JP5470099B2 - Boiling water nuclear plant and steam dryer - Google Patents

Boiling water nuclear plant and steam dryer Download PDF

Info

Publication number
JP5470099B2
JP5470099B2 JP2010048564A JP2010048564A JP5470099B2 JP 5470099 B2 JP5470099 B2 JP 5470099B2 JP 2010048564 A JP2010048564 A JP 2010048564A JP 2010048564 A JP2010048564 A JP 2010048564A JP 5470099 B2 JP5470099 B2 JP 5470099B2
Authority
JP
Japan
Prior art keywords
steam
boiling water
water nuclear
steam dryer
dryer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010048564A
Other languages
Japanese (ja)
Other versions
JP2011185627A (en
Inventor
祐子 日野
一成 石田
直志 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010048564A priority Critical patent/JP5470099B2/en
Priority to US13/030,189 priority patent/US8774342B2/en
Publication of JP2011185627A publication Critical patent/JP2011185627A/en
Application granted granted Critical
Publication of JP5470099B2 publication Critical patent/JP5470099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • G21C19/30Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps
    • G21C19/317Recombination devices for radiolytic dissociation products
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • G21C19/30Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Gases (AREA)

Description

本発明は、沸騰水型原子力プラント、および該沸騰水型原子力プラントに設置された蒸気乾燥器に関する。   The present invention relates to a boiling water nuclear plant and a steam dryer installed in the boiling water nuclear plant.

沸騰水型原子力プラントの構成例について説明する。沸騰水型原子力プラントを構成する原子炉圧力容器内には、炉心,気水分離器,蒸気乾燥器が設置されている。炉心の上部に設置された気水分離器は、炉心で発生した蒸気を冷却水から分離し、気水分離器の上部に設置された蒸気乾燥器は、気水分離器で分離された蒸気から液滴を除去する。蒸気乾燥器で液滴量が一定値以下になるよう乾燥された蒸気は、主蒸気ノズルから主蒸気ラインを通じて蒸気タービンに供給される。   A configuration example of the boiling water nuclear power plant will be described. A reactor core, a steam separator, and a steam dryer are installed in the reactor pressure vessel constituting the boiling water nuclear power plant. The steam separator installed at the top of the core separates the steam generated in the core from the cooling water, and the steam dryer installed at the top of the steam separator separates from the steam separated by the steam separator. Remove the droplets. The steam dried by the steam dryer so that the droplet amount becomes a certain value or less is supplied from the main steam nozzle to the steam turbine through the main steam line.

上記のように構成された沸騰水型原子力プラントでは、炉心において、炉水の酸素(O−16)と中性子との反応により放射性窒素(N−16)が生成する。このN−16は、半減期が7.1秒で、高エネルギーガンマ線(6.129MeV)を放出する。生成したN−16のうち、揮発性が高いアンモニア(NH3)や一酸化窒素(NO)の化学形態をとるものは、炉水中に滞留せず、揮発して蒸気とともに蒸気タービンに到達するため、タービン系における線量増加の要因となっている。 In the boiling water nuclear power plant configured as described above, radioactive nitrogen (N-16) is generated in the reactor core by a reaction between oxygen (O-16) in the reactor water and neutrons. This N-16 has a half-life of 7.1 seconds and emits high energy gamma rays (6.129 MeV). Among the produced N-16, those that take the chemical form of ammonia (NH 3 ) or nitric oxide (NO) with high volatility do not stay in the reactor water but volatilize and reach the steam turbine together with the steam. This is a cause of increased dose in turbine systems.

近年、沸騰水型原子力プラントでは、原子炉圧力容器内の炉水中の溶存酸素を低減させて原子炉圧力容器やその内部構造物の構造材料の応力腐食割れを防止するために、水素注入が行われている。しかし、水素注入量が増加すると、ある水素注入量の値を境に急激にタービン系の放射線線量率が上昇する傾向がある。これは、通常運転中は硝酸イオン等の揮発性の低い化学形態で炉水中に溶解しているN−16が、水素注入により還元されて揮発性が高いNH3やNOの化学形態となり、主蒸気に同伴されるためである。放射線線量率の上昇のため、注入できる水素量には上限が設定される。 In recent years, in boiling water nuclear power plants, hydrogen injection has been performed to reduce the dissolved oxygen in the reactor water in the reactor pressure vessel and prevent stress corrosion cracking of the structural material of the reactor pressure vessel and its internal structure. It has been broken. However, when the amount of hydrogen injection increases, the radiation dose rate of the turbine system tends to increase abruptly at a certain hydrogen injection amount. This is because N-16, which is dissolved in the reactor water in a low-volatile chemical form such as nitrate ions during normal operation, is reduced by hydrogen injection into a highly volatile NH 3 or NO chemical form. This is because it is accompanied by steam. Due to the increase in radiation dose rate, an upper limit is set for the amount of hydrogen that can be injected.

従来、タービン系に移行するN−16量を低減する技術として、気水分離器と蒸気乾燥器の間に触媒を設置し、揮発性の高いアンモニア形態のN−16を揮発性の低い窒素酸化物にする方法が提案されている(例えば、特許文献1)。   Conventionally, as a technique for reducing the amount of N-16 transferred to the turbine system, a catalyst is installed between the steam separator and the steam dryer, and N-16 in the form of ammonia having high volatility is oxidized with nitrogen having low volatility. A method for making a product has been proposed (for example, Patent Document 1).

さらに、N−16は半減期が短いため、蒸気乾燥器から主蒸気ノズルまで蒸気が到達する時間を物理的に遅延させ、減衰させることでタービン系への移行量を低減させる技術(例えば、特許文献2)が提案されている。   Furthermore, since N-16 has a short half-life, the time required for steam to reach the main steam nozzle from the steam dryer is physically delayed and attenuated to reduce the amount of transition to the turbine system (for example, patents). Document 2) has been proposed.

特開平7−151898号公報JP 7-151898 A 特開2001−147291号公報JP 2001-147291 A

しかしながら、特許文献1では、気水分離器と蒸気乾燥器の間に触媒が設置されているため、水分を多く含む蒸気が触媒表面に付着し、触媒の表面に水の膜が形成される可能性がある。このため、気相中のN−16が接触する触媒表面の面積が小さくなり、効率に困難な点があった。   However, in Patent Document 1, since the catalyst is installed between the steam separator and the steam dryer, steam containing a lot of moisture can adhere to the catalyst surface, and a water film can be formed on the surface of the catalyst. There is sex. For this reason, the area of the catalyst surface which N-16 in a gaseous phase contacts becomes small, and there existed a point with difficult efficiency.

特許文献2に開示された技術により、主蒸気配管内において吸着によりN−16を低減させるためには、N−16と吸着物とが十分に接触するための面積が必要となる。しかし、そのためには蒸気流路である主蒸気配管を狭くするか、細管を複数設置する必要があり、発電効率低下につながる恐れがあった。また、特許文献2には気水分離器,蒸気乾燥器に貴金属をメッキする方法について記載されているが、仮に現行の沸騰水型原子力プラントに設置された蒸気乾燥器の構成部材である波板に貴金属をメッキした場合、乾燥蒸気は波板に接触する確率が低いため、乾燥蒸気中に含まれるN−16が波板にメッキされた貴金属に吸着する確率も低くなり、移行量低減の効率の点で課題があった。また、引用文献2において、蒸気乾燥器の構成部材である整流板に貴金属をメッキする場合も、現行の蒸気乾燥器の整流板は厚さ数mmの金属板に複数の孔を開けた構造であり、整流板と接触せず通過する蒸気もあるため、N−16の貴金属への吸着効率と移行量の低減効果に課題があった。   In order to reduce N-16 by adsorption in the main steam pipe by the technique disclosed in Patent Document 2, an area for sufficient contact between N-16 and the adsorbate is required. However, for that purpose, it is necessary to narrow the main steam pipe, which is the steam flow path, or to install a plurality of thin tubes, which may lead to a decrease in power generation efficiency. Patent Document 2 describes a method for plating a noble metal on a steam separator and a steam dryer. However, a corrugated sheet is a component of a steam dryer installed in a current boiling water nuclear power plant. When the noble metal is plated on the plate, the probability that the dry steam is in contact with the corrugated plate is low, so the probability that N-16 contained in the dry vapor is adsorbed on the noble metal plated on the corrugated plate is also low, and the amount of migration is reduced. There was a problem in terms of. Also, in Cited Document 2, even when precious metal is plated on the current plate that is a component of the steam dryer, the current current plate of the steam dryer has a structure in which a plurality of holes are formed in a metal plate having a thickness of several millimeters. In addition, some steam passes without contacting the current plate, so there is a problem in the adsorption efficiency of N-16 to the noble metal and the effect of reducing the transfer amount.

本発明は上記のような状況を鑑みてなされたもので、沸騰水型原子力プラントにおいて、N−16のタービン系への移行量を低減することでタービン系の線量率を低減する沸騰水型原子力プラントを提供することを目的とする。   The present invention has been made in view of the above situation, and in a boiling water nuclear power plant, boiling water nuclear power that reduces the dose rate of the turbine system by reducing the amount of N-16 transferred to the turbine system. The purpose is to provide a plant.

本発明に係る沸騰水型原子力プラントは、上述した課題を解決するために、原子力プラントの原子炉圧力容器内に設置される蒸気乾燥器内の蒸気が通過する領域に、N−16を含む窒素化合物を捕捉する能力を有する材料を担持した多孔体を設置する。   In order to solve the above-described problems, a boiling water nuclear power plant according to the present invention includes nitrogen containing N-16 in a region through which steam in a steam dryer installed in a reactor pressure vessel of a nuclear power plant passes. A porous body carrying a material capable of capturing a compound is installed.

本発明に係る沸騰水型原子力プラントおよび蒸気乾燥器によれば、発電効率を維持しつつ、N−16を含む窒素化合物を捕捉する能力を有する材料とN−16を含む窒素化合物との接触効率が向上し、N−16のタービン系への移行量を低減することができ、タービン系の線量率を低減することができる。   According to the boiling water nuclear power plant and the steam dryer according to the present invention, the contact efficiency between the material having the ability to capture the nitrogen compound containing N-16 and the nitrogen compound containing N-16 while maintaining the power generation efficiency. And the amount of N-16 transferred to the turbine system can be reduced, and the dose rate of the turbine system can be reduced.

本発明の一実施形態である沸騰水型原子力プラントの構成を示す縦断面図である。It is a longitudinal section showing the composition of the boiling water nuclear power plant which is one embodiment of the present invention. 第1の実施例の沸騰水型原子力プラントに設置される蒸気乾燥器の構成を示す斜視図である。It is a perspective view which shows the structure of the steam dryer installed in the boiling water nuclear power plant of a 1st Example. 第1の実施例の沸騰水型原子力プラントに設置される蒸気乾燥器の構成を示す断面図(図2のA−A断面図)である。It is sectional drawing (AA sectional drawing of FIG. 2) which shows the structure of the steam dryer installed in the boiling water nuclear power plant of a 1st Example. 第1の実施例の沸騰水型原子力プラントに設置される蒸気乾燥器の縦断面図である。It is a longitudinal cross-sectional view of the steam dryer installed in the boiling water nuclear power plant of a 1st Example. ゼオライトによるアンモニア吸着試験の結果を示す図である。It is a figure which shows the result of the ammonia adsorption test by a zeolite. 本発明の第2の実施例である沸騰水型原子力プラントに設置される蒸気乾燥器の縦断面図である。It is a longitudinal cross-sectional view of the steam dryer installed in the boiling water nuclear power plant which is the 2nd Example of this invention. 本発明の第3の実施例である沸騰水型原子力プラントに設置される蒸気乾燥器の縦断面図である。It is a longitudinal cross-sectional view of the steam dryer installed in the boiling water nuclear power plant which is the 3rd Example of this invention.

以下、本発明の実施の形態を、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施例1)
本発明に係る沸騰水型原子力プラントの構成を、図1,図2,図3,図4を用いて説明する。図1は沸騰水型原子力プラントの縦断面図、図2は沸騰水型原子力プラントの原子炉圧力容器内に設置された蒸気乾燥器の斜視図、図3は図2の蒸気乾燥器のA−A断面図、図4は蒸気乾燥器の縦断面図を示す。
Example 1
A configuration of a boiling water nuclear power plant according to the present invention will be described with reference to FIGS. 1, 2, 3, and 4. 1 is a longitudinal sectional view of a boiling water nuclear plant, FIG. 2 is a perspective view of a steam dryer installed in a reactor pressure vessel of the boiling water nuclear plant, and FIG. 3 is an A- of the steam dryer of FIG. A sectional drawing and FIG. 4 show the longitudinal cross-sectional view of a steam dryer.

沸騰水型原子力プラントを構成する原子炉圧力容器1内には、図1に示すように、炉心2,気水分離器3,蒸気乾燥器4が設置されている。炉心2内では、炉心2内に設置された原子燃料より放出される熱により炉心2内を循環する冷却水が加熱され、蒸気が発生する。また、原子燃料より放出される中性子は、冷却水中の酸素原子(O−16)と核反応を起こし、これにより放射性窒素(N−16)が生成する。核反応により生成したN−16は、冷却水中の水分子や、水分子が放射線分解して生成したラジカル等と反応し、アンモニアや窒素酸化物(NO,NO2,NO3 -など)の化学形態をとる。これらのN−16を含む窒素化合物のうち、揮発性の高いアンモニアやNOの形態をとるものは、気体として蒸気とともに炉心2内を移動する。 As shown in FIG. 1, a reactor core 2, a steam-water separator 3, and a steam dryer 4 are installed in a reactor pressure vessel 1 that constitutes a boiling water nuclear power plant. In the core 2, the cooling water circulating in the core 2 is heated by the heat released from the nuclear fuel installed in the core 2 to generate steam. Moreover, the neutron emitted from the nuclear fuel causes a nuclear reaction with oxygen atoms (O-16) in the cooling water, thereby generating radioactive nitrogen (N-16). N-16 produced by a nuclear reaction, the water molecules and the cooling water, reacts with radicals water molecules generated by radiolysis, etc., ammonia, nitrogen oxides (NO, NO 2, NO 3 - etc.) Chemistry Takes form. Among these nitrogen compounds containing N-16, those in the form of highly volatile ammonia or NO move in the core 2 together with steam as a gas.

炉心2で発生した蒸気は、冷却水とともに原子炉圧力容器1内を上方へ移動し、炉心2の上部に設置された気水分離器3に達する。気水分離器3では、炉心2で発生した蒸気を冷却水から分離する。この際、蒸気中に気体として含まれるN−16を含む窒素化合物は、気水分離器3を蒸気とともに通過し、蒸気乾燥器4に達する。蒸気乾燥器4では、気水分離器3で分離された蒸気から、当該蒸気に含まれる液滴量が一定値以下になるよう、液滴を除去し蒸気を乾燥する。ここでも、気体状のN−16を含む窒素化合物は、乾燥された蒸気とともに蒸気乾燥器4を通過する。蒸気乾燥器4で乾燥されたN−16窒素化合物を含む蒸気は、主蒸気ノズル5から主蒸気ラインを通じて蒸気タービンに供給されるため、N−16から放出される高エネルギーガンマ線により、タービン系の放射線線量率が増加している。   The steam generated in the reactor core 2 moves upward in the reactor pressure vessel 1 together with the cooling water, and reaches the steam / water separator 3 installed in the upper part of the reactor core 2. In the steam / water separator 3, the steam generated in the core 2 is separated from the cooling water. At this time, the nitrogen compound containing N-16 contained as a gas in the steam passes through the steam separator 3 together with the steam and reaches the steam dryer 4. In the steam dryer 4, the droplets are removed from the steam separated by the steam separator 3 so that the amount of droplets contained in the steam becomes a predetermined value or less, and the steam is dried. Again, the nitrogen compound containing gaseous N-16 passes through the steam dryer 4 with the dried steam. Since the steam containing N-16 nitrogen compound dried by the steam dryer 4 is supplied from the main steam nozzle 5 to the steam turbine through the main steam line, the high energy gamma rays emitted from the N-16 cause the turbine system to The radiation dose rate is increasing.

次に、蒸気乾燥器4の構成と蒸気乾燥器4内での蒸気の流れについて、図2,図3,図4を用いて説明する。蒸気乾燥器ユニット11は、図2に示すように、フードプレート6(以下、フード6),整流板7および10、固定棒9(図3)及び波板8を備える。蒸気の流れの上流側(入口側)に整流板7を設置し、下流側(出口側)に整流板7を設置する。波板8は、整流板7と整流板10の間に配置され、固定棒9で固定される。フード6は、蒸気乾燥器ユニット11の整流板7を覆うように設置され、下方に開口部を有する。図2では、フード6の一部の構成のみを示す。蒸気乾燥器4は、複数の蒸気乾燥器ユニット11を設置して構成されている。   Next, the configuration of the steam dryer 4 and the flow of steam in the steam dryer 4 will be described with reference to FIGS. As shown in FIG. 2, the steam dryer unit 11 includes a hood plate 6 (hereinafter, hood 6), rectifying plates 7 and 10, a fixing rod 9 (FIG. 3), and a corrugated plate 8. The current plate 7 is installed on the upstream side (inlet side) of the steam flow, and the current plate 7 is installed on the downstream side (outlet side). The corrugated plate 8 is disposed between the rectifying plate 7 and the rectifying plate 10 and is fixed by the fixing rod 9. The hood 6 is installed so as to cover the current plate 7 of the steam dryer unit 11 and has an opening below. In FIG. 2, only a part of the configuration of the hood 6 is shown. The steam dryer 4 is configured by installing a plurality of steam dryer units 11.

気水分離器3を通過した液滴を含む蒸気は、フード6の下方に形成された開口部より流入し、蒸気乾燥器ユニット11を通過して原子炉圧力容器1の上部へ開放される。図4に蒸気の流れを破線矢印で示す。蒸気はフード6で上向きから水平方向に流れの向きが変えられ、整流板7で分散され、波板8の間を通過して後段の整流板10を通り、原子炉圧力容器1の上部に放出される。   Steam containing droplets that have passed through the steam separator 3 flows from an opening formed below the hood 6, passes through the steam dryer unit 11, and is released to the top of the reactor pressure vessel 1. In FIG. 4, the flow of steam is indicated by broken-line arrows. The flow of steam is changed from upward to horizontal in the hood 6, dispersed in the rectifying plate 7, passes between the corrugated plates 8, passes through the subsequent rectifying plate 10, and is discharged to the upper portion of the reactor pressure vessel 1. Is done.

本実施例の特徴の一つは、蒸気乾燥器4に設置される整流板7及び整流板10の両方、もしくは一方を、N−16を含む窒素化合物を捕捉する性能を有する材料(以下、N−16捕捉材料と記す)を担持した多孔体より構成される点にある。このような構成により、整流板7および10を通過する蒸気に含まれるN−16は、整流板7および10を通過する際に、N−16捕捉材料と接触して捕捉され、蒸気から分離される。その結果、蒸気とともにタービン系に移行するN−16の量が低減し、タービン系の放射線線量率を低減することができる。先にも述べたように、N−16は半減期が7.1秒と短く、吸着材上に7秒保持できると減衰してN−16量が1/2になるので、N−16に起因するタービン系の線量も1/2に低減できる。   One of the features of the present embodiment is that a material (hereinafter referred to as N) that captures a nitrogen compound containing N-16 is used for both or one of the current plate 7 and the current plate 10 installed in the steam dryer 4. -16 capture material)). With such a configuration, N-16 contained in the steam passing through the rectifying plates 7 and 10 is captured in contact with the N-16 trapping material and separated from the steam when passing through the rectifying plates 7 and 10. The As a result, the amount of N-16 that moves to the turbine system together with the steam is reduced, and the radiation dose rate of the turbine system can be reduced. As mentioned earlier, N-16 has a short half-life of 7.1 seconds, and if it can be held on the adsorbent for 7 seconds, it will decay and the N-16 amount will be halved. The resulting turbine system dose can also be reduced by half.

ここで、N−16捕捉材料を設置する場所が整流板7および10である理由を説明する。N−16捕捉材料を設置する場所を選定する際には、N−16の捕捉効率がよいこと、および発電効率に影響を与えないことが重要な因子となる。N−16の捕捉効率は、蒸気との接触効率がよく、蒸気との接触時間がN−16を捕捉するのに十分な時間になることで向上することができる。   Here, the reason why the place where the N-16 capturing material is installed is the rectifying plates 7 and 10 will be described. When selecting a place where the N-16 capture material is to be installed, it is an important factor that the capture efficiency of N-16 is good and that power generation efficiency is not affected. The trapping efficiency of N-16 can be improved when the contact efficiency with the vapor is good and the contact time with the steam becomes a sufficient time for trapping N-16.

ここで、N−16の捕捉効率と蒸気との接触時間との関係について、発明者らが実施した実験の結果を基に説明する。発明者らは、N−16の代表的化学形態であるアンモニアと、アンモニア吸着材の一例としてゼオライトを用い、アンモニアがゼオライトに吸着保持される時間のガス線速依存性を実験により調べた。試験では、ゼオライトを充填した吸着塔を、蒸気乾燥器4を通過する蒸気温度を模擬して285度前後に加熱して飽和蒸気(大気圧)を流通し、吸着塔入口よりアンモニアをパルス状に1回注入して出口蒸気のアンモニア濃度を測定した。試験では、吸着塔に流通する飽和蒸気の線速度をパラメータとした。図5に出口蒸気のアンモニア濃度を時間に対してプロットした図を示すが、これより、蒸気線速度が小さいほどアンモニアの流出が遅く、また流出ピークの幅(出口蒸気からアンモニアが検出される時間)が長くなる傾向がある。このことは、蒸気線速度が小さい、すなわち吸着材であるゼオライトとの接触時間が長くなるほど、アンモニアが吸着材上に留まる時間が長くなることを示している。よって、蒸気線速度が小さい領域にN−16捕捉材料を設置することで、N−16の捕捉効率が向上できる。   Here, the relationship between the trapping efficiency of N-16 and the contact time with steam will be described based on the results of experiments conducted by the inventors. The inventors used ammonia, which is a typical chemical form of N-16, and zeolite as an example of an ammonia adsorbent, and examined the dependence of the time during which ammonia was adsorbed on the zeolite on the gas linear velocity by experiments. In the test, the adsorption tower filled with zeolite is heated to around 285 degrees by simulating the vapor temperature passing through the vapor dryer 4, and saturated vapor (atmospheric pressure) is circulated, and ammonia is pulsed from the adsorption tower inlet. Once injected, the ammonia concentration in the outlet steam was measured. In the test, the linear velocity of saturated steam flowing through the adsorption tower was used as a parameter. FIG. 5 shows a plot of the ammonia concentration of the outlet steam versus time. From this, the smaller the vapor linear velocity, the slower the ammonia outflow, and the width of the outflow peak (the time during which ammonia is detected from the outlet steam). ) Tends to be longer. This indicates that the time during which ammonia stays on the adsorbent increases as the vapor linear velocity decreases, that is, as the contact time with the zeolite as the adsorbent increases. Therefore, the trapping efficiency of N-16 can be improved by installing the N-16 trapping material in a region where the vapor linear velocity is low.

蒸気の通過割合が大きく、さらに蒸気流路の狭いほど蒸気との接触効率が大きくなる。
このことを鑑みると、蒸気乾燥器4内の整流板7および10は、原子炉圧力容器1の上部に放出されて主蒸気ラインへ進む蒸気の全量が通過すること、整流板7および10における蒸気の線速度は1m/秒以下と小さいこと、蒸気を整流する目的から蒸気流路が狭い構造になっていることから、N−16捕捉材料を設置するのに好適であり、高いN−16捕捉効率を得ることができる。
As the steam passage ratio is larger and the steam flow path is narrower, the contact efficiency with the steam increases.
In view of this, the rectifying plates 7 and 10 in the steam dryer 4 pass through the entire amount of steam discharged to the upper part of the reactor pressure vessel 1 and proceeding to the main steam line, and the steam in the rectifying plates 7 and 10. Since the linear velocity of 1m / sec or less is small and the steam flow path has a narrow structure for the purpose of rectifying steam, it is suitable for installing N-16 capture material, and high N-16 capture Efficiency can be obtained.

本実施例のように整流板7及び整流板10の両方、もしくはいずれか一方に、N−16を含む窒素化合物を捕捉する機能を持たせることで、蒸気の通過割合が大きくなり、蒸気との接触効率が大きくなってN−16の捕捉効率が向上する。さらに、整流板7及び整流板10を多孔体で構成することによって、蒸気流路を狭くでき、蒸気との接触効率が大きくなって、N−16の捕捉効率をさらに向上することができる。   As in this embodiment, by providing a function of capturing the nitrogen compound containing N-16 in either or both of the rectifying plate 7 and the rectifying plate 10, the steam passage ratio increases, The contact efficiency is increased, and the capture efficiency of N-16 is improved. Further, by configuring the rectifying plate 7 and the rectifying plate 10 with a porous body, the steam flow path can be narrowed, the contact efficiency with steam is increased, and the trapping efficiency of N-16 can be further improved.

発電効率の点では、従来の蒸気乾燥器4においても多孔板で構成されていることから、従来の蒸気乾燥器の整流板で使用される多孔板と同程度かそれ以下の圧力損失をもつ多孔体で整流板7および10を構成することで、発電効率を維持しつつN−16の低減が可能である。   In terms of power generation efficiency, the conventional steam dryer 4 is also composed of a porous plate, so that the porous plate has a pressure loss equivalent to or lower than the porous plate used in the current plate of the conventional steam dryer. By configuring the rectifying plates 7 and 10 with a body, N-16 can be reduced while maintaining power generation efficiency.

N−16捕捉材料としては、アンモニアや一酸化窒素といった、蒸気に同伴するN−16の化合物を吸着したり、反応により化学結合を形成したり、触媒反応で分解したりすることができる材料のうち1つ以上の材料より選定される。例えば、アンモニアに対して吸着能力をもつ化合物である、固体表面上に酸点をもつ金属酸化物やゼオライト,セピオライトなどの粘土鉱物、ヒドロキシルアパタイト,活性炭などの炭素系化合物や金属炭化物などが選定される。また、白金,ニッケル,ルテニウム,マンガンなどの金属を担持したアンモニア分解触媒も使用できる。一酸化窒素に代表される窒素酸化物に対して吸着能力を持つ金属および金属酸化物や、白金,遷移金属などを担持した窒素酸化物分解触媒も使用できる。   The N-16 trapping material is a material that can adsorb N-16 compounds accompanying the vapor, such as ammonia or nitric oxide, form a chemical bond by reaction, or decompose by catalytic reaction. Of these, one or more materials are selected. For example, metal oxides with acid adsorption on solid surfaces, clay minerals such as zeolite and sepiolite, carbon-based compounds such as hydroxylapatite and activated carbon, and metal carbides, which are compounds capable of adsorbing ammonia, are selected. The An ammonia decomposition catalyst carrying a metal such as platinum, nickel, ruthenium, or manganese can also be used. Nitrogen oxide decomposition catalysts carrying metals and metal oxides capable of adsorbing nitrogen oxides typified by nitrogen monoxide, platinum, and transition metals can also be used.

N−16捕捉材料は、ステンレス鋼などの金属鋼材で製造された多孔体に担持される。
多孔体の形状は、板状の鋼材に細孔を開けたもの、ハニカム,メタルリボン,網状,発泡金属,スポンジ状などが例として挙げられる。
The N-16 trapping material is supported on a porous body made of a metal steel material such as stainless steel.
Examples of the shape of the porous body include a plate-shaped steel material having pores, a honeycomb, a metal ribbon, a net, a foam metal, a sponge, and the like.

N−16捕捉材料を金属鋼材に担持する方法は、バインダを使用する方法、反応により添着する方法などが例として挙げられるが、選定されるN−16捕捉材料と金属鋼材の種類により、最適な方法を選定する。   Examples of the method of supporting the N-16 trapping material on the metal steel material include a method using a binder and a method of attaching by reaction, but the optimum method depends on the type of the selected N-16 trapping material and metal steel material. Select a method.

また、蒸気乾燥器4の構造的な強度などの設計要件を満足できる場合には、N−16捕捉材料自体を多孔体に加工して、整流板7および10として使用することもできる。   Further, when the design requirements such as the structural strength of the steam dryer 4 can be satisfied, the N-16 trapping material itself can be processed into a porous body and used as the rectifying plates 7 and 10.

整流板7および10で使用されるN−16捕捉材料および多孔体の構造材料は、どちらも同じ材料でもよいし、それぞれ異なる材料でもよい。整流板7と整流板10を通過する蒸気は、含まれる液滴量が異なり、整流板7を通過する蒸気は整流板10を通過する蒸気より液滴量が多い。そのため、整流板7で使用するN−16捕捉材料は水を含む条件で捕捉効率の高いものを選定し、整流板10で使用するN−16捕捉材料は乾燥条件で捕捉効率の高いものを選定してもよい。   Both the N-16 trapping material and the porous structural material used in the current plates 7 and 10 may be the same material or different materials. The steam passing through the rectifying plate 7 and the rectifying plate 10 has different droplet amounts, and the steam passing through the rectifying plate 7 has a larger amount of droplets than the steam passing through the rectifying plate 10. Therefore, the N-16 trapping material used in the rectifying plate 7 is selected with a high trapping efficiency under conditions including water, and the N-16 trapping material used in the rectifying plate 10 is selected with a high trapping efficiency under dry conditions. May be.

本実施例の沸騰水型原子力プラントおよび蒸気乾燥器によれば、沸騰水型原子力プラントにおいて生成するN−16を含む窒素化合物を、当該原子力プラントの原子炉圧力容器内に設置された蒸気乾燥器において捕捉することで、発電効率を維持しつつ、N−16を含む窒素化合物を捕捉する能力を有する材料とN−16を含む窒素化合物との接触効率が向上し、N−16のタービン系への移行量を低減することができ、タービン系の線量率を低減することができる。   According to the boiling water nuclear plant and the steam dryer of the present embodiment, the steam dryer in which the nitrogen compound containing N-16 generated in the boiling water nuclear plant is installed in the reactor pressure vessel of the nuclear plant. By capturing at, the contact efficiency between the material having the ability to capture nitrogen compounds containing N-16 and the nitrogen compounds containing N-16 is improved while maintaining the power generation efficiency, and the N-16 turbine system is improved. Can be reduced, and the dose rate of the turbine system can be reduced.

(実施例2)
本発明の第2の実施例を、図面を用いて説明する。原子炉圧力容器1内での蒸気の流れは実施例1と同等であり、記述を省略する。
(Example 2)
A second embodiment of the present invention will be described with reference to the drawings. The flow of steam in the reactor pressure vessel 1 is the same as that in the first embodiment, and the description is omitted.

本実施例の蒸気乾燥器42は、図6に示すように、フード6,整流板72および102、固定棒9,固定棒9で固定される波板8を備え、さらに、N−16捕捉装置12および13を備える。本実施例の特徴の一つは、N−16捕捉装置12を蒸気の入口側の整流板72の手前に配置し、N−16捕捉装置13を蒸気の出口側整流板102の後段に設置する点にある。N−16捕捉装置12および13は、N−16捕捉材料を担持した多孔体よりなる。   As shown in FIG. 6, the steam dryer 42 of this embodiment includes a hood 6, rectifying plates 72 and 102, a fixing rod 9, and a corrugated plate 8 fixed by the fixing rod 9, and further includes an N-16 capturing device. 12 and 13 are provided. One of the features of the present embodiment is that the N-16 trapping device 12 is disposed in front of the steam inlet side rectifying plate 72, and the N-16 trapping device 13 is disposed at the rear stage of the steam outlet side rectifying plate 102. In the point. The N-16 capturing devices 12 and 13 are made of a porous body carrying an N-16 capturing material.

気水分離器3を通過した蒸気は、フード6からN−16捕捉装置12を通って整流板72,波板8,整流板102を通過し、N−16捕捉装置13を通って原子炉圧力容器1の上方に放出される。蒸気がN−16捕捉装置12および13を通過する際、蒸気中に含まれるN−16が吸着,反応,触媒作用等により捕捉され、タービン系に移行するN−16量が低減される。   The steam that has passed through the steam separator 3 passes through the N-16 trapping device 12 from the hood 6, passes through the rectifying plate 72, the corrugated plate 8, and the rectifying plate 102, and passes through the N-16 trapping device 13 to the reactor pressure. It is discharged above the container 1. When steam passes through the N-16 traps 12 and 13, N-16 contained in the steam is trapped by adsorption, reaction, catalysis, etc., and the amount of N-16 transferred to the turbine system is reduced.

本実施例では、蒸気乾燥器4の空間部分にN−16捕捉装置12および13を設置するため、このN−16捕捉装置12および13を設置可能な範囲で厚みを大きくすることができる。N−16捕捉装置12および13の厚さが厚い方が、蒸気がN−16捕捉材料に接触する時間が長くなり、捕捉されるN−16量が増加するため、タービン系の線量低減効果が大きくなる。   In this embodiment, since the N-16 capturing devices 12 and 13 are installed in the space portion of the steam dryer 4, the thickness can be increased within a range in which the N-16 capturing devices 12 and 13 can be installed. The thicker the N-16 capture devices 12 and 13, the longer the time for the vapor to contact the N-16 capture material and the greater the amount of N-16 that is captured, resulting in a turbine system dose reduction effect. growing.

N−16捕捉装置12および13の厚さは、設置場所の大きさとともに、発電効率を維持できる圧力損失以下となるように規定される。   The thickness of the N-16 capturing devices 12 and 13 is defined so as to be equal to or less than the pressure loss that can maintain the power generation efficiency, along with the size of the installation location.

N−16捕捉装置12および13は、実施例1と同様、蒸気に同伴するN−16の化合物を吸着,反応,触媒分解などができる材料のうち1つ以上の材料より選定されたN−16捕捉材料を、金属鋼材などで製造された多孔体に担持して製造する。構造的強度が確保できる場合は、N−16捕捉材料で多孔体を形成し、N−16捕捉装置とすることもできる。   As in Example 1, the N-16 traps 12 and 13 are selected from one or more materials selected from one or more materials that can adsorb, react, and decompose the N-16 compound accompanying the vapor. The capture material is manufactured by being supported on a porous body made of a metal steel material or the like. When the structural strength can be ensured, a porous body can be formed from the N-16 trapping material to form an N-16 trapping device.

N−16捕捉装置12および13は、その両方を設置してもよいし、いずれか一方のみを設置してもよい。また、N−16捕捉装置12および13で使用するN−16捕捉材料および多孔体の構造材料は、同じでもよいし異なる材料でもよい。   Both of the N-16 capturing devices 12 and 13 may be installed, or only one of them may be installed. Further, the N-16 trapping material and the porous structural material used in the N-16 trapping devices 12 and 13 may be the same or different.

本実施例の沸騰水型原子力プラントおよび蒸気乾燥器によれば、沸騰水型原子力プラントにおいて生成するN−16を含む窒素化合物を、当該原子力プラントの原子炉圧力容器内に設置された蒸気乾燥器において捕捉することで、発電効率を維持しつつ、N−16を含む窒素化合物を捕捉する能力を有する材料とN−16を含む窒素化合物との接触効率が向上し、N−16のタービン系への移行量を低減することができ、タービン系の線量率を低減することができる。   According to the boiling water nuclear plant and the steam dryer of the present embodiment, the steam dryer in which the nitrogen compound containing N-16 generated in the boiling water nuclear plant is installed in the reactor pressure vessel of the nuclear plant. By capturing at, the contact efficiency between the material having the ability to capture nitrogen compounds containing N-16 and the nitrogen compounds containing N-16 is improved while maintaining the power generation efficiency, and the N-16 turbine system is improved. Can be reduced, and the dose rate of the turbine system can be reduced.

また、本実施例によれば、従来の蒸気乾燥器の空間部分にN−16捕捉装置を設置するため、蒸気乾燥器を交換する必要がなく経済性が高い。また、蒸気乾燥器の空間部分に設置できる範囲でN−16捕捉装置の厚みを増やすことができ、N−16の移行およびタービン系の線量の低減効果を大きくすることができる。   Moreover, according to the present Example, since N-16 capture | acquisition apparatus is installed in the space part of the conventional steam dryer, it is not necessary to replace | exchange a steam dryer and it is economical. Further, the thickness of the N-16 capturing device can be increased within a range that can be installed in the space portion of the steam dryer, and the effect of reducing the N-16 migration and turbine system dose can be increased.

(実施例3)
本発明の第3の実施例を、図面を用いて説明する。なお、原子炉圧力容器1内での蒸気の流れは実施例1と同等であり、記述を省略する。
(Example 3)
A third embodiment of the present invention will be described with reference to the drawings. Note that the steam flow in the reactor pressure vessel 1 is the same as that in the first embodiment, and a description thereof will be omitted.

第3の実施例の蒸気乾燥器43は、図7に示すように、フード6,整流板73および103、固定棒9および固定棒9で固定された波板8を備え、さらに、N−16捕捉装置22および23を備える。本実施例の特徴の一つは、N−16捕捉装置22をフード6の蒸気入口に設置し、N−16捕捉装置23を蒸気乾燥器43の蒸気出口に設置する点にある。N−16捕捉装置22および23は、N−16捕捉材料を担持した多孔体よりなる。   As shown in FIG. 7, the steam dryer 43 of the third embodiment includes a hood 6, current plates 73 and 103, a fixed bar 9, and a corrugated plate 8 fixed by the fixed bar 9, and further includes N-16. Capture devices 22 and 23 are provided. One of the features of this embodiment is that the N-16 capturing device 22 is installed at the steam inlet of the hood 6 and the N-16 capturing device 23 is installed at the steam outlet of the steam dryer 43. The N-16 trapping devices 22 and 23 are made of a porous body carrying an N-16 trapping material.

気水分離器3を通過した蒸気は、N−16捕捉装置22を通ってフード6から整流板73,波板8,整流板103を通過し、N−16捕捉装置23を通って原子炉圧力容器1の上方に放出される。蒸気がN−16捕捉装置22および23を通過する際、蒸気中に含まれるN−16が吸着,反応,触媒作用等により捕捉され、タービン系に移行するN−16量が低減される。   The steam that has passed through the steam separator 3 passes through the N-16 trapping device 22, passes through the rectifying plate 73, the corrugated plate 8, and the rectifying plate 103 from the hood 6, and passes through the N-16 trapping device 23 and passes through the reactor pressure It is discharged above the container 1. When steam passes through the N-16 traps 22 and 23, N-16 contained in the steam is trapped by adsorption, reaction, catalysis, etc., and the amount of N-16 transferred to the turbine system is reduced.

N−16捕捉装置22および23は、設置場所と圧力損失よりその厚さが規定される。   The thicknesses of the N-16 capturing devices 22 and 23 are determined by the installation location and pressure loss.

N−16捕捉装置22および23は、実施例1および2と同様、蒸気に同伴するN−16の化合物を吸着,反応,触媒分解などができる材料のうち1つ以上の材料より選定されたN−16捕捉材料を、金属鋼材などで製造された多孔体に担持して製造する。構造的強度が確保できる場合は、N−16捕捉材料で多孔体を形成し、N−16捕捉装置とすることもできる。N−16捕捉装置22および23で使用されるN−16捕捉材料および多孔体の構成材料は、同じものを使用してもよいし、異なるものを使用してもよい。N−16捕捉装置22および23は、その両方を設置してもよいし、いずれか一方のみを設置してもよい。   The N-16 trapping devices 22 and 23 are selected from one or more materials among materials capable of adsorbing, reacting, and catalytically decomposing N-16 compounds accompanying steam, as in Examples 1 and 2. A -16 trapping material is supported on a porous body made of metal steel or the like. When the structural strength can be ensured, a porous body can be formed from the N-16 trapping material to form an N-16 trapping device. The same or different materials may be used for the N-16 trapping material and the porous material used in the N-16 trapping devices 22 and 23. Both of the N-16 capturing devices 22 and 23 may be installed, or only one of them may be installed.

N−16捕捉装置22を蒸気入口に設置することで、蒸気乾燥器43に流入する蒸気が整流され、整流板73および波板8における液滴除去効果を向上することもできる。また、N−16捕捉装置23を蒸気出口に設置することで、原子炉圧力容器1の上方に放出される蒸気が整流され、蒸気が蒸気乾燥器43から主蒸気ノズル5に移動する間の摩擦等による圧力損失を低減することもできる。   By installing the N-16 capturing device 22 at the steam inlet, the steam flowing into the steam dryer 43 is rectified, and the droplet removing effect on the rectifying plate 73 and the corrugated plate 8 can be improved. Further, by installing the N-16 trapping device 23 at the steam outlet, the steam discharged above the reactor pressure vessel 1 is rectified, and the friction while the steam moves from the steam dryer 43 to the main steam nozzle 5. It is also possible to reduce pressure loss due to the like.

本実施例の沸騰水型原子力プラントおよび蒸気乾燥器によれば、沸騰水型原子力プラントにおいて生成するN−16を含む窒素化合物を、当該原子力プラントの原子炉圧力容器内に設置された蒸気乾燥器において捕捉することで、発電効率を維持しつつ、N−16を含む窒素化合物を捕捉する能力を有する材料とN−16を含む窒素化合物との接触効率が向上し、N−16のタービン系への移行量を低減することができ、タービン系の線量率を低減することができる。   According to the boiling water nuclear plant and the steam dryer of the present embodiment, the steam dryer in which the nitrogen compound containing N-16 generated in the boiling water nuclear plant is installed in the reactor pressure vessel of the nuclear plant. By capturing at, the contact efficiency between the material having the ability to capture nitrogen compounds containing N-16 and the nitrogen compounds containing N-16 is improved while maintaining the power generation efficiency, and the N-16 turbine system is improved. Can be reduced, and the dose rate of the turbine system can be reduced.

さらに、本実施例によれば、N−16の移行およびタービン系の線量を低減できるとともに、蒸気の整流効果により機器効率の向上を図ることができる。   Furthermore, according to the present embodiment, the transition of N-16 and the turbine system dose can be reduced, and the equipment efficiency can be improved by the rectification effect of steam.

1 原子炉圧力容器
2 炉心
3 気水分離器
4,42,43 蒸気乾燥器
5 主蒸気ノズル
6 フード
7,10,72,73,102,103 整流板
8 波板
9 固定棒
11 蒸気乾燥器ユニット
12,13,22,23
N−16 捕捉装置
DESCRIPTION OF SYMBOLS 1 Reactor pressure vessel 2 Core 3 Steam-water separator 4, 42, 43 Steam dryer 5 Main steam nozzle 6 Hood 7, 10, 72, 73, 102, 103 Current plate 8 Corrugated plate 9 Fixed rod 11 Steam dryer unit 12, 13, 22, 23
N-16 capture device

Claims (10)

沸騰水型原子力プラントにおいて、
前記原子力プラントの原子炉圧力容器内に設置される蒸気乾燥器内の蒸気が通過する領域に、放射性窒素化合物であるN−16を捕捉する材料を担持した多孔体を設置し、
前記多孔体は、前記蒸気の線速度が1m/秒以下の領域に配置され、かつ前記蒸気乾燥器の波板の後段にある蒸気出口側の整流板又は前記蒸気出口側の整流板の後段に設置された放射性窒素捕捉装置であることを特徴とする沸騰水型原子力プラント。
In boiling water nuclear power plant,
A porous body carrying a material that captures N-16 , which is a radioactive nitrogen compound , is installed in a region through which steam in a steam dryer installed in a reactor pressure vessel of the nuclear power plant passes,
The porous body is disposed in a region where the linear velocity of the steam is 1 m / sec or less , and is located on the steam outlet side rectifying plate or the steam outlet side rectifying plate after the corrugated plate of the steam dryer. A boiling water nuclear power plant characterized by being an installed radioactive nitrogen capture device .
放射性窒素化合物を捕捉する材料を担持した前記多孔体が、前記蒸気乾燥器に備えられる蒸気入口側の整流板及び前記蒸気乾燥器の波板の後段にある前記蒸気出口側の整流板であることを特徴とする請求項1に記載の沸騰水型原子力プラント。 The porous body carrying a material that captures radioactive nitrogen compounds is a rectifying plate on the steam inlet side provided in the steam dryer and a rectifying plate on the steam outlet side subsequent to the corrugated plate of the steam dryer. The boiling water nuclear plant according to claim 1. 放射性窒素化合物を捕捉する材料を担持した前記多孔体で構成される放射性窒素捕捉装置を、前記蒸気乾燥器に設置された整流板の蒸気入口側および前記蒸気乾燥器の波板の後段にある前記蒸気出口側に設置することを特徴とする請求項1に記載の沸騰水型原子力プラント。 The radioactive nitrogen capture device composed of the porous body carrying the material for capturing the radioactive nitrogen compound is disposed on the steam inlet side of the rectifying plate installed in the steam dryer and at the rear stage of the corrugated plate of the steam dryer. The boiling water nuclear plant according to claim 1, wherein the boiling water nuclear plant is installed on a steam outlet side. 前記放射性窒素化合物を捕捉する物質は、
アンモニアおよび/または一酸化窒素を、吸着反応,化学反応,触媒作用の少なくとも一つの作用により前記放射性窒素化合物を捕捉する材料であることを特徴とする請求項1乃至3のいずれか1項に記載の沸騰水型原子力プラント。
The substance that captures the radioactive nitrogen compound is:
4. The material according to claim 1, wherein ammonia and / or nitrogen monoxide is a material that captures the radioactive nitrogen compound by at least one of an adsorption reaction, a chemical reaction, and a catalytic action. 5. Boiling water nuclear power plant.
前記多孔体は、
金属,金属酸化物,金属炭化物及び金属窒化物のうちの少なくとも一つで構成されることを特徴とする請求項1乃至4のいずれか1項記載の沸騰水型原子力プラント。
The porous body is
5. The boiling water nuclear plant according to claim 1, comprising at least one of a metal, a metal oxide, a metal carbide, and a metal nitride.
前記多孔体は、
放射性窒素化合物を捕捉する物質により構成されることを特徴とする請求項1乃至4のいずれか1項に記載の沸騰水型原子力プラント。
The porous body is
The boiling water nuclear power plant according to any one of claims 1 to 4, wherein the boiling water nuclear plant is composed of a substance that traps radioactive nitrogen compounds.
沸騰水型原子力プラントの原子炉圧力容器内に設置される蒸気乾燥器において、
前記蒸気乾燥器内の蒸気が通過する領域に、放射性窒素化合物であるN−16を捕捉する材料を担持した多孔体を設置し、
前記多孔体は、前記蒸気の線速度が1m/秒以下の領域に配置され、かつ前記蒸気乾燥器の波板の後段にある蒸気出口側の整流板又は前記蒸気出口側の整流板の後段に設置された放射性窒素捕捉装置であることを特徴とする沸騰水型原子力プラントの蒸気乾燥器。
In the steam dryer installed in the reactor pressure vessel of the boiling water nuclear plant,
A porous body carrying a material that captures N-16 , which is a radioactive nitrogen compound , is installed in a region through which steam in the steam dryer passes,
The porous body is disposed in a region where the linear velocity of the steam is 1 m / sec or less , and is located on the steam outlet side rectifying plate or the steam outlet side rectifying plate after the corrugated plate of the steam dryer. A steam dryer of a boiling water nuclear plant characterized by being an installed radioactive nitrogen capture device .
放射性窒素化合物を捕捉する材料を担持した前記多孔体が、前記蒸気乾燥器に備えられる蒸気入口側の整流板及び前記蒸気乾燥器の波板の後段にある前記蒸気出口側の整流板であることを特徴とする請求項7に記載の沸騰水型原子力プラントの蒸気乾燥器。 The porous body carrying a material that captures radioactive nitrogen compounds is a rectifying plate on the steam inlet side provided in the steam dryer and a rectifying plate on the steam outlet side subsequent to the corrugated plate of the steam dryer. A steam dryer for a boiling water nuclear plant according to claim 7. 放射性窒素化合物を捕捉する材料を担持した前記多孔体で構成される放射性窒素捕捉装置を、前記蒸気乾燥器に設置された整流板の蒸気入口側および前記蒸気乾燥器の波板の後段にある前記蒸気出口側に設置することを特徴とする請求項7に記載の沸騰水型原子力プラントの蒸気乾燥器。 The radioactive nitrogen capture device composed of the porous body carrying the material for capturing the radioactive nitrogen compound is disposed on the steam inlet side of the rectifying plate installed in the steam dryer and at the rear stage of the corrugated plate of the steam dryer. It installs in the steam outlet side, The steam dryer of the boiling water nuclear power plant of Claim 7 characterized by the above-mentioned. 前記多孔体は、
放射性窒素化合物を捕捉する物質により構成されることを特徴とする請求項7乃至9のいずれか1項に記載の沸騰水型原子力プラントの蒸気乾燥器。
The porous body is
The steam dryer for a boiling water nuclear plant according to any one of claims 7 to 9, wherein the steam dryer is constituted by a substance that traps radioactive nitrogen compounds.
JP2010048564A 2010-03-05 2010-03-05 Boiling water nuclear plant and steam dryer Active JP5470099B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010048564A JP5470099B2 (en) 2010-03-05 2010-03-05 Boiling water nuclear plant and steam dryer
US13/030,189 US8774342B2 (en) 2010-03-05 2011-02-18 Boiling water nuclear plant and steam dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048564A JP5470099B2 (en) 2010-03-05 2010-03-05 Boiling water nuclear plant and steam dryer

Publications (2)

Publication Number Publication Date
JP2011185627A JP2011185627A (en) 2011-09-22
JP5470099B2 true JP5470099B2 (en) 2014-04-16

Family

ID=44531344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048564A Active JP5470099B2 (en) 2010-03-05 2010-03-05 Boiling water nuclear plant and steam dryer

Country Status (2)

Country Link
US (1) US8774342B2 (en)
JP (1) JP5470099B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101837867B1 (en) * 2016-12-22 2018-04-19 두산중공업 주식회사 Method for coating a condensing plate in moisture separator reheater
CN111750570A (en) * 2019-03-28 2020-10-09 开利公司 Evaporator and baffle plate structure thereof

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3041134A (en) * 1955-12-12 1962-06-26 North American Aviation Inc Method of removing gaseous fission products from gases
SE339056B (en) * 1970-09-28 1971-09-27 Asea Atom Ab
DE2109146C3 (en) * 1971-02-26 1980-03-20 Bayer Ag, 5090 Leverkusen Process for removing iodine and iodine compounds from gases and vapors and silver nitrate-impregnated sorbents for carrying out the process
AT340011B (en) * 1972-04-01 1977-11-25 Bergwerksverband Gmbh PROCESS FOR EXHAUST GAS TREATMENT OF RADIOACTIVE ACTIVATING GASES
JPS5141026B2 (en) * 1972-09-20 1976-11-08
DE2302905C2 (en) * 1973-01-22 1982-10-28 Siemens AG, 1000 Berlin und 8000 München Process for the preparation of gas mixtures from pressurized water reactors
DE2601460C2 (en) * 1976-01-16 1985-05-15 Hochtemperatur-Kernkraftwerk GmbH (HKG) Gemeinsames Europäisches Unternehmen, 4701 Uentrop Process for removing contaminants from the cooling gas of high temperature nuclear reactors
FR2339131A2 (en) * 1976-01-20 1977-08-19 Fives Cail Babcock STEAM DRYING DEVICE, ESPECIALLY FOR THERMAL PLANTS
JPS581628B2 (en) * 1978-01-13 1983-01-12 日立造船株式会社 Ammonia oxidative decomposition catalyst and its manufacturing method
US4270938A (en) * 1978-12-04 1981-06-02 Airco, Inc. Processes for decontaminating nuclear process off-gas streams
JPS56108532A (en) * 1980-02-04 1981-08-28 Hitachi Ltd Iodine adsorbing material and preparation thereof
FR2486201A1 (en) * 1980-07-02 1982-01-08 Framatome Sa DRYING ASSEMBLY FOR STEAM GENERATOR, PARTICULARLY FOR NUCLEAR REACTOR VAPOR GENERATORS
FR2570290B1 (en) * 1984-09-17 1987-01-09 Framatome Sa DEVICE FOR SEPARATING WATER AND STEAM FOR DRYING A WET STEAM
US4783204A (en) * 1986-08-05 1988-11-08 Westinghouse Electric Corp. Apparatus and method for drying steam
CH678123A5 (en) 1987-08-31 1991-07-31 Gen Electric Reducing radioactive nitrogen cpds. in nuclear reactor gas phase
US4992232A (en) 1987-08-31 1991-02-12 General Electric Company Method to control N-16 radiation levels in steam phase BWRs
DE3852937T2 (en) * 1987-12-01 1995-09-07 Asahi Glass Co Ltd Exhaust filter.
JP2554700B2 (en) * 1988-03-31 1996-11-13 株式会社日立製作所 Natural circulation boiling light water reactor and main steam extraction method from natural circulation boiling light water reactor
US5028384A (en) * 1989-08-09 1991-07-02 General Electric Company Method for enhancing personnel safety in operating a nuclear reactor plant, and means therefor
US5015362A (en) * 1989-12-28 1991-05-14 Mobil Oil Corporation Catalytic conversion of NOx over carbonaceous particles
DE4003833A1 (en) * 1990-01-08 1991-07-11 Grs Ges Fuer Reaktorsicherheit Catalytic hydrogen gas absorption unit for nuclear reactors - has filter enclosure to protect catalytic coating from aerosol fat and steam pollution before working temp. is reached
US5080699A (en) * 1990-11-20 1992-01-14 Trion, Inc. Filter apparatus
JPH04216496A (en) 1990-12-17 1992-08-06 Toshiba Corp Reactor plant
US5085826A (en) * 1990-12-20 1992-02-04 General Electric Company Steam dryer
JPH04278496A (en) 1991-03-06 1992-10-05 Toshiba Corp Steam dryer
GB2256375B (en) * 1991-05-31 1995-06-07 Riken Kk Exhaust gas cleaner and method of cleaning exhaust gas
US5320817A (en) * 1992-08-28 1994-06-14 Novapure Corporation Process for sorption of hazardous waste products from exhaust gas streams
US6010673A (en) * 1992-09-21 2000-01-04 Toyota Jidosha Kabushiki Kaisha Method for purifying exhaust gas
US5285486A (en) 1992-11-25 1994-02-08 General Electric Company Internal passive hydrogen peroxide decomposer for a boiling water reactor
US5275644A (en) * 1992-12-29 1994-01-04 Combustion Engineering, Inc. Steam separating apparatus
US5271753A (en) * 1992-12-29 1993-12-21 Combustion Engineering, Inc. Steam drying apparatus
TW233364B (en) * 1993-05-21 1994-11-01 Gen Electric Internal passive catalytic ammonia converter for reduction of main steam dose rate associated with hydrogen water chemistry
DE69418671T2 (en) * 1993-10-15 1999-12-16 Corning Inc., Corning Process for the production of bodies with impregnated pores
JP3363564B2 (en) * 1994-02-04 2003-01-08 トヨタ自動車株式会社 Exhaust gas purification catalyst
JPH08313664A (en) 1995-05-22 1996-11-29 Hitachi Ltd Supercritical pressure light water reactor plant
JPH10221480A (en) * 1996-12-06 1998-08-21 Toshiba Corp Steam separator, atomic power plant and boiler device
FI105130B (en) * 1998-04-17 2000-06-15 Kumera Corp steam dryer
CA2387561C (en) * 1999-10-15 2003-12-16 Abb Lummus Global, Inc. Conversion of nitrogen oxides in the presence of a catalyst supported of a mesh-like structure
JP2001147291A (en) 1999-11-22 2001-05-29 Hitachi Ltd Boiling water reactor power plant
US7027549B2 (en) 2000-03-31 2006-04-11 Kabushiki Kaisha Toshiba Nuclear power plant system and method of operating the same
DE10328773B3 (en) * 2003-06-25 2005-02-17 Framatome Anp Gmbh Nuclear facility
US7238332B2 (en) * 2004-06-14 2007-07-03 Feaver William B Material and process for the filtration of nitric acid and NO2 from streams of air
US7211232B1 (en) * 2005-11-07 2007-05-01 Geo2 Technologies, Inc. Refractory exhaust filtering method and apparatus
US7596199B2 (en) * 2006-01-04 2009-09-29 General Electric Company Method and device for stabilizing a steam dryer assembly in nuclear reactor pressure vessel
JP2009281893A (en) 2008-05-22 2009-12-03 Toshiba Corp Boiling-water reactor plant and turbine system dose reducing method therefor
JP5293836B2 (en) 2011-02-18 2013-09-18 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
US20110216872A1 (en) 2011-09-08
US8774342B2 (en) 2014-07-08
JP2011185627A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
EP2704153B1 (en) Gas treatment equipment of nuclear power plant
US8917810B2 (en) Devices and methods for managing noncombustible gasses in nuclear power plants
US20110268242A1 (en) Hydrogen and Oxygen Recombination Catalyst, Recombination Apparatus, and Nuclear Plant
RU2461900C1 (en) Passive autocatalytic hydrogen and oxygen recombiner with rate of catalytic reaction increasing stepwise in direction of gas flow
JP5470099B2 (en) Boiling water nuclear plant and steam dryer
KR20190100182A (en) Catalytic Recombinator and Filter Device
Jing et al. Catalytic Decomposition of N2O in the Presence of O2 through Redox of Rh Oxide in a RhO x/ZrO2 Catalyst
US20020086796A1 (en) Catalytic element with restrictor layer
JPH06222192A (en) Nuclear reactor
KR20130091395A (en) Passive auto-catalytic recombiner for controlling hydrogen in nuclear reactor and control method hydrogen in nuclear reactor using same
WO2011093305A1 (en) Treatment method, treatment facility and impurity-removing material for radioactive gaseous waste
JP5632272B2 (en) Hydrogen treatment facility for reactor containment vessel
Yang et al. Deactivation mechanism of activated carbon supported copper oxide SCR catalysts in C2H4 reductant
RU2499305C1 (en) Passive autocatalytic hydrogen and oxygen recombiner with uniform load per area of catalyst element
JPH06222193A (en) Nuclear reactor
EP1703523B1 (en) Methods of reducing hydrogen absorption in zirconium alloys of nuclear fuel assembly
JP4356012B2 (en) Nuclear power plant
JP2011031171A (en) Catalytic reactor
Jeon et al. Novel hybrid technology for VOC control using an electron beam and catalyst
RU77488U1 (en) PASSIVE AUTOCATALYTIC RECOMBINATOR OF HYDROGEN AND OXYGEN FOR OPERATION IN A MEDIUM WITH A HIGH HYDROGEN CONTENT
JP5340211B2 (en) Boiling water nuclear power plant
US10974197B2 (en) Closed-environment air purification system
Iwai et al. Hydrophobic Platinum Honeycomb Catalyst to Be Used for Tritium Oxidation Reactors
Kamiji et al. Development of New Type Passive Autocatalytic Recombiner–Part 1. Characterization of Monolithic Catalyst
JP2007232432A (en) Chimney of natural circulation type boiling water reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5470099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150