JP5470677B2 - Method for detecting fundamental wave component of single-phase AC signal - Google Patents
Method for detecting fundamental wave component of single-phase AC signal Download PDFInfo
- Publication number
- JP5470677B2 JP5470677B2 JP2006350594A JP2006350594A JP5470677B2 JP 5470677 B2 JP5470677 B2 JP 5470677B2 JP 2006350594 A JP2006350594 A JP 2006350594A JP 2006350594 A JP2006350594 A JP 2006350594A JP 5470677 B2 JP5470677 B2 JP 5470677B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- frequency
- signal
- fundamental wave
- wave component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 46
- 238000001514 detection method Methods 0.000 claims description 169
- 230000003044 adaptive effect Effects 0.000 claims description 26
- 238000012545 processing Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000010354 integration Effects 0.000 claims description 9
- 230000004069 differentiation Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 description 30
- 238000013461 design Methods 0.000 description 19
- 230000010349 pulsation Effects 0.000 description 12
- 238000001914 filtration Methods 0.000 description 10
- 230000014509 gene expression Effects 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 238000005070 sampling Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000003775 Density Functional Theory Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Inverter Devices (AREA)
- Measuring Frequencies, Analyzing Spectra (AREA)
Description
単相交流電源系統連系用電力変換装置、無停電電源装置、電源高調波抑制装置、単相変圧器用突入電流防止装置、特殊充電器、電源同期検出装置などでは、単相交流電圧の基本波成分の周波数と位相は、最も基本的な情報であり、この検出が必要とされている。本発明は、これら装置に有用な単相交流信号の基本波成分の周波数及び位相の瞬時検出方法に関するものである。Single-phase AC power system interconnection power converter, uninterruptible power supply, power harmonic suppression device, single-phase transformer inrush current prevention device, special charger, power supply synchronous detection device, etc. The frequency and phase of the component are the most basic information, and this detection is required. The present invention relates to a method for instantaneously detecting the frequency and phase of a fundamental wave component of a single-phase AC signal useful for these devices.
本発明に関連深い先行文献としては、以下に記載されたものがある。
(1)新中新二:「単相交流信号の位相検出方法と同方法を用いた電力変換装置」、特開2006−129681(2004−10)
(2)清水敏久・齋藤真:「半導体電力変換装置の制御回路」、特開2003−143860(2001−11)
(3)L.N.Arruda、B.J.C.Filho、S.M.Silva、S.R.Silva、and A.S.A.C.Diniz:“Wide Bandwidth Single and Three−Phase PLL Structures for Grid−Tied PV Systems”、Record of the 28th IEEE Photovoltaic Specialist Conference 2000、pp.1660−1663(2000)
(4)S.M.Silva、L.N.Arruda、and B.J.C.Filho:“Wide Bandwidth Single and Three−Phase PLL Structures for Utility Connected Systems”、CD−Proc.of 9th European Conference on Power Electronics and Applications(EPE 2001)(2001−8)
(5)L.N.Arruda、S.M.Silva、and B.J.C.Filho:“PLL Structures for Utility Connected Systems”、Conference Record of the 2001 IEEE Industry Applications Conference、36th IAS Annual Meeting(IAS 2001)、Vol.4、pp.2655−2660(2001−9)
(6)L.M.Silva、B.M.Lopes、B.J.C.Filho、R.P.Campana、and W.C.Boaventura:“Performance Evaluation of PLL Algorithms for Single−Phase Grid−Connected Systems”、Conference Record of the 2004 IEEE Industry Applications Conference、39th IAS Annual Meeting(IAS 2004)、Vol.4、pp.2259−2263(2004−10)
(7)M.Ciobotaru、R.Teodorescu、and F.Blaabjerg:“Improved PLL structures for single−phase grid inverters”、CD−Proc.of International Conference on Power Electronics and Intelligent Control for Energy Conservation(PELINCEC2005)(2005−10)
(8)M.Ciobotaru、R.Teodorescu、and F.Blaabjerg:“A New Single−Phase PLL Structures Based on Second Order Generalized Integrator”、CD−Proc.of 37th IEEE Power Electronics Specialis Conference(PESC 2006)(2006−6)
(9)S.Sakamoto、T.Izumi、T.Yokoyama、and T.Haneyoshi:“A New Method for Digital PLL Control Using Estimated Two Quadrature Two Phase Frequency Detection”、Proc.of Power Conversion Conference(PCC−2002)、pp.671−676(2002−4)Prior art documents relevant to the present invention include those described below.
(1) Shinnaka Shinji: “Power conversion apparatus using the same method as the phase detection method for single-phase AC signals”, Japanese Patent Laid-Open No. 2006-129681 (2004-10)
(2) Toshihisa Shimizu and Makoto Saito: “Control Circuit of Semiconductor Power Converter”, Japanese Patent Laid-Open No. 2003-143860 (2001-11)
(3) L. N. Arruda, B.I. J. et al. C. Filho, S .; M.M. Silva, S.M. R. Silva, and A.A. S. A. C. Diniz: “Wide Bandwidth Single and Three-Phase PLL Structures for Grid-Tied PV Systems”, Record of the 28th IEEE Photovoltaic Spect. 1660-1663 (2000)
(4) S.M. M.M. Silva, L.M. N. Arruda, and B.A. J. et al. C. Filho: “Wide Bandwidth Single and Three-Phase PLL Structures for Utility Connected Systems”, CD-Proc. of 9th European Conference on Power Electronics and Applications (EPE 2001) (2001-8)
(5) L.L. N. Arruda, S .; M.M. Silva, and B.M. J. et al. C. Filho: “PLL Structures for Utility Connected Systems”, Conference Record of the 2001, IEEE Industry Applications Conf., 36th IAS Ane. 4, pp. 2655-2660 (2001-9)
(6) L. M.M. Silva, B.M. M.M. Loopes, B.M. J. et al. C. Filho, R.A. P. Campana, and W.C. C. Boventura: “Performance Evaluation of PLL, Algorithms for Singles, Phase Grid, Connected Systems, and Conference Record of the 2004.” 4, pp. 2259-2263 (2004-10)
(7) M.M. Ciobotaru, R.A. Teodorescu, and F.M. Braabjerg: “Improved PLL structures for single-phase grid inverters”, CD-Proc. of International Conference on Power Electronics and Intelligent Control for Energy Conservation (PELINCEC 2005) (2005-10)
(8) M.M. Ciobotaru, R.A. Teodorescu, and F.M. Braabjerg: “A New Single-Phase PLL Structures Based on Second Order Generalized Integrator”, CD-Proc. of 37th IEEE Power Electronics Specialties Conference (PESC 2006) (2006-6)
(9) S.M. Sakamoto, T .; Izumi, T .; Yokoyama, and T.K. Haneyoshi: “A New Method for Digital PLL Control Using Estimated Two Quadrature Two Phase Frequency Detection”, Proc. of Power Conversion Conference (PCC-2002), pp. 671-676 (2002-4)
単相交流信号の位相の瞬時検出法としては、PLL法、フィードバック形フィルタ法、ヒルベルト変換法、DFT法などが知られている。これら瞬時検出法における共通アプローチは、検出対象の単相交流信号の基本波成分に対し、その主成分が同基本波成分の周波数と同一でかつ位相がπ/2(rad)だけ進んだ(あるいは遅れた)信号(以下、矩相信号と呼称)と、その主成分が同基本波成分の周波数と同一でかつ位相が同相の信号(以下、同相信号と呼称)とを生成し、矩相信号と同相信号からなる2相信号を用いて、源の単相交流信号の瞬時位相を検出するものである。例えば、安定なフィードバック形フィルタを1個以上用いて単相交流信号から同相信号と矩相信号を生成して位相検出を行うフィードバック形フィルタ法に関しては、文献(1)に詳しく解説されている。源の単相交流信号のヒルベルト変換を通じて矩相信号を得、同相信号を源単相交流信号そのものとするヒルベルト変換法は、文献(2)に詳しく解説されている。本例から明白なように、源の単相交流信号そのものを同相信号としてよく、このため、位相検出で特に重要なのは、矩相信号の生成である。換言するならば、上記の各種方法は、矩相信号を少なくとも用いた単相交流信号の瞬時位相検出法と言える。Known methods for instantaneously detecting the phase of a single-phase AC signal include a PLL method, a feedback filter method, a Hilbert transform method, a DFT method, and the like. The common approach in these instantaneous detection methods is that the principal component of the fundamental component of the single-phase AC signal to be detected is the same as the frequency of the fundamental component and the phase is advanced by π / 2 (rad) (or A delayed signal (hereinafter referred to as a quadrature signal) and a signal whose main component is the same as the frequency of the fundamental component and in phase (hereinafter referred to as an in-phase signal). The instantaneous phase of the single-phase AC signal of the source is detected using a two-phase signal composed of a signal and an in-phase signal. For example, the feedback type filter method for detecting the phase by generating an in-phase signal and a quadrature signal from a single-phase AC signal by using one or more stable feedback filters is described in detail in Document (1). . The Hilbert transform method, in which a quadrature signal is obtained through Hilbert transform of the source single-phase AC signal and the in-phase signal is used as the source single-phase AC signal itself, is described in detail in Document (2). As is clear from this example, the single-phase AC signal itself of the source may be an in-phase signal. Therefore, the generation of a quadrature signal is particularly important in phase detection. In other words, the various methods described above can be said to be instantaneous phase detection methods for single-phase AC signals using at least a quadrature signal.
フィードバック形フィルタ法、ヒルベルト変換法、DFT法などは、単相交流信号の基本波成分の周波数が既知かつ一定であることを条件に、矩相信号を生成するものであり、本条件がこれらの使用上の基本条件となっている。これに対して、単相交流信号の基本波成分の周披数が変動し、この正確な値が未知の場合にも基本波成分の位相を検出し得る潜在能力を有していると期待されているのが、PLL法である。PLL法は、基本波成分の位相に加えて、周波数も検出することにより、周波数変動への対応能力を獲得している。換言するならば、PLL法は基本波成分の周波数と位相の瞬時検出法と言える。変動周波数をもつ基本波成分からなる源単相交流信号に適用可能なPLL法は、上記文献(3)〜(9)に詳しく説明されている。The feedback filter method, the Hilbert transform method, the DFT method, and the like generate a quadrature signal on the condition that the frequency of the fundamental wave component of the single-phase AC signal is known and constant. It is a basic condition for use. In contrast, the frequency of the fundamental component of a single-phase AC signal varies, and it is expected to have the potential to detect the phase of the fundamental component even when this exact value is unknown. It is the PLL method. The PLL method acquires the ability to cope with frequency fluctuations by detecting the frequency in addition to the phase of the fundamental wave component. In other words, the PLL method can be said to be an instantaneous detection method of the frequency and phase of the fundamental wave component. A PLL method applicable to a source single-phase AC signal composed of a fundamental wave component having a varying frequency is described in detail in the above-mentioned documents (3) to (9).
これら先行文献によれば、変動周波数の基本波成分からなる単相交流信号に適用可能なPLL法は、PLLで得た周波数検出値をPLL入力信号生成過程にフィードバックし再利用すると言う適応システムの構成をとっている。本構成の結果、PLL法による検出システムは、システム全体としては非線形となる。この非線形性に遠因していると思われるが、先行発明たる従来のPLL法は以下のような課題を残置してきた。
(a)総合的に、検出システムが不安定化しやすい。
(b)生成2相電圧の内の1相分をPLLへの入力信号とする構成をとっている。このためか、PLLのための位相制御器(PLLに使用される制御器)の設計には「small signal model」の導出が必要であり、システム安定化のための位相制御器設計は煩雑である。更には、高い追随性をもたらす広帯域高次の位相制御器の設計・利用は、システムの不安定化を誘発し困難である。
(c)周波数真値が一定の場合でさえ、周波数検出値は高周波脈動を常時起こし、安定しない。According to these prior documents, the PLL method applicable to a single-phase AC signal composed of a fundamental component of a variable frequency is an adaptive system that feeds back the frequency detection value obtained by the PLL to the PLL input signal generation process and reuses it. It has a configuration. As a result of this configuration, the detection system based on the PLL method becomes nonlinear as a whole system. Although it seems that it is far from this non-linearity, the conventional PLL method as the prior invention has left the following problems.
(A) Overall, the detection system tends to become unstable.
(B) One phase of the generated two-phase voltage is used as an input signal to the PLL. For this reason, the design of the phase controller for PLL (controller used in the PLL) requires the derivation of “small signal model”, and the design of the phase controller for system stabilization is complicated. . Furthermore, it is difficult to design and use a broadband high-order phase controller that provides a high degree of follow-up, leading to system instability.
(C) Even if the true value of the frequency is constant, the frequency detection value always causes high-frequency pulsation and is not stable.
本発明は、以上の背景のもとになされたものであり、その目的は、単相交流信号の基本波成分の少なくとも周波数と位相の検出し、次の性能を発揮する新構造の基本波成分検出法を提供するものである。提供検出法は、検出システムの安定性を確保した上で、広帯域かつ高次の位相制御器を系統的に設計することを可能とし、ひいては、周波数変動、位相跳躍、振幅変動、信号歪み、ノイズ混入などが高いレベルで存在する場合にも、基本波成分の位相、周波数に加え、更には振幅の良好な適応的検出を可能とする。提供検出法による適応検出は安定的に遂行され、例えば一定周波数に対しては、脈動の無い周波数検出値を得ることができる。The present invention has been made based on the above background, and its purpose is to detect at least the frequency and phase of a fundamental wave component of a single-phase AC signal, and to realize the following performance of a fundamental wave component having a new structure. A detection method is provided. The provided detection method makes it possible to systematically design a wideband and higher-order phase controller while ensuring the stability of the detection system, and consequently, frequency fluctuation, phase jump, amplitude fluctuation, signal distortion, noise Even when contamination is present at a high level, adaptive detection can be performed with good amplitude in addition to the phase and frequency of the fundamental wave component. Adaptive detection by the provided detection method is stably performed, and for example, a frequency detection value without pulsation can be obtained for a certain frequency.
上記目的を達成するために、請求項1に記載の発明では、未知の周波数変動を伴う単相交流信号の基本波成分に対してπ/2(rad)位相進みあるいは遅れの矩相信号を、安定な可変フィルタ係数をもつフィードバック形適応フィルタを用いて未知変動周波数の単相交流信号から生成し、生成した矩相信号を少なくとも用いて、基本波成分の変動周波数と変動周波数に対応した位相あるいは基本波成分の変動周波数と変動周波数に対応した位相余弦正弦値を少なくとも検出するようにした未知変動周波数の単相交流信号の基本波成分の検出方法であって、矩相信号生成用の該安定フィルタの特性をバンドパス特性に微分特性あるいは積分特性を付加した特性とし、検出した該基本波成分周波数を用いて、該対応位相検出値が同真値にあるいは該対応位相余弦正弦検出値が同真値に収斂するように、バンドパス特性の中心周波数に対応した可変フィルタ係数のみを適応調整し、通過帯域幅に対応した係数は一定に保持するようにしたことを特徴とする。
In order to achieve the above object, in the invention described in
請求項2に記載の発明では、未知の周波数変動を伴う単相交流信号の基本波成分に対してπ/2(rad)位相進みあるいは遅れの矩相信号を、安定な可変フィルタ係数をもつフィードバック形適応フィルタを用いて未知変動周波数の単相交流信号から生成し、生成した矩相信号を少なくとも用いて、基本波成分の変動周波数と変動周波数に対応した位相あるいは基本波成分の変動周波数と変動周波数に対応した位相余弦正弦値を少なくとも検出するようにした未知変動周波数の単相交流信号の基本波成分の検出方法であって、該変動周波数単相交流信号より検出した該基本波成分周波数を用いて、矩相信号生成用の該安定フィルタの特性を支配する可変フィルタ係数を、周波数検出期間より長い期間一定に保ちつつ適応調整するようにしたことを特徴とする。
According to the second aspect of the present invention, a quadrature signal having a π / 2 (rad) phase advance or delay with respect to the fundamental component of a single-phase AC signal with unknown frequency fluctuation is fed back with a stable variable filter coefficient. Generated from a single-phase AC signal of unknown variation frequency using a shape adaptive filter, and using at least the generated quadrature signal, the variation frequency of the fundamental component and the variation frequency and variation of the fundamental component corresponding to the variation frequency A method of detecting a fundamental wave component of a single-phase AC signal having an unknown variation frequency that detects at least a phase cosine sine value corresponding to the frequency, wherein the fundamental component frequency detected from the variation frequency single-phase AC signal is used, the variable filter coefficients governing the stability characteristics of the filters for quadrature phase signal generated was so adapted to adjust while keeping the longer period constant frequency detection period And wherein the door.
請求項3に記載の発明では、請求項1または請求項2のいずれか一項に記載の基本波成分検出方法について、該変動周波数単相交流信号より検出した該基本波成分位相をフィードバック利用して位相真値と位相検出値との推定的偏差である位相偏差相当値を先ず決定し、位相偏差相当値を用いて該基本波成分の周波数検出値を次に決定し、続いて、該基本波成分の検出変動周波数の積分相当の処理を通じて該基本波成分の位相を検出するようにしたことを特徴とする。
According to a third aspect of the present invention, in the fundamental wave component detection method according to any one of the first and second aspects, the fundamental wave component phase detected from the variable frequency single-phase AC signal is used in a feedback manner. The phase deviation equivalent value, which is an estimated deviation between the phase true value and the phase detection value, is first determined, and the frequency detection value of the fundamental wave component is then determined using the phase deviation equivalent value. It is characterized in that the phase of the fundamental wave component is detected through a process corresponding to the integration of the detected fluctuation frequency of the wave component.
請求項4に記載の発明では、未知の周波数変動を伴う単相交流信号の基本波成分に対してπ/2(rad)位相進みあるいは遅れの矩相信号を、安定な可変フィルタ係数をもつフィードバック形適応フィルタを用いて変動周波数単相交流信号から生成し、生成した矩相信号を少なくとも用いて、基本波成分の変動周波数と変動周波数に対応した位相あるいは基本波成分の変動周波数と変動周波数に対応した位相余弦正弦値を検出するようにした未知変動周波数の単相交流信号の基本波成分の検出方法であって、該変動周波数単相交流信号の該基本波成分の余弦正弦値を先ず検出し、次に、検出した位相あるいは位相余弦正弦値を用いて位相の微分相当の処理を行い位相余弦正弦微分相当値を生成し、該位相余弦正弦値と位相余弦正弦微分相当値との内積的演算処理を通じて該基本波成分の該周波数を検出するようにしたことを特徴とする。
According to the fourth aspect of the present invention, a quadrature signal having a π / 2 (rad) phase advance or delay with respect to a fundamental component of a single-phase AC signal with unknown frequency fluctuation is fed back with a stable variable filter coefficient. Using the adaptive filter to generate a variable frequency single-phase AC signal, and using at least the generated quadrature signal, change the phase corresponding to the fundamental frequency component and the variation frequency to the variation frequency and variation frequency of the fundamental component. the detection process of the fundamental wave component of the single-phase AC signals of unknown variation frequency obtained by the phase cosine and sine values corresponding to to detect firstly the cosine and sine values of the fundamental wave component of the variation frequency single-phase alternating current signal detected, then using the detected phase or phase cosine and sine value to produce a phase cosine and sine differential equivalent value after processing of the differential equivalent of the phase, the phase cosine and sine values and the phase cosine and sine differential equivalent Characterized by being adapted to detect the frequency of the fundamental wave component through the inner product calculation processing with.
請求項5に記載の発明では、請求項1、請求項2、請求項3、又は請求項4のいずれか一項に記載の変動周波数単相交流信号の基本波成分検出方法であって、該安定フィルタをディジタルフィルタとして離散時間実現したことを特徴とする。 According to a fifth aspect of the present invention, there is provided a fundamental wave component detection method for a variable frequency single-phase AC signal according to any one of the first , second, third, or fourth aspects , comprising: The stable filter is realized as a digital filter in discrete time.
以下、数式と図面とを用いて、本発明の作用と実施形態を詳細に説明する。明快な合理的説明を行うために、まず、本発明が解決しようとする技術課題を、数式を用いて記述しなおす。Hereinafter, the operation and embodiments of the present invention will be described in detail with reference to mathematical expressions and drawings. In order to provide a clear rational explanation, first, the technical problem to be solved by the present invention will be described again using mathematical expressions.
単相交流信号として、基本波成分の周波数(基本周波数と略記)ωαをもつ(1)式のvを考える。
数ωαの正弦信号として表現できないノイズ、高調波成分等とする。なお、以降では、これらは簡単にノイズ等と略記する。単相交流信号の基本波成分の周波数・位相検出問題、特に、本発明の解決すべき課題は、入手可能な単相交流信号vを用いて、同信号の基本波成分の周波数ωαと、次の(2)式で定義された基本波成分の位相θαと、
Noise, harmonic components, etc. that cannot be expressed as a sine signal of several ω α . Hereinafter, these are simply abbreviated as noise and the like. The frequency / phase detection problem of the fundamental wave component of the single-phase AC signal, in particular, the problem to be solved by the present invention is to obtain the frequency ω α of the fundamental wave component of the same signal using the available single-phase AC signal v, The phase θ α of the fundamental wave component defined by the following equation (2),
単相交流信号の基本波成分の周波数、位相、振幅の瞬時検出ための検出システムに関し、請求項1〜3の発明に基づき構成した1実施形態例を、図1に示す。同図の基本波成分検出システムは、二相信号生成器1、振幅・位相偏差検出器2、位相同期器3、マルチレイトサンプルホールダ4と言う4個のサブシステムから構成されている。基本波成分検出システムへの入力信号として単相交流信号vを受け、同信号の基本波成分の位相、周波数、
は、マルチレイトサンプルホールダ4を介して、二相信号生成器1へフィードバックされ、再利用されている。すなわち本発明による基本波成分検出システムは、システム全体としては、適応的な検出システムとなっている。図1の提供システムは、後述の説明で明らかになるように、広義の意味において、PLLシステムの範疇に属する。文献(3)−(9)もPLLシステムの範疇に属するが、システムの構造、及び構造を形づくるサブシステム1−4(詳細は後述)は、本発明の基づく新規なものであり、従来の何れとも異なる。以下、これらサブシステム1−4の詳細を個別に説明する。FIG. 1 shows an embodiment of the detection system for instantaneously detecting the frequency, phase, and amplitude of a fundamental wave component of a single-phase AC signal. The fundamental wave component detection system shown in FIG. 1 includes four subsystems, a two-
Are fed back to the two-
二相信号生成器の役割は、単相交流信号vの基本波成分に対し、その主成分が基本波成分の周波数と同一でかつ位相がπ/2(rad)だけ進んだ(あるいは遅れた)矩相信号ναを生成することである。また、大きなノイズ等を含む単相交流信号に対しては、矩相信号に加えて、その主成分が基本波成分の周波数と同一でかつ位相が同相の同相信号νβを生成することである。The role of the two-phase signal generator is that the principal component of the single-phase AC signal v is the same as the fundamental component frequency and the phase is advanced (or delayed) by π / 2 (rad). Generating a quadrature signal ν α . For single-phase AC signals containing large noise, etc., in addition to the quadrature signal, an in-phase signal ν β whose main component is the same as the frequency of the fundamental wave component and in phase is generated. is there.
二相信号生成器の1実施形態例は、基本波成分検出のための矩相信号ναと同相信号νβを、各々、安定なフィルタGα(s)、Gβ(s)(s:ラプラス演算子)による単相交流信号vのフィルタリング処理により生成するものである。これらは、請求項1及び2の発明に基づき、以下のように((3)式以下の数式を参照)構成することができる。One embodiment of the two-phase signal generator uses a quadrature signal ν α and an in-phase signal ν β for detecting fundamental wave components as stable filters G α (s) and G β (s) (s, respectively. : Laplace operator) to generate a single-phase AC signal v. Based on the inventions of
単相交流信号の基本波成分に対して、一応、π/2(rad)位相進みの矩相信号となる点には注意されたい。
It should be noted that, for the fundamental wave component of the single-phase AC signal, it becomes a quadrature signal with a π / 2 (rad) phase advance.
請求項1の発明に基づくならば、(4)式の条件を満足する簡単かつ安定なフィルタGα(・)、Gβ(・)として、次のものを構成することができる。
た。図2より、Gβ(・)がバンドパス特性をもつこと、更には(5)、(6)式が(4)式の条件を満足していることは明らかである。(5)式のGα(・)は、バンドパス特性をもつGβ(・)に対して微分処理を行い(4)式第1行の関係を達成している。一方、(6)式のGα(・)は、バンドパス特性をもつGβ(・)に対して積分と符号反転の処理を行い(4)式第1行の関係を達成している(積分形は、位相遅れ特性−jの反転を利用)。すなわち、矩相信号生成用の安定フィルタGα(・)の特性は、請求項1の発明に基づき、バンドパス特性に微分特性あるいは積分特性を付加した特性としている。 It was. From FIG. 2, it is clear that G β (•) has a bandpass characteristic, and that the expressions (5) and (6) satisfy the condition of the expression (4). G α (·) in the equation (5) performs a differentiation process on G β (·) having a bandpass characteristic to achieve the relationship in the first row of the equation (4). On the other hand, G α (·) in equation (6) achieves the relationship of the first row of equation (4) by performing integration and sign inversion processing on G β (·) having bandpass characteristics ( (Integral type uses phase lag characteristic -j inversion). That is, the characteristic of the stable filter G α (•) for generating a quadrature signal is a characteristic obtained by adding a differential characteristic or an integral characteristic to the bandpass characteristic based on the invention of
のみを適応調整するようにする」とした請求項1の発明に基づき、提供フィルタにおいて
(5)、(6)式のバンドパス特性をもつGβ(・)の中心周波数は、図2より明白なように、0次係数によってのみ定まる。 Based on the invention of
As is apparent from FIG. 2, the center frequency of G β (•) having the bandpass characteristics of the equations (5) and (6) is determined only by the zeroth order coefficient.
フィルタGα(・)、Gβ(・)の動的特性はこれらに共通の分母多項式の係数によって支配される。
のみですなわち単一の係数で、これを行うことになる。一般論であるが、適応システムにおける係数の適応調整においては、調整対象係数の数を極力少なく抑えることが、システム安定化に有効である。提供の検出システムも適応システムの1種であり、これを構成する二相信号生成器に関し、本一般論が適用されることが実験的に確認されている(後述の実験データ、図6〜11を参照)。すなわち、請求項1の発明によれば、周波数変動を伴う単相交流信号に対する基本波成分検出システムの安定性を向上させることができると言う作用が得られる。The dynamic characteristics of the filters G α (·) and G β (·) are governed by the coefficients of the denominator polynomial common to these filters.
This will be done only with a single factor. In general terms, in adaptive adjustment of coefficients in an adaptive system, it is effective for system stabilization to keep the number of adjustment target coefficients as small as possible. The provided detection system is also a kind of adaptive system, and it has been experimentally confirmed that this general theory is applied to a two-phase signal generator constituting the detection system (experimental data described later, FIGS. 6 to 11). See). That is, according to the first aspect of the present invention, there is obtained an effect that the stability of the fundamental wave component detection system with respect to a single-phase AC signal accompanied by frequency fluctuation can be improved.
図3に、(5)、(6)式の1実現例を示した。図中の1/sは積分器を意味し、また貫徹矢印
よって生成された信号を、マルチレイトサンプルホールダ4を介して得ている。このため、
定ではあるが)、長時間的には可変である。図3では、矩相信号ναとして微分形(上段)と積分形(下段)の2種類を示しているが、実際の利用には、何れか1つを選択することになる。FIG. 3 shows one implementation example of the equations (5) and (6). 1 / s in the figure means an integrator, and a penetrating arrow
Thus, the generated signal is obtained via the
It is variable over time. In FIG. 3, two types of the quadrature signal ν α , the differential form (upper stage) and the integral form (lower stage), are shown, but one of them is selected for actual use.
(1)式〜(7)式と図2、3とを用いて説明した上記の実施形態例では、同相信号を矩相信号と一体的に生成したが、両信号は個別に生成してもよい。また、源の単相交流信号のノイズ等が小さい場合には、同相信号は、源の単相交流信号そのものとしてよい。図3は、フィルタの1実現例であり、フィルタの実現は、当業者には容易に理解されるように、図3に限定されるものでない。また、上記実施形態例では、矩相信号生成用のフィルタとしては、簡単な2次フィルタとしたが、2次以上の高次フィルタを利用してよいことを指摘しておく。In the above-described embodiment example described using the equations (1) to (7) and FIGS. 2 and 3, the in-phase signal is generated integrally with the quadrature signal, but both signals are generated separately. Also good. When the noise of the single-phase AC signal of the source is small, the in-phase signal may be the source single-phase AC signal itself. FIG. 3 is one implementation of the filter, and the implementation of the filter is not limited to FIG. 3, as will be readily appreciated by those skilled in the art. In the above embodiment, a simple second-order filter is used as the quadrature signal generation filter, but it should be pointed out that a higher-order filter of the second or higher order may be used.
続いて、振幅・位相偏差検出器2について説明する。振幅・位相偏差検出器は、請求項3の発明に従って構成されており、その主たる役割は位相真値と位相検出値との推定的偏差である位相偏差相当値を決定することである。また、その従たる役割は、基本成分の振幅を検出することである。図4は、振幅・位相偏差検出器の1構成例である。図4におけるベクトル回転器R(・)は、以下の処理を行っている。
4では、位相検出値のフィードバック利用を貫徹矢印で表現している。Next, the amplitude /
In FIG. 4, the feedback of the phase detection value is expressed by a penetrating arrow.
図4の振幅・位相偏差検出器におけるFl(・)はローパスフィルタであり、その役割は、ベクトル回転器後の2相信号に含まれるノイズ等の除去であり、次の処理を行っている。
ベクトル回転器後の2相信号νγ,νδに対するローパスフィルタリングは、ベクトル回転器前の信号να,νβに対するバンドパスフィルタリングと等価の効果をもたらす。すなわち、ベクトル回転器とフィルタとの処理手順は、互いに変更してよい。フィルタ処理を先行させる場合には、フィルタはバンドパスフィルタとすることが必要である。当業者には周知のように、バンドパスフィルタの設計・実現には2次以上の伝達関数が必要とされるが、ローパスフィルタの設計・実現は1次の伝達関数から可能である。図4の構成例では、簡単な次の1次フィルタを使用することが可能である。
ローパスフィルタの役割から明白なように、源の単相交流信号が含有するノイズ等が少ない場合には、当然のことながら、ベクトル回転器後の2相信号に含まれるノイズ等も少ない。このような場合には、本ローパスフィルタは不要である。この点を考慮して、図4の振幅・位相偏差検出器では、本ローパスフィルタを破線ブロックで表示している。As apparent from the role of the low-pass filter, when the source single-phase AC signal contains a small amount of noise and the like, naturally, the noise and the like contained in the two-phase signal after the vector rotator are also small. In such a case, this low-pass filter is unnecessary. In consideration of this point, in the amplitude / phase deviation detector of FIG. 4, the low-pass filter is indicated by a broken line block.
図4に提供した振幅・位相偏差検出器では、フィルタ処理信号νγl,νδlのノルム計算を通じて、振幅・位相偏差検出器の従たる役割である単相交流信号の基本波成分の振幅を検出している。すなわち、
図4に提供した振幅・位相偏差検出器では、位相検出値をベクトル回転器へフィードバッ
すなわち、
That is,
続いて、位相同期器3について説明する。位相同期器は、請求項3の発明に従って構成さ
号の基本周波数の周波数検出値し、次に、検出周波数の積分相当の処理を通じて基本波成
りである。
Frequency detection value of the fundamental frequency of the signal, and then fundamental wave generation through processing equivalent to integration of the detection frequency.
It is.
図5に、位相同期器3の構成を図示した。同図の3−1は位相制御器であり、3−2は位相積分器である。請求項3の発明に基づく位相同期器は、先ず、振幅・位相偏差検出器2から位相偏差相当値を得て、位相偏差相当値を用いて、二相信号生成器内部のフィルタ係数の適応調整に使用する基本波成分の周波数を検出している。次に検出周波数の積分処理を通じて基本波成分の位相を検出するように構成されている。本例は、検出周波数の純粋積分処理を通じて位相を検出した例であるが、純粋積分処理を近似積分処理で代用してよい。すなわち、一般には、積分相当の処理でよいことを指摘しておく。FIG. 5 illustrates the configuration of the
位相偏差相当値を入力信号とする位相制御器CPLL(・)を、次の(m+1)次H(・)が安定多項式となるように設計する場合には、周波数検出値と位相検出値は安定化する。
単相交流信号の基本成分の周波数変動を考慮する必要がある場合には、(18)式から理解されるように、位相制御器としては、少なくとも、位相制御器分母多項式Cd(・)がs因子を1個もつ1形とする必要がある。周波数変動が激しい場合には、位相制御器分母多項式がs因子を2個もつ2形あるいはこれ以上の高次制御器が好ましい。1形、2形の簡単なものは、各々、以下となる。
(10)新中新二:「1次遅れ特性をもつ制御対象の制御方法」、特開2006−031654When it is necessary to consider the frequency fluctuation of the basic component of the single-phase AC signal, as understood from the equation (18), at least the phase controller denominator polynomial C d (•) is used as the phase controller. It is necessary to make one form with one s-factor. When the frequency fluctuation is severe, a high-order controller having two or more phase controllers whose denominator polynomial has two s factors is preferable. The
(10) Shinnaka Shinji: “Control Method for Controlled Object with First-Order Delay Characteristics”, JP-A-2006-031654
請求項3の発明に基づく位相偏差相当値を利用する位相同期器によれば、上述のように、周波数変動・位相変動に対し、高い追随性をもたらす広帯域高次の位相制御器の設計・利用が可能となる。しかも、その設計は簡単である。すなわち、請求項3の発明によれば、周波数変動・位相変動に対し、高い追随性をもたらす広帯域高次の位相制御器の設計・利用が可能となり、その設計を簡単に行えるようになると言う作用が得られる。According to the phase synchronizer using the phase deviation equivalent value based on the invention of
続いて、マルチレイトサンプルホールダ4について説明する。位相同期器3で生成した基
れる。本フィードバックこそが、周波数変動を伴う単相交流信号の位相・周波数検出における有効な解決策であるが、同時に検出システム全体の不安定化をもたらす主要因の1つでもある。Next, the
It is. This feedback is an effective solution for phase / frequency detection of single-phase AC signals with frequency fluctuations, but at the same time is one of the main factors that cause the entire detection system to become unstable.
本フィードバックが存在せず、二相信号生成器の係数として常時一定正値を使用する場合には、図1の全システムは、二相信号生成器とPLLとによる2個の安定な線形時不変サブシステムのフィードフォワード結合となる。この場合の全システムは線形時不変となり、必然的にこの安定性は確保される。ただし、単相交流信号の基本周波数が一定かつ既知で
るフィードバックループを構成し、二相信号生成器の係数を瞬時瞬時に変化した場合、周波数変動を伴う単相交流信号の位相・周波数検出の可能性が出てくるが、上記の時不変を前提とした議論はもはや成立せず、個々のサブシステムが線形で安定であっても、全システムとしては非線形となり、安定性の保証はできない。この種の問題は、二相信号生成器において適応的な係数調整を行っている周波数位相検出法(広くは、基本波成分検出法)では、例外なく直面する深刻な問題である。If this feedback is not present and a constant positive value is always used as the coefficient of the two-phase signal generator, the entire system of FIG. 1 can have two stable linear time-invariants with a two-phase signal generator and a PLL. Subsystem feed-forward coupling. The entire system in this case is linear time-invariant, and inevitably this stability is ensured. However, the fundamental frequency of the single-phase AC signal is constant and known.
If the coefficient of the two-phase signal generator is changed instantaneously and instantaneously, the possibility of phase / frequency detection of a single-phase AC signal with frequency fluctuation appears. However, even if the individual subsystems are linear and stable, the entire system is nonlinear and stability cannot be guaranteed. This type of problem is a serious problem faced without exception in the frequency phase detection method (generally, the fundamental wave component detection method) in which adaptive coefficient adjustment is performed in the two-phase signal generator.
請求項2の発明に基づくマルチレイトサンプルホールダは、本問題を実際的視点から解決するものであり、すなわち、単相交流信号の周波数変動に対する追随性の確保と検出システムの安定性の確保との工学的トレードオフを取ることができる。本ホールダは、瞬時瞬
を担う。すなわち、
Take on. That is,
ホールド時間Thが、二相信号生成器の時定数に比較して同程度以上であれば、全システムの安定性を個々のサブシステムの安定性から確保できるようになる。一方、ホールド時間Thが、単相交流信号の周波数変動に対して、十分に短ければ、変動に対する追随性の確保も可能となる。以上より明白なように、請求項2の発明によれば、基本波成分検出システムの安定性を確保しつつ、周波数変動に対する追随性も達成できると言う作用が得られるようになる。If the hold time Th is equal to or greater than the time constant of the two-phase signal generator, the stability of the entire system can be ensured from the stability of the individual subsystems. On the other hand, hold time T h is, with respect to frequency variation of the single-phase AC signal, if sufficiently short, it is possible also ensure the followability to fluctuations. As is clear from the above, according to the invention of
図1に提供した基本波成分検出システムは、マイコン等の演算素子を利用してソフトウェア的に離散時間実現することが好ましい。特に、適応調整係数をもつフィルタである二相信号生成器は、請求項5の発明に基づき、離散時間実現することが好ましい。離散時間実現による場合、係数の適応的調整は、簡単に実現することができる。すなわち、請求項5の発明によれば、適応機能を簡単に実現できると言う作用が得られるようになる。The fundamental wave component detection system provided in FIG. 1 is preferably realized in discrete time by software using an arithmetic element such as a microcomputer. In particular, the two-phase signal generator which is a filter having an adaptive adjustment coefficient is preferably realized in discrete time based on the invention of
二相信号生成器の離散時間実現をする場合には、他の機器も同様に離散時間すれば、基本波成分検出システムの構成が一段と容易となる。離散時間実現の場合には、処理対象である単相交流信号の基本周波数を基準に、単相交流信号をサンプリング処理するためのサンプリング周期Tsを決定することになる。離散時間実現の基本波成分検出システムでは、マルチレイトサンプルホールダのホールド時間Thはサンプリング周期Tsの整数倍に選定すればよく、また、サンプリング周期Tsとホールド時間Thの2種の信号処理周期が存在することになる。本発明によるサンプルホールダに「マルチレイト」を冠したのは、この点を考慮したためである。In the case of realizing the discrete time of the two-phase signal generator, the configuration of the fundamental wave component detection system can be further facilitated if other devices are similarly discrete timed. In the case of realizing discrete time, the sampling period T s for sampling the single-phase AC signal is determined based on the fundamental frequency of the single-phase AC signal to be processed. The discrete-time realization fundamental component detection system, multirate samples holder hold time T h may be selected to an integral multiple of the sampling period T s, also two signal sampling period T s and the hold time T h There will be a processing cycle. The reason why the sample holder according to the present invention is given "multi-rate" is because of this point.
提供の基本波成分検出法の性能・効果を確認すべく行った数値実験の結果の1例を紹介する。図1に示した基本波成分検出システムの実現は、上述のように、離散時間実現が実際的である。システムの離散時間実現を考慮するならば、数値実験によるシステム性能・効果の検証は、十分に実際的である。An example of the results of a numerical experiment conducted to confirm the performance and effects of the provided fundamental wave component detection method is introduced. As described above, the fundamental wave component detection system shown in FIG. 1 is practically realized in discrete time. If the discrete time realization of the system is taken into consideration, the verification of the system performance and effect by numerical experiments is sufficiently practical.
実験に使用した単相交流信号の条件と主要な設計パラメータは、次のように定めた。
基本的にして最重要な性能・効果の1つである定常時の周波数検出値の脈動を確認すべく、(1)式の単相交流信号に次の理想的条件を付した。
実験結果を図6に示す。同図(a)は時間軸0.02(s/div)で位相真値(破線)θαと同検出値
位相真値と同検出値の表示は、波形データの重複・輻輳をさけるべく、2(rad)相当の原点シフトを行い表示している(以下の位相表示も同様)。周波数検出値、振幅検出値のスケールは、各々0.01(rad/div)、1(V/div)であり、周波数検出値に対し大スケールを利用している点には特に注意されたい。なお、振幅検出値のスケールには、他のスケールとの区別のため、単位(V)を付してある。図より明らかなように、位相、周波数、振幅のいずれも極めて良好に検出されている。大スケールで明示したように、周波数が高周波脈動もなく更には非常に高い精度で検出されている点に注目されたい。文献(3)〜(8)に示された従来のPLL法による周波数検出においては、周波数検出値における高周波脈動の存在は不可避のように思われるが、提供の方法ではこの種の高周波脈動が実質的に消滅している。The experimental results are shown in FIG. FIG (a) the phase true value on the time axis 0.02 (s / div) (dashed line) theta alpha same detection value
The phase true value and the detected value are displayed by shifting the origin corresponding to 2 (rad) in order to avoid duplication / congestion of the waveform data (the same applies to the following phase display). The scales of the frequency detection value and the amplitude detection value are 0.01 (rad / div) and 1 (V / div), respectively, and it should be particularly noted that a large scale is used for the frequency detection value. A unit (V) is added to the scale of the amplitude detection value for distinction from other scales. As is clear from the figure, all of the phase, frequency, and amplitude are detected very well. Note that the frequency is detected with very high accuracy without high frequency pulsation, as demonstrated on a large scale. In the frequency detection by the conventional PLL method shown in the literatures (3) to (8), the presence of high frequency pulsation in the frequency detection value seems unavoidable, but this type of high frequency pulsation is substantially not provided in the provided method. Has disappeared.
本発明による基本波成分検出法の最大の特長は、単相交流信号の基本周波数変動に適応して、位相、周波数を正しく検出できる点にある。本性能・効果を確認すべく、(23)式に代わって次の条件を付した単相交流信号を用意した。
基本周波数の変動としては、文献(3)〜(9)に示された従来のいずれの周波数位相検出法あるいは基本成分検出法によっても困難な極めて大きいものである。The greatest feature of the fundamental wave component detection method according to the present invention lies in that the phase and frequency can be correctly detected by adapting to the fundamental frequency fluctuation of the single-phase AC signal. In order to confirm this performance and effect, a single-phase AC signal with the following conditions was prepared instead of the equation (23).
The fluctuation of the fundamental frequency is extremely large, which is difficult by any of the conventional frequency phase detection methods or fundamental component detection methods shown in documents (3) to (9).
システム設計は、基本性能・効果の場合と同一の(24)式とした。実験結果を図7に示す。
している。周波数の検出は、その変動にもかかわらず、極めて良好である。位相、振幅の検出も同様に良好である。所期の周波数変動に適応した検出が達成されていることが確認される。The system design was the same as that of the basic performance / effect (24). The experimental results are shown in FIG.
doing. The frequency detection is very good despite its variation. The detection of the phase and amplitude is equally good. It is confirmed that detection adapted to the intended frequency fluctuation is achieved.
単相交流信号の位相跳躍に対する本発明による基本波成分検出法の性能・効果を確認すべく、ある瞬時に、大きな位相跳躍φα=π/2(rad)をもつ単相交流信号を用意した。単相交流信号の条件は、位相跳躍以外は、(23)式と同一である。実験結果を図8に示す。同図(a)は時間軸0.05(s/div)で位相真値と同検出値を示している。位相検出値は、位相跳躍後約0.15(s)で再収斂(すなわち、再度の位相ロック)を概ね完了している。同図(b)は、時間軸0.2(s)で眺躍位相、周波数検出値、振幅検出値を示している。周波数検出値と振幅検出値の脈動減衰には、位相跳躍後約0.5(s)を要している。位相検出値の収斂が、周波数検出値、振幅検出値に比して速い主たる理由は、位相制御器直後の積分器による脈動の低減効果によるものである(図5を参照)。In order to confirm the performance and effect of the fundamental wave component detection method according to the present invention for the phase jump of a single-phase AC signal, a single-phase AC signal having a large phase jump φ α = π / 2 (rad) was prepared at an instant. . The conditions for the single-phase AC signal are the same as those in the equation (23) except for the phase jump. The experimental results are shown in FIG. FIG. 4A shows the phase true value and the detected value on the time axis 0.05 (s / div). The phase detection value almost completes reconvergence (that is, phase lock again) at about 0.15 (s) after the phase jump. FIG. 5B shows the view phase, the frequency detection value, and the amplitude detection value on the time axis 0.2 (s). The pulsation attenuation of the frequency detection value and the amplitude detection value requires about 0.5 (s) after the phase jump. The main reason why the phase detection value converges faster than the frequency detection value and the amplitude detection value is due to the effect of reducing the pulsation by the integrator immediately after the phase controller (see FIG. 5).
単相交流信号の振幅変動に対する本発明の基本波成分検出法の性能・効果を確認すべく、ある瞬時に、基準値対し50%の瞬時振幅減少と150%の瞬時振幅増加をもつ単相交流信号を用意した。振幅を除く他の条件に関しては、(23)式と同一である。実験結果を図9に示す。同図(a)は時間軸0.02(s/div)で位相真値と同検出値を、同図(b)は時間軸0.2(s)で周波数検出値、振幅真値、振幅検出値を示している。振幅Vは、1→0.5→1.5と瞬時変化させた。図(a)は、瞬時振幅減少(1→0.5)時のものであるが、位相検出は、振幅変動の影響をほとんど受けていないことが確認される。瞬時振幅増加(0.5→1.5)時の位相検出も同様であった。なお、本振幅増加は、相対的には300%瞬時増加に相当する点には、注意されたい。周波数検出値は、源単相交流信号に起因した周期0.04(s)の脈動をもつが、平均値は安定している。また、振幅検出は、真値と検出値の比較より明らかなように、高速検出に成功している。In order to confirm the performance and effect of the fundamental wave component detection method of the present invention for the amplitude fluctuation of a single-phase AC signal, a single-phase AC having an instantaneous amplitude decrease of 50% and an instantaneous amplitude increase of 150% with respect to a reference value at a certain instant. A signal was prepared. The other conditions excluding the amplitude are the same as the equation (23). The experimental results are shown in FIG. FIG. 5A shows the phase true value and the detected value on the time axis 0.02 (s / div), and FIG. 5B shows the frequency detected value, the amplitude true value, and the amplitude on the time axis 0.2 (s). The detected value is shown. The amplitude V was instantaneously changed from 1 → 0.5 → 1.5. The figure (a) is for the case of instantaneous amplitude decrease (1 → 0.5), but it is confirmed that the phase detection is hardly affected by the amplitude fluctuation. The same applies to the phase detection when the instantaneous amplitude increases (0.5 → 1.5). Note that this increase in amplitude is relatively equivalent to a 300% instantaneous increase. The frequency detection value has a pulsation with a period of 0.04 (s) due to the source single-phase AC signal, but the average value is stable. In addition, amplitude detection has succeeded in high-speed detection, as is clear from comparison between the true value and the detected value.
単相交流信号の歪みに対する本発明の基本波成分検出法の性能・効果を確認すべく、振幅±1の矩形状の単相交流信号を用意した。本矩形信号は振幅V=4/πの基本波成分と高調波成分からなり、高調波成分による極めて高い歪み(48.3%THD)を有している。本信号の歪み以外の条件は、(23)式と同一である。In order to confirm the performance and effect of the fundamental wave component detection method of the present invention against distortion of a single-phase AC signal, a rectangular single-phase AC signal with an amplitude of ± 1 was prepared. This rectangular signal is composed of a fundamental wave component and a harmonic component having an amplitude V = 4 / π, and has extremely high distortion (48.3% THD) due to the harmonic component. Conditions other than the distortion of this signal are the same as in equation (23).
単相交流信号が有する高調波歪みを考慮し、ローパスフィルタ、位相制御器を、以下のように再設計した。
実験結果を図10に示す。同図(a)は時間軸0.02(s/div)で源単相交流信号と位相検出値を、同図(b)は時間軸0.2(s)で周波数検出値と振幅検出値を示している。振幅検出値には、ベクトル回転器直後のローパスフィルタで取りきれなかった高調波(48.3%THDへの寄与分)の残留成分による脈動が見られるが、位相及び周波数は良好に検出されている。なお、図1のシステム構成より明白なように、振幅検出値に関しては、フィードバック再利用は行っていない。従って、振幅検出値の脈動低減の必要に応じ、ノルム計算の前後に追加的なローパスフィルタリング処理を行って、最終的な振幅検出値を決定して問題ない。図10(b)の振幅検出値に対しては、追加的フィルタリングは行っていない。The experimental results are shown in FIG. FIG. 6A shows the source single-phase AC signal and phase detection value on the time axis 0.02 (s / div), and FIG. 5B shows the frequency detection value and amplitude detection value on the time axis 0.2 (s). Is shown. In the amplitude detection value, there are pulsations due to residual components of harmonics (contribution to 48.3% THD) that could not be removed by the low-pass filter immediately after the vector rotator, but the phase and frequency were detected well. Yes. As is clear from the system configuration of FIG. 1, feedback reuse is not performed for the amplitude detection value. Therefore, there is no problem in determining the final amplitude detection value by performing an additional low-pass filtering process before and after the norm calculation as necessary to reduce the pulsation of the amplitude detection value. Additional filtering is not performed on the detected amplitude value in FIG.
ノイズに対する提供の基本波成分検出法の性能・効果を確認すべく、ノイズを有する単相交流信号を用意した。ノイズは、±0.5の間で一様に分布した白色ノイズとした。単相交流信号基本波成分の振幅V=1を考慮すると、本ノイズレベルは極めて高いと言える。本信号のノイズ以外の条件は、(23)式と同一である。また、ローパスフィルタ、位相制御器の設計は、(26)式と同一である。In order to confirm the performance and effect of the provided fundamental wave component detection method against noise, a single-phase AC signal having noise was prepared. The noise was white noise distributed uniformly between ± 0.5. Considering the amplitude V = 1 of the single-phase AC signal fundamental wave component, it can be said that this noise level is extremely high. Conditions other than the noise of this signal are the same as in equation (23). The design of the low-pass filter and the phase controller is the same as the equation (26).
実験結果を図11に示す。同図(a)は位相真値と同検出値を、同図(b)は源単相交流信号、周波数検出値、振幅検出値を示している。時間軸は共に0.02(s/div)である。高いノイズレベルにもかかわらず、位相、周波数、振幅ともノイズの影響をほとんど受けず適切に検出されている。The experimental results are shown in FIG. FIG. 4A shows the phase true value and the detected value, and FIG. 4B shows the source single-phase AC signal, the frequency detection value, and the amplitude detection value. Both time axes are 0.02 (s / div). Despite a high noise level, the phase, frequency, and amplitude are not affected by noise and are properly detected.
以上の実験結果より明瞭に確認されたように、本発明が提供する基本波成分検出法は、文献(3)〜(9)の従来方法では達成不可能あるいは困難な性能を示しており、総合的には非常に高い性能・効果を有するものである。As can be clearly seen from the above experimental results, the fundamental wave component detection method provided by the present invention exhibits performance that is impossible or difficult to achieve with the conventional methods of Documents (3) to (9). In particular, it has very high performance and effects.
続いて、請求項1、2、4の発明に基づく実施形態例を説明する。図12は、単相交流信号の基本波成分の瞬時検出ための検出システムに関し、請求項1、2、4の発明に基づき構成した1実施形態例である。同システムは、二相信号生成器1、振幅・位相検出器5、周波数検出器6、マルチレイトサンプルホールダ4と言う4個のサブシステムから構成されている。システムの入力信号として単相交流信号vを受け、同信号の位相、周波数、振
成器1へフィードバックされ、再利用されている。すなわち本発によるシステムは、システム全体としては、適応的な検出システムとなっている。しかし、提供の基本波成分検出システムは、位相同期器を有せず、PLLシステムではない。この点には、注意されたい。以下、これらサブシステムの詳細を個別に説明する。Subsequently, embodiments according to the inventions of
It is fed back to the
図12の基本波成分検出システムにおける二相信号生成器1、マルチレイトサンプルホールダ4の役割、作用は、図1の検出システムのそれらと同一である。すなわち、図12の検出システムにおける二相信号生成器1、マルチレイトサンプルホールダ4としては、図1の検出システムのものと同一のものが使用できる。これらサブシステムの実施形態例に関しては、既に、図1の基本波成分検出システムに関連して詳しく説明したので、ここでの説明は省略する。The roles and actions of the two-
図13は、新規サブシステムの1つである振幅・位相検出器の1構成例である。同図におけるFb(・)はバンドフィルタであり、その第1の役割は、入力の2相信号να,νβに含まれるノイズ等の除去し、これを取り除いた2相信号ναb,νβbの生成にある。第2の役割は、2相信号ναb,νβbの微分値に対応した信号(微分信号)を生成することある。FIG. 13 is a configuration example of an amplitude / phase detector which is one of the new subsystems. F b (•) in the figure is a band filter, and its first role is to remove noise and the like contained in the input two-phase signals ν α and ν β and remove the two-phase signals ν αb , It is in the generation of ν βb . The second role is to generate a signal (differential signal) corresponding to the differential value of the two-phase signals ν αb and ν βb .
バンドパスフィルタの中心周波数は、マルチレイトサンプルホールダから得た周波数検出値を利用して適応的調整するようにしている。同図では、本適応調整の様子を貫徹矢印で表現している。適応調整される可変の係数を持つバンドパスフィルタの構成の1例に関しては、既に、二相信号生成器に関連して、(5)式、(6)式及び図2、図3を用い詳しく説明した(Gβ(・)がバンドパスフィルタに対応)。同様のバンドパスフィルタをここでも使用することができる。ただし、これらの使用においては、(7)式の係数gが概略的なパスバンド値となることを考慮して、係数gを決定する必要がる。当業者には容易に理解されるように、これ以外の公知のバンドパスフィルタを利用しても、もちろんよい。ただし、使用するバンドパスフィルタの中心周波数は、周波数検出値に従い、可変とする必要がある。The center frequency of the bandpass filter is adaptively adjusted using a frequency detection value obtained from the multi-rate sample holder. In the figure, the state of this adaptive adjustment is represented by a penetrating arrow. Regarding an example of the configuration of a band-pass filter having a variable coefficient that is adaptively adjusted, it has already been described in detail using Equations (5) and (6) and FIGS. 2 and 3 in connection with the two-phase signal generator. As described (G β (•) corresponds to a bandpass filter). A similar bandpass filter can be used here as well. However, in these uses, it is necessary to determine the coefficient g in consideration of the fact that the coefficient g in the equation (7) becomes a rough passband value. Of course, other known bandpass filters may be used, as will be readily understood by those skilled in the art. However, the center frequency of the bandpass filter to be used needs to be variable according to the frequency detection value.
図3のバンドパスフィルタの例から明白なように、バンドパスフィルタにおいては、バンドパスフィルタリングで得た信号と同時にこの微分信号も同時に生成することが可能である。図3の例では、微分形の矩相信号が、バンドパスフィルタリング信号である同相信号の微分信号に対応する。図3の例に限らず、一般に、バンドパスフィルタにおいては、バンドパスフィルタリングで得た信号と同時にこの微分信号も同時に生成することが可能である。As is apparent from the example of the bandpass filter of FIG. 3, in the bandpass filter, this differential signal can be generated simultaneously with the signal obtained by the bandpass filtering. In the example of FIG. 3, the differential quadrature signal corresponds to the differential signal of the in-phase signal that is the bandpass filtering signal. In general, the bandpass filter is not limited to the example of FIG. 3, and the differential signal can be generated simultaneously with the signal obtained by the bandpass filtering.
バンドパスフィルタの役割から明白なように、二相信号生成器から得た2相信号に含まれるノイズ等が少ない場合には、本バンドフィルタは省略してよい。ただし、この場合には、二相信号生成器から得た2相信号に対して微分相当の処理を施し、これらの微分相当信号を生成する必要がある。バンドパスフイルタを省略する場合には、本バンドパスフィルタを微分器と読み換えることになる。微分相当信号の生成においては、当然のことながら、周波数検出値を利用する必要はない。As apparent from the role of the bandpass filter, this band filter may be omitted when the noise or the like contained in the two-phase signal obtained from the two-phase signal generator is small. However, in this case, it is necessary to perform a differential equivalent process on the two-phase signal obtained from the two-phase signal generator to generate these differential equivalent signals. When the bandpass filter is omitted, this bandpass filter is replaced with a differentiator. In the generation of the differential equivalent signal, as a matter of course, it is not necessary to use the frequency detection value.
図13に提供した振幅・位相検出器5では、フィルタ処理後の2相信号ναb,νβbが得られたならば、これら2相信号の逆正接処理により、源の単相交流信号の位相を検出している。すなわち、
図13に提供した振幅・位相検出器5では、フィルタ処理後の2相信号のノルム計算を通じて、単相交流信号の基本波成分の振幅を検出している。すなわち、
図13に提供した振幅・位相検出器5では、次の(29)式に示したように、フィルタ処理後の2相信号を(28)式の振幅検出値で除して、正規化したフィルタ処理信号を生成し、周波数検出器へ向け出力している。
図13に提供した振幅・位相検出器5では、次の(31)式に示したように、バンドパスフィルタ信号の微分値を(28)式の振幅検出値で除すことにより、位相ベクトルの微分相当信号を生成し、周波数検出器へ向け出力している。
新規サブシステムの1つである周波数検出器は、請求項4の発明に従って構成されている。本発明に基づく構成の1例は、次の簡単なベクトル内積式として記述することができる。
当業者には容易に理解されるように、(27)式に示した位相検出値に対する微分相当の処理を通じても(すなわち、(32)式第1式に直接的に従った処理を通じても)、周波数を検出することは可能である。位相そのものに代わって、位相ベクトルを必要とする応用が多く、これらの応用においては、(32)式の第3式に提供した周波数検出値がより有用である。As will be readily understood by those skilled in the art, even through a process corresponding to the differentiation with respect to the phase detection value shown in the expression (27) (that is, through a process directly according to the first expression of the expression (32)), It is possible to detect the frequency. There are many applications that require a phase vector instead of the phase itself, and in these applications, the frequency detection value provided in the third equation of equation (32) is more useful.
図1の基本波成分検出システムと同様に、図12の基本波成分検出システムも、マイコン等の演算素子を利用してソフトウェア的に離散時間的に実現することが好ましい。マイコン等による離散実現による場合、振幅・位相検出器5、周波数検出器6は一段と容易に実現することができる。Similar to the fundamental wave component detection system of FIG. 1, the fundamental wave component detection system of FIG. 12 is preferably realized in discrete time by software using an arithmetic element such as a microcomputer. In the case of discrete implementation by a microcomputer or the like, the amplitude /
以上説明した振幅・位相検出器5、周波数検出器6は、いずれも請求項4の発明に基づくものである。以上の説明より明白なように、請求項4の発明によれば、基本波成分の位相を求めることなく、多くの応用が必要とする位相ベクトルを直接的に得ることができる。また、前段処理としてバンドパスフィルタリングが行われる場合には、追加的な微分処理の要もなく、位相ベクトルの微分信号を得ることができ、簡単な内積的な計算で基本波成分の周波数検出値を得ることができる。この結果、請求項4の発明によれば、大変軽い演算で、変動を伴う基本波成分の位相ベクトルと周波数を得ることができると言う作用が得られる。しかも、図12の検出システムは、図1に示した検出システムと異なり、フィードバックループの1種であるPLLを構成する必要がない。当然、PLL安定化のための位相偏差相当値の検出、位相偏差相当値を利用した位相制御器の設計と構成も必要ない。ひいては、請求項4の発明によれば、PLLに起因したシステム不安定化要因を低減でき、システム設計も簡単になると言う作用も得られる。Both the amplitude /
次に、本発明の提供する基本波成分検出システムを活用した単相交流電源系統連系のための電力変換装置の1実施形態例を説明する。図14はこの種の電力変換装置の構成の1例である。10が電力変換装置であり、変動周波数に適応して位相検出が可能な基本波成分検出システム10−4に加えて、10−1〜10−3からなる他の主要構成機器から構成されている。10−1はインバータ、10−2はフィードバック電流制御器、10−3は電流指令生成器である。本電力変換装置の目的は、単相交流電源系統の電圧との位相差を考慮した電流制御を通じ、インバータを系統へ連系させることであり、これら4機器が主たる機能を担う。インバータと電流制御器は、フィードバック電流制御系を構成している。電流制御制御系を適切に設計・構成できれば、電流指令通りの電流を系統側と授受できる。この種の電力変換装置の主たる問題は、フィードバック電流制御系のための電流指令の生成にある。Next, a description will be given of an embodiment of a power conversion device for a single-phase AC power system interconnection utilizing a fundamental wave component detection system provided by the present invention. FIG. 14 shows an example of the configuration of this type of power conversion device.
単相交流電源系統の電圧の実測電圧は(1)式のν(t)であるとし、検出対象は基本波成分の周波数ωαと位相ベクトルである。この周波数は概略値(例えば、平均的な値)は既知であるが、変動するものとする。電流制御のための電流指令i*(t)は、所期の電流波高値、電
考慮の上、以下のように構成することになる。
Actual measurement voltage of the voltage of the single-phase AC power supply system is to be (1) of [nu (t), detected is the frequency omega alpha and phase vector of the fundamental wave component. This frequency is assumed to vary, although an approximate value (for example, an average value) is known. The current command i * (t) for current control is the current peak value,
The following configuration is taken into consideration.
(34)式が明示しているように、系統連系のための電流指令の生成には、系統電圧の基本波成分の位相あるいは位相ベクトルの検出が不可欠である。周波数変動を伴う場合の位相あるいは位相ベクトルの検出には、図1〜13を用いて既に詳しく説明したように、変動する周波数の検出が同時に必要である。電流制御が瞬時瞬時に遂行されることを考慮するならば、このときの位相あるいは位相ベクトルの検出は、時間遅れのない瞬時検出でなくてはならない。図14の電力変換装置では、図1、図12に例示したような本発明による基本波成分検出システムを利用して、周波数の瞬時検出を行いつつ、位相あるいは位相ベクトルの瞬時検出を行い、所期の機能を実現している。As the equation (34) clearly shows, detection of the phase or phase vector of the fundamental component of the system voltage is indispensable for generating a current command for system interconnection. Detection of a phase or a phase vector in the case of accompanying frequency fluctuations requires simultaneous detection of fluctuating frequencies as already described in detail with reference to FIGS. If it is considered that the current control is performed instantaneously, the phase or phase vector at this time must be detected instantaneously without time delay. In the power conversion device of FIG. 14, the fundamental wave component detection system according to the present invention as illustrated in FIGS. 1 and 12 is used to instantaneously detect the phase or phase vector while instantaneously detecting the frequency. The function of the period is realized.
次に、離散時間実現した基本波成分検出システムを活用した単相交流電源系統連系のための電力変換装置の例を説明する。図15はこの1例である。図14に対する図15の違いは、基本波成分検出システム10−4が当初より離散時間実現され、これに応じ、基本波成分検出システム10−4の入力端前に連続時間信号をサンプリングして離散時間信号を生成するサンプラーが設置され、出力端に離散時間信号を連続時間信号に変換する0次ホールド回路が設置されている点にある。この点を除く、電力変換器を構成するインバータ10−1、フィードバック電流制御器10−2、電流指令生成器10−3に関しては、図14と本質的違いはない。このため、これらの説明は省略する。Next, an example of a power conversion device for a single-phase AC power supply system interconnection utilizing a fundamental wave component detection system realized in discrete time will be described. FIG. 15 shows an example of this. The difference between FIG. 15 and FIG. 15 is that the fundamental wave component detection system 10-4 is realized in discrete time from the beginning, and in accordance with this, a continuous time signal is sampled before the input end of the fundamental wave component detection system 10-4 and discrete. A sampler that generates a time signal is installed, and a zero-order hold circuit that converts a discrete-time signal into a continuous-time signal is installed at the output end. Except for this point, the inverter 10-1, the feedback current controller 10-2, and the current command generator 10-3 constituting the power converter are not substantially different from those in FIG. Therefore, these descriptions are omitted.
以上、図1〜図15を用いて、本発明による単相交流信号のための基本波成分検出方法を、更には、単相交流電源系統連系のための電力変換装置を例に同検出方法の利用法を詳しく説明した。本発明による基本波成分検出システムの利用は、図14、図15の電力変換装置に限定されるものでないこと、無停電電源装置、電源高調波抑制装置、単相変圧器用突入電流防止装置、特殊充電器、電源同期検出装置など、他に種々存在することを指摘しておく。1 to 15, the fundamental wave component detection method for a single-phase AC signal according to the present invention, and further, the same detection method as an example of a power converter for a single-phase AC power system interconnection Explained in detail how to use. The use of the fundamental wave component detection system according to the present invention is not limited to the power converters shown in FIGS. 14 and 15, uninterruptible power supply, power harmonic suppressor, single-phase transformer inrush current prevention device, special It should be pointed out that there are various other devices such as a charger and a power supply synchronization detection device.
以上の説明より明白なように、本発明は以下の効果を奏する。特に、請求項1の発明によれば、適応システムの1種である、周波数変動の単相交流信号に対する基本波成分検出システムの安定性を二相信号生成器の観点から向上させることができると言う作用が得られた。本作用の結果、請求項1の発明によれば、単相交流信号の基本波成分の周波数が大きく変動する場合にも、基本波成分の周波数、位相、加えて振幅をも、より安定的に検出できると言う効果が得られる。特に、一定周波数の単相交流信号に対しては、脈動の無い周波数検出値を得ることができると言う効果が得られる。As is clear from the above description, the present invention has the following effects. In particular, according to the first aspect of the present invention, the stability of the fundamental wave component detection system with respect to a single-phase AC signal with frequency fluctuation, which is a kind of adaptive system, can be improved from the viewpoint of a two-phase signal generator. The action to say was obtained. As a result of this action, according to the first aspect of the present invention, even when the frequency of the fundamental wave component of the single-phase AC signal fluctuates greatly, the frequency, phase, and amplitude of the fundamental wave component can be more stably increased. The effect that it can detect is acquired. In particular, for a single-phase AC signal having a constant frequency, an effect that a frequency detection value without pulsation can be obtained is obtained.
特に、請求項2の発明によれば、基本波成分検出システムの安定性を確保しつつ、周波数変動に対する追随性も達成できると言う作用が得られるようになった。本作用の結果、請求項2の発明によれば、システムの安定性と周波数変動に対する適応性と言う相反する特性を、妥協的ではあるが同時に満足せることができ、安定で真に適応的な周波数位相検出が可能となると言う効果が得られる。In particular, according to the second aspect of the present invention, it is possible to obtain the effect that the tracking performance with respect to the frequency fluctuation can be achieved while ensuring the stability of the fundamental wave component detection system. As a result of this action, according to the invention of
特に、請求項3の発明によれば、周波数変動・位相変動に対し、高い追随性をもたらす広帯域高次の位相制御器の設計・利用が可能となり、その設計を簡単に行えるようになると言う作用が得られた。本作用の結果、請求項3の発明によれば、安定性を損なうことなく、周波数変動・位相変動に対する高い追随性・適応性を達成した周波数位相検出が可能となると言う効果が得られる。In particular, according to the third aspect of the invention, it is possible to design and use a broadband high-order phase controller that provides high followability with respect to frequency fluctuation and phase fluctuation, and the design can be easily performed. was gotten. As a result of this action, according to the invention of
特に、請求項4の発明によれば、フィードバックループの1種であるPLLを構成することなく、換言するならば、PLLに起因したシステムの不安定化要因を低減した形で、大変軽い演算で、変動を伴う基本波成分の位相ベクトルと周波数を得ることができると言う作用が得られた。また、システム設計も簡単になると言う作用も得られた。これら作用の結果、請求項4の発明によれば、更に安定性を向上させた形で、しかも簡単に、適応的な周波数位相検出ができるようになると言う効果が得られる。In particular, according to the invention of
特に、請求項5の発明によれば、適応機能を簡単に実現できると言う作用が得られた。本作用の結果、請求項5の発明によれば、提供の基本波成分検出法を簡単に実現できるようになると言う効果、すなわち適応システムである基本波成分検出システムを簡単に実現できるようになると言う効果が得られる。In particular, according to the invention of
発明による効果に関しては、詳細かつ多数の実験データを通じて実験的に実証した。すなわち、周波数変動、位相跳躍、振幅変動、信号歪み、ノイズ混入などが高いレベルで存在する場合にも、基本波成分の位相、周波数に加え、更には振幅の良好な適応的検出が可能であるという性能・効果を実験的に実証した。これら実験データは、本発明による基本波成分検出システムは文献(3)〜(9)などの従来方法では達成不可能あるいは困難な性能を達成していること、ひいては、本発明は総合的には非常に高い効果を有するものであることを実証するものである。The effect of the invention was experimentally verified through detailed and numerous experimental data. That is, even when frequency fluctuation, phase jump, amplitude fluctuation, signal distortion, noise mixing, etc. are present at a high level, it is possible to adaptively detect not only the phase and frequency of the fundamental wave component but also the amplitude. We have experimentally demonstrated the performance and effects. These experimental data show that the fundamental wave component detection system according to the present invention achieves performance that is impossible or difficult to achieve by conventional methods such as documents (3) to (9). This demonstrates that it has a very high effect.
1 二相信号生成器
2 振幅・位相偏差検出器
3 位相同期器
3−1 位相制御器
3−2 位相積分器
4 マルチレイトサンプルホールダ
5 振幅・位相検出器
5−1 バンドパスフィルタ
6 周波数検出器
10 電力変換装置
10−1 インバータ
10−2 フィードバック電流制御器
10−3 電流指令生成器
10−4 基本波成分検出システムDESCRIPTION OF
Claims (5)
矩相信号生成用の該安定フィルタの特性をバンドパス特性に微分特性あるいは積分特性を付加した特性とし、検出した該基本波成分周波数を用いて、該対応位相検出値が同真値にあるいは該対応位相余弦正弦検出値が同真値に収斂するように、バンドパス特性の中心周波数に対応した可変フィルタ係数のみを適応調整し、通過帯域幅に対応した係数は一定に保持するようにしたことを特徴とする未知変動周波数の単相交流信号の基本波成分検出方法。 Unknown π / 2 (rad) phase to the fundamental wave component advances or lag quadrature phase signals of the single-phase AC signal with a frequency variation, unknown variation frequency using a feedback adaptive filter having a stable variable filter coefficients The phase cosine sine value corresponding to the fluctuation frequency and fluctuation frequency of the fundamental wave component or the phase corresponding to the fluctuation frequency and fluctuation frequency of the fundamental wave component is generated using at least the generated quadrature signal. A method of detecting a fundamental wave component of a single-phase AC signal having an unknown variation frequency at least detected,
The characteristic of the stable filter for generating a quadrature signal is a characteristic obtained by adding a differential characteristic or an integral characteristic to a bandpass characteristic, and the detected detected fundamental wave frequency is used to make the corresponding phase detection value equal to the true value or Only the variable filter coefficient corresponding to the center frequency of the bandpass characteristic is adaptively adjusted so that the corresponding phase cosine sine detection value converges to the same true value, and the coefficient corresponding to the passband width is held constant. The fundamental wave component detection method of the single phase alternating current signal of the unknown fluctuation frequency characterized by these.
該変動周波数単相交流信号より検出した該基本波成分周波数を用いて、矩相信号生成用の該安定フィルタの特性を支配する可変フィルタ係数を、周波数検出期間より長い期間一定に保ちつつ適応調整するようにしたことを特徴とする未知変動周波数の単相交流信号の基本波成分検出方法。 Unknown π / 2 (rad) phase to the fundamental wave component advances or lag quadrature phase signals of the single-phase AC signal with a frequency variation, unknown variation frequency using a feedback adaptive filter having a stable variable filter coefficients The phase cosine sine value corresponding to the fluctuation frequency and fluctuation frequency of the fundamental wave component or the phase corresponding to the fluctuation frequency and fluctuation frequency of the fundamental wave component is generated using at least the generated quadrature signal. A method of detecting a fundamental wave component of a single-phase AC signal having an unknown variation frequency at least detected,
Using the fundamental wave component frequency detected from the single-phase AC signal with variable frequency, adaptive adjustment is performed while keeping the variable filter coefficient governing the characteristics of the stable filter for generating the quadrature signal constant for a period longer than the frequency detection period. A fundamental wave component detection method for a single-phase AC signal having an unknown variation frequency , characterized by comprising:
該変動周波数単相交流信号より検出した該基本波成分位相をフィードバック利用して位相真値と位相検出値との推定的偏差である位相偏差相当値を先ず決定し、位相偏差相当値を用いて該基本波成分の周波数検出値を次に決定し、続いて、該基本波成分の検出変動周波数の積分相当の処理を通じて該基本波成分位相を検出するようにしたことを特徴とする請求項1または請求項2のいずれか一項に記載の未知変動周波数の単相交流信号の基本波成分検出方法。 A method for detecting a fundamental component of a single-phase AC signal having an unknown variation frequency according to any one of claims 1 and 2,
First, a phase deviation equivalent value, which is an estimated deviation between the phase true value and the phase detection value, is determined using feedback of the fundamental wave component phase detected from the variable frequency single-phase AC signal, and the phase deviation equivalent value is used. then determining a frequency detected value of the fundamental wave component, followed by claim 1, characterized in that to detect the fundamental wave component phase through integration equivalent processing detection fluctuation frequency of the fundamental wave component Or the fundamental wave component detection method of the single phase alternating current signal of the unknown fluctuation frequency as described in any one of Claim 2 .
該変動周波数単相交流信号の該基本波成分の該位相余弦正弦値を先ず検出し、次に、検出した位相余弦正弦値の微分相当の処理を行ない位相余弦正弦微分相当値を生成し、該位相余弦正弦値と位相余弦正弦微分相当値との内積的演算処理を通じて該基本波成分の該周波数を検出するようにしたことを特徴とする未知変動周波数の単相交流信号の基本波成分検出方法。 Unknown π / 2 (rad) phase to the fundamental wave component advances or lag quadrature phase signals of the single-phase AC signal with a frequency variation, unknown variation frequency using a feedback adaptive filter having a stable variable filter coefficients the generated from the single-phase AC signals, using the generated rectangular phase signals at least, a single-phase AC signals of unknown variation frequency to detect the phase cosine and sine value corresponding to the variation frequency and the variation frequency of the fundamental wave component A method of detecting a fundamental wave component,
First, the phase cosine sine value of the fundamental wave component of the variable frequency single-phase AC signal is detected, and then processing corresponding to differentiation of the detected phase cosine sine value is performed to generate a phase cosine sine differential equivalent value, A method of detecting a fundamental wave component of a single-phase alternating current signal having an unknown variation frequency , wherein the frequency of the fundamental wave component is detected through an inner product calculation process of a phase cosine sine value and a phase cosine sine differential equivalent value. .
The fundamental component of the variable frequency single-phase AC signal according to any one of claims 1, 2, 3, and 4 , wherein the stable filter is realized as a digital filter in discrete time. Detection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006350594A JP5470677B2 (en) | 2006-11-29 | 2006-11-29 | Method for detecting fundamental wave component of single-phase AC signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006350594A JP5470677B2 (en) | 2006-11-29 | 2006-11-29 | Method for detecting fundamental wave component of single-phase AC signal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008141935A JP2008141935A (en) | 2008-06-19 |
JP5470677B2 true JP5470677B2 (en) | 2014-04-16 |
Family
ID=39602828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006350594A Active JP5470677B2 (en) | 2006-11-29 | 2006-11-29 | Method for detecting fundamental wave component of single-phase AC signal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5470677B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2354800A1 (en) * | 2010-02-01 | 2011-08-10 | ABB Research Ltd | Method of and apparatus for determining fundamental frequency component of the grid voltage |
CN102033164B (en) * | 2010-11-16 | 2012-09-26 | 哈尔滨工业大学 | Method and system for calculating sequence of fundamental component sampled signals of electric signals |
KR101736531B1 (en) * | 2013-10-18 | 2017-05-16 | 엘에스산전 주식회사 | Apparatus for restarting medium-voltage inverter |
KR102213786B1 (en) * | 2014-10-15 | 2021-02-08 | 엘에스일렉트릭(주) | Apparatus for restarting medium-voltage inverter |
CN105425011B (en) * | 2015-11-05 | 2018-01-02 | 山东大学 | A kind of non-linear width phase detection method suitable for single-phase network deformation |
WO2019013733A1 (en) * | 2017-07-12 | 2019-01-17 | Дмитрий Валерьевич ХАЧАТУРОВ | Method of determining the fundamental frequency component of a supply network voltage |
DE102017007037B4 (en) * | 2017-07-26 | 2020-07-16 | Leopold Kostal Gmbh & Co. Kg | Network evaluation and setpoint generation procedures |
CN111896803B (en) * | 2020-07-03 | 2023-03-31 | 国网江苏省电力有限公司电力科学研究院 | Power system frequency detection method, computer readable storage medium and device |
CN111624392B (en) * | 2020-07-20 | 2022-11-22 | 平顶山学院 | Method, device and equipment for detecting fundamental wave current of single-phase circuit |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5627664A (en) * | 1979-08-15 | 1981-03-18 | Toshiba Corp | Single-phase ac signal phase detector |
JPS6175270A (en) * | 1984-09-20 | 1986-04-17 | Mitsubishi Electric Corp | Ac measuring apparatus |
JPS6222075A (en) * | 1985-07-22 | 1987-01-30 | Mitsubishi Electric Corp | Ac measuring instrument |
JPH05136692A (en) * | 1991-11-15 | 1993-06-01 | Toshiba Corp | All digital power supply synchronization phase fixing device |
JPH07171119A (en) * | 1993-10-15 | 1995-07-11 | Hewlett Packard Co <Hp> | Heart rate variable measuring method |
JPH07225250A (en) * | 1994-02-10 | 1995-08-22 | Shinko Electric Co Ltd | Phase detector |
JPH0851338A (en) * | 1994-05-31 | 1996-02-20 | Icom Inc | Band-pass ellipse digital filter system |
JPH09211038A (en) * | 1996-01-31 | 1997-08-15 | Hitachi Ltd | Diagnosing apparatus for phase/amplitude detecting apparatus, phase detecting apparatus, amplitude detecting apparatus, frequency detecting apparatus, phase/amplitude/frequency detecting apparatus |
FR2758221B1 (en) * | 1997-01-07 | 1999-03-26 | Ela Medical Sa | DEVICE FOR FILTERING HEART ACTIVITY SIGNALS |
JP3053002B2 (en) * | 1997-02-10 | 2000-06-19 | サンケン電気株式会社 | Frequency measurement method and device |
JP3779041B2 (en) * | 1997-07-17 | 2006-05-24 | 株式会社指月電機製作所 | Active filter device |
JPH11103324A (en) * | 1997-09-26 | 1999-04-13 | Japan Radio Co Ltd | Fsk demodulator |
JP2003079154A (en) * | 2001-08-30 | 2003-03-14 | Toshiba Transport Eng Inc | Electric railway power synchronizing signal detector |
JP4076391B2 (en) * | 2002-07-30 | 2008-04-16 | 山洋電気株式会社 | Periodic signal control device and frequency detection device |
JP2005003530A (en) * | 2003-06-12 | 2005-01-06 | Toshiba Corp | Phase detector |
JP5217075B2 (en) * | 2004-10-30 | 2013-06-19 | 日本電産株式会社 | Single-phase AC signal phase detection method and power converter using the same method |
-
2006
- 2006-11-29 JP JP2006350594A patent/JP5470677B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008141935A (en) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5470677B2 (en) | Method for detecting fundamental wave component of single-phase AC signal | |
Wang et al. | A method to improve the dynamic performance of moving average filter-based PLL | |
Huang et al. | An improved delayed signal cancellation PLL for fast grid synchronization under distorted and unbalanced grid condition | |
Gude et al. | Three-phase PLLs by using frequency adaptive multiple delayed signal cancellation prefilters under adverse grid conditions | |
Shinnaka | A robust single-phase PLL system with stable and fast tracking | |
Gude et al. | Dynamic performance improvement of multiple delayed signal cancelation filters based three-phase enhanced-PLL | |
Subramanian et al. | Single-phase grid voltage attributes tracking for the control of grid power converters | |
CN111954916B (en) | Adaptive control for power generator | |
Ghoshal et al. | A method to improve PLL performance under abnormal grid conditions | |
Thacker et al. | Phase-locked loops using state variable feedback for single-phase converter systems | |
Ullah et al. | Comparison of synchronization techniques under distorted grid conditions | |
CN101617234A (en) | Advanced real-time grid monitoring system | |
KR102160883B1 (en) | An apparatus of current control for harmonic compensation in grid connected inverter | |
Sinha et al. | A pre-filter based PLL for three-phase grid connected applications | |
US20070189045A1 (en) | Power system having a voltage regulator with a notch filter | |
Gude et al. | Dynamic performance enhancement of single-phase and two-phase enhanced phase-locked loops by using in-loop multiple delayed signal cancellation filters | |
Ghoshal et al. | Performance evaluation of three phase SRF-PLL and MAF-SRF-PLL | |
TWI604697B (en) | Phase-locked loop method for a utility parallel system | |
Liu et al. | A new single-phase PLL based on discrete Fourier transform | |
Sevilmiş et al. | Efficient implementation and performance improvement of three‐phase EPLL under non‐ideal grid conditions | |
Rasheduzzaman et al. | A modified SRF-PLL for phase and frequency measurement of single-phase systems | |
Luna et al. | A new PLL structure for single-phase grid-connected systems | |
Misra et al. | Second order generalized integrator based synchronization technique for polluted grid conditions | |
Gude et al. | Three-phase grid synchronization PLL using multiple delayed signal cancellation under adverse grid voltage conditions | |
Elsahwi et al. | A digital frequency adaptive synchronization unit for on-and off-grid systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091027 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20101111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120925 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121122 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130611 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130910 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130913 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20131007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140120 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5470677 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |