JP5470703B2 - EUVL optical member and surface treatment method thereof - Google Patents

EUVL optical member and surface treatment method thereof Download PDF

Info

Publication number
JP5470703B2
JP5470703B2 JP2007336167A JP2007336167A JP5470703B2 JP 5470703 B2 JP5470703 B2 JP 5470703B2 JP 2007336167 A JP2007336167 A JP 2007336167A JP 2007336167 A JP2007336167 A JP 2007336167A JP 5470703 B2 JP5470703 B2 JP 5470703B2
Authority
JP
Japan
Prior art keywords
mixed gas
euvl
optical member
concentration
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007336167A
Other languages
Japanese (ja)
Other versions
JP2009155170A (en
Inventor
章夫 小池
康臣 岩橋
信也 菊川
研治 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007336167A priority Critical patent/JP5470703B2/en
Priority to EP08866519A priority patent/EP2229346A1/en
Priority to PCT/JP2008/068128 priority patent/WO2009084296A1/en
Priority to TW97137533A priority patent/TWI435855B/en
Priority to KR1020107014072A priority patent/KR101419576B1/en
Publication of JP2009155170A publication Critical patent/JP2009155170A/en
Application granted granted Critical
Publication of JP5470703B2 publication Critical patent/JP5470703B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • C03C15/02Surface treatment of glass, not in the form of fibres or filaments, by etching for making a smooth surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03C2201/42Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn containing titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/08Glass having a rough surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0812Ionized cluster beam [ICB] sources

Description

本発明は、EUVリソグラフィ用の光学部材、および、その光学面の表面処理方法に関する。   The present invention relates to an optical member for EUV lithography and a surface treatment method for the optical surface.

従来から、リソグラフィ技術においては、ウェハ上に微細な回路パターンを転写して集積回路を製造するための露光装置が広く利用されている。集積回路の高集積化、高速化および高機能化に伴い、集積回路の微細化が進み、露光装置には深い焦点深度で高解像度の回路パターンをウェハ面上に結像させることが求められ、露光光源の短波長化が進められている。露光光源は、従来のg線(波長436nm)、i線(波長365nm)やKrFエキシマレーザ(波長248nm)から更に進んでArFエキシマレーザ(波長193nm)が用いられ始めている。また、回路の線幅が70nm以下となる次世代の集積回路に対応するため、ArFエキシマレーザを用いた液浸露光技術や二重露光技術が有力視されているが、これも線幅が45nm世代までしかカバーできないとみられている。   Conventionally, in lithography technology, an exposure apparatus for manufacturing an integrated circuit by transferring a fine circuit pattern onto a wafer has been widely used. As integrated circuits become highly integrated, faster, and more functional, miniaturization of integrated circuits advances, and the exposure apparatus is required to image a high-resolution circuit pattern on the wafer surface with a deep focal depth. The wavelength of the exposure light source is being shortened. As an exposure light source, an ArF excimer laser (wavelength 193 nm) has started to be used further from the conventional g-line (wavelength 436 nm), i-line (wavelength 365 nm), and KrF excimer laser (wavelength 248 nm). In order to cope with next-generation integrated circuits whose circuit line width is 70 nm or less, immersion exposure technology and double exposure technology using an ArF excimer laser are considered promising, but this also has a line width of 45 nm. It is thought that it can cover only generations.

このような技術動向にあって、次の世代の露光光源としてEUV光を使用したリソグラフィ技術が、32nm以降の世代にわたって適用可能と見られ注目されている。EUV光とは軟X線領域または真空紫外域の波長帯の光を指し、具体的には波長が0.2〜100nm程度の光のことである。現時点では、リソグラフィ光源として13.5nmの使用が検討されている。このEUVリソグラフィ(以下、「EUVL」と略する)の露光原理は、投影光学系を用いてマスクパターンを転写する点では、従来のリソグラフィと同じであるが、EUV光のエネルギー領域では光を透過する材料がないために屈折光学系を用いることができず、反射光学系を用いることとなる(特許文献1参照)。   In such a technical trend, a lithography technique using EUV light as an exposure light source for the next generation is considered to be applicable over the generations of 32 nm and later and has been attracting attention. EUV light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, specifically, light having a wavelength of about 0.2 to 100 nm. At present, the use of 13.5 nm as a lithography light source is being studied. The exposure principle of this EUV lithography (hereinafter abbreviated as “EUVL”) is the same as that of conventional lithography in that the mask pattern is transferred using a projection optical system, but light is transmitted in the EUV light energy region. Since there is no material to be used, the refractive optical system cannot be used, and a reflective optical system is used (see Patent Document 1).

EUVLに用いられる反射光学系としては、例えば、反射型マスクや、集光光学系ミラー、照明光学系ミラー、投影光学系ミラー等のミラーが挙げられる。
反射型マスクは、(1)EUVL用光学部材(例えば、ガラス基板)、(2)EUVL用光学部材の光学面に形成された反射多層膜、(3)反射多層膜上に形成された吸収体層、から基本的に構成される。一方、ミラーは、(1)EUVL用光学部材(例えば、ガラス基板)、(2)EUVL用光学部材の光学面に形成された反射多層膜から基本的に構成される。
反射多層膜としては、露光光の波長に対して屈折率の異なる複数の材料がnmオーダーで周期的に積層された構造のものが用いられ、代表的な材料としてMoとSiが知られている。また、吸収体層にはTaやCrが検討されている。
Examples of the reflective optical system used for EUVL include a reflective mask, a mirror such as a condensing optical system mirror, an illumination optical system mirror, and a projection optical system mirror.
The reflective mask includes (1) an EUVL optical member (for example, a glass substrate), (2) a reflective multilayer film formed on the optical surface of the EUVL optical member, and (3) an absorber formed on the reflective multilayer film. Basically composed of layers. On the other hand, the mirror is basically composed of (1) an EUVL optical member (for example, a glass substrate) and (2) a reflective multilayer film formed on the optical surface of the EUVL optical member.
As the reflective multilayer film, one having a structure in which a plurality of materials having different refractive indexes with respect to the wavelength of exposure light are periodically stacked in the order of nm is used, and Mo and Si are known as representative materials. . Further, Ta and Cr have been studied for the absorber layer.

EUVL用光学部材としては、EUV光照射下においても歪みが生じないよう低熱膨張係数を有する材料が必要とされ、低熱膨張係数を有するガラスまたは低熱膨張係数を有する結晶化ガラスの使用が検討されている。以下、本明細書において、低熱膨張係数を有するガラスおよび低熱膨張係数を有する結晶化ガラスを総称して、「低膨張ガラス」または「超低膨張ガラス」という。
このような低膨張ガラスおよび超低膨張ガラスとしては、ガラスの熱膨張係数を下げるためにドーパントが添加されたシリカガラスが最も広く使用されている。なお、ガラスの熱膨張係数を下げる目的で添加するドーパントは、代表的にはTiO2である。ドーパントとしてTiO2が添加されたシリカガラスの具体例としては、例えば、ULE(登録商標)コード7972(コーニング社製)などが挙げられる。
As an EUVL optical member, a material having a low thermal expansion coefficient is required so that distortion does not occur even under EUV light irradiation, and the use of glass having a low thermal expansion coefficient or crystallized glass having a low thermal expansion coefficient has been studied. Yes. Hereinafter, in the present specification, a glass having a low thermal expansion coefficient and a crystallized glass having a low thermal expansion coefficient are collectively referred to as “low expansion glass” or “ultra-low expansion glass”.
As such low expansion glass and ultra low expansion glass, silica glass to which a dopant is added in order to lower the thermal expansion coefficient of the glass is most widely used. The dopant added for the purpose of lowering the thermal expansion coefficient of glass is typically TiO 2 . Specific examples of silica glass to which TiO 2 is added as a dopant include ULE (registered trademark) code 7972 (manufactured by Corning).

EUVL用の光学部材を作製する場合、まず始めにこれら低膨張ガラスまたは超低膨張ガラスの素材を、所定の形状および寸法に切断する。次に、光学面を、所定の平坦度および表面粗さになるように加工する。
EUVL用の光学部材は、光学面が平滑性に優れることが求められ、具体的には、成膜面の平坦度が50nm以下、表面粗さ(Ra)が5nm以下となるように表面処理することが必要となる。
反射型マスクやミラーの製造時や、EUVLの実施時にEUVL用光学部材の角部で欠けが発生することが問題となる。このため、EUVL用光学部材は、通常は角部が面取り加工されている。
しかしながら、角部を面取り加工してあっても、EUVL用光学部材を成膜装置や露光装置に固定する際、より具体的には、クランプ等で把持する際に、面取部で欠けが発生することが問題となっている。
When producing an EUVL optical member, first, the material of these low expansion glass or ultra low expansion glass is cut into a predetermined shape and size. Next, the optical surface is processed to have a predetermined flatness and surface roughness.
The optical member for EUVL is required to have an optical surface that is excellent in smoothness. Specifically, the surface treatment is performed so that the flatness of the film formation surface is 50 nm or less and the surface roughness ( Ra ) is 5 nm or less. It is necessary to do.
There is a problem that chipping occurs at the corners of the optical member for EUVL when manufacturing a reflective mask or mirror, or when EUVL is performed. For this reason, the corner of the EUVL optical member is usually chamfered.
However, even when the corners are chamfered, chipping occurs at the chamfered part when the EUVL optical member is fixed to the film forming apparatus or exposure apparatus, more specifically, when gripping with a clamp or the like. It is a problem to do.

特表2003−505891号公報Japanese translation of PCT publication No. 2003-505891

上記した従来技術の問題点を解決するため、本発明は、EUVL用の反射型マスク、ミラー等に用いられる、光学面の平坦度および表面粗さに優れており、かつ表層付近の強度に優れ面取部での欠けの発生が抑制されたEUVL用光学部材、および該EUVL用光学部材の光学面の表面処理方法を提供することを目的とする。   In order to solve the above-mentioned problems of the prior art, the present invention is excellent in the flatness and surface roughness of the optical surface used in EUVL reflective masks, mirrors and the like, and in the strength near the surface layer. An object of the present invention is to provide an EUVL optical member in which the occurrence of chipping at a chamfered portion is suppressed, and a surface treatment method for the optical surface of the EUVL optical member.

上記の目的を達成するため、本発明は、OH濃度が100ppm以上で、TiO2を含有し、SiO2を主成分とする石英ガラス材料製のEUVリソグラフィ(EUVL)用光学部材の光学面および前記光学面の外縁に沿って設けられた面取部に、フッ素または塩素の少なくとも一方を含有するソースガスを用いたガスクラスタイオンビーム(GCIB)エッチングを施すことを特長とするEUVL用光学部材の表面処理方法。 To achieve the above object, the present invention is the OH concentration is 100ppm or more, containing TiO 2, the optical surface of the quartz glass material containing SiO 2 as a main component made of an EUV lithography (EUVL) for optical members and the Surface of EUVL optical member, characterized in that gas cluster ion beam (GCIB) etching using a source gas containing at least one of fluorine and chlorine is performed on a chamfered portion provided along the outer edge of the optical surface Processing method.

本発明のEUVL用光学部材の表面処理方法において、前記EUVL用光学部材のTiO2濃度が3〜10質量%であることが好ましい。 In the surface treatment method for an EUVL optical member of the present invention, the EUVL optical member preferably has a TiO 2 concentration of 3 to 10% by mass.

本発明のEUVL用光学部材の表面処理方法において、前記EUVL用光学部材の20℃における熱膨張係数が0±30ppb/℃であることが好ましい。   In the surface treatment method for an EUVL optical member according to the present invention, it is preferable that a thermal expansion coefficient of the EUVL optical member at 20 ° C. is 0 ± 30 ppb / ° C.

本発明のEUVL用光学部材の表面処理方法において、前記EUVL用光学部材は、GCIBエッチングを施す前の表面粗さ(Ra)が5nm以下であることが好ましい。 In the surface treatment method for an EUVL optical member according to the present invention, the EUVL optical member preferably has a surface roughness ( Ra ) of 5 nm or less before GCIB etching.

本発明のEUVL用光学部材の表面処理方法において、ソースガスとして、下記のいずれかの混合ガスを用いることが好ましい。
SF6およびO2の混合ガス、SF6、ArおよびO2の混合ガス、NF3およびO2の混合ガス、NF3、ArおよびO2の混合ガス、NF3およびN2の混合ガス、NF3、ArおよびN2の混合ガス、Cl2およびO2の混合ガス、Cl2、ArおよびO2の混合ガス、Cl2およびN2の混合ガス、Cl2、ArおよびN2の混合ガス、CF4およびO2の混合ガス、CF4、ArおよびO2の混合ガス、CF4およびN2の混合ガス、CF4、ArおよびN2の混合ガス、CH22およびO2の混合ガス、CH22、ArおよびO2の混合ガス、CH22およびN2の混合ガス、CH22、ArおよびN2の混合ガス、CHF3およびO2の混合ガス、CHF3、ArおよびO2の混合ガス、CHF3およびN2の混合ガス、CHF3、ArおよびN2の混合ガス
In the surface treatment method for an EUVL optical member of the present invention, any of the following mixed gases is preferably used as the source gas.
SF 6 and O 2 mixed gas, SF 6 , Ar and O 2 mixed gas, NF 3 and O 2 mixed gas, NF 3 , Ar and O 2 mixed gas, NF 3 and N 2 mixed gas, NF 3 , a mixed gas of Ar and N 2, a mixed gas of Cl 2 and O 2, a mixed gas of Cl 2 , Ar and O 2, a mixed gas of Cl 2 and N 2, a mixed gas of Cl 2 , Ar and N 2 , Mixed gas of CF 4 and O 2 , Mixed gas of CF 4 , Ar and O 2 , Mixed gas of CF 4 and N 2 , Mixed gas of CF 4 , Ar and N 2 , Mixed gas of CH 2 F 2 and O 2 , CH 2 F 2 , Ar and O 2 mixed gas, CH 2 F 2 and N 2 mixed gas, CH 2 F 2 , Ar and N 2 mixed gas, CHF 3 and O 2 mixed gas, CHF 3 , Mixed gas of Ar and O 2 , mixed gas of CHF 3 and N 2 , CHF 3 , Ar and And N 2 gas mixture

また、本発明は、本発明のEUVL用光学部材の表面処理方法により表面処理されたEUVL用光学部材を提供する。   Moreover, this invention provides the optical member for EUVL surface-treated by the surface treatment method of the optical member for EUVL of this invention.

また、本発明は、OH濃度100ppm以上、かつ、TiO2濃度3〜10質量%でSiO2を主成分とする、光学面の外縁に沿って面取部が設けられた石英ガラス材料製のEUVリソグラフィ(EUVL)用光学部材であって、
前記EUVL用光学部材の光学面の表面粗さ(Ra)が5nm以下であり、かつ、下記式を満たすことを特長とするEUVL用光学部材を提供する。
(logC200nm − logC20nm)/(200−20) < −3.0×10-3
(C200nm:光学面および面取部の表面から深さ200nmの位置でのフッ素濃度および塩素濃度の合計濃度(ppm)、C200nm:光学面および面取部の表面から深さ200nmの位置でのフッ素濃度および塩素濃度の合計濃度(ppm))
Further, the present invention provides an EUV made of quartz glass material having a chamfered portion along the outer edge of the optical surface, which has an OH concentration of 100 ppm or more, a TiO 2 concentration of 3 to 10% by mass, and SiO 2 as a main component. An optical member for lithography (EUVL),
The EUVL optical member is characterized in that the surface roughness (R a ) of the optical surface of the EUVL optical member is 5 nm or less and satisfies the following formula.
(Log C 200 nm −log C 20 nm ) / (200−20) <− 3.0 × 10 −3
(C 200nm: total concentration of fluorine concentration and the chlorine concentration at the position of depth 200nm from the surface of the optical surface and the chamfered portion (ppm), C 200nm: at a depth of 200nm from the surface of the optical surface and the chamfered portion Total fluorine concentration and chlorine concentration (ppm)

また、本発明は、OH濃度100ppm以上、かつ、TiO2濃度3〜10質量%でSiO2を主成分とする、光学面の外縁に沿って面取部が設けられた石英ガラス材料製のEUVリソグラフィ(EUVL)用光学部材であって、
前記EUVL用光学部材の光学面の表面粗さ(Ra)が5nm以下であり、かつ、下記式を満たすことを特長とするEUVL用光学部材を提供する。
20nm − C200nm ≧ 5ppm
(C20nm:光学面および面取部の表面から深さ20nmの位置でのフッ素濃度および塩素濃度の合計濃度(ppm)、C200nm:光学面および面取部の表面から深さ200nmの位置でのフッ素濃度および塩素濃度の合計濃度(ppm))
Further, the present invention provides an EUV made of quartz glass material having a chamfered portion along the outer edge of the optical surface, which has an OH concentration of 100 ppm or more, a TiO 2 concentration of 3 to 10% by mass, and SiO 2 as a main component. An optical member for lithography (EUVL),
The EUVL optical member is characterized in that the surface roughness (R a ) of the optical surface of the EUVL optical member is 5 nm or less and satisfies the following formula.
C 20nm -C 200nm ≧ 5ppm
(C 20nm: The total concentration of the fluorine concentration and the chlorine concentration at the position of depth 20nm from the surface of the optical surface and the chamfered portion (ppm), C 200nm: at a depth of 200nm from the surface of the optical surface and the chamfered portion Total fluorine concentration and chlorine concentration (ppm)

本発明のEUVL用光学部材は、光学面の平坦度および表面粗さに優れており、EUVL用の反射型マスク、ミラー等に用いるのに好適である。また、光学面側の表層付近の強度が向上しており、反射型マスクやミラーの製造時やEUVLの実施時に、EUVL用光学部材の角部、角部が面取加工されている場合には面取部で、欠けが発生するのが抑制されている。
本発明のEUVL用光学部材は、本発明のEUVL用光学部材の処理方法を用いることで好ましく得られる。
The optical member for EUVL of the present invention is excellent in the flatness and surface roughness of the optical surface and is suitable for use in a reflective mask, mirror, etc. for EUVL. In addition, when the strength of the surface near the optical surface is improved and the corners and corners of the EUVL optical member are chamfered during the manufacture of a reflective mask or mirror or during EUVL, Occurrence of chipping is suppressed at the chamfered portion.
The EUVL optical member of the present invention is preferably obtained by using the EUVL optical member processing method of the present invention.

本発明のEUVL用光学部材の表面処理方法では、OH濃度が100ppm以上で、TiO2を含有し、SiO2を主成分とする石英ガラス材料製のEUVL用光学部材の光学面に、フッ素または塩素の少なくとも一方を含有するソースガスを用いたGCIBエッチングを施す。
ここで、EUVL用光学部材の光学面とは、該EUVL用光学部材を用いて反射型マスク、ミラー等を製造する際に反射多層膜が形成される面を指す。なお、反射型マスクやミラーの製造時や、EUVLの実施時に欠けが発生するのを防止するため、EUVL用光学部材の光学面外縁の角部は通常面取り加工されている。
In the surface treatment method for an EUVL optical member of the present invention, fluorine or chlorine is applied to the optical surface of an EUVL optical member made of a quartz glass material having an OH concentration of 100 ppm or more, TiO 2 and SiO 2 as a main component. GCIB etching using a source gas containing at least one of the above is performed.
Here, the optical surface of the EUVL optical member refers to a surface on which a reflective multilayer film is formed when a reflective mask, mirror, or the like is manufactured using the EUVL optical member. In order to prevent chipping when the reflective mask or mirror is manufactured or when EUVL is performed, the corner portion of the outer edge of the optical surface of the EUVL optical member is usually chamfered.

EUVL用光学部材を構成する石英ガラス材料には、熱膨張係数を下げるためのドーパントとしてTiO2が添加されている。
石英ガラス材料におけるTiO2濃度は、石英ガラス材料の熱膨張係数をEUVL用光学部材として使用するのに十分低くすることができる限り特に限定されないが、3〜10質量%であることが好ましい。TiO2濃度が上記範囲であれば、石英ガラス材料の熱膨張係数が十分低くなり、具体的には、20℃における熱膨張係数が0±30ppb/℃の低膨張ガラス、好ましくは、20℃における熱膨張係数が0±10ppb/℃の超低膨張ガラスとなる。
ドーパントとしてTiO2が上記濃度で添加された低膨張ガラスおよび超低膨張ガラスの具体例としては、例えば、ULE(登録商標)コード7972(コーニング社製)などが挙げられる。
TiO 2 is added to the quartz glass material constituting the EUVL optical member as a dopant for reducing the thermal expansion coefficient.
The TiO 2 concentration in the quartz glass material is not particularly limited as long as the thermal expansion coefficient of the quartz glass material can be made sufficiently low to be used as an EUVL optical member, but it is preferably 3 to 10% by mass. When the TiO 2 concentration is in the above range, the thermal expansion coefficient of the quartz glass material is sufficiently low, specifically, low expansion glass having a thermal expansion coefficient of 0 ± 30 ppb / ° C. at 20 ° C., preferably at 20 ° C. It becomes an ultra-low expansion glass having a thermal expansion coefficient of 0 ± 10 ppb / ° C.
Specific examples of the low expansion glass and ultra low expansion glass to which TiO 2 is added at the above concentration as a dopant include ULE (registered trademark) code 7972 (manufactured by Corning).

EUVL用光学部材を構成する石英ガラス材料は、SiO2およびTiO2以外に、OHを100ppm以上含有する。OHの添加により、ガラスの構造緩和が促進され、仮想温度が低いガラス構造が実現しやすくなる。ガラスの仮想温度を下げることにより、熱膨張係数の温度変化を小さくすることができ、EUVL用光学部材として好適である。
また、石英ガラス材料がOHを含有することにより、EUVL用光学部材の光学面にフッ素または塩素の少なくとも一方を含有するソースガスを用いたGCIBエッチングを施した際に、光学部材の表層付近のより深い部分までフッ素または塩素が打ち込まれることになり、本発明のEUVL用光学部材の表面処理方法において、EUVL用光学部材の光学面にフッ素または塩素の少なくとも一方を含有するソースガスを用いたGCIBエッチングを施すことによる効果が好ましく発揮される。
The quartz glass material constituting the EUVL optical member contains 100 ppm or more of OH in addition to SiO 2 and TiO 2 . By adding OH, the structural relaxation of the glass is promoted, and a glass structure having a low fictive temperature is easily realized. By reducing the fictive temperature of glass, the temperature change of the thermal expansion coefficient can be reduced, which is suitable as an EUVL optical member.
Further, since the quartz glass material contains OH, when GCIB etching using a source gas containing at least one of fluorine and chlorine is performed on the optical surface of the EUVL optical member, the surface near the surface of the optical member is removed. In the surface treatment method for an EUVL optical member according to the present invention, the GCIB etching using a source gas containing at least one of fluorine and chlorine on the optical surface of the EUVL optical member is performed. The effect of applying is preferably exhibited.

本発明のEUVL用光学部材の表面処理方法において、EUVL用光学部材の光学面に対してフッ素または塩素の少なくとも一方を含有するソースガスを用いたGCIBエッチングを施すことによる効果は以下の通り。
GCIBエッチングとは、常温および常圧で気体状の反応性物質(ソースガス)を、真空装置内に膨張型ノズルを介して加圧状態で噴出させることにより、ガスクラスタを形成し、これに電子照射してイオン化したGCIBを照射して対象物をエッチングする方法である。ガスクラスタは、通常数千個の原子または分子からなる塊状原子集団または分子集団によって構成される。本発明のEUVL用光学部材の表面処理方法において、EUVL用光学部材の光学面に対してGCIBエッチングを施すと、光学面にガスクラスタが衝突した際に、固体との相互作用により多体衝突効果が生じ、該光学面が研磨され、平坦度が向上する(第1の効果)。
In the surface treatment method for an EUVL optical member of the present invention, the effect of performing GCIB etching using a source gas containing at least one of fluorine and chlorine on the optical surface of the EUVL optical member is as follows.
In GCIB etching, a gaseous reactive substance (source gas) at normal temperature and normal pressure is ejected in a pressurized state through an expansion type nozzle into a vacuum apparatus to form a gas cluster, and an electron This is a method of etching an object by irradiating with GCIB ionized by irradiation. A gas cluster is usually composed of a massive atomic group or molecular group consisting of thousands of atoms or molecules. In the surface treatment method for an EUVL optical member according to the present invention, when GCIB etching is performed on the optical surface of the EUVL optical member, when a gas cluster collides with the optical surface, a multi-body collision effect is caused by the interaction with the solid. Occurs, the optical surface is polished, and the flatness is improved (first effect).

本発明のEUVL用光学部材の表面処理方法において、EUVL用光学部材の光学面にフッ素または塩素の少なくとも一方を含有するソースガスを用いたGCIBエッチングを施すと、EUVL用光学部材の光学面側の表層付近、具体的には、EUVL用光学部材の光学面から深さ100nm程度までの石英ガラス材料中にフッ素または塩素が打ち込まれる。フッ素または塩素が打ち込まれた光学面側の表層付近では圧縮応力層が生じ、該EUVL用光学部材の表層付近の強度が向上する。この結果、反射型マスクやミラーの製造時やEUVLの実施時に、EUVL用光学部材の面取部で欠けが発生するのが防止される(第2の効果)。
なお、第2の効果をより効果的に発揮させるためには、光学面外縁の角部や、角部に設けた面取部を含めた光学面全体にGCIBエッチングを施すことが好ましい。
In the surface treatment method for an EUVL optical member of the present invention, when GCIB etching using a source gas containing at least one of fluorine and chlorine is performed on the optical surface of the EUVL optical member, the optical surface side of the EUVL optical member Near the surface layer, specifically, fluorine or chlorine is implanted into a quartz glass material having a depth of about 100 nm from the optical surface of the EUVL optical member. A compressive stress layer is formed in the vicinity of the surface layer on the optical surface side where fluorine or chlorine is implanted, and the strength in the vicinity of the surface layer of the optical member for EUVL is improved. As a result, it is possible to prevent the chamfered portion of the EUVL optical member from being chipped when the reflective mask or mirror is manufactured or EUVL is performed (second effect).
In order to exhibit the second effect more effectively, it is preferable to perform GCIB etching on the entire optical surface including the corner portion of the outer edge of the optical surface and the chamfered portion provided at the corner portion.

GCIBエッチングによる効果、特に上記した第2の効果をより効果的に発揮させるためには、EUVL用光学部材を構成する石英ガラス材料は、OHを200ppm以上含有することが好ましく、500ppm以上含有することがより好ましい。   In order to more effectively exhibit the effects of GCIB etching, particularly the second effect described above, the quartz glass material constituting the EUVL optical member preferably contains 200 ppm or more of OH, and contains 500 ppm or more. Is more preferable.

本発明のEUVL用光学部材の表面処理方法において、GCIBエッチングを施す光学面は、所定の平坦度および表面粗さになるように予備研磨されていることが好ましい。
予備研磨方法は特に限定されず、石英ガラス材料の表面の研磨に使用される公知の研磨方法から広く選択することができる。但し、研磨レートが大きく、表面積が大きい研磨パッドを使用することにより、一度に大面積を研磨加工できることから、通常は機械研磨方法が使用される。ここで言う機械研磨方法には、砥粒による研磨作用のみによって研磨加工するもの以外に、研磨スラリーを使用し砥粒による研磨作用と薬品による化学的研磨作用を併用する方法も含む。なお、機械研磨方法は、ラップ研磨およびポリッシュ研磨のいずれであってもよく、使用する研磨具および研磨剤も公知のものから適宜選択することができる。なお、機械研磨方法を使用する場合、加工レートを大きくするため、ラップ研磨の場合、面圧30〜70gf/cm2で実施することが好ましく、面圧40〜60gf/cm2で実施することが好ましく、ポリッシュ研磨の場合、面圧60〜140gf/cm2で実施することがより好ましく、面圧80〜120gf/cm2で実施することがより好ましい。研磨量としては、ラップ研磨の場合、100〜300μmで実施することが好ましく、ポリッシュ研磨の場合、1〜60μmの研磨量で実施することが好ましい。
In the surface treatment method for an EUVL optical member of the present invention, it is preferable that the optical surface to be subjected to GCIB etching is pre-polished so as to have a predetermined flatness and surface roughness.
The preliminary polishing method is not particularly limited, and can be widely selected from known polishing methods used for polishing the surface of quartz glass material. However, since a large area can be polished at a time by using a polishing pad having a large polishing rate and a large surface area, a mechanical polishing method is usually used. The mechanical polishing method mentioned here includes a method of using a polishing slurry together with a polishing action by an abrasive grain and a chemical polishing action by a chemical in addition to a polishing process only by a polishing action by an abrasive grain. The mechanical polishing method may be either lapping or polishing, and the polishing tool and polishing agent to be used can be appropriately selected from known ones. When using a mechanical polishing method, to increase the processing rate, when the lapping is preferably carried out at a surface pressure 30~70gf / cm 2, be carried out at a surface pressure 40~60gf / cm 2 preferably, when the polishing abrasive, more preferably carried out at a surface pressure 60~140gf / cm 2, and more preferably carried out at a surface pressure 80~120gf / cm 2. The polishing amount is preferably 100 to 300 [mu] m in the case of lapping, and preferably 1 to 60 [mu] m in the case of polish polishing.

予備研磨を行う場合、予備研磨後の光学面の表面粗さ(Ra)は5nm以下であることが好ましく、3nm以下であることがより好ましく、1nm以下であることがさらに好ましい。本明細書において、表面粗さ(Ra)と言った場合、1〜10μm□の面積について、原子間力顕微鏡で測定した表面粗さを意味する。予備研磨後の光学面の表面粗さが5nm超であると、本発明のEUVL用光学部材の表面処理方法において、GCIBエッチングを施すことで光学面を所定の平坦度および表面粗さとするのにかなりの時間を要することになり、コスト増の要因となる。 When preliminary polishing is performed, the surface roughness (R a ) of the optical surface after preliminary polishing is preferably 5 nm or less, more preferably 3 nm or less, and even more preferably 1 nm or less. In this specification, the surface roughness (R a ) means the surface roughness measured with an atomic force microscope for an area of 1 to 10 μm □. When the surface roughness of the optical surface after preliminary polishing is more than 5 nm, in the surface treatment method for an optical member for EUVL of the present invention, the optical surface is made to have a predetermined flatness and surface roughness by performing GCIB etching. It will take a considerable amount of time, which will increase costs.

GCIBエッチングに用いるフッ素または塩素の少なくとも一方を含有するソースガスとしては、ソースガスとして、下記のいずれか混合ガスを用いることが好ましい。
SF6およびO2の混合ガス、SF6、ArおよびO2の混合ガス、NF3およびO2の混合ガス、NF3、ArおよびO2の混合ガス、NF3およびN2の混合ガス、NF3、ArおよびN2の混合ガス、Cl2およびO2の混合ガス、Cl2、ArおよびO2の混合ガス、Cl2およびN2の混合ガス、Cl2、ArおよびN2の混合ガス、CF4およびO2の混合ガス、CF4、ArおよびO2の混合ガス、CF4およびN2の混合ガス、CF4、ArおよびN2の混合ガス、CH22およびO2の混合ガス、CH22、ArおよびO2の混合ガス、CH22およびN2の混合ガス、CH22、ArおよびN2の混合ガス、CHF3およびO2の混合ガス、CHF3、ArおよびO2の混合ガス、CHF3およびN2の混合ガス、CHF3、ArおよびN2の混合ガス
As the source gas containing at least one of fluorine and chlorine used for GCIB etching, it is preferable to use any one of the following mixed gases as the source gas.
SF 6 and O 2 mixed gas, SF 6 , Ar and O 2 mixed gas, NF 3 and O 2 mixed gas, NF 3 , Ar and O 2 mixed gas, NF 3 and N 2 mixed gas, NF 3 , a mixed gas of Ar and N 2, a mixed gas of Cl 2 and O 2, a mixed gas of Cl 2 , Ar and O 2, a mixed gas of Cl 2 and N 2, a mixed gas of Cl 2 , Ar and N 2 , Mixed gas of CF 4 and O 2 , Mixed gas of CF 4 , Ar and O 2 , Mixed gas of CF 4 and N 2 , Mixed gas of CF 4 , Ar and N 2 , Mixed gas of CH 2 F 2 and O 2 , CH 2 F 2 , Ar and O 2 mixed gas, CH 2 F 2 and N 2 mixed gas, CH 2 F 2 , Ar and N 2 mixed gas, CHF 3 and O 2 mixed gas, CHF 3 , Mixed gas of Ar and O 2 , mixed gas of CHF 3 and N 2 , CHF 3 , Ar and And N 2 gas mixture

これらの混合ガスにおいて、各成分の好適な混合比率は照射条件等の条件によって異なるが、それぞれ以下であることが好ましい。
SF6:O2=0.1〜5%:95〜99.9%(SF6およびO2の混合ガス)
SF6:Ar:O2=0.1〜5%:9.9〜49.9%:50〜90%(SF6、ArおよびO2の混合ガス)
NF3:O2=0.1〜5%:95〜99.9%(NF3およびO2の混合ガス)
NF3:Ar:O2=0.1〜5%:9.9〜49.9%:50〜90%(NF3、ArおよびO2の混合ガス)
NF3:N2=0.1〜5%:95〜99.9%(NF3およびN2の混合ガス)
NF3:Ar:N2=0.1〜5%:9.9〜49.9%:50〜90%(NF3、ArおよびN2の混合ガス)
Cl2:O2=0.1〜5%:95〜99.9%(Cl2およびO2の混合ガス)
Cl2:Ar:O2=0.1〜5%:9.9〜49.9%:50〜90%(Cl2、ArおよびO2の混合ガス)
Cl2:N2=0.1〜5%:95〜99.9%(Cl2およびN2の混合ガス)
Cl2:Ar:N2=0.1〜5%:9.9〜49.9%:50〜90%(Cl2、ArおよびN2の混合ガス)
CF4:O2=0.1〜5%:95〜99.9%(CF4およびO2の混合ガス)
CF4:Ar:O2=0.1〜5%:9.9〜49.9%:50〜90%(CF4、ArおよびO2の混合ガス)
CF4:N2=0.1〜5%:95〜99.9%(CF4およびN2の混合ガス)
CF4:Ar:N2=0.1〜5%:9.9〜49.9%:50〜90%(CF4、ArおよびN2の混合ガス)
CH22:O2=0.1〜5%:95〜99.9%(CH22およびO2の混合ガス)
CH22:Ar:O2=0.1〜5%:9.9〜49.9%:50〜90%(CH22、ArおよびO2の混合ガス)
CH22:N2=0.1〜5%:95〜99.9%(CH22およびN2の混合ガス)
CH22:Ar:N2=0.1〜5%:9.9〜49.9%:50〜90%(CH22、ArおよびN2の混合ガス)
CHF3:O2=0.1〜5%:95〜99.9%(CHF3およびO2の混合ガス)
CHF3:Ar:O2=0.1〜5%:9.9〜49.9%:50〜90%(CHF3、ArおよびO2の混合ガス)
CHF3:N2=0.1〜5%:95〜99.9%(CHF3およびN2の混合ガス)
CHF3:Ar:N2=0.1〜5%:9.9〜49.9%:50〜90%(CHF3、ArおよびN2の混合ガス)
In these mixed gases, a suitable mixing ratio of each component varies depending on conditions such as irradiation conditions, but is preferably as follows.
SF 6 : O 2 = 0.1 to 5%: 95 to 99.9% (mixed gas of SF 6 and O 2 )
SF 6 : Ar: O 2 = 0.1 to 5%: 9.9 to 49.9%: 50 to 90% (mixed gas of SF 6 , Ar and O 2 )
NF 3 : O 2 = 0.1 to 5%: 95 to 99.9% (mixed gas of NF 3 and O 2 )
NF 3 : Ar: O 2 = 0.1 to 5%: 9.9 to 49.9%: 50 to 90% (mixed gas of NF 3 , Ar and O 2 )
NF 3 : N 2 = 0.1 to 5%: 95 to 99.9% (mixed gas of NF 3 and N 2 )
NF 3 : Ar: N 2 = 0.1 to 5%: 9.9 to 49.9%: 50 to 90% (mixed gas of NF 3 , Ar and N 2 )
Cl 2 : O 2 = 0.1 to 5%: 95 to 99.9% (mixed gas of Cl 2 and O 2 )
Cl 2 : Ar: O 2 = 0.1 to 5%: 9.9 to 49.9%: 50 to 90% (mixed gas of Cl 2 , Ar and O 2 )
Cl 2 : N 2 = 0.1 to 5%: 95 to 99.9% (mixed gas of Cl 2 and N 2 )
Cl 2 : Ar: N 2 = 0.1 to 5%: 9.9 to 49.9%: 50 to 90% (mixed gas of Cl 2 , Ar and N 2 )
CF 4 : O 2 = 0.1 to 5%: 95 to 99.9% (mixed gas of CF 4 and O 2 )
CF 4 : Ar: O 2 = 0.1 to 5%: 9.9 to 49.9%: 50 to 90% (mixed gas of CF 4 , Ar and O 2 )
CF 4 : N 2 = 0.1 to 5%: 95 to 99.9% (mixed gas of CF 4 and N 2 )
CF 4 : Ar: N 2 = 0.1 to 5%: 9.9 to 49.9%: 50 to 90% (mixed gas of CF 4 , Ar and N 2 )
CH 2 F 2 : O 2 = 0.1 to 5%: 95 to 99.9% (mixed gas of CH 2 F 2 and O 2 )
CH 2 F 2 : Ar: O 2 = 0.1 to 5%: 9.9 to 49.9%: 50 to 90% (mixed gas of CH 2 F 2 , Ar and O 2 )
CH 2 F 2 : N 2 = 0.1 to 5%: 95 to 99.9% (mixed gas of CH 2 F 2 and N 2 )
CH 2 F 2 : Ar: N 2 = 0.1 to 5%: 9.9 to 49.9%: 50 to 90% (mixed gas of CH 2 F 2 , Ar and N 2 )
CHF 3 : O 2 = 0.1 to 5%: 95 to 99.9% (mixed gas of CHF 3 and O 2 )
CHF 3 : Ar: O 2 = 0.1 to 5%: 9.9 to 49.9%: 50 to 90% (mixed gas of CHF 3 , Ar and O 2 )
CHF 3 : N 2 = 0.1 to 5%: 95 to 99.9% (mixed gas of CHF 3 and N 2 )
CHF 3 : Ar: N 2 = 0.1 to 5%: 9.9 to 49.9%: 50 to 90% (mixed gas of CHF 3 , Ar and N 2 )

なお、クラスタサイズ、クラスタをイオン化させるためにGCIBエッチング装置のイオン化電極に印加するイオン化電流、GCIBエッチング装置の加速電極に印加する加速電圧、およびGCIBのドーズ量といった照射条件は、ソースガスの種類や光学面の表面性状に応じて適宜選択することができる。例えば、光学面の表面粗さを過度に悪化させることなしに、平坦性を改善するためには、加速電極に印加する加速電圧は15〜30kVであることが好ましい。   The irradiation conditions such as the cluster size, the ionization current applied to the ionization electrode of the GCIB etching apparatus to ionize the cluster, the acceleration voltage applied to the acceleration electrode of the GCIB etching apparatus, and the dose amount of GCIB depend on the type of source gas, It can select suitably according to the surface property of an optical surface. For example, in order to improve flatness without excessively degrading the surface roughness of the optical surface, the acceleration voltage applied to the acceleration electrode is preferably 15 to 30 kV.

GCIBエッチングを使用する際、GCIBを光学面上で走査させる必要があるが、GCIBを走査させる方法としては、ラスタスキャンとスパイラルスキャンが公知であるが、これらのいずれを用いてもよい。   When GCIB etching is used, it is necessary to scan the GCIB on the optical surface. As a method for scanning the GCIB, a raster scan and a spiral scan are known, and any of these may be used.

本発明のEUVL用光学部材の表面処理方法で表面処理されたEUVL用光学部材(以下、「本発明のEUVL用光学部材」という。)は、GCIBエッチングが施された光学面にフッ素または塩素が打ち込まれているため、該EUVL用光学部材の表層付近のフッ素濃度または塩素濃度が、EUVL用光学部材のより深部に比べて高くなっている。
本発明のEUVL用光学部材は、下記式を満たすことが好ましい。
(logC200nm − logC20nm)/(200−20) < −3.0×10-3
ここで、C200nmは光学面から深さ200nmの位置でのフッ素濃度および塩素濃度の合計濃度(ppm)であり、C20nmは光学面から深さ20nmの位置でのフッ素濃度および塩素濃度の合計濃度(ppm)である。
(logC200nm − logC20nm)/(200−20)の値は、光学部材の表層付近から該光学部材のより深部への該光学部材中のフッ素濃度および塩素濃度の合計濃度の傾きに対応する値であり、−8.0×10-3未満であることがより好ましく、−10.0×10-3未満であることがさらに好ましい。
The EUVL optical member surface-treated by the surface treatment method of the EUVL optical member of the present invention (hereinafter referred to as “the EUVL optical member of the present invention”) has fluorine or chlorine on the optical surface subjected to GCIB etching. Since it is driven, the fluorine concentration or chlorine concentration in the vicinity of the surface layer of the EUVL optical member is higher than that of the deeper portion of the EUVL optical member.
The EUVL optical member of the present invention preferably satisfies the following formula.
(Log C 200 nm −log C 20 nm ) / (200−20) <− 3.0 × 10 −3
Here, C 200 nm is the total concentration (ppm) of the fluorine concentration and the chlorine concentration at a position 200 nm deep from the optical surface, and C 20 nm is the total of the fluorine concentration and the chlorine concentration at a position 20 nm deep from the optical surface. Concentration (ppm).
The value of (log C 200 nm −log C 20 nm ) / (200-20) is a value corresponding to the gradient of the total concentration of fluorine concentration and chlorine concentration in the optical member from the vicinity of the surface layer of the optical member to the deeper portion of the optical member. More preferably, it is less than −8.0 × 10 −3 , and even more preferably less than −10.0 × 10 −3 .

本発明のEUVL用光学部材は、下記式を満たすことが好ましい。
20nm − C200nm ≧ 5ppm
(C20nm − C200nm)の値は、光学部材の表層付近から該光学部材のより深部への該光学部材中のフッ素濃度および塩素濃度の合計濃度の傾きに対応する値であり、10ppm以上であることが好ましく、15ppm以上であることがさらに好ましい。
The EUVL optical member of the present invention preferably satisfies the following formula.
C 20nm -C 200nm ≧ 5ppm
The value of ( C20nm- C200nm ) is a value corresponding to the gradient of the total concentration of fluorine concentration and chlorine concentration in the optical member from the vicinity of the surface layer of the optical member to the deeper portion of the optical member, It is preferable that it is 15 ppm or more.

本発明のEUVL用光学部材は、光学面が平坦度および表面粗さに優れている。具体的には、光学面の平坦度が100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることがさらに好ましい。また、光学面の表面粗さRaが5nm以下であることが好ましく、3nm以下であることがより好ましく、1nm以下であることがさらに好ましい。 In the optical member for EUVL of the present invention, the optical surface is excellent in flatness and surface roughness. Specifically, the flatness of the optical surface is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less. It is preferable that the surface roughness R a of the optical surface is 5nm or less, more preferably 3nm or less, and more preferably 1nm or less.

本発明のEUVL用光学部材は、光学面側の表層付近に圧縮応力層が形成されているため、該表層付近の強度が向上している。クラック・イニシエーション・ロードが50g以上であることが好ましく、より好ましくは100g以上、さらに好ましくは200g以上である。
クラック・イニシエーション・ロードは以下のように測定する。ビッカース硬度試験機にて、ビッカース圧子を15秒押し込んだ後にビッカース圧子をはずし、圧痕付近を観測する。圧痕のコーナーを境界として4分割し、その領域にクラックが発生しているかどうか調査することでクラック発生確率を評価する。4つの領域のうち、1つの領域にのみクラックが見られる場合は25%、2つの領域にのみクラックが見られる場合は50%、3つの領域にのみクラックが見られる場合は75%、4つの領域すべてでクラックが見られる場合は100%とし、複数の試料片について測定することで、クラック発生確率を求める。クラック発生確率が100%となるビッカース荷重で最も低い荷重をクラック・イニシエーション・ロードとする。
Since the compressive stress layer is formed in the vicinity of the surface layer on the optical surface side in the optical member for EUVL of the present invention, the strength in the vicinity of the surface layer is improved. The crack initiation load is preferably 50 g or more, more preferably 100 g or more, and further preferably 200 g or more.
The crack initiation load is measured as follows. Using a Vickers hardness tester, press the Vickers indenter for 15 seconds, remove the Vickers indenter, and observe the vicinity of the indentation. The crack occurrence probability is evaluated by examining whether or not a crack is generated in the region by dividing the corner of the indentation into four. Of the four regions, 25% when cracks are seen only in one region, 50% when cracks are seen only in two regions, 75% when cracks are seen only in three regions, When cracks are found in all the regions, the crack generation probability is obtained by measuring 100% and measuring a plurality of sample pieces. The lowest load at the Vickers load at which the crack occurrence probability is 100% is defined as a crack initiation load.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定されない。なお、例1は実施例であり、例2は比較例である。
例1
石英ガラス材料製の基板(OH濃度:880ppm、TiO2濃度:7.0質量%、寸法:20mm×20mm×1.5mmt)を予備研磨をした後、基板の表面にGCIBエッチングを施した。予備研磨およびGCIBエッチングの条件を下記に記す。
<予備研磨条件>
研磨種類:ポリッシュ研磨
面圧=100g/cm2
<GCIBエッチング条件>
ソースガス:SF6およびN2の混合ガス(SF6:N2=5%:95%)
加速電圧:24keV
クラスタサイズ:3000
ビーム電流:100um
例2
例1と同じ石英ガラス材料製の基板に予備研磨のみ実施した。
例1および例2の石英ガラス材料製の基板の基板表面から深さ方向におけるフッ素濃度をSIMS(二次イオン質量分析計:Secondary Ionization Mass Spectrometer)を用いて測定した。結果を図1に示す。
図1から明らかなように、GCIBエッチングを施した例1の基板では、フッ素が打ち込まれたことにより、表面から深さ100nmまでの表層付近におけるフッ素濃度が高くなっていることが確認された。なお、GCIBエッチングを施さなかった例2の基板でも表面のフッ素濃度が高くなっているのは、フッ素濃度の測定を行う前に、基板表面をフッ酸洗浄したためである。
例1および例2の石英ガラス材料製の基板を各10枚を用意し、基板表面に100gの荷重で15秒間、ビッカース圧子を打ち込み、クラックの発生しやすさを評価した。
例1のガラスでは、10枚全てクラックが発生せず、例2のガラスでは10枚全てクラックが発生することが確認できた。以上からGCIBエッチングによる欠け抑制効果を確認することができた。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this. In addition, Example 1 is an Example and Example 2 is a comparative example.
Example 1
A substrate made of a quartz glass material (OH concentration: 880 ppm, TiO 2 concentration: 7.0 mass%, dimensions: 20 mm × 20 mm × 1.5 mmt) was pre-polished, and then GCIB etching was performed on the surface of the substrate. The conditions for preliminary polishing and GCIB etching are described below.
<Preliminary polishing conditions>
Polishing type: Polish polishing surface pressure = 100 g / cm 2
<GCIB etching conditions>
Source gas: mixed gas of SF 6 and N 2 (SF 6 : N 2 = 5%: 95%)
Acceleration voltage: 24 keV
Cluster size: 3000
Beam current: 100um
Example 2
Only preliminary polishing was performed on a substrate made of the same quartz glass material as in Example 1.
The fluorine concentration in the depth direction from the substrate surface of the quartz glass material substrate of Example 1 and Example 2 was measured using SIMS (Secondary Ionization Mass Spectrometer). The results are shown in FIG.
As is clear from FIG. 1, it was confirmed that in the substrate of Example 1 subjected to GCIB etching, the fluorine concentration in the vicinity of the surface layer from the surface to a depth of 100 nm was increased due to the implantation of fluorine. The reason that the fluorine concentration on the surface of the substrate of Example 2 that was not subjected to GCIB etching was high was that the substrate surface was washed with hydrofluoric acid before the measurement of the fluorine concentration.
Ten substrates each made of the quartz glass material of Example 1 and Example 2 were prepared, and a Vickers indenter was driven into the substrate surface with a load of 100 g for 15 seconds to evaluate the likelihood of cracking.
In the glass of Example 1, all 10 cracks did not occur, and in the glass of Example 2, it was confirmed that all 10 cracks occurred. From the above, the chip suppression effect by GCIB etching could be confirmed.

図1は、基板表面からの深さ方向のフッ素濃度を示したグラフである。FIG. 1 is a graph showing the fluorine concentration in the depth direction from the substrate surface.

Claims (8)

OH濃度が100ppm以上で、TiO2を含有し、SiO2を主成分とする石英ガラス材料製のEUVリソグラフィ(EUVL)用光学部材の光学面および前記光学面の外縁に沿って設けられた面取部に、フッ素または塩素の少なくとも一方を含有するソースガスを用いたガスクラスタイオンビーム(GCIB)エッチングを施すことを特長とするEUVL用光学部材の表面処理方法。 An optical surface of an optical member for EUV lithography (EUVL) made of a quartz glass material having an OH concentration of 100 ppm or more, containing TiO 2 and containing SiO 2 as a main component, and a chamfer provided along the outer edge of the optical surface in part, fluorine or surface treatment method of an optical member for EUVL that features applying gas cluster ion beam (GCIB) etching using a source gas containing at least one chlorine. 前記EUVL用光学部材のTiO2濃度が3〜10質量%であることを特徴とする請求項1に記載のEUVL用光学部材の表面処理方法。 2. The surface treatment method for an EUVL optical member according to claim 1, wherein the EUVL optical member has a TiO 2 concentration of 3 to 10 mass%. 前記EUVL用光学部材の20℃における熱膨張係数が0±30ppb/℃であることを特徴とする請求項1または2に記載のEUVL用光学部材の表面処理方法。   The surface treatment method for an EUVL optical member according to claim 1 or 2, wherein the EUVL optical member has a thermal expansion coefficient of 0 ± 30 ppb / ° C at 20 ° C. 前記EUVL用光学部材は、GCIBエッチングを施す前の表面粗さ(Ra)が5nm以下であることを特徴とする請求項1ないし3のいずれかに記載のEUVL用光学部材の表面処理方法。 4. The surface treatment method for an EUVL optical member according to claim 1, wherein the EUVL optical member has a surface roughness (R a ) of 5 nm or less before GCIB etching. 5. ソースガスとして、下記のいずれかの混合ガスを用いることを特徴とする請求項1ないし4のいずれかに記載のEUVL用光学部材の表面処理方法。
SF6およびO2の混合ガス、SF6、ArおよびO2の混合ガス、NF3およびO2の混合ガス、NF3、ArおよびO2の混合ガス、NF3およびN2の混合ガス、NF3、ArおよびN2の混合ガス、Cl2およびO2の混合ガス、Cl2、ArおよびO2の混合ガス、Cl2およびN2の混合ガス、Cl2、ArおよびN2の混合ガス、CF4およびO2の混合ガス、CF4、ArおよびO2の混合ガス、CF4およびN2の混合ガス、CF4、ArおよびN2の混合ガス、CH22およびO2の混合ガス、CH22、ArおよびO2の混合ガス、CH22およびN2の混合ガス、CH22、ArおよびN2の混合ガス、CHF3およびO2の混合ガス、CHF3、ArおよびO2の混合ガス、CHF3およびN2の混合ガス、CHF3、ArおよびN2の混合ガス
The surface treatment method for an EUVL optical member according to any one of claims 1 to 4, wherein any one of the following mixed gases is used as the source gas.
SF 6 and O 2 mixed gas, SF 6 , Ar and O 2 mixed gas, NF 3 and O 2 mixed gas, NF 3 , Ar and O 2 mixed gas, NF 3 and N 2 mixed gas, NF 3 , a mixed gas of Ar and N 2, a mixed gas of Cl 2 and O 2, a mixed gas of Cl 2 , Ar and O 2, a mixed gas of Cl 2 and N 2, a mixed gas of Cl 2 , Ar and N 2 , Mixed gas of CF 4 and O 2 , Mixed gas of CF 4 , Ar and O 2 , Mixed gas of CF 4 and N 2 , Mixed gas of CF 4 , Ar and N 2 , Mixed gas of CH 2 F 2 and O 2 , CH 2 F 2 , Ar and O 2 mixed gas, CH 2 F 2 and N 2 mixed gas, CH 2 F 2 , Ar and N 2 mixed gas, CHF 3 and O 2 mixed gas, CHF 3 , Mixed gas of Ar and O 2 , mixed gas of CHF 3 and N 2 , CHF 3 , Ar and And N 2 gas mixture
請求項1ないし5のいずれかの方法により表面処理されたEUVL用光学部材。   An optical member for EUVL, which has been surface-treated by the method according to claim 1. OH濃度100ppm以上、かつ、TiO2濃度3〜10質量%でSiO2を主成分とする、光学面の外縁に沿って面取部が設けられた石英ガラス材料製のEUVリソグラフィ(EUVL)用光学部材であって、
前記EUVL用光学部材の光学面の表面粗さ(Ra)が5nm以下であり、かつ、下記式を満たすことを特長とするEUVL用光学部材。
(logC200nm − logC20nm)/(200−20) < −3.0×10-3
(C200nm:光学面および面取部の表面から深さ200nmの位置でのフッ素濃度および塩素濃度の合計濃度(ppm)、C20nm:光学面および面取部の表面から深さ20nmの位置でのフッ素濃度および塩素濃度の合計濃度(ppm))
Optics for EUV lithography (EUVL) made of a quartz glass material having an OH concentration of 100 ppm or more and a TiO 2 concentration of 3 to 10% by mass and having SiO 2 as a main component and a chamfered portion provided along the outer edge of the optical surface. A member,
An EUVL optical member, wherein the EUVL optical member has a surface roughness (R a ) of 5 nm or less and satisfies the following formula:
(Log C 200 nm −log C 20 nm ) / (200−20) <− 3.0 × 10 −3
(C 200 nm : total concentration (ppm) of fluorine concentration and chlorine concentration at a position of 200 nm depth from the surface of the optical surface and chamfered portion , C 20nm : at a position of 20 nm depth from the surface of the optical surface and chamfered portion. Total fluorine concentration and chlorine concentration (ppm)
OH濃度100ppm以上、かつ、TiO2濃度3〜10質量%でSiO2を主成分とする、光学面の外縁に沿って面取部が設けられた石英ガラス材料製のEUVリソグラフィ(EUVL)用光学部材であって、
前記EUVL用光学部材の光学面の表面粗さ(Ra)が5nm以下であり、かつ、下記式を満たすことを特長とするEUVL用光学部材。
20nm − C200nm ≧ 5ppm
(C20nm:光学面および面取部の表面から深さ20nmの位置でのフッ素濃度および塩素濃度の合計濃度(ppm)、C200nm:光学面および面取部の表面から深さ200nmの位置でのフッ素濃度および塩素濃度の合計濃度(ppm))
Optics for EUV lithography (EUVL) made of a quartz glass material having an OH concentration of 100 ppm or more and a TiO 2 concentration of 3 to 10% by mass and having SiO 2 as a main component and a chamfered portion provided along the outer edge of the optical surface. A member,
An EUVL optical member, wherein the EUVL optical member has a surface roughness (R a ) of 5 nm or less and satisfies the following formula:
C 20nm -C 200nm ≧ 5ppm
(C 20nm: The total concentration of the fluorine concentration and the chlorine concentration at the position of depth 20nm from the surface of the optical surface and the chamfered portion (ppm), C 200nm: at a depth of 200nm from the surface of the optical surface and the chamfered portion Total fluorine concentration and chlorine concentration (ppm)
JP2007336167A 2007-12-27 2007-12-27 EUVL optical member and surface treatment method thereof Expired - Fee Related JP5470703B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007336167A JP5470703B2 (en) 2007-12-27 2007-12-27 EUVL optical member and surface treatment method thereof
EP08866519A EP2229346A1 (en) 2007-12-27 2008-09-30 Optical member for euvl and surface treatment method thereof
PCT/JP2008/068128 WO2009084296A1 (en) 2007-12-27 2008-09-30 Optical member for euvl and surface treatment method thereof
TW97137533A TWI435855B (en) 2007-12-27 2008-09-30 Optical member for euvl and surface treatment method thereof
KR1020107014072A KR101419576B1 (en) 2007-12-27 2008-09-30 Optical member for euvl and surface treatment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007336167A JP5470703B2 (en) 2007-12-27 2007-12-27 EUVL optical member and surface treatment method thereof

Publications (2)

Publication Number Publication Date
JP2009155170A JP2009155170A (en) 2009-07-16
JP5470703B2 true JP5470703B2 (en) 2014-04-16

Family

ID=40577955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336167A Expired - Fee Related JP5470703B2 (en) 2007-12-27 2007-12-27 EUVL optical member and surface treatment method thereof

Country Status (5)

Country Link
EP (1) EP2229346A1 (en)
JP (1) JP5470703B2 (en)
KR (1) KR101419576B1 (en)
TW (1) TWI435855B (en)
WO (1) WO2009084296A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070929A1 (en) 2009-12-11 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US8541325B2 (en) * 2010-02-25 2013-09-24 Corning Incorporated Low expansivity, high transmission titania doped silica glass
US20120026473A1 (en) * 2010-07-29 2012-02-02 Michael Lucien Genier Highly reflective, hardened silica titania article and method of making
AU2011293560B2 (en) 2010-08-23 2015-05-28 Exogenesis Corporation Method and apparatus for neutral beam processing based on gas cluster ion beam technology
RU2681015C2 (en) * 2014-02-21 2019-03-01 Шотт Аг Highly-homogeneous glass and ceramic part
EP3224213B1 (en) 2014-11-26 2022-03-23 Corning Incorporated Doped silica-titania glass having low expansivity and methods of making the same
DE102017213406A1 (en) * 2017-08-02 2019-02-07 Carl Zeiss Smt Gmbh Reflective optical element for EUV lithography and method for adjusting a geometry of a component
JP2021181398A (en) 2020-05-13 2021-11-25 Agc株式会社 Glass substrate for euvl, method for manufacturing the same, mask blank for euvl and method for manufacturing the same
JPWO2021229967A1 (en) * 2020-05-13 2021-11-18

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100556141B1 (en) * 2003-03-27 2006-03-03 호야 가부시키가이샤 Method of producing a glass substrate for a mask blank and method of producing a mask blank
JP4792705B2 (en) * 2003-04-03 2011-10-12 旭硝子株式会社 Silica glass containing TiO2 and method for producing the same
DE102004024808B4 (en) * 2004-05-17 2006-11-09 Heraeus Quarzglas Gmbh & Co. Kg Quartz glass blank for an optical component for transmitting extremely short-wave ultraviolet radiation
JP4665443B2 (en) * 2004-06-22 2011-04-06 旭硝子株式会社 Glass substrate polishing method
EP1761469B1 (en) * 2004-07-01 2013-05-22 Asahi Glass Company, Limited Silica glass containing tio2 and process for its production
JP4647967B2 (en) * 2004-11-09 2011-03-09 Hoya株式会社 Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and semiconductor device manufacturing method
JP4487783B2 (en) * 2005-01-25 2010-06-23 旭硝子株式会社 Method for producing silica glass containing TiO2 and optical member for EUV lithography using silica glass containing TiO2
WO2006082751A2 (en) * 2005-02-02 2006-08-10 Asahi Glass Company, Limited Process for polishing glass substrate
JP4548319B2 (en) * 2005-02-02 2010-09-22 旭硝子株式会社 Glass substrate polishing method
JP4506689B2 (en) * 2005-06-14 2010-07-21 旭硝子株式会社 Method for finishing a pre-polished glass substrate surface
EP1890978A1 (en) * 2005-06-14 2008-02-27 Asahi Glass Company, Limited Method of finishing pre-polished glass substrate surface
JP5035516B2 (en) * 2005-12-08 2012-09-26 信越化学工業株式会社 Method for producing titania-doped quartz glass for photomask
JP4997815B2 (en) * 2006-04-12 2012-08-08 旭硝子株式会社 Method for producing a highly flat and highly smooth glass substrate
JP2007317256A (en) * 2006-05-23 2007-12-06 Asahi Glass Co Ltd Method of manufacturing glass substrate for magnetic disk
JP5169163B2 (en) * 2006-12-01 2013-03-27 旭硝子株式会社 Method for finishing a pre-polished glass substrate surface
JP2009013046A (en) * 2007-06-05 2009-01-22 Asahi Glass Co Ltd Method of processing glass substrate
EP2170778A1 (en) * 2007-06-29 2010-04-07 Asahi Glass Company, Limited Method for removing foreign matter from glass substrate surface and method for processing glass substrate surface

Also Published As

Publication number Publication date
TW200928605A (en) 2009-07-01
TWI435855B (en) 2014-05-01
KR20100099208A (en) 2010-09-10
WO2009084296A1 (en) 2009-07-09
EP2229346A1 (en) 2010-09-22
KR101419576B1 (en) 2014-07-14
JP2009155170A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5470703B2 (en) EUVL optical member and surface treatment method thereof
JP4506689B2 (en) Method for finishing a pre-polished glass substrate surface
US7622050B2 (en) Process for polishing glass substrate
JP2009013046A (en) Method of processing glass substrate
US7771603B2 (en) Process for polishing glass substrate
US20100101940A1 (en) Method for removing foreign matter from glass substrate surface and method for processing glass substrate surface
US8182708B2 (en) Method of finishing pre-polished glass substrate surface
WO2008065973A1 (en) Method for finishing surface of preliminary polished glass substrate
KR20100119770A (en) Optical component for euvl and smoothing method thereof
US8052797B2 (en) Method for removing foreign matter from substrate surface
JP4548319B2 (en) Glass substrate polishing method
Shoki et al. Process development of 6-in EUV mask with TaBN absorber
KR20070022655A (en) Process for polishing glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

LAPS Cancellation because of no payment of annual fees