから吐出するポンプ駆動部材が設けられた液体供給ポンプと、前記一次側配管に設けられ、前記ポンプ室を膨張させる際に前記一次側配管の流路を開放する一方、前記ポンプ室を収縮させる際に前記一次側配管の流路を閉塞する一次側開閉弁と、前記二次側配管に設けられ、前記ポンプ室を膨張させる際に前記二次側配管の流路を閉塞する一方、前記ポンプ室を収縮させる際に前記二次側配管の流路を開放する二次側開閉弁と、前記二次側開閉弁から前記吐出ノズルの先端までの間に設けられ、前記ポンプ室を収縮させて液体を前記被注入物内に注入する過程のもとでは負圧が前記ポンプ室に伝達されるのを防止する絞り部とを有し、前記被注入物内への液体注入開始時に、前記二次側開閉弁の開放動作を前記ポンプ駆動部材の駆動開始よりも遅延させることを特徴とする。本発明の液体供給装置は、前記被注入物内への液体注入停止時に、前記二次側開閉弁の閉塞動作を前記ポンプ駆動部材の駆動停止よりも早めることを特徴とする。本発明の液体供給装置は、負圧雰囲気に保持された被注入物に液体を供給する液体供給装置であって、液体を収容する液体収容タンクに接続される一次側配管と液体を被注入物に注入する吐出ノズルに接続される二次側配管とに連通するポンプ室を有し、当該ポンプ室を膨張させて前記液体収容タンク内の液体を前記ポンプ室に吸入し、前記ポンプ室を収縮させて液体を吐出ノズルから吐出するポンプ駆動部材が設けられた液体供給ポンプと、前記一次側配管に設けられ、前記ポンプ室を膨張させる際に前記一次側配管の流路を開放する一方、前記ポンプ室を収縮させる際に前記一次側配管の流路を閉塞する一次側開閉弁と、前記二次側配管に設けられ、前記ポンプ室を膨張させる際に前記二次側配管の流路を閉塞する一方、前記ポンプ室を収縮させる際に前記二次側配管の流路を開放する二次側開閉弁と、前記二次側開閉弁から前記吐出ノズルの先端までの間に設けられ、前記ポンプ室を収縮させて液体を前記被注入物内に注入する過程のもとでは負圧が前記ポンプ室に伝達されるのを防止する絞り部とを有し、前記被注入物内への液体注入停止時に、前記二次側開閉弁の閉塞動作を前記ポンプ駆動部材の駆動停止よりも早めることを特徴とする。 A liquid supply apparatus according to the present invention is a liquid supply apparatus that supplies liquid to an injection object held in a negative pressure atmosphere, and includes a primary side pipe connected to a liquid storage tank that stores the liquid and the liquid to be injection object A pump chamber that communicates with a secondary side pipe connected to a discharge nozzle for injecting the liquid into the pump, expands the pump chamber, sucks the liquid in the liquid storage tank into the pump chamber, and contracts the pump chamber A liquid supply pump provided with a pump drive member for discharging liquid from a discharge nozzle, and provided in the primary side pipe, while opening the flow path of the primary side pipe when the pump chamber is expanded, A primary side on-off valve that closes the flow path of the primary side pipe when the pump chamber is contracted, and a secondary side pipe that is provided in the secondary side pipe and closes the flow path of the secondary side pipe when the pump chamber is expanded. While the pump chamber A secondary side switching valve for opening the flow path of the secondary pipe when causing condensation, in between the said secondary side switching valve to the tip of the discharge nozzle, the liquid is contracted to the pump chamber wherein under the process of injecting the object injectate within possess a throttle portion for preventing the negative pressure is transmitted to the pump chamber, said at the start liquid injection into the implant in the secondary side The opening operation of the on-off valve is delayed from the start of driving of the pump driving member . Liquid supply apparatus of the present invention, the at liquid stop infusion into the implant inside, characterized in that to accelerate the closing operation of the secondary side valve than the drive stop of the pump drive member. A liquid supply apparatus according to the present invention is a liquid supply apparatus that supplies liquid to an injection object held in a negative pressure atmosphere, and includes a primary side pipe connected to a liquid storage tank that stores the liquid and the liquid to be injection object A pump chamber that communicates with a secondary side pipe connected to a discharge nozzle for injecting the liquid into the pump, expands the pump chamber, sucks the liquid in the liquid storage tank into the pump chamber, and contracts the pump chamber A liquid supply pump provided with a pump drive member for discharging liquid from a discharge nozzle, and provided in the primary side pipe, while opening the flow path of the primary side pipe when the pump chamber is expanded, A primary side on-off valve that closes the flow path of the primary side pipe when the pump chamber is contracted, and a secondary side pipe that is provided in the secondary side pipe and closes the flow path of the secondary side pipe when the pump chamber is expanded. While the pump chamber A secondary side switching valve for opening the flow path of the secondary pipe when causing condensation, in between the said secondary side switching valve to the tip of the discharge nozzle, the liquid is contracted to the pump chamber wherein under the process of injecting the object injectate within possess a throttle portion for preventing the negative pressure is transmitted to the pump chamber, said at liquid stop infusion into the implant in the secondary side It is characterized in that the closing operation of the on-off valve is made earlier than the stop of driving of the pump driving member .

本発明の液体供給装置は、前記絞り部は前記吐出ノズルの内径を調節する可変絞りであることを特徴とする。本発明の液体供給装置は、前記二次側開閉弁は空気圧によりそれぞれの流路を開閉するエアオペレイトバルブであることを特徴とする。本発明の液体供給装置は、前記絞り部は前記吐出ノズルの流路の長さを調整する可変絞りであることを特徴とする。本発明の液体供給装置は、前記二次側開閉弁は電磁弁であることを特徴とする。本発明の液体供給装置は、前記一次側開閉弁と前記二次側開閉弁と前記ポンプ駆動部材を制御するコントローラを有することを特徴とする。 In the liquid supply apparatus of the present invention, the throttle portion is a variable throttle that adjusts an inner diameter of the discharge nozzle. In the liquid supply apparatus of the present invention, the secondary side on-off valve is an air operated valve that opens and closes each flow path by air pressure. The liquid supply apparatus of the present invention is characterized in that the throttle section is a variable throttle that adjusts the length of the flow path of the discharge nozzle. The liquid supply apparatus of the present invention is characterized in that the secondary side on-off valve is an electromagnetic valve. The liquid supply apparatus of the present invention includes a controller that controls the primary side on-off valve, the secondary side on-off valve, and the pump driving member.

本発明においては、二次側配管のうち二次側開閉弁から吐出ノズルの先端までの間に絞り部が設けられている。負圧雰囲気内にある容器などの被注入物に、二次側開閉弁を開放状態に切り換えて液体を注入する際には、負圧が二次側配管内の流路を介してポンプ室に伝達されることが、この絞り部によって防止される。これにより、吐出ノズルからの液体の吐出量は、負圧雰囲気内の負圧により影響を受けることがなくなり、ポンプ室を収縮させるためのポンプ駆動部材の移動ストロークのみによって決まることになる。したがって、被注入物内への液体の注入量の精度を高めることができる。さらに、負圧そのものが変動しても、注入量はその影響を受けなくなるという効果を有する。   In the present invention, the throttle part is provided between the secondary side opening / closing valve and the tip of the discharge nozzle in the secondary side piping. When injecting liquid into an injectable object such as a container in a negative pressure atmosphere by switching the secondary side open / close valve to the open state, negative pressure is applied to the pump chamber via the flow path in the secondary side pipe. Transmission is prevented by this throttle. Thereby, the discharge amount of the liquid from the discharge nozzle is not affected by the negative pressure in the negative pressure atmosphere, and is determined only by the moving stroke of the pump driving member for contracting the pump chamber. Therefore, the accuracy of the amount of liquid injected into the injection target can be increased. Furthermore, even if the negative pressure itself fluctuates, the injection amount is not affected by this.

被注入物内への液体注入開始時に、二次側開閉弁の開放動作をポンプ駆動部材の駆動開始よりも遅延させると、注入量精度をより高めることができる。また、被注入物内への液体注入停止時に、二次側開閉弁の閉塞動作をポンプ駆動部材の駆動停止よりも早めると、注入精度をより高めることができる。   If the opening operation of the secondary side opening / closing valve is delayed from the start of driving of the pump drive member at the start of liquid injection into the injection target, the injection amount accuracy can be further increased. In addition, when the liquid injection into the injection target is stopped, if the closing operation of the secondary side opening / closing valve is made earlier than the stop of driving of the pump driving member, the injection accuracy can be further improved.

本発明の一実施の形態である液体供給装置を示す断面図である。It is sectional drawing which shows the liquid supply apparatus which is one embodiment of this invention. 液体供給装置の駆動制御回路を示すブロック図である。It is a block diagram which shows the drive control circuit of a liquid supply apparatus. 図1に示す液体供給装置のポンプ吐出動作とポンプ吸入動作を示すタイムチャートである。It is a time chart which shows the pump discharge operation | movement and pump suction operation | movement of the liquid supply apparatus shown in FIG. 比較例として示す液体供給装置におけるポンプ吐出動作とポンプ吸入動作を示すタイムチャートである。It is a time chart which shows the pump discharge operation | movement and pump suction operation | movement in the liquid supply apparatus shown as a comparative example. 他の比較例として示す液体供給装置におけるポンプ吐出動作とポンプ吸入動作を示すタイムチャートである。It is a time chart which shows the pump discharge operation | movement and pump suction operation | movement in the liquid supply apparatus shown as another comparative example. 二次側開閉弁を示す断面図である。It is sectional drawing which shows a secondary side on-off valve. 液体供給ポンプの他の形態を示す断面図である。It is sectional drawing which shows the other form of a liquid supply pump.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1に示される液体供給装置10は、例えば、電池容器Bを被注入物としてこの中に電解液を注入するために使用される。電池容器Bは真空タンク11内の真空室11aに収容される。真空チャンバーつまり真空室11aは、真空タンク11に接続された真空ポンプ12により、所定の真空度、例えば−60〜−80kPa程度の真空度に保持される。電池容器B内には予め正負の電極部材とこれらの電極間に配置される多孔質のセパレータつまり隔離層とが組み込まれており、組み立てられたときにはセパレータの微細孔の内部には空気が入り込んでいる。電池容器Bが収容された状態のもとで真空タンク11内を大気圧以下の圧力つまり真空圧にすると、セパレータの微細孔の内部に入り込んでいる空気は、電池容器Bの内部から真空室11aの外部に排出される。電池容器Bが負圧雰囲気に保持されて内部から空気が排出された状態のもとで、吐出ノズル13から吐出される電解液Lが電池容器Bへ注入される。電池容器B内に注入される液体としての電解液Lは、液体収容タンク14内に収容されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The liquid supply apparatus 10 shown in FIG. 1 is used, for example, for injecting an electrolytic solution into the battery container B as an injection target. The battery container B is accommodated in the vacuum chamber 11 a in the vacuum tank 11. The vacuum chamber, that is, the vacuum chamber 11a, is maintained at a predetermined degree of vacuum, for example, about −60 to −80 kPa, by the vacuum pump 12 connected to the vacuum tank 11. In the battery container B, positive and negative electrode members and a porous separator, that is, a separator layer disposed between these electrodes are previously incorporated. When assembled, air enters the micropores of the separator. Yes. When the inside of the vacuum tank 11 is set to a pressure equal to or lower than the atmospheric pressure, that is, the vacuum pressure in a state where the battery container B is accommodated, the air entering the fine pores of the separator is discharged from the inside of the battery container B to the vacuum chamber 11a. Is discharged outside. The electrolytic solution L discharged from the discharge nozzle 13 is injected into the battery container B in a state where the battery container B is held in a negative pressure atmosphere and air is discharged from the inside. The electrolyte solution L as a liquid injected into the battery container B is stored in the liquid storage tank 14.

液体供給装置10は、図1に示されるように、ポンプ本体15とポンプ駆動部16とからなる液体供給ポンプ20を有している。ポンプ本体15は内部に長手方向に貫通する収容孔17が形成されたポンプケース15aを有している。ポンプケース15aの下端部には流入側のジョイント部材18が取り付けられ、上端部には流出側のジョイント部材19が取り付けられており、それぞれのジョイント部材18,19はポンプケース15aの一部を構成している。流入側のジョイント部材18にはこれに形成された流入ポート18aに連通する一次側配管21が接続され、流出側のジョイント部材19にはこれに形成された流出ポート19aに連通する二次側配管22が接続される。一次側配管21は液体収容タンク14に接続され、二次側配管22の先端には電解液Lを吐出する吐出ノズル13が設けられている。吐出ノズル13は真空タンク11の蓋部材に設けられており、真空タンク11内に電池容器Bを配置した後に蓋部材を真空タンク11に取り付けると、真空室11aは密閉状態となる。真空室11aを所定の真空度に保持した状態のもとで、吐出ノズル13から電池容器B内に電解液Lが供給される。なお、それぞれの配管21,22はホースやチューブ等により形成されている。   As shown in FIG. 1, the liquid supply apparatus 10 includes a liquid supply pump 20 including a pump body 15 and a pump drive unit 16. The pump body 15 has a pump case 15a in which an accommodation hole 17 penetrating in the longitudinal direction is formed. An inflow side joint member 18 is attached to the lower end portion of the pump case 15a, and an outflow side joint member 19 is attached to the upper end portion, and each joint member 18, 19 constitutes a part of the pump case 15a. doing. A primary side pipe 21 communicating with the inflow port 18a formed in the inflow side joint member 18 is connected to the inflow side joint member 18, and a secondary side pipe communicating with the outflow port 19a formed therein is connected to the outflow side joint member 19. 22 is connected. The primary side pipe 21 is connected to the liquid storage tank 14, and a discharge nozzle 13 that discharges the electrolytic solution L is provided at the tip of the secondary side pipe 22. The discharge nozzle 13 is provided on the lid member of the vacuum tank 11, and when the lid member is attached to the vacuum tank 11 after the battery container B is disposed in the vacuum tank 11, the vacuum chamber 11 a is sealed. The electrolytic solution L is supplied from the discharge nozzle 13 into the battery container B in a state where the vacuum chamber 11a is maintained at a predetermined degree of vacuum. Each of the pipes 21 and 22 is formed by a hose, a tube, or the like.

一次側配管21には内部の流路を開閉する一次側開閉弁23が設けられ、二次側配管22には内部の流路を開閉する二次側開閉弁24が設けられている。それぞれの開閉弁23,24は、空気の圧力により弁体を作動するようにした空気操作弁つまりエアオペレイトバルブであり、それぞれ電磁弁25,26のパイロット流路25a,26aから供給される圧縮空気をパイロット圧として流路切換が行われる。   The primary side pipe 21 is provided with a primary side on-off valve 23 for opening and closing the internal flow path, and the secondary side pipe 22 is provided with a secondary side on-off valve 24 for opening and closing the internal flow path. Each of the on-off valves 23 and 24 is an air operation valve, that is, an air-operated valve that operates the valve body by the pressure of air, and compression supplied from pilot flow paths 25a and 26a of the electromagnetic valves 25 and 26, respectively. Channel switching is performed using air as a pilot pressure.

ポンプケース15a内には、フッ素樹脂等の径方向に弾性変形自在の可撓性のチューブ27がポンプ部材として装着されている。このチューブ27の流入端部はポンプケース15aとジョイント部材18との間に挟み付けられ、流出端部はポンプケース15aとジョイント部材19の間に挟み付けられている。チューブ27の流入端部をポンプケース15aに溶接するようにしても良く、流出端部についても同様にポンプケース15aに溶接するようにしても良い。チューブ27によってポンプケース15aの内部は、チューブ27の内側のポンプ室28と外側の駆動室29とに仕切られている。ポンプ室28は流入ポート18aと流出ポート19aとに連通している。流出ポート19aは流入ポート18aの上方に設けられており、両方のポート18a,19aは同軸となっている。これにより、電解液内に気泡が混入されていても、その気泡がポンプ室28内に止まることが防止される。   A flexible tube 27 that is elastically deformable in the radial direction, such as a fluororesin, is mounted as a pump member in the pump case 15a. The inflow end portion of the tube 27 is sandwiched between the pump case 15 a and the joint member 18, and the outflow end portion is sandwiched between the pump case 15 a and the joint member 19. The inflow end portion of the tube 27 may be welded to the pump case 15a, and the outflow end portion may be similarly welded to the pump case 15a. The inside of the pump case 15 a is partitioned by the tube 27 into a pump chamber 28 inside the tube 27 and a drive chamber 29 outside. The pump chamber 28 communicates with the inflow port 18a and the outflow port 19a. The outflow port 19a is provided above the inflow port 18a, and both the ports 18a and 19a are coaxial. Thereby, even if bubbles are mixed in the electrolytic solution, the bubbles are prevented from stopping in the pump chamber 28.

ポンプ駆動部16は駆動ユニット31に取り付けられる駆動部ケース16aを有しており、この駆動部ケース16aはポンプケース15aと一体となっている。駆動部ケース16aの内部には円筒形状の収容孔32が形成され、駆動部ケース16aの一端部は閉塞壁33により閉塞された閉塞端となっており、他端部には開口部34が形成されている。駆動部ケース16aの内部には、ポンプ駆動部材としての駆動ロッド35が直線往復動自在に装着されており、この駆動ロッド35は駆動ユニット31内に組み込まれた電動モータや空気圧シリンダ等からなる図示しない駆動装置により往復動される。駆動ロッド35の閉塞壁33に向かう移動を前進移動とし、閉塞壁33から離れる方向の移動を後退移動とする。   The pump drive unit 16 has a drive unit case 16a attached to the drive unit 31, and this drive unit case 16a is integrated with the pump case 15a. A cylindrical housing hole 32 is formed inside the drive unit case 16a, one end of the drive unit case 16a is a closed end closed by a closed wall 33, and an opening 34 is formed at the other end. Has been. A drive rod 35 as a pump drive member is mounted in the drive unit case 16a so as to be linearly reciprocable. The drive rod 35 includes an electric motor, a pneumatic cylinder and the like incorporated in the drive unit 31. It is reciprocated by a drive device that does not. The movement of the drive rod 35 toward the blocking wall 33 is defined as a forward movement, and the movement away from the blocking wall 33 is defined as a backward movement.

駆動部ケース16a内にはベローズ36が装着されている。このベローズ36は、蛇腹部36aとこれの一端部に設けられた端板部36bと他端部に設けられたリング部36cとを有し、フッ素樹脂等によりこれらが一体となって成形されている。端板部36bには、駆動ロッド35の先端部に設けられた雄ねじ35aにねじ結合されるねじ孔37が形成されており、端板部36bは駆動ロッド35の先端部に固定される。一方、リング部36cは駆動部ケース16aの開口部34に形成された段部34aに当接し、駆動ユニット31と駆動部ケース16aとにより挟み付けられている。   A bellows 36 is mounted in the drive unit case 16a. The bellows 36 includes a bellows portion 36a, an end plate portion 36b provided at one end portion thereof, and a ring portion 36c provided at the other end portion thereof, and these are integrally molded with a fluororesin or the like. Yes. The end plate portion 36 b is formed with a screw hole 37 to be screwed to a male screw 35 a provided at the distal end portion of the drive rod 35, and the end plate portion 36 b is fixed to the distal end portion of the drive rod 35. On the other hand, the ring portion 36c abuts on a step portion 34a formed in the opening 34 of the drive unit case 16a, and is sandwiched between the drive unit 31 and the drive unit case 16a.

ベローズ36の外側と駆動部ケース16aの収容孔32の内面とにより駆動室38が区画され、この駆動室38は連通孔39によりポンプケース15a内の駆動室29に連通している。ベローズ36の内側は図示しない息付き用のブリード孔を介して外部に連通し、大気圧となっている。それぞれの駆動室29,38と連通孔39には間接媒体としての液媒体Mが封入されており、図1においては液媒体Mが点を付して示されている。   A drive chamber 38 is defined by the outer side of the bellows 36 and the inner surface of the accommodation hole 32 of the drive unit case 16a. The drive chamber 38 communicates with the drive chamber 29 in the pump case 15a through a communication hole 39. The inside of the bellows 36 communicates with the outside via a breathing bleed hole (not shown) and is at atmospheric pressure. A liquid medium M as an indirect medium is sealed in each of the drive chambers 29 and 38 and the communication hole 39, and the liquid medium M is shown with dots in FIG.

駆動ロッド35を図1に示す後退限位置に向けて後退移動させると、駆動室38が膨張して駆動室29内の液媒体Mが連通孔39を介して駆動室38内に吸入される。これにより、駆動室29が収縮してチューブ27は径方向に膨張し、ポンプ室28が膨張することになる。ポンプ室28が膨張するときに、一次側開閉弁23を開き、二次側開閉弁24を閉じると、ポンプ室28は負圧状態となり、液体収容タンク14内の電解液Lはポンプ室28内に吸入される。   When the drive rod 35 is moved backward toward the backward limit position shown in FIG. 1, the drive chamber 38 expands and the liquid medium M in the drive chamber 29 is sucked into the drive chamber 38 through the communication hole 39. As a result, the drive chamber 29 contracts, the tube 27 expands in the radial direction, and the pump chamber 28 expands. When the primary opening / closing valve 23 is opened and the secondary opening / closing valve 24 is closed when the pump chamber 28 is expanded, the pump chamber 28 is in a negative pressure state, and the electrolyte L in the liquid storage tank 14 is contained in the pump chamber 28. Inhaled.

これに対し、駆動ロッド35を前進移動させると、駆動室38が収縮して駆動室38内の液媒体Mが連通孔39を介して駆動室29に供給され、駆動室29が膨張する。これにより、チューブ27は径方向に収縮してポンプ室28が収縮することになる。ポンプ室28が収縮するときに、一次側開閉弁23を閉じ、二次側開閉弁24を開くと、ポンプ室28は吐出圧に加圧されてポンプ室28内の電解液Lは吐出ノズル13から吐出して電池容器B内に注入供給される。   On the other hand, when the drive rod 35 is moved forward, the drive chamber 38 contracts, the liquid medium M in the drive chamber 38 is supplied to the drive chamber 29 through the communication hole 39, and the drive chamber 29 expands. As a result, the tube 27 contracts in the radial direction and the pump chamber 28 contracts. When the pump chamber 28 contracts, when the primary side opening / closing valve 23 is closed and the secondary side opening / closing valve 24 is opened, the pump chamber 28 is pressurized to the discharge pressure, and the electrolyte L in the pump chamber 28 is discharged from the discharge nozzle 13. And discharged from the battery container B and supplied.

吐出ノズル13は真空室11aに開口しており、真空室11aを負圧状態とすると、吐出ノズル13の内部流路も負圧状態となる。この状態のもとで、二次側開閉弁24を開放させると、ポンプ室28内にも負圧が伝達されることになる。このように、ポンプ室28内に負圧が伝達された状態のもとで、ポンプ室28を収縮させて吐出ノズル13から電池容器B内に電解液Lを注入すると、ポンプ室28内の電解液Lが真空室11aに吸い出されることになる。このため、吐出ノズル13から吐出される電解液Lの吐出量が駆動ロッド35の吐出ストロークに対応しなくなるので、一定量の電解液Lを高精度で電池容器B内に注入することができなくなる。   The discharge nozzle 13 is open to the vacuum chamber 11a. When the vacuum chamber 11a is in a negative pressure state, the internal flow path of the discharge nozzle 13 is also in a negative pressure state. Under this state, when the secondary side opening / closing valve 24 is opened, negative pressure is also transmitted into the pump chamber 28. In this way, when the negative pressure is transmitted into the pump chamber 28, the pump chamber 28 is contracted and the electrolyte L is injected into the battery container B from the discharge nozzle 13. The liquid L is sucked into the vacuum chamber 11a. For this reason, since the discharge amount of the electrolyte L discharged from the discharge nozzle 13 does not correspond to the discharge stroke of the drive rod 35, it is impossible to inject a certain amount of the electrolyte L into the battery container B with high accuracy. .

そこで、図1に示す液体供給装置10においては、吐出ノズル13の内部流路には絞り部40が設けられている。この絞り部40は、二次側配管22のうち二次側開閉弁24と流出ポート19aとの間の流路径よりも吐出ノズル13の流路径を小径にすることにより形成されている。このように、吐出ノズル13に絞り部40を設けると、二次側開閉弁24を開放させた状態のもとで、ポンプ駆動部材としての駆動ロッド35によりポンプ室28を収縮させて電解液Lを真空室11a内に吐出して電池容器B内に注入する過程においては、真空室11a内の負圧つまり真空がポンプ室28に伝達されるのが防止される。つまり、電解液Lの注入過程においては、ポンプ室28の圧力は大気圧以上の吐出圧力に保持される。これにより、ポンプ室28から吐出ノズル13に向かって吐出される電解液Lの吐出量は、ポンプ室28の収縮量に正確に対応する。この収縮量はベローズ36の伸び移動のストロークに対応し、吐出ノズル13から吐出される電解液Lの量は駆動ロッド35の移動量に正確に比例する。   Therefore, in the liquid supply apparatus 10 shown in FIG. 1, a throttle unit 40 is provided in the internal flow path of the discharge nozzle 13. The throttle portion 40 is formed by making the flow path diameter of the discharge nozzle 13 smaller than the flow path diameter between the secondary side on-off valve 24 and the outflow port 19a in the secondary side pipe 22. Thus, when the throttle part 40 is provided in the discharge nozzle 13, the pump chamber 28 is contracted by the drive rod 35 as a pump drive member in a state where the secondary side on-off valve 24 is opened, and the electrolyte L Is discharged into the vacuum chamber 11 a and injected into the battery container B, the negative pressure in the vacuum chamber 11 a, that is, the vacuum is prevented from being transmitted to the pump chamber 28. That is, in the process of injecting the electrolytic solution L, the pressure in the pump chamber 28 is maintained at a discharge pressure equal to or higher than atmospheric pressure. Thereby, the discharge amount of the electrolyte L discharged from the pump chamber 28 toward the discharge nozzle 13 accurately corresponds to the contraction amount of the pump chamber 28. The amount of contraction corresponds to the stroke of the bellows 36, and the amount of electrolyte L discharged from the discharge nozzle 13 is exactly proportional to the amount of movement of the drive rod 35.

ポンプ室28を収縮させて電池容器B内に電解液を注入する注入過程の開始から終了までが全吐出過程である。その全吐出過程において真空室11a内の負圧がポンプ室28内に伝達されないようにするには、以下のように行う。つまり、電池容器B内への電解液Lの注入開始時には、二次側開閉弁24の開放動作を駆動ロッド35の駆動開始よりも遅延させることが好ましい。また、注入停止時には、二次側開閉弁24の閉塞動作を駆動ロッド35の駆動停止よりも早めることが好ましい。これにより、ポンプ室28の圧力は大気圧以上の吐出圧力に保持される。   The entire discharge process is from the start to the end of the injection process in which the pump chamber 28 is contracted and the electrolytic solution is injected into the battery container B. In order to prevent the negative pressure in the vacuum chamber 11a from being transmitted into the pump chamber 28 during the entire discharge process, the following procedure is performed. That is, at the start of injection of the electrolyte L into the battery container B, it is preferable to delay the opening operation of the secondary side opening / closing valve 24 from the start of driving of the drive rod 35. In addition, when the injection is stopped, it is preferable that the closing operation of the secondary side opening / closing valve 24 is made earlier than the driving stop of the drive rod 35. As a result, the pressure in the pump chamber 28 is maintained at a discharge pressure equal to or higher than atmospheric pressure.

図1に示す液体供給装置10においては、絞り部40を吐出ノズル13の流路により形成している。しかし、絞り部40を吐出ノズル13に設けることなく、絞り部40を二次側配管22のうち二次側開閉弁24よりも下流側の部分に設けるようにしても良い。   In the liquid supply apparatus 10 shown in FIG. 1, the throttle unit 40 is formed by the flow path of the discharge nozzle 13. However, the throttle unit 40 may be provided in a portion of the secondary side pipe 22 on the downstream side of the secondary on-off valve 24 without providing the throttle unit 40 in the discharge nozzle 13.

絞り部40を形成するには、液体である電解液Lの粘度と吐出ノズル13からの吐出流速に応じて、絞り部40の内径寸法と長さ寸法とが設定されることになる。例えば、吐出ノズル13に内径を1mmとし、長さを20mmとした流路により絞り部40を形成した場合には、電解液Lを10ml/secの流速で吐出ノズル13から吐出させることができ、同一の内径で長さを50mmとした絞り部40を形成した場合には、電解液Lを5ml/secの流速で吐出することができた。   In order to form the throttle portion 40, the inner diameter dimension and the length dimension of the throttle portion 40 are set according to the viscosity of the electrolyte L as a liquid and the discharge flow rate from the discharge nozzle 13. For example, when the throttle portion 40 is formed by a flow path having an inner diameter of 1 mm and a length of 20 mm in the discharge nozzle 13, the electrolyte L can be discharged from the discharge nozzle 13 at a flow rate of 10 ml / sec. When the throttle part 40 having the same inner diameter and a length of 50 mm was formed, the electrolytic solution L could be discharged at a flow rate of 5 ml / sec.

図1に示した絞り部40は内径が一定の固定絞りであるが、絞り部40の他の形態としては可変絞りがある。可変絞りを吐出ノズル13に設けると、液体の粘度に応じて吐出ノズル13の内径を調節することができる。可変絞りを吐出ノズル13に設けることなく、二次側配管22のうち二次側開閉弁24よりも下流側の部分に設けるようにしても良い。また、絞り部40の他の形態としては、吐出ノズル13の流路の長さを調整するようにした構造の可変絞りとすることができる。   The throttle unit 40 shown in FIG. 1 is a fixed throttle with a constant inner diameter, but another form of the throttle unit 40 is a variable throttle. When a variable throttle is provided in the discharge nozzle 13, the inner diameter of the discharge nozzle 13 can be adjusted according to the viscosity of the liquid. A variable throttle may be provided in the downstream side of the secondary opening / closing valve 24 in the secondary pipe 22 without providing the discharge nozzle 13. Further, as another form of the throttle unit 40, a variable throttle having a structure in which the length of the flow path of the discharge nozzle 13 is adjusted can be used.

ポンプ室28を膨張させて液体収容タンク14内の電解液Lをポンプ室28内に供給する際には、二次側開閉弁24が閉塞されるので、ポンプ室28には負圧が伝達されない。したがって、電解液Lを電池容器B内に注入するときと相違し、駆動ロッド35の後退移動開始とほぼ同時に一次側開閉弁23を開放動作させることができる。さらに、駆動ロッド35の後退移動開始よりも早く一次側開閉弁23を開放させても良い。   When the pump chamber 28 is expanded and the electrolytic solution L in the liquid storage tank 14 is supplied into the pump chamber 28, the secondary side on-off valve 24 is closed, so that no negative pressure is transmitted to the pump chamber 28. . Therefore, unlike when the electrolyte L is injected into the battery container B, the primary side on-off valve 23 can be opened almost simultaneously with the start of the backward movement of the drive rod 35. Further, the primary side opening / closing valve 23 may be opened earlier than the start of the backward movement of the drive rod 35.

図2は液体供給装置10の駆動制御回路を示すブロック図であり、一次側と二次側の2つの電磁弁25,26と、駆動ロッド35を往復動するための電動モータ41はコントローラ42により制御されるようになっている。コントローラ42にはポンプ吐出動作と吸引動作とを指令する指令信号43が上位のコントローラから送られるようになっている。   FIG. 2 is a block diagram showing a drive control circuit of the liquid supply apparatus 10, and the electric motor 41 for reciprocating the drive rod 35 and the two electromagnetic valves 25 and 26 on the primary side and the secondary side are controlled by the controller 42. To be controlled. A command signal 43 for commanding the pump discharge operation and the suction operation is sent from the host controller to the controller 42.

図3は図1に示す液体供給装置のポンプ吐出動作とポンプ吸入動作を示すタイムチャートであり、図3を参照しつつ液体供給装置10によって電池容器B内に電解液Lを注入供給する手順について説明する。   FIG. 3 is a time chart showing the pump discharge operation and the pump suction operation of the liquid supply apparatus shown in FIG. 1, and the procedure for injecting and supplying the electrolyte L into the battery container B by the liquid supply apparatus 10 with reference to FIG. explain.

吐出ノズル13から真空室11a内の電池容器B内に電解液Lを注入するには、真空室11a内の圧力は大気圧以下の圧力つまり真空状態に保持される。これにより、予め真空室11a内に配置された被注入物としての電池容器Bの内部は負圧雰囲気に保持された状態となり、多孔質のセパレータ内に入り込んだ空気は外部に排出される。この状態のもとで、指令信号がコントローラ42に送られると、駆動ロッド35が駆動ユニット31内に組み込まれた電動モータ等の駆動手段により前進駆動されてポンプ吐出動作が実行される。駆動手段によって駆動ロッド35が前進駆動が開始されてから、ポンプ室28から二次側配管22に向けて電解液Lが吐出される流量が一定になるまでには、若干の遅れがある。この前進駆動開始よりも遅延時間Taだけ遅れて二次側開閉弁24を開放させる。ポンプ吐出動作が行われるときには、一次側開閉弁23は閉じられた状態に保持される。   In order to inject the electrolyte L into the battery container B in the vacuum chamber 11a from the discharge nozzle 13, the pressure in the vacuum chamber 11a is maintained at a pressure equal to or lower than atmospheric pressure, that is, in a vacuum state. As a result, the inside of the battery container B as the injected material previously placed in the vacuum chamber 11a is maintained in a negative pressure atmosphere, and the air that has entered the porous separator is discharged to the outside. Under this state, when a command signal is sent to the controller 42, the drive rod 35 is driven forward by a drive means such as an electric motor incorporated in the drive unit 31, and a pump discharge operation is executed. There is a slight delay until the flow rate at which the electrolytic solution L is discharged from the pump chamber 28 toward the secondary side pipe 22 becomes constant after the drive rod 35 starts to be driven forward by the drive means. The secondary side open / close valve 24 is opened after a delay time Ta from the start of forward drive. When the pump discharge operation is performed, the primary side on-off valve 23 is kept closed.

図3に示すように、二次側開閉弁24の開放動作時を駆動ロッド35によるポンプ吐出動作開始時よりも遅延させると、ポンプ室28内の圧力は急速に上昇する。二次側開閉弁24が開放された後にはポンプ室28の圧力は低下することになるが、吐出ノズル13には絞り部40が設けられているのでポンプ室28内の圧力が負圧状態となることがなく、正圧に保持される。二次側開閉弁24が開放されてから所定の時間が経過すると、ポンプ室28内の圧力は駆動ロッド35の前進移動により設定される一定の吐出圧力になる。すなわち、絞り部40の先端側つまり真空室11a側は負圧となり、絞り部40の後端側つまり二次側配管22側はポンプ吐出圧となる。このように、絞り部40の先端側と後端側との間には圧力勾配が発生する。これが絞り部40の効果である。言い換えれば、電解液Lは吐出抵抗による圧力勾配の中を定常状態で絞り部40を流れる。   As shown in FIG. 3, when the opening operation of the secondary side on-off valve 24 is delayed from the start of the pump discharge operation by the drive rod 35, the pressure in the pump chamber 28 increases rapidly. After the secondary side opening / closing valve 24 is opened, the pressure in the pump chamber 28 decreases. However, since the discharge nozzle 13 is provided with the throttle portion 40, the pressure in the pump chamber 28 is in a negative pressure state. The positive pressure is maintained. When a predetermined time elapses after the secondary opening / closing valve 24 is opened, the pressure in the pump chamber 28 becomes a constant discharge pressure set by the forward movement of the drive rod 35. That is, the front end side of the throttle unit 40, that is, the vacuum chamber 11a side is negative pressure, and the rear end side of the throttle unit 40, that is, the secondary pipe 22 side is pump discharge pressure. Thus, a pressure gradient is generated between the front end side and the rear end side of the throttle unit 40. This is the effect of the throttle unit 40. In other words, the electrolyte L flows through the throttle portion 40 in a steady state in the pressure gradient caused by the discharge resistance.

吐出ノズル13から電池容器B内に対して一定量の電解液Lが注入された後には、二次側開閉弁24を閉塞する。この二次側開閉弁24の閉塞動作は、駆動ロッド35の駆動停止時期よりも所定の時間Tbだけ早く行われる。このように、ポンプ吐出動作の終了動作時期よりも二次側開閉弁24を早く閉じると、ポンプ吐出動作が完全に終了するまでにポンプ室28の圧力が負圧となることが防止され、正圧に保持される。   After a certain amount of electrolyte L is injected from the discharge nozzle 13 into the battery container B, the secondary side on-off valve 24 is closed. The closing operation of the secondary side opening / closing valve 24 is performed earlier by a predetermined time Tb than the drive stop timing of the drive rod 35. As described above, when the secondary side on-off valve 24 is closed earlier than the end timing of the pump discharge operation, the pressure in the pump chamber 28 is prevented from becoming negative until the pump discharge operation is completely ended. Held in pressure.

ポンプ室28内に電解液Lを吸引注入する際には、図3に示されるように、二次側開閉弁24を閉塞した状態のもとで、一次側開閉弁23を開放するとともに駆動ロッド35を後退移動させるポンプ吸入動作を行うことになる。   When the electrolyte L is sucked and injected into the pump chamber 28, as shown in FIG. 3, the primary side on-off valve 23 is opened and the drive rod is closed with the secondary side on-off valve 24 closed. A pump suction operation for moving 35 backward is performed.

図4および図5はそれぞれ比較例として示す液体供給装置におけるポンプ吐出動作とポンプ吸入動作のタイムチャートである。   4 and 5 are time charts of a pump discharge operation and a pump suction operation in a liquid supply apparatus shown as a comparative example, respectively.

図4は吐出ノズル13に絞り部40を設けない液体供給装置を用いて、電解液Lの吐出時に二次側開閉弁24の開放動作と駆動ロッド35によりポンプ吐出動作とをほぼ同時に開始した場合における吐出時のポンプ室28の吐出圧力の変化を示す。絞り部40を液体供給装置に設けないと、真空室11a内の負圧がポンプ室28内に伝達されることになるので、吐出ノズル13から電池容器B内への電解液Lの注入は、真空室11a内の負圧による吸い出しにより行われることになる。このため、注入量は駆動ロッド35のストロークに依存しなくなるので、高精度で電解液を注入することができない。   FIG. 4 shows a case in which the opening operation of the secondary side on-off valve 24 and the pump discharge operation are started almost simultaneously by the drive rod 35 when discharging the electrolyte L using a liquid supply device in which the discharge nozzle 13 is not provided with the throttle 40. The change of the discharge pressure of the pump chamber 28 at the time of discharge in FIG. If the throttle unit 40 is not provided in the liquid supply device, the negative pressure in the vacuum chamber 11a is transmitted into the pump chamber 28. Therefore, the injection of the electrolyte L from the discharge nozzle 13 into the battery container B is as follows. This is performed by sucking out due to negative pressure in the vacuum chamber 11a. For this reason, since the injection amount does not depend on the stroke of the drive rod 35, the electrolytic solution cannot be injected with high accuracy.

図5は図1に示したように吐出ノズル13に絞り部40を設けた液体供給装置を用いているが、二次側開閉弁24の開閉動作と駆動ロッド35によるポンプ動作の開始終了とを同期させた場合における吐出時のポンプ室28の吐出圧力の変化を示す。二次側開閉弁24の開放動作とポンプ動作開始とを同時に行うと、瞬時に、真空室11aの負圧がポンプ室28内に伝達され、ポンプ室28の圧力は負圧になる。それ以降は、電解液Lが絞り部を流れ始めてそこに圧力勾配が生じるから、図示するようにポンプ室28の圧力が上昇する。電解液の流れが定常状態に至れば圧力勾配も一定となり、ポンプ室28の圧力は一定となる。   FIG. 5 uses a liquid supply apparatus in which the discharge nozzle 13 is provided with a throttle 40 as shown in FIG. 1, but the opening / closing operation of the secondary side opening / closing valve 24 and the start / end of the pump operation by the drive rod 35 are performed. The change of the discharge pressure of the pump chamber 28 at the time of discharge in the case of synchronizing is shown. When the opening operation of the secondary side on-off valve 24 and the start of the pump operation are performed simultaneously, the negative pressure in the vacuum chamber 11a is instantaneously transmitted into the pump chamber 28, and the pressure in the pump chamber 28 becomes negative. Thereafter, the electrolytic solution L begins to flow through the constricted portion and a pressure gradient is generated there, so that the pressure in the pump chamber 28 increases as shown in the figure. When the flow of the electrolyte reaches a steady state, the pressure gradient becomes constant, and the pressure in the pump chamber 28 becomes constant.

瞬間的にポンプ室28内に負圧が伝達されると、より高精度での吐出が達成されなくなるが、図3に示すように、二次側開閉弁24の開閉タイミングとポンプ動作のタイミングとに時間差を設けることにより、ポンプ動作開始時と終了時とにおいても負圧がポンプ室28内に伝達されることなく、吐出精度をより高めることができる。   If negative pressure is instantaneously transmitted into the pump chamber 28, discharge with higher accuracy cannot be achieved. However, as shown in FIG. 3, the opening / closing timing of the secondary side on-off valve 24 and the timing of pump operation By providing a time difference, the negative pressure is not transmitted into the pump chamber 28 at the start and end of the pump operation, and the discharge accuracy can be further increased.

図6は二次側開閉弁24を示す断面図であり、バルブケース45にはポンプ本体15が接続される一次側ポート46と、吐出ノズル13が接続される二次側ポート47とが形成されている。両方のポートが連通する弁室48にはダイヤフラム形の弁体49が配置されており、弁体49は二次側ポート47が開口する弁座50に接触する位置と弁座50から離れる位置とに開閉動作する。弁体49に設けられた弁軸51には、弁体49を閉じる方向にばね力が加えられ、電磁弁26のパイロット流路26aからパイロット圧が加えられるようになっており、パイロット圧が加えられるとばね力に抗して弁体49は弁座50から離れて二次側開閉弁24は開放状態となる。弁座50に開口されたポートを二次側ポート47としてこれに吐出ノズル13を接続すると、真空タンク11内の負圧により弁体49は弁座50に密着する方向の吸着力を受けることになり、二次側開閉弁24のシール性を高めることができる。しかも、ダイヤフラム形の弁体49を使用すると、開閉時の二次側ポート47内の電解液の移動を少なくすることができるので、吐出ノズル13からの吐出精度を高めることができる。   FIG. 6 is a cross-sectional view showing the secondary opening / closing valve 24. The valve case 45 is formed with a primary port 46 to which the pump body 15 is connected and a secondary port 47 to which the discharge nozzle 13 is connected. ing. A diaphragm-shaped valve body 49 is disposed in the valve chamber 48 in which both ports communicate with each other, and the valve body 49 is in contact with the valve seat 50 where the secondary side port 47 is opened and in a position away from the valve seat 50. Open and close. A spring force is applied to the valve shaft 51 provided in the valve body 49 in a direction to close the valve body 49 so that a pilot pressure is applied from the pilot flow path 26a of the electromagnetic valve 26, and the pilot pressure is applied. When this occurs, the valve element 49 moves away from the valve seat 50 against the spring force, and the secondary side on-off valve 24 is opened. When the port opened to the valve seat 50 is a secondary side port 47 and the discharge nozzle 13 is connected thereto, the negative pressure in the vacuum tank 11 causes the valve body 49 to receive an adsorbing force in a direction in close contact with the valve seat 50. Thus, the sealing performance of the secondary side opening / closing valve 24 can be enhanced. In addition, when the diaphragm-shaped valve body 49 is used, the movement of the electrolyte in the secondary port 47 during opening and closing can be reduced, so that the discharge accuracy from the discharge nozzle 13 can be improved.

一次側開閉弁23を二次側開閉弁24と同様のエアオペレイトバルブを用いるようにすると、一次側と二次側の開閉弁を1種類の開閉弁とすることができる。図6に示すエアオペレイトバルブを一次側開閉弁23として使用する場合には、図6に示された二次側ポート47をポンプ室28に連通させることになる。なお、それぞれの開閉弁23,24として、エアオペレイトバルブを使用することなく、流路を開閉する2ポート型であって、電気信号により開閉動作する電磁弁を使用するようにしても良い。   When the primary side on-off valve 23 is an air operated valve similar to the secondary side on-off valve 24, the primary side and secondary side on-off valves can be used as one type of on-off valve. When the air operated valve shown in FIG. 6 is used as the primary side on-off valve 23, the secondary side port 47 shown in FIG. 6 is communicated with the pump chamber 28. Note that each of the opening / closing valves 23 and 24 may be a two-port type that opens and closes the flow path without using an air operated valve, and may use an electromagnetic valve that opens and closes by an electrical signal.

図1に示す液体供給装置10においては、液体供給ポンプ20はポンプ室28が形成されたポンプ本体15とベローズ36が組み込まれたポンプ駆動部16とを備え、駆動ロッド35の軸方向往復動を間接媒体としての液媒体Mを介してポンプ室28を膨張収縮させている。摺動する部分がないので、ポンプ室28が吐出圧力にまで加圧されても外部に電解液Lや液媒体Mが漏出することがない。   In the liquid supply apparatus 10 shown in FIG. 1, the liquid supply pump 20 includes a pump main body 15 in which a pump chamber 28 is formed and a pump drive unit 16 in which a bellows 36 is incorporated, and the drive rod 35 reciprocates in the axial direction. The pump chamber 28 is expanded and contracted through the liquid medium M as an indirect medium. Since there is no sliding part, even if the pump chamber 28 is pressurized to the discharge pressure, the electrolytic solution L and the liquid medium M do not leak to the outside.

図7は液体供給ポンプの他の形態を示す断面図である。この液体供給ポンプ20aは液媒体Mを使用することなく、図7に示すように、ベローズ36により直接ポンプ室28を膨張収縮させるようにしている。ポンプケース15aは、閉塞壁52が設けられた円筒部材53により形成されており、円筒部材53の内面とベローズ36とによりポンプ室28が区画されている。駆動ロッド35によりベローズ36を伸縮させると、ポンプ室28は膨張収縮してポンプ動作を行うことになる。   FIG. 7 is a cross-sectional view showing another embodiment of the liquid supply pump. The liquid supply pump 20a directly expands and contracts the pump chamber 28 by the bellows 36 without using the liquid medium M, as shown in FIG. The pump case 15 a is formed by a cylindrical member 53 provided with a blocking wall 52, and the pump chamber 28 is partitioned by the inner surface of the cylindrical member 53 and the bellows 36. When the bellows 36 is expanded and contracted by the drive rod 35, the pump chamber 28 expands and contracts to perform the pump operation.

液体供給ポンプの他の形態としては、例えば、特許第4547368号公報に記載されるように、ピストンとこれが往復動自在に装着されるシリンダとを有する構造のものを使用することかできる。この形態の液体供給ポンプにおいては、ピストンがシリンダに摺動接触しているが、シール室がベローズカバーにより覆われるので、駆動室内における液媒体が外部に漏出することを防止できる。さらに他の液体供給ポンプの形態としては、例えば、特許第3554115号公報に記載されるように、ポンプ室を内部に形成するチューブの外側に、大型ベローズ部と小型ベローズ部とを有する軸方向に弾性変形自在のベローズを配置し、ベローズとチューブとの間に媒体液が封入された駆動室を形成するようにした構造のものを使用することができる。これらの液体供給ポンプはいずれも、電解液や媒体液が外部に漏出しないようにした形態であるが、ピストンを用いたシリンジタイプのものを使用することも可能である。   As another form of the liquid supply pump, for example, as described in Japanese Patent No. 4547368, a structure having a piston and a cylinder on which the piston is reciprocally mounted can be used. In the liquid supply pump of this form, the piston is in sliding contact with the cylinder, but since the seal chamber is covered with the bellows cover, the liquid medium in the drive chamber can be prevented from leaking to the outside. As another form of the liquid supply pump, for example, as described in Japanese Patent No. 3554115, in the axial direction having a large bellows portion and a small bellows portion outside the tube forming the pump chamber inside. It is possible to use a structure in which an elastically deformable bellows is arranged to form a drive chamber in which a medium liquid is sealed between the bellows and the tube. Each of these liquid supply pumps has a configuration in which the electrolytic solution and the medium solution are not leaked to the outside, but a syringe type using a piston can be used.

本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。図1に示した液体供給装置は、2次電池を製造するために電池容器B内に電解液Lを注入する工程に使用されているが、負圧雰囲気に保持された容器内に液体を注入するためであれば、本発明の液体供給装置は電池容器内に電解液を注入する場合以外にも使用することができる。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. The liquid supply apparatus shown in FIG. 1 is used in the process of injecting the electrolyte L into the battery container B to manufacture a secondary battery, but the liquid is injected into the container held in a negative pressure atmosphere. Therefore, the liquid supply apparatus of the present invention can be used in addition to the case of injecting the electrolytic solution into the battery container.

11 真空タンク
11a 真空室
12 真空ポンプ
13 吐出ノズル
14 液体収容タンク
15 ポンプ本体
16 ポンプ駆動部
18a 流入ポート
19a 流出ポート
20 液体供給ポンプ
21 一次側配管
22 二次側配管
23 一次側開閉弁
24 二次側開閉弁
25,26 電磁弁
27 チューブ
28 ポンプ室
29 駆動室
31 駆動ユニット
35 駆動ロッド(ポンプ駆動部材)
36 ベローズ
38 駆動室
40 絞り部
DESCRIPTION OF SYMBOLS 11 Vacuum tank 11a Vacuum chamber 12 Vacuum pump 13 Discharge nozzle 14 Liquid storage tank 15 Pump main body 16 Pump drive part 18a Inflow port 19a Outflow port 20 Liquid supply pump 21 Primary side piping 22 Secondary side piping 23 Primary side on-off valve 24 Secondary Side open / close valve 25, 26 Solenoid valve 27 Tube 28 Pump chamber 29 Drive chamber 31 Drive unit 35 Drive rod (pump drive member)
36 Bellows 38 Drive chamber 40 Restriction part

Claims (11)

液体を収容する液体収容タンクに接続される一次側配管と液体を被注入物に注入する吐出ノズルに接続される二次側配管とに連通するポンプ室を有し、当該ポンプ室を膨張させて前記液体収容タンク内の液体を前記ポンプ室に吸入し、前記ポンプ室を収縮させて液体を吐出ノズルから吐出するポンプ駆動部材が設けられた液体供給ポンプを用いて、負圧雰囲気に保持された前記被注入物に液体を供給する液体供給方法であって、
前記一次側配管に設けられた一次側開閉弁により前記一次側配管の流路を開放し、前記二次側配管に設けられた二次側開閉弁により前記二次側配管の流路を閉塞した状態のもとで前記ポンプ室を膨張させて前記ポンプ室内に液体を吸入する吸入工程と、
前記一次側配管の流路を前記一次側開閉弁により閉塞し、前記二次側配管の流路を前記二次側開閉弁により開放した状態のもとで、前記二次側開閉弁から前記吐出ノズルの先端までの間に設けられた絞り部により負圧が前記ポンプ室に伝達されるのを防止しながら、前記ポンプ室を収縮させて前記ポンプ室内の液体を前記吐出ノズルから前記被注入物に注入供給する注入工程とを有し、
前記被注入物内への液体注入開始時に、前記二次側開閉弁の開放動作を前記ポンプ駆動部材の駆動開始よりも遅延させることを特徴とする液体供給方法。
A pump chamber communicating with a primary side pipe connected to a liquid storage tank for storing liquid and a secondary side pipe connected to a discharge nozzle for injecting liquid into an injection target; The liquid in the liquid storage tank was sucked into the pump chamber, and the pump chamber was contracted to maintain a negative pressure atmosphere using a liquid supply pump provided with a pump drive member that discharges the liquid from a discharge nozzle. A liquid supply method for supplying a liquid to the injection object,
The flow path of the primary side pipe is opened by the primary side on-off valve provided in the primary side pipe, and the flow path of the secondary side pipe is closed by the secondary side on-off valve provided in the secondary side pipe. An inhalation step of inflating the pump chamber under conditions and sucking liquid into the pump chamber;
The discharge from the secondary side on-off valve in a state where the flow path of the primary side pipe is closed by the primary side on-off valve and the flow path of the secondary side pipe is opened by the secondary side on-off valve. while preventing the negative pressure by the stop portion provided on until the tip of the nozzle is transmitted to the pump chamber, the object to be injected was liquid in the pump chamber by contracting the pump chamber from the discharge nozzle possess the injection for supplying the injection process,
The liquid supply method characterized by delaying the opening operation of the secondary side on-off valve from the start of driving of the pump drive member at the start of liquid injection into the injection target .
請求項記載の液体供給方法において、前記被注入物内への液体注入停止時に、前記二次側開閉弁の閉塞動作を前記ポンプ駆動部材の駆動停止よりも早めることを特徴とする液体供給方法。 2. The liquid supply method according to claim 1 , wherein when the liquid injection into the injected object is stopped, the closing operation of the secondary side on-off valve is made earlier than the drive stop of the pump driving member. . 液体を収容する液体収容タンクに接続される一次側配管と液体を被注入物に注入する吐出ノズルに接続される二次側配管とに連通するポンプ室を有し、当該ポンプ室を膨張させて前記液体収容タンク内の液体を前記ポンプ室に吸入し、前記ポンプ室を収縮させて液体を吐出ノズルから吐出するポンプ駆動部材が設けられた液体供給ポンプを用いて、負圧雰囲気に保持された前記被注入物に液体を供給する液体供給方法であって、
前記一次側配管に設けられた一次側開閉弁により前記一次側配管の流路を開放し、前記二次側配管に設けられた二次側開閉弁により前記二次側配管の流路を閉塞した状態のもとで前記ポンプ室を膨張させて前記ポンプ室内に液体を吸入する吸入工程と、
前記一次側配管の流路を前記一次側開閉弁により閉塞し、前記二次側配管の流路を前記二次側開閉弁により開放した状態のもとで、前記二次側開閉弁から前記吐出ノズルの先端までの間に設けられた絞り部により負圧が前記ポンプ室に伝達されるのを防止しながら、前記ポンプ室を収縮させて前記ポンプ室内の液体を前記吐出ノズルから前記被注入物に注入供給する注入工程とを有し、
前記被注入物内への液体注入停止時に、前記二次側開閉弁の閉塞動作を前記ポンプ駆動部材の駆動停止よりも早めることを特徴とする液体供給方法。
A pump chamber communicating with a primary side pipe connected to a liquid storage tank for storing liquid and a secondary side pipe connected to a discharge nozzle for injecting liquid into an injection target; The liquid in the liquid storage tank was sucked into the pump chamber, and the pump chamber was contracted to maintain a negative pressure atmosphere using a liquid supply pump provided with a pump drive member that discharges the liquid from a discharge nozzle. A liquid supply method for supplying a liquid to the injection object,
The flow path of the primary side pipe is opened by the primary side on-off valve provided in the primary side pipe, and the flow path of the secondary side pipe is closed by the secondary side on-off valve provided in the secondary side pipe. An inhalation step of inflating the pump chamber under conditions and sucking liquid into the pump chamber;
The discharge from the secondary side on-off valve in a state where the flow path of the primary side pipe is closed by the primary side on-off valve and the flow path of the secondary side pipe is opened by the secondary side on-off valve. while preventing the negative pressure by the stop portion provided on until the tip of the nozzle is transmitted to the pump chamber, the object to be injected was liquid in the pump chamber by contracting the pump chamber from the discharge nozzle possess the injection for supplying the injection process,
The liquid supply method , wherein when the liquid injection into the injection target is stopped, the closing operation of the secondary side on-off valve is made earlier than the stop of driving of the pump driving member .
負圧雰囲気に保持された被注入物に液体を供給する液体供給装置であって、
液体を収容する液体収容タンクに接続される一次側配管と液体を被注入物に注入する吐出ノズルに接続される二次側配管とに連通するポンプ室を有し、当該ポンプ室を膨張させて前記液体収容タンク内の液体を前記ポンプ室に吸入し、前記ポンプ室を収縮させて液体を吐出ノズルから吐出するポンプ駆動部材が設けられた液体供給ポンプと、
前記一次側配管に設けられ、前記ポンプ室を膨張させる際に前記一次側配管の流路を開放する一方、前記ポンプ室を収縮させる際に前記一次側配管の流路を閉塞する一次側開閉弁と、
前記二次側配管に設けられ、前記ポンプ室を膨張させる際に前記二次側配管の流路を閉塞する一方、前記ポンプ室を収縮させる際に前記二次側配管の流路を開放する二次側開閉弁と、
前記二次側開閉弁から前記吐出ノズルの先端までの間に設けられ、前記ポンプ室を収縮させて液体を前記被注入物内に注入する過程のもとでは負圧が前記ポンプ室に伝達されるのを防止する絞り部とを有し、
前記被注入物内への液体注入開始時に、前記二次側開閉弁の開放動作を前記ポンプ駆動部材の駆動開始よりも遅延させることを特徴とする液体供給装置。
A liquid supply apparatus for supplying a liquid to an injection object held in a negative pressure atmosphere,
A pump chamber communicating with a primary side pipe connected to a liquid storage tank for storing liquid and a secondary side pipe connected to a discharge nozzle for injecting liquid into an injection target; A liquid supply pump provided with a pump drive member that sucks the liquid in the liquid storage tank into the pump chamber and contracts the pump chamber to discharge the liquid from a discharge nozzle;
A primary side on-off valve provided in the primary side pipe, which opens the flow path of the primary side pipe when the pump chamber is expanded, and closes the flow path of the primary side pipe when the pump chamber is contracted When,
The secondary pipe is provided in the secondary pipe and closes the flow path of the secondary pipe when the pump chamber is expanded, and opens the flow path of the secondary pipe when the pump chamber is contracted. A secondary opening / closing valve;
In between the said secondary side switching valve to the tip of the discharge nozzle, a negative pressure is under the process of injecting a liquid by contracting the pump chamber within the object implant is transmitted to the pump chamber It possesses a throttle portion to prevent the that,
The liquid supply apparatus characterized in that the opening operation of the secondary side on-off valve is delayed from the start of driving of the pump driving member at the start of liquid injection into the injection target .
請求項記載の液体供給装置において、前記被注入物内への液体注入停止時に、前記二次側開閉弁の閉塞動作を前記ポンプ駆動部材の駆動停止よりも早めることを特徴とする液体供給装置。 5. The liquid supply apparatus according to claim 4 , wherein when the liquid injection into the injected object is stopped, the closing operation of the secondary-side on-off valve is made earlier than the drive stop of the pump driving member. . 負圧雰囲気に保持された被注入物に液体を供給する液体供給装置であって、
液体を収容する液体収容タンクに接続される一次側配管と液体を被注入物に注入する吐出ノズルに接続される二次側配管とに連通するポンプ室を有し、当該ポンプ室を膨張させて前記液体収容タンク内の液体を前記ポンプ室に吸入し、前記ポンプ室を収縮させて液体を吐出ノズルから吐出するポンプ駆動部材が設けられた液体供給ポンプと、
前記一次側配管に設けられ、前記ポンプ室を膨張させる際に前記一次側配管の流路を開放する一方、前記ポンプ室を収縮させる際に前記一次側配管の流路を閉塞する一次側開閉弁と、
前記二次側配管に設けられ、前記ポンプ室を膨張させる際に前記二次側配管の流路を閉塞する一方、前記ポンプ室を収縮させる際に前記二次側配管の流路を開放する二次側開閉弁と、
前記二次側開閉弁から前記吐出ノズルの先端までの間に設けられ、前記ポンプ室を収縮させて液体を前記被注入物内に注入する過程のもとでは負圧が前記ポンプ室に伝達されるのを防止する絞り部とを有し、
前記被注入物内への液体注入停止時に、前記二次側開閉弁の閉塞動作を前記ポンプ駆動部材の駆動停止よりも早めることを特徴とする液体供給装置。
A liquid supply apparatus for supplying a liquid to an injection object held in a negative pressure atmosphere,
A pump chamber communicating with a primary side pipe connected to a liquid storage tank for storing liquid and a secondary side pipe connected to a discharge nozzle for injecting liquid into an injection target; A liquid supply pump provided with a pump drive member that sucks the liquid in the liquid storage tank into the pump chamber and contracts the pump chamber to discharge the liquid from a discharge nozzle;
A primary side on-off valve provided in the primary side pipe, which opens the flow path of the primary side pipe when the pump chamber is expanded, and closes the flow path of the primary side pipe when the pump chamber is contracted When,
The secondary pipe is provided in the secondary pipe and closes the flow path of the secondary pipe when the pump chamber is expanded, and opens the flow path of the secondary pipe when the pump chamber is contracted. A secondary opening / closing valve;
In between the said secondary side switching valve to the tip of the discharge nozzle, a negative pressure is under the process of injecting a liquid by contracting the pump chamber within the object implant is transmitted to the pump chamber It possesses a throttle portion to prevent the that,
The liquid supply apparatus characterized in that when the liquid injection into the injection target is stopped, the closing operation of the secondary side on-off valve is made earlier than the stop of the driving of the pump driving member .
請求項4〜6のいずれか1項に記載の液体供給装置において、前記絞り部は前記吐出ノズルの内径を調節する可変絞りであることを特徴とする液体供給装置。   The liquid supply apparatus according to claim 4, wherein the throttle unit is a variable throttle that adjusts an inner diameter of the discharge nozzle. 請求項4〜7のいずれか1項に記載の液体供給装置において、前記二次側開閉弁は空気圧によりそれぞれの流路を開閉するエアオペレイトバルブであることを特徴とする液体供給装置。   8. The liquid supply apparatus according to claim 4, wherein the secondary side opening / closing valve is an air operated valve that opens and closes each flow path by air pressure. 9. 請求項4〜7のいずれか1項に記載の液体供給装置において、前記絞り部は前記吐出ノズルの流路の長さを調整する可変絞りであることを特徴とする液体供給装置。   8. The liquid supply apparatus according to claim 4, wherein the throttle unit is a variable throttle that adjusts a length of a flow path of the discharge nozzle. 9. 請求項4〜7のいずれか1項に記載の液体供給装置において、前記二次側開閉弁は電磁弁であることを特徴とする液体供給装置。   The liquid supply apparatus according to any one of claims 4 to 7, wherein the secondary side on-off valve is an electromagnetic valve. 請求項4〜6のいずれか1項に記載の液体供給装置において、前記一次側開閉弁と前記二次側開閉弁と前記ポンプ駆動部材を制御するコントローラを有することを特徴とする液体供給装置。The liquid supply apparatus according to any one of claims 4 to 6, further comprising a controller that controls the primary side on-off valve, the secondary side on-off valve, and the pump drive member.
JP2011021701A 2011-02-03 2011-02-03 Liquid supply method and apparatus Expired - Fee Related JP5475700B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011021701A JP5475700B2 (en) 2011-02-03 2011-02-03 Liquid supply method and apparatus
KR1020137020606A KR101418529B1 (en) 2011-02-03 2011-10-14 Liquid supplying method and device
PCT/JP2011/073702 WO2012105091A1 (en) 2011-02-03 2011-10-14 Liquid supplying method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011021701A JP5475700B2 (en) 2011-02-03 2011-02-03 Liquid supply method and apparatus

Publications (2)

Publication Number Publication Date
JP2012162269A JP2012162269A (en) 2012-08-30
JP5475700B2 true JP5475700B2 (en) 2014-04-16

Family

ID=46602325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011021701A Expired - Fee Related JP5475700B2 (en) 2011-02-03 2011-02-03 Liquid supply method and apparatus

Country Status (3)

Country Link
JP (1) JP5475700B2 (en)
KR (1) KR101418529B1 (en)
WO (1) WO2012105091A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872381B (en) * 2012-12-17 2015-12-09 北汽福田汽车股份有限公司 A kind of fluid injection of electrokinetic cell leaves standstill method
CN103274346B (en) * 2013-05-30 2015-03-25 广西红墙新材料有限公司 Liquid quantitative feeding device
CN106654142B (en) * 2016-12-16 2022-09-23 宁德时代新能源科技股份有限公司 Liquid injection device
CN106601978B (en) * 2016-12-16 2019-02-22 宁德时代新能源科技股份有限公司 Liquid injection device
CN108155338B (en) * 2017-12-27 2020-10-16 深圳市新嘉拓自动化技术有限公司 Liquid pumping mechanism
JP7410064B2 (en) * 2021-02-05 2024-01-09 プライムアースEvエナジー株式会社 Electrolyte injection system for open type batteries and electrolyte injection method for open type batteries
JP2023020185A (en) 2021-07-30 2023-02-09 株式会社コガネイ Liquid supply device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130003A (en) * 1994-10-31 1996-05-21 M Ii Kaihatsu Giken:Kk Electrolytic liquid filling method and electrolytic liquid filling equipment
JPH11219698A (en) * 1997-11-26 1999-08-10 Sony Corp Method and device for injecting electrolytic solution
JP2003217567A (en) * 2002-01-22 2003-07-31 Shin Kobe Electric Mach Co Ltd Electrolyte filling device and electrolyte filling method
JP4155217B2 (en) * 2004-03-29 2008-09-24 トヨタ自動車株式会社 Method for injecting electrolyte in laminated battery
JP4658248B2 (en) * 2004-08-25 2011-03-23 シーケーディ株式会社 Chemical supply system
JP4853907B2 (en) * 2006-07-14 2012-01-11 株式会社イズミフードマシナリ Control method of liquid metering device
JP4942449B2 (en) 2006-10-18 2012-05-30 株式会社コガネイ Chemical supply device
JP4547368B2 (en) * 2006-11-20 2010-09-22 株式会社コガネイ Chemical supply device

Also Published As

Publication number Publication date
KR101418529B1 (en) 2014-07-11
KR20130110217A (en) 2013-10-08
WO2012105091A1 (en) 2012-08-09
JP2012162269A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5475700B2 (en) Liquid supply method and apparatus
US9139012B2 (en) Ink filling apparatus and ink filling method
US20150190578A1 (en) Production method for pre-filled syringe and pre-filled syringe production device
US10913279B2 (en) Method and device for filling of liquid material
JP5565891B2 (en) Discharge device for fluid substances
EP2521208B1 (en) Apparatus for supplying electrolytic solution
KR20150129702A (en) Liquid material discharge device, coating device thereof, and coating method
JP5416672B2 (en) Chemical supply device
CA2719882A1 (en) Pump module with fluidically isolated displacement device
JP2014520233A (en) Injection device
JP6652317B2 (en) Liquid supply device
US20220236127A1 (en) Pressure sensing device and blood purification apparatus using same
JP2019511335A (en) Chemical solution injection device with adjustable internal pressure
CN111655310B (en) Dual active valve fluid pressure operated positive displacement pump
US11199187B2 (en) Plunger pump
JP2020192760A (en) Valve mechanism and liquid injection system
JP6462475B2 (en) Fluid jet / suction device
JP4919548B2 (en) Plunger pump
JP2010019141A (en) Pump device, liquid pump system, and method for controlling rolling diaphragm pump
JP5394538B2 (en) Chemical solution feeder
JP2003326730A (en) Method of filling ink and device for injecting ink
JP5649420B2 (en) Liquid injection device and method of using liquid injection device
JP2010242685A (en) Pump unit for delivering liquid
JP2006112354A (en) Injector
JP2015098132A (en) Liquid filling method and liquid filling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees