JP5472339B2 - Light emitting device using ceramic composite for light conversion - Google Patents

Light emitting device using ceramic composite for light conversion Download PDF

Info

Publication number
JP5472339B2
JP5472339B2 JP2012026379A JP2012026379A JP5472339B2 JP 5472339 B2 JP5472339 B2 JP 5472339B2 JP 2012026379 A JP2012026379 A JP 2012026379A JP 2012026379 A JP2012026379 A JP 2012026379A JP 5472339 B2 JP5472339 B2 JP 5472339B2
Authority
JP
Japan
Prior art keywords
light
light emitting
ceramic composite
emitting device
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012026379A
Other languages
Japanese (ja)
Other versions
JP2012138589A (en
Inventor
敦志 三谷
信一 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2012026379A priority Critical patent/JP5472339B2/en
Publication of JP2012138589A publication Critical patent/JP2012138589A/en
Application granted granted Critical
Publication of JP5472339B2 publication Critical patent/JP5472339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、ディスプレイ、照明、バックライト光源等に利用できる発光ダイオード等の発光装置に関し、詳しくは、照射光を利用して蛍光を得る光変換部材である光変換用セラミックス複合体を用いた発光装置に関する。   The present invention relates to a light-emitting device such as a light-emitting diode that can be used for a display, illumination, backlight light source, and the like, and more specifically, light emission using a ceramic composite for light conversion that is a light conversion member that obtains fluorescence using irradiated light. Relates to the device.

近年、青色発光素子を発光源とする白色発光装置の開発研究が盛んに行われている。特に青色発光ダイオードを用いた白色発光ダイオードは軽量で、水銀を使用せず、長寿命であることから、今後、需要が急速に拡大することが予測されている。青色発光素子の青色光を白色光へ変換する方法として最も一般的に行なわれている方法は、青色と補色関係にある黄色を混色することにより擬似的に白色を得るものである。例えば特許文献1に記載されているように、青色光を発光する発光ダイオードの前面に、青色光の一部を吸収して黄色光を発する蛍光体を含有するエポキシ等の樹脂からなるコーティング層を設け、その先に光源の青色光と蛍光体からの黄色光を混色するモールド層等を設けることで、白色発光ダイオードを構成することができる。蛍光体としてはセリウムで付活されたYAG(Y3Al512)粉末等が用いられる。 In recent years, research and development of white light emitting devices using a blue light emitting element as a light source have been actively conducted. In particular, white light-emitting diodes using blue light-emitting diodes are light in weight, do not use mercury, and have a long lifetime, so that demand is expected to increase rapidly in the future. The most commonly used method for converting blue light of a blue light emitting element into white light is to obtain a pseudo white color by mixing yellow having a complementary color relationship with blue. For example, as described in Patent Document 1, a coating layer made of a resin such as epoxy containing a phosphor that absorbs part of blue light and emits yellow light is formed on the front surface of a light emitting diode that emits blue light. A white light emitting diode can be formed by providing a mold layer or the like that mixes blue light of the light source and yellow light from the phosphor. As the phosphor, YAG (Y 3 Al 5 O 12 ) powder activated with cerium is used.

また、本願出願人は、先に、少なくとも2つ以上の酸化物相が連続的にかつ三次元的に相互に絡み合った組織を有し、該酸化物相のうち少なくとも1つは蛍光を発する結晶相である凝固体からなる光変換用セラミックス複合体を光変換用に用いることを開示している(特許文献2)。   In addition, the applicant of the present application previously has a structure in which at least two or more oxide phases are continuously and three-dimensionally entangled with each other, and at least one of the oxide phases is a crystal that emits fluorescence. It discloses that a ceramic composite for light conversion comprising a solidified body as a phase is used for light conversion (Patent Document 2).

特開2000−208815号公報JP 2000-208815 A WO04―065324号パンフレットWO04-065324 pamphlet

こうした白色発光ダイオードの性能は年々向上してきており、その適用分野も従来の携帯電話用バックライトから、ディスプレイ用バックライト、照明機器へと大きく広がりをみせてきている。それに伴い、白色発光ダイオードの配光性にも様々な要求が出てきており、例えばバックライトでは幅の狭い広がった光という異方性の配光が求められている。またより一層の高出力化も求められている。   The performance of such white light emitting diodes has been improved year by year, and their application fields have been greatly expanded from conventional backlights for mobile phones to display backlights and lighting devices. Along with this, various demands have been made for the light distribution of white light emitting diodes, and for example, backlights are required to have an anisotropic light distribution of narrow and wide light. There is also a demand for higher output.

しかしながら、特許文献1に代表される、現在一般的に用いられている白色発光ダイオードの構造では、発光素子からの光は蛍光体粉末により散乱されるため指向性が弱まり、異方性の配光を得るためには別に反射板等の部材を追加する必要がある。このため構造が複雑化し、部品点数、工程の増加によりコストが増大してしまう。   However, in the structure of white light emitting diodes generally used at present, represented by Patent Document 1, the light from the light emitting elements is scattered by the phosphor powder, so the directivity is weakened, and the anisotropic light distribution In order to obtain this, it is necessary to add a member such as a reflector. For this reason, the structure becomes complicated, and the cost increases due to an increase in the number of parts and processes.

また蛍光体粉末を用いる際に必要となる樹脂は金属やセラミックスに比べ耐熱性に劣るため、発光素子からの熱による変成で透過率低下を起こしやすく、白色発光ダイオードの高出力化へのネックとなっている。   In addition, the resin required when using phosphor powder is inferior in heat resistance compared to metals and ceramics, so it is likely to cause a decrease in transmittance due to heat transformation from the light emitting element, and the bottleneck to increasing the output of white light emitting diodes. It has become.

特許文献2に開示された光変換体部材は、上記の問題を一定程度解決するが、白色発光ダイオードをさらに高出力化すること、指向性を高めるあるいは調整することが望ましい。   The light conversion member disclosed in Patent Document 2 solves the above problems to a certain extent, but it is desirable to further increase the output of the white light emitting diode and to increase or adjust the directivity.

本発明の目的は、異なる配光性を容易に得ることができ、高出力化に極めて好適な発光装置を低コストで提供することである。   An object of the present invention is to provide a light emitting device that can easily obtain different light distribution properties and is extremely suitable for high output at low cost.

本発明者は、光変換用セラミックス複合体において光出射面の表面テクスチャーを変えると発光を強くできる(光出射率が高い)ことを見出し、光変換用セラミックス複合体の光出射面において表面テクスチャーが異なる部位を含むように構成すれば、上記の課題を解決できることを見出し、本発明を完成した。すなわち、本発明は下記にある。   The present inventor has found that the light emission can be increased (the light emission rate is high) by changing the surface texture of the light conversion ceramic composite, and the surface texture on the light output surface of the ceramic composite for light conversion is high. The present invention has been completed by finding that the above-mentioned problems can be solved by configuring it to include different parts. That is, the present invention is as follows.

(1)発光素子と光変換用セラミックス複合体からなる発光装置において、前記光変換用セラミックス複合体が少なくとも2つ以上の酸化物相が連続的にかつ三次元的に相互に絡み合った組織を有し、該酸化物相のうち少なくとも1つは蛍光を発する結晶相である凝固体からなり、前記光変換用セラミックス複合体の光出射面において表面テクスチャーが異なる部位を含み、表面テクスチャーが異なる部位における光出射率が2%以上異なることを特徴とする発光装置。   (1) In a light emitting device composed of a light emitting element and a ceramic composite for light conversion, the ceramic composite for light conversion has a structure in which at least two oxide phases are continuously and three-dimensionally entangled with each other. In addition, at least one of the oxide phases is formed of a solidified body that is a crystal phase that emits fluorescence, and includes a portion having a different surface texture on a light emitting surface of the ceramic composite for light conversion, and a portion having a different surface texture. A light emitting device having a light emission rate different by 2% or more.

(2)前記表面テクスチャーが異なる部位の算術平均表面粗さ(Ra)の差が0.1μm以上であることを特徴とする、上記(1)に記載の発光装置。   (2) The light-emitting device according to (1) above, wherein a difference in arithmetic average surface roughness (Ra) between portions having different surface textures is 0.1 μm or more.

(3)前記表面テクスチャーが表面凹凸であり、凹凸の段差が0.5μm以上異なることを特徴とする、上記(1)に記載の発光装置。   (3) The light-emitting device according to (1) above, wherein the surface texture is surface unevenness, and the uneven step is different by 0.5 μm or more.

(4)前記表面凹凸がセラミックス複合体を構成する酸化物相ごとの凹凸であることを特徴とする、上記(3)に記載の発光装置。   (4) The light-emitting device according to (3) above, wherein the surface irregularities are irregularities for each oxide phase constituting the ceramic composite.

(5)前記光変換用セラミックス複合体が、光入射面と、第1の光出射面と、第1の光出射面以外の第2の光出射面を有し、第1の光出射面と第2の光出射面において、表面テクスチャーが異なり、発光素子からの光出射率が2%以上異なることを特徴とする、上記(1)〜(4)のいずれか1項に記載の発光装置。   (5) The ceramic composite for light conversion has a light incident surface, a first light emitting surface, and a second light emitting surface other than the first light emitting surface, and the first light emitting surface; The light emitting device according to any one of (1) to (4), wherein the second light emitting surface has a different surface texture and a different light emitting rate from the light emitting element by 2% or more.

(6)第1の光出射面が光入射面と対向している、上記(5)に記載の発光装置。   (6) The light emitting device according to (5), wherein the first light emission surface is opposed to the light incident surface.

(7)光出射面の表面テクスチャーが漸進的に変化する部位を含むことを特徴とする、上記(1)〜(6)のいずれか1項に記載の発光装置。   (7) The light-emitting device according to any one of (1) to (6), wherein the light-emitting surface includes a portion where the surface texture of the light exit surface gradually changes.

(8)前記発光装置がバックライトであり、光変換用セラミックス複合体が主面を有する板状であり、発光素子から光変換用セラミックス複合体の板の側面に横方向から光が入射され、光変換用セラミックス複合体の板の主面から出射されるバックライトであり、光変換用セラミックス複合体の光出射される主面において光入射部位から遠ざかるに従い表面テクスチャーが漸進的に変化して、主面からの光出射の光量が同等にされることを特徴とする、上記(1)〜(5)のいずれか1項に記載の発光装置。   (8) The light-emitting device is a backlight, the light-converting ceramic composite has a plate shape having a main surface, and light is incident from the lateral direction on the side surface of the light-converting ceramic composite from the light-emitting element, It is a backlight emitted from the main surface of the plate of the ceramic composite for light conversion, the surface texture gradually changes as the distance from the light incident site in the main surface of the light composite ceramic composite for light emission, 6. The light emitting device according to any one of (1) to (5) above, wherein the amount of light emitted from the main surface is made equal.

(9)前記光変換用セラミック複合体が、組成成分として少なくともY元素、Al元素とCe元素を含むことを特徴とする、上記(1)〜(8)のいずれか1項に記載の発光装置。   (9) The light-emitting device according to any one of (1) to (8), wherein the ceramic composite for light conversion includes at least a Y element, an Al element, and a Ce element as composition components. .

(10)発光素子が発光ダイオードであることを特徴とする、上記(1)〜(9)のいずれか1項に記載の発光装置。   (10) The light-emitting device according to any one of (1) to (9), wherein the light-emitting element is a light-emitting diode.

(11)前記光変換用セラミック複合体が波長530〜580nmにピークを有する蛍光を発し、前記発光素子が波長400nm〜520nmにピークを有する光を発することを特徴とする、上記(1)〜(10)のいずれか1項に記載の発光装置。   (11) The above (1) to (1), wherein the ceramic composite for light conversion emits fluorescence having a peak at a wavelength of 530 to 580 nm, and the light emitting element emits light having a peak at a wavelength of 400 nm to 520 nm. 10. The light emitting device according to any one of 10).

本発明の発光装置は、用いる光変換用セラミックス複合体の表面テクスチャーを各部分で最適な状態に調整することにより、求められる異なる配光性を容易に得ることができる。求める方向の発光(光出射)を高めることができるので、発光素子としての発光効率を高めることもできる。このため配光性を制御するための特別な部品の必要がなく、コスト増を避けることができる。さらに本光変換用セラミックス複合体は、耐熱性に優れ、それ自身がバルク体であるため、白色発光装置の構成に必ずしも樹脂を必要としない。このため、発光装置の配光性を容易に制御することができ、熱に弱い樹脂を必要としない高出力化に極めて好適な白色発光装置を低コストで提供することができる。   The light-emitting device of the present invention can easily obtain different required light distribution by adjusting the surface texture of the ceramic composite for light conversion to be in an optimum state in each part. Since light emission (light emission) in a desired direction can be increased, light emission efficiency as a light emitting element can also be increased. For this reason, there is no need for special parts for controlling the light distribution, and an increase in cost can be avoided. Furthermore, since the ceramic composite for light conversion is excellent in heat resistance and itself is a bulk body, a resin is not necessarily required for the configuration of the white light emitting device. For this reason, the light distribution of the light emitting device can be easily controlled, and a white light emitting device that is extremely suitable for high output and does not require a heat-sensitive resin can be provided at low cost.

本発明の発光装置の一実施形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the light-emitting device of this invention. 本発明の発光装置を液晶等のバックライトに応用する別の実施形態を示す模式的断面図である。It is typical sectional drawing which shows another embodiment which applies the light-emitting device of this invention to backlights, such as a liquid crystal. 本発明の光変換用セラミックス複合体の組織構造の一例を示す実施例1の顕微鏡写真である。It is a microscope picture of Example 1 which shows an example of the structure | tissue structure of the ceramic composite for light conversion of this invention. 本発明の光変換用セラミックス複合体の蛍光特性の一例を示す実施例1の蛍光スペクトル図である。It is a fluorescence spectrum figure of Example 1 which shows an example of the fluorescence characteristic of the ceramic composite for light conversion of this invention. 実施例1を評価するために作成した発光装置の模式断面図である。FIG. 3 is a schematic cross-sectional view of a light emitting device created for evaluating Example 1. 実施例2,3の実験の様子を説明する模式図である。It is a schematic diagram explaining the mode of experiment of Example 2,3. 実施例2、3の発光状態を示す写真である。4 is a photograph showing light emission states of Examples 2 and 3. FIG. 実施例5で得られた光変換用セラミックス複合体表面の断面を示す顕微鏡写真である。6 is a photomicrograph showing a cross section of the surface of the ceramic composite for light conversion obtained in Example 5.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の発光装置は光変換用セラミックス複合体と発光素子から構成される装置であり、発光素子からの光を光変換用セラミックス複合体に照射し、光変換用セラミックス複合体を透過した光および、発光素子からの光が光変換用セラミックス複合体により波長変換された蛍光を利用することを特徴とする。   The light-emitting device of the present invention is a device composed of a light-converting ceramic composite and a light-emitting element, and irradiates light from the light-emitting element to the light-converting ceramic composite and transmits the light transmitted through the light-converting ceramic composite and Further, the present invention is characterized in that the light from the light emitting element uses fluorescence whose wavelength is converted by the ceramic composite for light conversion.

図1は、本発明の発光装置の一実施形態を示した模式的断面図である。本光変換用セラミックス複合体2は、少なくとも2つ以上の酸化物相が連続的にかつ三次元的に相互に絡み合った組織を有する凝固体であり、これら酸化物相のうち少なくとも1つは蛍光を発する結晶相である。図1の光変換用セラミックス複合体2は、直方体であるが、底面が発光素子1に対面して装置本体の取付部材5に取り付けられ、底面2a以外の5面2b、2c、2d等が外部に露出して、光出射面(光放射面)を構成している。発光素子1からの光は一部が光変換用セラミックス複合体2内で蛍光に変換され、これらの光が光変換用セラミックス複合体から合わせて放出される。そして光変換用セラミックス複合体の光を放出する部分2b、2c、2d等の表面テクスチャーを部位により変えることにより発光装置の配光性を制御することができる。表面状態によって、光が光変換用セラミックス複合体から外へ放出される際の光取り出しの効率が異なるため、光の取り出し効率が良く光の放出が強く部分と、光の取り出し効率が悪く光の放出が弱い部分とを組み合わせることにより発光装置の配光性を制御することができる。図1において、3はリードワイヤー、4はリード電極、5は固定部材である。   FIG. 1 is a schematic cross-sectional view showing an embodiment of a light emitting device of the present invention. This ceramic composite 2 for light conversion is a solidified body having a structure in which at least two oxide phases are continuously and three-dimensionally entangled with each other, and at least one of these oxide phases is fluorescent. It is a crystal phase that emits. The ceramic composite 2 for light conversion in FIG. 1 is a rectangular parallelepiped, but the bottom surface faces the light emitting element 1 and is attached to the attachment member 5 of the apparatus main body, and the five surfaces 2b, 2c, 2d other than the bottom surface 2a are external. To form a light emitting surface (light emitting surface). A part of the light from the light emitting element 1 is converted into fluorescence in the ceramic composite 2 for light conversion, and these lights are emitted together from the ceramic composite for light conversion. The light distribution of the light-emitting device can be controlled by changing the surface texture of the portions 2b, 2c, 2d and the like that emit light of the ceramic composite for light conversion depending on the part. The light extraction efficiency when light is emitted from the ceramic composite for light conversion differs depending on the surface condition. Therefore, the light extraction efficiency is high and the light emission is strong, and the light extraction efficiency is poor. The light distribution of the light emitting device can be controlled by combining with a portion having weak emission. In FIG. 1, 3 is a lead wire, 4 is a lead electrode, and 5 is a fixing member.

本発明の光変換用セラミックス複合体は、表面テクスチャーが異なる部位であることにより、光の取り出し効率が高い部位と光の取り出し効率が低い部位を有することを特徴とする。本発明において、表面テクスチャーとは、表面粗さ、表面凹凸など、光出射率を変える表面の微細形状、微細構造をいう。表面が鏡面であると、屈折率の高い複合セラミックス内部から鏡面を通って出射しようとする光は、複合セラミックスの屈折率と外部の屈折率により決まる臨界角以上で鏡面に入射する場合には、全反射するが、表面が粗面化されていたり表面凹凸が存在すると、表面に向う光が仮想鏡面(粗面や凹凸を無視して鏡面と考える仮想表面)に対しては臨界角以上の角度で入射しても、表面のテクスチャーにより局所的には臨界角未満で入射することができ、その結果として複合セラミックスからの光出射率がその表面テクスチャー(表面粗さが大きい、凹凸段差が大きいなど)に応じて高くなることを見出した。   The ceramic composite for light conversion of the present invention is characterized by having a portion having a high light extraction efficiency and a portion having a low light extraction efficiency because the surface texture is different. In the present invention, the surface texture refers to a fine surface shape and a fine structure that change the light emission rate, such as surface roughness and surface unevenness. When the surface is a mirror surface, light that is going to exit through the mirror surface from the inside of the composite ceramic with a high refractive index is incident on the mirror surface at a critical angle or more determined by the refractive index of the composite ceramic and the external refractive index. Total reflection, but if the surface is roughened or surface irregularities exist, the light that faces the surface is an angle greater than the critical angle with respect to the virtual mirror surface (the virtual surface that is considered to be a mirror surface ignoring the rough surface and irregularities) Can be incident locally at less than the critical angle due to the texture of the surface, and as a result, the light emission rate from the composite ceramics is the surface texture (large surface roughness, large uneven step, etc. ) Was found to increase in response to

本発明の複合セラミックスは表面テクスチャーが異なる部位を有するが、その目的は部位により光出射率を変え、配向性を変えることである。本発明の発光装置において複合セラミックスの表面テクスチャーが異なる部位は、限定するものではないが、発光素子からの光出射率に少なくとも2%の差を付けることができるものである。ここに光出射率は同じ面積での出射率の比較である。好ましくは少なくとも3%、より好ましくは少なくとも5%の差をつける。場合によっては10%以上の差をつけることが可能である。   The composite ceramic of the present invention has a part having a different surface texture. The purpose is to change the light emission rate and change the orientation depending on the part. In the light-emitting device of the present invention, the portion where the surface texture of the composite ceramics is different is not limited, but can provide a difference of at least 2% in the light emission rate from the light-emitting element. Here, the light output rate is a comparison of the output rate in the same area. The difference is preferably at least 3%, more preferably at least 5%. In some cases, it is possible to make a difference of 10% or more.

本発明において複合セラミックスの表面テクスチャーが異なる部位は、たとえば、表面粗さが部位により異なり、好ましくは算術平均表面粗さ(Ra)が少なくとも0.1μm、より好ましくは0.3μm以上、さらには0.5μm以上、さらには0.7μm以上、特に1.0μm以上異なる。表面粗さ以外でも、光の取り出し効率を変える表面テクスチャーとして、表面に凹凸を形成することができ、ここで凹凸とは、例えば、フォトリソ等を用いてパターンニングをおこない形成した凹凸をはじめとして、より簡便に光変換用セラミックス複合体を形成する各酸化物相の種類毎に高さ段差をつけることにより形成される凹凸をあげることができる。後者の凹凸の場合、凹凸の高さ段差が部位により異なり、好ましくは高さ段差の差が0.5μm、より好ましくは1μm、さらには3μm以上異なる。セラミックス複合体を形成する各酸化物相の種類毎に段差を設ける場合には、凹凸の寸法は各酸化物相の寸法であるから、限定されないが、典型的には1〜20μm程度である。フォトリソ等を用いてパターンニングして凹凸を形成する場合も、同様の寸法であることができるが、この場合には1μm以下に小さくしてもよい。   In the present invention, the part having a different surface texture of the composite ceramic has, for example, a different surface roughness, preferably an arithmetic average surface roughness (Ra) of at least 0.1 μm, more preferably 0.3 μm or more, and even 0. .5 μm or more, further 0.7 μm or more, particularly 1.0 μm or more. Other than surface roughness, as surface texture that changes the light extraction efficiency, unevenness can be formed on the surface, where unevenness includes, for example, unevenness formed by patterning using photolithography, etc. Concavities and convexities can be raised by providing a level difference for each type of oxide phase forming the ceramic composite for light conversion more simply. In the case of the latter unevenness, the height difference of the unevenness differs depending on the part, and preferably the difference in height difference is 0.5 μm, more preferably 1 μm, and further 3 μm or more. In the case where a step is provided for each type of oxide phase forming the ceramic composite, the size of the unevenness is not limited because it is the size of each oxide phase, but is typically about 1 to 20 μm. When the unevenness is formed by patterning using photolithography or the like, the dimensions can be the same, but in this case, it may be as small as 1 μm or less.

たとえば、図1の上方に光を取り出したい場合には、上方面(頂面)2b面を粗面化し、その他の面2c等を鏡面化することで、上面2bからの発光強度を高く、その他の面2c、2d等からの発光強度を低くすることで、全体として上方向への発光効率を高くできる。   For example, when it is desired to extract light upward in FIG. 1, the upper surface (top surface) 2 b is roughened, and the other surface 2 c and the like are mirror-finished to increase the emission intensity from the upper surface 2 b. By reducing the light emission intensity from the surfaces 2c, 2d, etc., the light emission efficiency in the upward direction as a whole can be increased.

本発明の光変換用セラミックス複合体の光を放出する部分の表面テクスチャー(たとえば、表面粗さ)を変える部位は、一面単位である必要はなく、一面の中で部分によって表面テクスチャーを変えることができる。たとえば、図1の上方面(頂面)2bの中央領域を粗面化し、その中央領域を取り囲む周囲領域を鏡面にすることができる。あるいは斑模様に表面テクスチャー(表面粗さ)を変えてもよい。   The portion that changes the surface texture (for example, surface roughness) of the portion that emits light of the ceramic composite for light conversion of the present invention does not have to be a single surface unit, and the surface texture can be changed depending on the portion in one surface. it can. For example, the central region of the upper surface (top surface) 2b in FIG. 1 can be roughened and the surrounding region surrounding the central region can be a mirror surface. Alternatively, the surface texture (surface roughness) may be changed to a spotted pattern.

さらに、本発明の光変換用セラミックス複合体の光を放出出射する部分の表面テクスチャーを変える部位は、表面テクスチャーが一定である必要はない。一つの面の表面テクスチャーが漸進的に変化して、その面の或る部位と他の部位とで発光効率が変化してもよい。とりわけ、図2を参照すると、バックライトのための光散乱体20の発光面20bに対して横方向20Aから反対方向20Bに向って光Lが入射され、光散乱体20内を導光され発光面20bから液晶層などへ発光(出射)される場合、発光面20bの表面テクスチャー(たとえば、表面粗さ)が側面20Aから反対側面20Bの方向に向って漸進的に大きくなることで、光Lが進行とともに弱くなる場合にも発光面20bの発光(出射)強度が一様化される効果を得ることができる。   Furthermore, the surface texture of the portion that changes the surface texture of the portion that emits and emits light of the ceramic composite for light conversion of the present invention does not need to be constant. The surface texture of one surface may change gradually, and the light emission efficiency may change between a certain part of the surface and another part. In particular, referring to FIG. 2, light L enters the light emitting surface 20b of the light scatterer 20 for the backlight from the lateral direction 20A toward the opposite direction 20B, and is guided through the light scatterer 20 to emit light. When light is emitted (emitted) from the surface 20b to the liquid crystal layer or the like, the surface texture (for example, surface roughness) of the light emitting surface 20b gradually increases from the side surface 20A toward the opposite side surface 20B. Even when the light intensity becomes weaker as the light travels, the light emission (emission) intensity of the light emitting surface 20b can be made uniform.

光の取り出し効率の良し悪しは、配光に関しては相対的であるので絶対値で規定することは困難である。光変換用セラミックス複合体は空気より屈折率が高く、こうした屈折率が高い物質から低い物質に光が進む場合、光はその界面において透過(屈折)、反射、散乱をおこす。光の取り出し効率が良い表面テクスチャーとは、透過・散乱が支配的な場合であり、例えば凹凸が形成された面、表面粗さが粗い面等がこれにあたる。光の取り出し効率が悪い表面テクスチャーとは、反射が支配的な場合であり、例えば鏡面等がこれにあたる。   The light extraction efficiency is relative to the light distribution, so it is difficult to define the absolute value. The ceramic composite for light conversion has a refractive index higher than that of air. When light travels from a material having a high refractive index to a material having a low refractive index, the light is transmitted (refracted), reflected, and scattered at the interface. A surface texture with good light extraction efficiency is a case where transmission / scattering is dominant, for example, a surface with unevenness, a surface with a rough surface, and the like. A surface texture with poor light extraction efficiency is a case where reflection is dominant, for example, a mirror surface or the like.

本発明の光変換用セラミックス複合体は、光の取り出し効率が高い部位と光の取り出し効率が低い部位を持つことを特徴とする。典型的には、表面粗さを部位により異なるようにすることができるが、表面粗さ以外でも、光の取り出し効率を変える表面テクスチャーとして、たとえば、表面に凹凸を形成することができることは先に述べた。   The ceramic composite for light conversion according to the present invention is characterized by having a portion with high light extraction efficiency and a portion with low light extraction efficiency. Typically, the surface roughness can be made different depending on the part, but other than the surface roughness, as a surface texture that changes the light extraction efficiency, for example, it is possible to form unevenness on the surface first. Stated.

本光変換用セラミックス複合体を構成する酸化物相は、組成成分および凝固体の製造条件により変化し特に限定されないが、組成成分として少なくともY元素、Al元素とCe元素を含む場合、Al23(サファイア)相、(Y、Ce)3Al512相等が挙げられ、こうした酸化物相が少なくとも2相以上含まれる。それぞれの酸化物相のうち少なくとも2相は、連続的にかつ三次元的に相互に絡み合った構造をしている。一部の酸化物相は他の酸化物相が形成する相互に絡み合った構造中に粒状に存在する場合もある。いずれにおいても各相の境界は、アモルファス等の境界層が存在せず、酸化物相同士が直接接している。このため光変換用セラミックス複合体内での光の損失が少なく、光透過率も高い。 The oxide phase constituting the ceramic composite for light conversion varies depending on the composition component and the production conditions of the solidified body and is not particularly limited. However, when the composition component contains at least Y element, Al element and Ce element, Al 2 O 3 (sapphire) phase, (Y, Ce) 3 Al 5 O 12 phase, and the like, and at least two such oxide phases are included. At least two phases of the respective oxide phases have a structure in which they are continuously and three-dimensionally entangled with each other. Some oxide phases may be present in a granular form in an intertwined structure formed by other oxide phases. In any case, there is no boundary layer such as amorphous at the boundary between the phases, and the oxide phases are in direct contact with each other. For this reason, there is little loss of light in the ceramic composite for light conversion, and the light transmittance is also high.

蛍光を発する結晶相も組成成分および凝固体の製造条件により変化し特に限定されないが、組成成分として少なくともY元素、Al元素とCe元素を含む場合、前記酸化物相の内(Y、Ce)3Al512相等が挙げられ、こうした蛍光を発する結晶相が少なくとも1相含まれる。これら蛍光を発する結晶相を含む酸化物相が連続的にかつ三次元的に相互に絡み合った構造をとり、全体として各酸化物相が光変換用セラミックス複合体内に均一に分布するため、部分的な偏りのない均質な蛍光を得ることができる。 The crystal phase that emits fluorescence also varies depending on the composition components and the production conditions of the solidified body, and is not particularly limited. However, when the composition components include at least a Y element, an Al element, and a Ce element, the oxide phase (Y, Ce) 3 Examples thereof include an Al 5 O 12 phase, and at least one crystal phase that emits such fluorescence is included. These oxide phases including a crystalline phase that emits fluorescence take a structure that is continuously and three-dimensionally entangled with each other. As a whole, each oxide phase is uniformly distributed in the ceramic composite for light conversion. And uniform fluorescence with no bias.

前記Al23相と(Y、Ce)3Al512相の組み合わせは、容易に両者が連続的にかつ三次元的に相互に絡み合った構造が得られる。また(Y、Ce)3Al512相は、400〜520nmの励起光で、ピーク波長530〜560nmの蛍光を発することから、白色発光装置用光変換部材として好適である。このことから、組成成分として少なくともY元素、Al元素とCe元素を含むことは好ましい。加えてGd元素を含むと蛍光体相として(Y、Gd、Ce)3Al512相が生成し、より長波長側のピーク波長540〜580nmの蛍光を発することができる。 The combination of the Al 2 O 3 phase and the (Y, Ce) 3 Al 5 O 12 phase can easily obtain a structure in which both are continuously and three-dimensionally entangled with each other. The (Y, Ce) 3 Al 5 O 12 phase emits fluorescence having a peak wavelength of 530 to 560 nm with excitation light of 400 to 520 nm, and is therefore suitable as a light conversion member for a white light emitting device. Therefore, it is preferable that at least a Y element, an Al element, and a Ce element are included as a composition component. In addition, when a Gd element is included, a (Y, Gd, Ce) 3 Al 5 O 12 phase is generated as a phosphor phase, and fluorescence having a longer peak wavelength of 540 to 580 nm can be emitted.

本発明の光変換用セラミックス複合体を構成する凝固体は、原料酸化物を融解後、凝固させることで作製される。例えば、所定温度に保持したルツボに仕込んだ溶融物を、冷却温度を制御しながら冷却凝結させる簡単な方法で凝固体を得ることができるが、最も好ましいのは一方向凝固法により作製されたものである。一方向凝固をおこなうことにより含まれる結晶相が単結晶状態で連続的に成長し、部材内での光の減衰が減少するためである。   The solidified body constituting the ceramic composite for light conversion of the present invention is produced by solidifying a raw material oxide after melting. For example, it is possible to obtain a solidified body by a simple method of cooling and condensing a melt charged in a crucible held at a predetermined temperature while controlling the cooling temperature, but the most preferable one is produced by a unidirectional solidification method. It is. This is because the crystal phase contained by the unidirectional solidification grows continuously in a single crystal state, and the attenuation of light in the member decreases.

本発明の光変換用セラミックス複合体を構成する凝固体は、少なくとも1つの酸化物相が蛍光を発する結晶相であることを除き、本願出願人が先に特開平7−149597号公報、特開平7−187893号公報、特開平8−81257号公報、特開平8−253389号公報、特開平8−253390号公報および特開平9−67194号公報並びにこれらに対応する米国出願(米国特許第5,569,547号、同第5,484,752号、同第5,902,963号)等に開示したセラミック複合材料と同様のものであることができ、これらの出願(特許)に開示した製造方法で製造できるものである。これらの出願あるいは特許の開示内容はここに参照して含めるものである。   The solidified body composing the ceramic composite for light conversion of the present invention has previously been disclosed in Japanese Patent Application Laid-Open Nos. Hei 7-149597 and Hei Hei, except that at least one oxide phase is a crystal phase that emits fluorescence. JP-A-7-187893, JP-A-8-81257, JP-A-8-253389, JP-A-8-253390, JP-A-9-67194, and corresponding US applications (US Pat. 569,547, 5,484,752, and 5,902,963), etc., and the production disclosed in these applications (patents). It can be manufactured by the method. The disclosures of these applications or patents are hereby incorporated by reference.

本発明の発光装置の一実施形態である白色発光装置は、波長400nm〜520nmにピークを有する光を発する発光素子と、該発光素子から発する光によりピーク波長530〜580nmの蛍光を発する上記光変換用セラミックス複合体とからなる。発光素子からの光を、その波長に合わせて白色が得られるように蛍光ピーク波長の調整をおこなった光変換用セラミックス複合体に入射する。それによって励起された蛍光を発する結晶相からの蛍光と、蛍光を発さない結晶相を透過した入射光が、酸化物相が連続的にかつ三次元的に相互に絡み合う構造により、均質に混合されることで、色むらが小さい白色光を得ることができる。   A white light-emitting device that is an embodiment of the light-emitting device of the present invention includes a light-emitting element that emits light having a peak at a wavelength of 400 nm to 520 nm and the light conversion that emits fluorescence having a peak wavelength of 530 to 580 nm by light emitted from the light-emitting element. It consists of ceramic composites. The light from the light emitting element is incident on the ceramic composite for light conversion that has been adjusted in the fluorescence peak wavelength so that white color is obtained according to the wavelength. Fluorescence from the crystal phase that emits fluorescence excited by it and incident light that has passed through the crystal phase that does not emit fluorescence are mixed homogeneously by a structure in which the oxide phase is continuously and three-dimensionally intertwined. As a result, white light with small color unevenness can be obtained.

本発明の発光装置の色調は、光変換用セラミックス複合体の厚みにより容易に制御することができる。   The color tone of the light emitting device of the present invention can be easily controlled by the thickness of the ceramic composite for light conversion.

本発明の発光装置に用いる光変換用セラミックス複合体は、切断・研削・研磨・エッチング等の加工法により板状等の適切な形状および表面状態に作製される。本光変換用セラミックス複合体は、そのまま単独で部材として使用することが可能で封入樹脂が必要なく、熱・光による劣化がないため、高出力の紫〜青色発光素子と組み合わせて使用することができ、発光装置の高出力化が可能である。   The ceramic composite for light conversion used in the light emitting device of the present invention is produced in an appropriate shape and surface state such as a plate shape by a processing method such as cutting, grinding, polishing, and etching. This ceramic composite for light conversion can be used alone as a member, does not require an encapsulating resin, and is not deteriorated by heat or light, so it can be used in combination with high-power purple-blue light emitting elements. Thus, the output of the light emitting device can be increased.

本発明の発光装置に用いる発光素子は、発光ダイオード素子、レーザー光を発生する素子などが挙げられるが、発光ダイオード素子が小型で安価に得られるため好ましい。   Examples of the light-emitting element used in the light-emitting device of the present invention include a light-emitting diode element and an element that generates laser light. However, the light-emitting diode element is preferable because it is small and inexpensive.

本発明により、特別に部品を追加することなく発光装置の配光性を容易に制御することができる。また熱や光に弱い樹脂を用いることなく発光装置を構成することができる。このため異方性の配光性を有し、かつ熱や光による劣化がない高出力化に極めて好適な白色発光装置を低コストで提供することができる。   According to the present invention, it is possible to easily control the light distribution of the light emitting device without adding any special parts. In addition, a light-emitting device can be formed without using a resin that is weak against heat and light. Therefore, it is possible to provide a white light emitting device that has anisotropic light distribution and is extremely suitable for high output without deterioration due to heat or light at low cost.

以下、具体的例を挙げ、本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with specific examples.

(実施例1)
α−Al23粉末(純度99.99%)をAlO3/2換算で0.82モル、Y23粉末(純度99.9%)をYO3/2換算で0.175モル、CeO2粉末(純度99.9%)を0.005モルとなるよう秤量した。これらの粉末をエタノール中、ボールミルによって16時間湿式混合した後、エバポレーターを用いてエタノールを脱媒して原料粉末を得た。原料粉末は、真空炉中で予備溶解し一方向凝固の原料とした。
Example 1
α-Al 2 O 3 powder (purity 99.99%) is 0.82 mol in terms of AlO 3/2 , Y 2 O 3 powder (purity 99.9%) is 0.175 mol in terms of YO 3/2 , CeO 2 powder (purity 99.9%) was weighed to 0.005 mol. These powders were wet mixed in ethanol by a ball mill for 16 hours, and then ethanol was removed using an evaporator to obtain a raw material powder. The raw material powder was pre-melted in a vacuum furnace and used as a raw material for unidirectional solidification.

次に、この原料をそのままモリブデンルツボに仕込み、一方向凝固装置にセットし、1.33×10-3Pa(10-5Torr)の圧力下で原料を融解した。次に同一の雰囲気においてルツボを20mm/時間の速度で下降させ、Al23(サファイア)相、(Y、Ce)3Al512相、CeAl1118相の3つの酸化物相からなる凝固体を得た。 Next, this raw material was directly charged into a molybdenum crucible and set in a unidirectional solidification apparatus, and the raw material was melted under a pressure of 1.33 × 10 −3 Pa (10 −5 Torr). Next, in the same atmosphere, the crucible is lowered at a speed of 20 mm / hour, and three oxide phases of Al 2 O 3 (sapphire) phase, (Y, Ce) 3 Al 5 O 12 phase, and CeAl 11 O 18 phase are used. A solidified body was obtained.

凝固体の凝固方向に垂直な断面組織を図3に示す。Aの黒い部分がAl23(サファイア)相、Bの白い部分が(Y、Ce)3Al512相、わずかに存在するCの灰色の部分がCeAl1118相である。各酸化物相が連続的にかつ三次元的に相互に絡み合った組織を有していることがわかる。組織はサイズが微細な部分とそれを取り巻くやや大きな部分とからなるが、巨視的には(Y、Ce)3Al512相が均一に分布していることが分かる。このため均質な蛍光を得ることができる。 FIG. 3 shows a cross-sectional structure perpendicular to the solidification direction of the solidified body. The black part of A is the Al 2 O 3 (sapphire) phase, the white part of B is the (Y, Ce) 3 Al 5 O 12 phase, and the slightly gray part of C is the CeAl 11 O 18 phase. It can be seen that each oxide phase has a structure that is continuously and three-dimensionally entangled with each other. The structure is composed of a portion having a fine size and a slightly larger portion surrounding the portion, but it can be seen macroscopically that the (Y, Ce) 3 Al 5 O 12 phase is uniformly distributed. For this reason, uniform fluorescence can be obtained.

得られた凝固体からφ16mm×0.2mmの円盤状試料を切り出し、日本分光製固体量子効率測定装置で蛍光特性の評価をおこなった。真のスペクトルを求めるために補正を副標準光源を用いておこなった。蛍光スペクトルを図4に示す。波長460nmの励起光により、547nmにピーク波長を持つブロードな蛍光スペクトルが得られた。   A disk-shaped sample of φ16 mm × 0.2 mm was cut out from the obtained solidified body, and the fluorescence characteristics were evaluated with a solid quantum efficiency measuring apparatus manufactured by JASCO Corporation. Correction was performed using a sub-standard light source to determine the true spectrum. The fluorescence spectrum is shown in FIG. A broad fluorescence spectrum having a peak wavelength at 547 nm was obtained by excitation light having a wavelength of 460 nm.

得られた凝固体から2mm×2mm×2mmの立方体を切出し、その6面の内、対向した2つの面が表面粗さRa=1.5μmの粗面、残りの4つの面が表面粗さRa=0.03μmの鏡面である、表面状態が異なる光変換用セラミックス複合体を作製した。得られた光変換用セラミックス複合体と波長463nmの発光素子を図5に示すように配置し発光装置とした。すなわち、発光素子1に対して、光変換用セラミックス複合体2の底面2aを対向させて、光変換用セラミックス複合体2の底部を固定部材5にて固定し、頂面2bを光進行方向(0°方向)、側面2c、2d、2e等を光進行方向に直角方向(90°)の光放射面(光出射面)とした。この時、光変換用セラミックス複合体の上面をRa=1.5μmの面、側面をRa=0.03μmの面とした。この時の光強度を0°方向(上面方向)、90°方向(側面方向)についてそれぞれ測定した。後述する同一形状で6つの面が全て表面粗さRa=1.5μmの粗面である光変換用セラミックス複合体を用いた発光装置の0°方向の光強度を1.0とすると、本実施例の光強度は0°方向で1.2、90°方向で0.8となり、側面への光放出が抑えられた配光が得られていることがわかる。   A cube of 2 mm × 2 mm × 2 mm is cut out from the obtained solidified body, and among the six surfaces, two opposed surfaces are rough surfaces with a surface roughness Ra = 1.5 μm, and the remaining four surfaces are surface roughness Ra. A ceramic composite for light conversion having a mirror surface of 0.03 μm and a different surface state was produced. The obtained ceramic composite for light conversion and a light emitting element having a wavelength of 463 nm were arranged as shown in FIG. 5 to obtain a light emitting device. That is, the bottom surface 2a of the light conversion ceramic composite 2 is opposed to the light emitting element 1, the bottom of the light conversion ceramic composite 2 is fixed by the fixing member 5, and the top surface 2b is fixed in the light traveling direction ( (0 ° direction), side surfaces 2c, 2d, 2e, and the like were defined as light emitting surfaces (light emitting surfaces) perpendicular to the light traveling direction (90 °). At this time, the upper surface of the ceramic composite for light conversion was a surface with Ra = 1.5 μm, and the side surface was a surface with Ra = 0.03 μm. The light intensity at this time was measured in the 0 ° direction (upper surface direction) and 90 ° direction (side surface direction). When the light intensity in the 0 ° direction of the light emitting device using the ceramic composite for light conversion in which all of the six surfaces having the same shape and the surface roughness Ra = 1.5 μm are rough surfaces, which will be described later, is 1.0, this embodiment The light intensity in the example is 1.2 in the 0 ° direction and 0.8 in the 90 ° direction, and it can be seen that light distribution with suppressed light emission to the side surface is obtained.

(比較例1)
実施例1と同様の方法で作製した凝固体から、2mm×2mm×2mmの立方体で全ての面が表面粗さRa=1.5μmの粗面である光変換用セラミックス複合体を作製した。そして実施例1と同様な発光装置を構成し、光強度を0°方向(上面方向)、90°方向(側面方向)についてそれぞれ測定した。得られた光強度は0°方向、90°方向共に1.0であり、異方性のない配光となっていることがわかる。
(Comparative Example 1)
From the solidified body produced by the same method as in Example 1, a ceramic composite for light conversion having a 2 mm × 2 mm × 2 mm cube with all surfaces having a surface roughness Ra = 1.5 μm was produced. A light emitting device similar to that in Example 1 was constructed, and the light intensity was measured in the 0 ° direction (upper surface direction) and 90 ° direction (side surface direction). The obtained light intensity is 1.0 in both the 0 ° direction and the 90 ° direction, indicating that the light distribution has no anisotropy.

(実施例2、3)
実施例1で得られた凝固体から2mm×2mm×0.2mmの直方体を切出し、その6面の内、対向した2つの主面(2mm×2mmの面)を鏡面とし、残りの4側面を表面粗さRa=1.5μmの粗面にした実施例2の光変換用セラミックス複合体と、6面の全部を表面粗さRa=1.5μmの粗面にした実施例3の光変換用セラミックス複合体を作成した。これらの光変換用セラミックス複合体は図7に示すように主面の下半分を光不透過材料でマスクした。
(Examples 2 and 3)
A rectangular parallelepiped of 2 mm × 2 mm × 0.2 mm is cut out from the solidified body obtained in Example 1, and among the six surfaces, two opposing main surfaces (2 mm × 2 mm surfaces) are used as mirror surfaces, and the remaining four side surfaces are formed. The ceramic composite for light conversion of Example 2 having a rough surface with a surface roughness Ra = 1.5 μm, and the light conversion of Example 3 having a rough surface with a surface roughness Ra = 1.5 μm on all six surfaces. A ceramic composite was prepared. In these ceramic composites for light conversion, the lower half of the main surface was masked with a light-impermeable material as shown in FIG.

そして、図6及び図7に示すように、直方体の下面から波長463nmの光を入射し、放射状態を観察した。図7は、その観察写真である。図7(a)は、実施例2の主面が鏡面のものであり、図7(b)は実施例3の主面が粗面のものである。図7(a)の鏡面より、図7(b)の粗面の場合に放射される光が明るい(発光強度が高い)。また、図7(a)及び図7(b)の両方の場合、マスクに近い部分(入射面に近い部分)で発光強度が高く、マスクより遠ざかると発光強度が低下するが、図7(a)の主面が鏡面のものでは光入射面に対向する頂面(図の上方)の発光強度が図7(b)の対応する発光強度より高いことが観察される。これは、図7(b)では主面においてより多くの光が放射されたのに対して、図7(a)では主面における放射が抑止された結果、頂面における放射が増加したものである。   And as shown in FIG.6 and FIG.7, the light of wavelength 463nm was entered from the lower surface of the rectangular parallelepiped, and the radiation state was observed. FIG. 7 is an observation photograph thereof. In FIG. 7A, the main surface of Example 2 is a mirror surface, and in FIG. 7B, the main surface of Example 3 is a rough surface. The light emitted in the case of the rough surface in FIG. 7B is brighter (the emission intensity is higher) than the mirror surface in FIG. In both of FIGS. 7A and 7B, the emission intensity is high at a portion close to the mask (portion near the incident surface), and the emission intensity decreases as the distance from the mask increases. It is observed that the light emission intensity of the top surface (upper part of the figure) opposite to the light incident surface is higher than the corresponding light emission intensity of FIG. In FIG. 7 (b), more light is emitted on the main surface, whereas in FIG. 7 (a), radiation on the main surface is increased as a result of suppression of radiation on the main surface. is there.

(実施例4)
実施例1と同様の方法で作製した凝固体から2mm×2mm×2mmの立方体を切出し、その6面の内、対向した2つの面が凹凸の高さ段差3.5μm、幅2μmの市松模様の凹凸面、残りの4つの面が高さ段差0.1μmの面である、表面状態が異なる光変換用セラミックス複合体を作製した。市松模様の凹凸面はフォトリソ技術を利用してパターンエッチングで形成した。そして実施例1と同様な発光装置を構成し、光変換用セラミックス複合体の上面を高さ段差3.5μmの凹凸面、側面を高さ段差0.1μmの面とした。この時の光強度を0°方向(上面方向)、90°方向(側面方向)についてそれぞれ測定した。前述した比較例1の発光装置の0°方向の光強度を1.0とすると、本実施例の光強度は0°方向で1.15、90°方向で0.8となり、実施例1と同様に側面への光放出が抑えられた配光が得られていることがわかる。
Example 4
A cube of 2 mm × 2 mm × 2 mm was cut out from the solidified body produced by the same method as in Example 1, and among the six surfaces, the opposite two surfaces had a checkered pattern with a height difference of 3.5 μm and a width of 2 μm. Ceramic composites for light conversion having different surface states, in which the uneven surface and the remaining four surfaces are surfaces having a height difference of 0.1 μm, were produced. The checkered uneven surface was formed by pattern etching using photolithography. A light emitting device similar to that of Example 1 was constructed, and the upper surface of the ceramic composite for light conversion was an uneven surface with a height difference of 3.5 μm and the side surface was a surface with a height difference of 0.1 μm. The light intensity at this time was measured in the 0 ° direction (upper surface direction) and 90 ° direction (side surface direction). Assuming that the light intensity in the 0 ° direction of the light emitting device of Comparative Example 1 is 1.0, the light intensity of this example is 1.15 in the 0 ° direction and 0.8 in the 90 ° direction. Similarly, it can be seen that light distribution in which light emission to the side surface is suppressed is obtained.

(実施例5)
実施例1において得られた凝固体から2mm×2mm×0.15mmの板状で、2mm×2mmの面の表面粗さがRa=0.04μmの鏡面である試料を作製し、硫酸:リン酸=1:1(容積比)の混合酸中で200℃×1hの熱処理をおこない、表面が酸化物相毎に高さが異なる凹凸面である光変換用セラミックス複合体を得た。得られた光変換用セラミックス複合体表面の断面を図8に示す。黒い部分がAl23(サファイア)相、白い部分が(Y、Ce)3Al512 相であり、(Y、Ce)3Al512 相がAl23相より約7μm低い凹凸面が形成されている。
(Example 5)
A sample having a plate shape of 2 mm × 2 mm × 0.15 mm and a mirror surface with a surface roughness of 2 mm × 2 mm Ra = 0.04 μm was prepared from the solidified body obtained in Example 1, and sulfuric acid: phosphoric acid A heat treatment was performed at 200 ° C. for 1 h in a mixed acid of 1: 1 (volume ratio) to obtain a ceramic composite for light conversion whose surface is an uneven surface having a different height for each oxide phase. A cross section of the surface of the obtained ceramic composite for light conversion is shown in FIG. The black part is the Al 2 O 3 (sapphire) phase, the white part is the (Y, Ce) 3 Al 5 O 12 phase, and the (Y, Ce) 3 Al 5 O 12 phase is about 7 μm lower than the Al 2 O 3 phase. An uneven surface is formed.

得られた光変換用セラミックス複合体に波長463nmの励起光を入射し、反対側で放射される光を積分球を用いて集め、放射された全光の積分値(全放射束)を求めた。透過した励起光と蛍光を合わせた全放射束は、同一厚みで表面に凹凸のない比較例を100とすると実施例5では109となり、光変換用セラミックス複合体表面を酸化物相毎に高さが異なる凹凸面とすることで、より多くの光を取り出すことができ、光取り出し効率に優れることがわかる。
したがって、このような凹凸面を特定の出射面とすることで、その特定の出射面において他の出射面より高い光出射率を実現することができる。
Excitation light having a wavelength of 463 nm was incident on the obtained ceramic composite for light conversion, and the light emitted on the opposite side was collected using an integrating sphere, and the integrated value (total radiant flux) of all the emitted light was obtained. . The total radiant flux combining the transmitted excitation light and fluorescence is 109 in Example 5 when the comparative example with the same thickness and no irregularities on the surface is 100, and the surface of the ceramic composite for light conversion has a height for each oxide phase. It can be seen that by making the concavo-convex surfaces having different values, more light can be extracted and the light extraction efficiency is excellent.
Therefore, by making such a concavo-convex surface as a specific emission surface, it is possible to achieve a higher light emission rate at the specific emission surface than at other emission surfaces.

1 発光素子(発光ダイオード素子)
2 光変換用セラミックス複合体
2a 光変換用セラミックス複合体の底面(発光素子対向面)
2b 光変換用セラミックス複合体の頂面
2c、2d、2e 光変換用セラミックス複合体の側面
3 リードワイヤー
4 リード電極
5 固定部材
1 Light-emitting element (light-emitting diode element)
2 Ceramic composite for light conversion 2a Bottom surface of light-emitting ceramic composite (light emitting element facing surface)
2b Top surface of ceramic composite for light conversion 2c, 2d, 2e Side surface of ceramic composite for light conversion 3 Lead wire 4 Lead electrode 5 Fixing member

Claims (8)

発光素子と光変換用セラミックス複合体からなる発光装置において、前記光変換用セラミックス複合体が少なくとも2つ以上の酸化物相が連続的にかつ三次元的に相互に絡み合った組織を有し、該酸化物相のうち少なくとも1つは蛍光を発する結晶相である凝固体からなり、前記光変換用セラミックス複合体の光出射面において表面テクスチャーが異なる部位を含み、前記表面テクスチャーが表面凹凸であり、前記表面凹凸がセラミックス複合体を構成する酸化物相ごとの凹凸であり、凹凸の段差が0.5μm以上異なり、表面テクスチャーが異なる部位における光強度が2%以上異なることを特徴とする発光装置。 In a light emitting device comprising a light emitting element and a ceramic composite for light conversion, the ceramic composite for light conversion has a structure in which at least two oxide phases are continuously and three-dimensionally entangled with each other, At least one of the oxide phases is formed of a solidified body that is a crystal phase that emits fluorescence, includes a portion having a different surface texture on the light exit surface of the ceramic composite for light conversion, and the surface texture is surface unevenness, The light emitting device according to claim 1, wherein the surface unevenness is unevenness for each oxide phase constituting the ceramic composite, the step difference of the unevenness is different by 0.5 μm or more, and the light intensity is different by 2% or more at a part having a different surface texture. 前記光変換用セラミックス複合体が、光入射面と、第1の光出射面と、第1の光出射面以外の第2の光出射面を有し、第1の光出射面と第2の光出射面において、表面テクスチャーが異なり、発光素子からの光強度が2%以上異なることを特徴とする、請求項に記載の発光装置。 The ceramic composite for light conversion has a light incident surface, a first light emitting surface, and a second light emitting surface other than the first light emitting surface, and the first light emitting surface and the second light emitting surface. 2. The light emitting device according to claim 1 , wherein the light emitting surface has a different surface texture and a light intensity from the light emitting element of 2% or more. 第1の光出射面が光入射面と対向している、請求項に記載の発光装置。 The light emitting device according to claim 2 , wherein the first light exit surface faces the light incident surface. 光出射面の表面テクスチャーが漸進的に変化する部位を含むことを特徴とする、請求項1〜のいずれか1項に記載の発光装置。 Characterized in that it comprises a portion in which the surface texture of the light emitting surface varies progressively, the light emitting device according to any one of claims 1-3. 前記発光装置がバックライトであり、光変換用セラミックス複合体が主面を有する板状であり、発光素子から光変換用セラミックス複合体の板の側面に横方向から光が入射され、光変換用セラミックス複合体の板の主面から出射されるバックライトであり、光変換用セラミックス複合体の光出射される主面において光入射部位から遠ざかるに従い表面テクスチャーが漸進的に変化して、主面からの光出射の光量が同等にされることを特徴とする、請求項1、2又は4に記載の発光装置。 The light emitting device is a backlight, and the ceramic composite for light conversion has a plate shape having a main surface, and light is incident from the light emitting element on the side surface of the ceramic composite for light conversion from the lateral direction. The backlight is emitted from the main surface of the ceramic composite plate, and the surface texture gradually changes as the distance from the light incident site increases in the main surface from which the light is emitted from the ceramic composite for light conversion. the amount of light emission is characterized in that it is equal, the light-emitting device according to claim 1, 2 or 4. 前記光変換用セラミック複合体が、組成成分として少なくともY元素、Al元素とCe元素を含むことを特徴とする、請求項1〜のいずれか1項に記載の発光装置。 The light conversion ceramic composites, at least Y element as a composition component, characterized in that it comprises Al element and Ce element, light emitting device according to any one of claims 1-5. 発光素子が発光ダイオードであることを特徴とする、請求項1〜のいずれか1項に記載の発光装置。 Wherein the light emitting element is a light emitting diode, light-emitting device according to any one of claims 1-6. 前記光変換用セラミック複合体が波長530〜580nmにピークを有する蛍光を発し、前記発光素子が波長400nm〜520nmにピークを有する光を発することを特徴とする、請求項1〜のいずれか1項に記載の発光装置。 Fluoresces said light conversion ceramic composites having a peak wavelength 530~580Nm, the light emitting device is characterized in that emits light having a peak at a wavelength of 400 nm to 520 nm, one of the claims 1-7 1 The light emitting device according to item.
JP2012026379A 2012-02-09 2012-02-09 Light emitting device using ceramic composite for light conversion Active JP5472339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012026379A JP5472339B2 (en) 2012-02-09 2012-02-09 Light emitting device using ceramic composite for light conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026379A JP5472339B2 (en) 2012-02-09 2012-02-09 Light emitting device using ceramic composite for light conversion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007115903A Division JP5034653B2 (en) 2007-04-25 2007-04-25 Light emitting device using ceramic composite for light conversion

Publications (2)

Publication Number Publication Date
JP2012138589A JP2012138589A (en) 2012-07-19
JP5472339B2 true JP5472339B2 (en) 2014-04-16

Family

ID=46675734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026379A Active JP5472339B2 (en) 2012-02-09 2012-02-09 Light emitting device using ceramic composite for light conversion

Country Status (1)

Country Link
JP (1) JP5472339B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1738781A (en) * 2003-01-20 2006-02-22 宇部兴产株式会社 Ceramic composite material for optical conversion and use thereof
JP4020092B2 (en) * 2004-03-16 2007-12-12 住友電気工業株式会社 Semiconductor light emitting device

Also Published As

Publication number Publication date
JP2012138589A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5083211B2 (en) Composite for light conversion, light emitting device using the same, and color tone control method
JP5246376B2 (en) CERAMIC COMPOSITE FOR LIGHT CONVERSION, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE HAVING THE SAME
JP4957557B2 (en) Ceramic composite light converting member and light emitting device using the same
TWI428309B (en) A ceramic composite for optical conversion and a light-emitting device using the ceramic composite
JP6821655B2 (en) Fluorescent member and light emitting module
TWI535824B (en) A ceramic composite for optical conversion and a light-emitting device using the same
JPWO2014119783A1 (en) Fluorescent light source device
KR20120104377A (en) Light emitting diode device with luminescent material
JP2010024278A (en) Phosphor ceramic plate and light-emitting element using it
CN108603113B (en) Phosphor and method for producing same, phosphor-containing member, and light-emitting device or projector
TWI500591B (en) A ceramic composite for optical conversion, a method for manufacturing the same, and a light-emitting device provided with the same
JP2014172940A (en) Fluophor dispersion ceramic plate
JP5034653B2 (en) Light emitting device using ceramic composite for light conversion
JP4916469B2 (en) Phosphor
JP6591951B2 (en) Light wavelength conversion member and light emitting device
JP2018203909A (en) Wavelength conversion phosphor
JP5472339B2 (en) Light emitting device using ceramic composite for light conversion
KR20130027816A (en) Micro size phosphor for minimizing scattering
JP2006169422A (en) Ceramic composite material for photo-conversion and emitter device using it
JP5509997B2 (en) Method for producing ceramic composite for light conversion
JP2020070406A (en) Wavelength conversion phosphor and light source module
CN114316980A (en) Ceramic composite material capable of converting light

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5472339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250