JP5469282B1 - Anti-pancreatic cancer peptide - Google Patents

Anti-pancreatic cancer peptide Download PDF

Info

Publication number
JP5469282B1
JP5469282B1 JP2013539059A JP2013539059A JP5469282B1 JP 5469282 B1 JP5469282 B1 JP 5469282B1 JP 2013539059 A JP2013539059 A JP 2013539059A JP 2013539059 A JP2013539059 A JP 2013539059A JP 5469282 B1 JP5469282 B1 JP 5469282B1
Authority
JP
Japan
Prior art keywords
peptide
pancreatic cancer
cells
peptides
aspc1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013539059A
Other languages
Japanese (ja)
Other versions
JPWO2013186934A1 (en
Inventor
秀親 岡田
雅史 中村
Original Assignee
秀親 岡田
雅史 中村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 秀親 岡田, 雅史 中村 filed Critical 秀親 岡田
Application granted granted Critical
Publication of JP5469282B1 publication Critical patent/JP5469282B1/en
Publication of JPWO2013186934A1 publication Critical patent/JPWO2013186934A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本発明により、Patched−1蛋白質と相互作用することにより膵臓癌細胞のヘッジホッグシグナル伝達経路の活性を抑制し、膵臓癌細胞の増殖を抑制する膵臓癌の治療に有効な新規抗膵臓癌ペプチド、該ペプチドを含む膵臓癌の抗癌剤および該抗がん剤を投与する工程を含む膵臓癌の治療方法を提供する。 According to the present invention, a novel anti-pancreatic cancer peptide effective in treating pancreatic cancer that inhibits the activity of the hedgehog signaling pathway of pancreatic cancer cells by interacting with Patched-1 protein and suppresses the proliferation of pancreatic cancer cells, An anticancer agent for pancreatic cancer comprising the peptide and a method for treating pancreatic cancer comprising the step of administering the anticancer agent are provided.

Description

本発明は、Patched−1(以下「Patch1」ともいう。)蛋白質と相互作用して膵臓癌細胞のヘッジホッグシグナル伝達経路の活性を抑制し、膵臓癌細胞の増殖を抑制する膵臓癌の治療に有効な新規抗膵臓癌ペプチド、該ペプチドを含む膵臓癌の抗癌剤および該ペプチドによる治療方法に関する。   The present invention relates to treatment of pancreatic cancer that interacts with Patched-1 (hereinafter also referred to as “Patch1”) protein to suppress the activity of the hedgehog signaling pathway of pancreatic cancer cells and suppress the proliferation of pancreatic cancer cells. The present invention relates to an effective novel anti-pancreatic cancer peptide, an anticancer agent for pancreatic cancer containing the peptide, and a method for treating with the peptide.

膵臓癌では、ヘッジホッグシグナル伝達経路がそのリガンドであるソニックヘッジホッグ(Sonic Hedgehog。以下、「Shh」ともいう。)により異常に活性化されていることが報告されており、該活性化されたヘッジホッグシグナル伝達経路のコントロールにより膵臓癌の成長が抑制されるとの報告がされている。   In pancreatic cancer, it has been reported that the hedgehog signaling pathway is abnormally activated by its ligand, sonic hedgehog (hereinafter also referred to as “Shh”), and the activation is reported. It has been reported that the growth of pancreatic cancer is suppressed by controlling the hedgehog signaling pathway.

Kameda C,Tanaka H,Yamasaki A,Nakamura M,Koga K,Sato N,et al.The Hedgehog pathway is a possible therapeutic target for patients Anticancer Res.2009;29:871−9.Kameda C, Tanaka H, Yamazaki A, Nakamura M, Koga K, Sato N, et al. The Hedgehog pathway is a possible therapeutic target for patents Anticancer Res. 2009; 29: 871-9. Thayer SP,di Magliano MP,Heiser PW,Nielsen CM,Roberts DJ,Lauwers GY,et al.Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis.Nature.2003;425:851−6.Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lawers GY, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003; 425: 851-6. Berman DM,Karhadkar SS,Maitra A,Montes De Oca R,Gerstenblith MR,Briggs K,Beachy PA,et al.Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours.Nature.2003;425:846−51.Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Beachy PA, et al. Widespread requirement for Hedgehog ligand simulation in growth of digest tract tumours. Nature. 2003; 425: 844-51. Kubo M,Nakamura M,Tasaki A,Yamanaka N,Nakashima H,Nomura M,et al.Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer.Cancer Res.2004;64:6071−4.Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, et al. Hedgehog signaling path way is a new therapeutic target for patents with breast cancer. Cancer Res. 2004; 64: 6071-4. Nakashima H,Nakamura M,Yamaguchi H,Yamanaka N,Akiyoshi T,Koga K,et al.Nuclear factor−kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer.Cancer Res.2006;66:7041−9.Nakashima H, Nakamura M, Yamaguchi H, Yamanaka N, Akiyoshi T, Koga K, et al. Nuclear factor-kappaB contributors to hedgehog signaling pathway activation through sonichogeinduction in pancreatic cancer. Cancer Res. 2006; 66: 7041-9. Yanai K,Nagai S,Wada J,Yamanaka N,Nakamura M,Torata N,et al.Hedgehog signaling pathway is a possible therapeutic target for gastric cancer.J Surg Oncol.2007;95:55−62.Yanai K, Nagai S, Wada J, Yamanaka N, Nakamura M, Torata N, et al. Hedgehog signaling pathway is a possible therapeutic target for gastric cancer. J Surg Oncol. 2007; 95: 55-62. Kameda C,Nakamura M,Tanaka H,Yamasaki A,Kubo M,Tanaka M,et al.Oestrogen receptor−alpha contributes to the regulation of the hedgehog signalling pathway in ER alphapositive gastric cancer.Br J Cancer.2010;102:738−47.Kameda C, Nakamura M, Tanaka H, Yamazaki A, Kubo M, Tanaka M, et al. Oestrogen receptor-alpha contributors to the regu- lation of the hedgehog signaling path in ER alpha positive gastric cancer. Br J Cancer. 2010; 102: 738-47. Nakamura M,Kubo M,Yanai K,Mikami Y,Ikebe M,Nagai S,et al.Anti−patched−1 antibodies suppress hedgehog signaling pathway and pancreatic cancer proliferation.Anticancer Res.2007;27:3743−7.Nakamura M, Kubo M, Yanai K, Mikami Y, Ikebe M, Nagai S, et al. Anti-patched-1 antigensuppresses hedgehog signaling pathway and pancreatic cancer promotion. Anticancer Res. 2007; 27: 3743-7. Koga K,Nakamura M,Nakashima H,Akiyoshi T,Kubo M,Sato N,et al.Novel link between estrogen receptor alpha and hedgehog pathway in breast cancer.Anticancer Res.2008;28:731−40.Koga K, Nakamura M, Nakashima H, Akiyoshi T, Kubo M, Sato N, et al. Novell link between estogen receptor alpha and hedgehog pathway in breast cancer. Anticancer Res. 2008; 28: 731-40. Nagai S,Nakamura M,Yanai K,Wada J,Akiyoshi T,Nakashima H,et al.Gli1 contributes to the invasiveness of pancreatic cancer through matrix metalloproteinase−9 activation.Cancer Sci.2008;99:1377−84.Nagai S, Nakamura M, Yanai K, Wada J, Akiyoshi T, Nakashima H, et al. Gli1 controls to the invasion of of pancreatic cancer through matrix metalloproteinase-9 activation. Cancer Sci. 2008; 99: 1377-84.

上記の報告は、いずれも実験的研究のレベルのものであり、ヘッジホッグシグナル伝達経路をコントロールし、且つ癌の成長を抑制する臨床レベルで使用可能な薬は未だ開発されていないため、新規治療薬の開発が切実に要望されている。本発明者らは、ソニックヘッジホッグの結合部位に対して産生した抗Ptch1ポリクロナール抗体がヘッジホッグシグナル伝達活性と癌細胞の成長の双方を抑制することを既に報告しているが、該ポリクロナール抗体は、未だ臨床的に使用可能な段階に至っておらす、またハイブリッド抗体の産生には高コストを要するという問題がある。そこで、本発明は、Patched−1蛋白質と相互作用することにより膵臓癌細胞のヘッジホッグシグナル伝達経路の活性を抑制し、膵臓癌細胞の増殖を抑制する膵臓癌の臨床治療に有効な新規抗膵臓癌ペプチド、該ペプチドを含む膵臓癌の抗癌剤および該ペプチドによる膵臓癌の治療方法を提供することを目的とする。   All of the above reports are at the level of experimental research, and no drugs that can be used at the clinical level that control the hedgehog signaling pathway and suppress cancer growth have been developed. There is an urgent need for drug development. The present inventors have already reported that the anti-Ptch1 polyclonal antibody produced against the binding site of sonic hedgehog suppresses both hedgehog signaling activity and cancer cell growth. However, there is still a problem that it has reached a stage where it can be clinically used, and production of hybrid antibodies requires high costs. Thus, the present invention provides a novel anti-pancreas effective for clinical treatment of pancreatic cancer that inhibits the activity of the hedgehog signaling pathway of pancreatic cancer cells by interacting with Patched-1 protein and suppresses the proliferation of pancreatic cancer cells. An object of the present invention is to provide a cancer peptide, an anticancer agent for pancreatic cancer containing the peptide, and a method for treating pancreatic cancer using the peptide.

上記課題解決のため、本発明は、配列表の配列番号3に記載のアミノ酸配列からなるペプチドを提供する。該ペプチドは、そのN末端のアミノ基をアセチル化してもよい。また、該ペプチドのC末端のカルボキシル基をアミド化してもよい。
本発明は、また、配列表の配列番号3に記載のアミノ酸配列からなるペプチド、そのN末端のアミノ基をアセチル化したもの、そのC末端のカルボキシル基をアミド化したもののいずれか、又はそれらのペプチドの薬学的に許容される塩を含有する膵臓癌に対する抗癌剤を提供する。
本発明は、さらに、上記抗癌剤を投与する工程を含む膵臓癌の治療方法を提供する。
In order to solve the above problems, the present invention provides a peptide comprising the amino acid sequence set forth in SEQ ID NO: 3 in the sequence listing. The peptide may be acetylated at its N-terminal amino group. Further, the C-terminal carboxyl group of the peptide may be amidated.
The present invention also includes a peptide comprising the amino acid sequence set forth in SEQ ID NO: 3 in the sequence listing, an acetylated amino group at the N-terminal thereof, an amidated carboxyl group at the C-terminal, or a An anticancer agent for pancreatic cancer containing a pharmaceutically acceptable salt of a peptide is provided.
The present invention further provides a method for treating pancreatic cancer, comprising the step of administering the anticancer agent.

本発明により、臨床上、膵臓癌に対して有効性が優れ且つより低コストで生産し得る新規なペプチドが提供される。   The present invention provides a novel peptide that is clinically effective for pancreatic cancer and can be produced at a lower cost.

図1は、膵臓癌細胞AsPC1に対する相互作用ペプチドの3−(4,5−ジメチルチアゾール−2−イル)−2,5−ジフェニルテトラゾリウムブロミドを用いるアッセイ(以下「MTTアッセイ」という。)による吸光度を指標とした増殖抑制効果を示す。横軸は、AsPC1細胞と共に培養される相互作用ペプチド(図中、ペプチドA、B、C、D、F、GおよびH)の濃度(μg/ml(RPMI+5%FCS))を示し、縦軸は、MTTアッセイによる吸光度(A570)を示す。また、NCは、正常対照(緩衝液単独(RPMI+5%FCS))を示し(以下同じ。)、吸光度については、その平均値±標準偏差(SD)を示す(以下、図2において同じ。)。アステリスク(図中*)は、危険率が5%未満であること(P<0.05)を示す(以下同じ。)。
図2は、膵臓癌細胞系SUIT2に対する相互作用ペプチドのMTTアッセイによる吸光度を指標とした増殖抑制効果を示す。横軸は、SUIT2細胞と共に培養される相互作用ペプチド(図中、ペプチドA、B、C、D、F、GおよびH)の濃度(μg/ml(RPMI+5%FCS))を示し、縦軸は、MTTアッセイによる吸光度(A570)を示す。
図3Aは、膵臓癌細胞AsPC1に対する相互作用ペプチドの細胞数を指標とした増殖抑制効果を示す。縦軸は、膵臓癌細胞AsPC1のコールター計数による細胞数を示し、横軸は、膵臓癌細胞AsPC1と共に異なる培養時間(図中0、48、72時間)で培養された相互作用ペプチドを示す。NC、ペプチドB、ペプチドCおよびペプチドGについては、更に細胞数の平均値±標準偏差(SD)を示す(以下、図3Bにおいて同じ。)。また、A、B、C、D、F、G、Hは、それぞれペプチドA、ペプチドB、ペプチドC、ペプチドD、ペプチドF、ペプチドG、ペプチドHを示す(以下同じ)。
図3Bは、膵臓癌細胞SUIT2に対する相互作用ペプチドの細胞数を指標とした増殖抑制効果を示す。縦軸は、膵臓癌細胞SUIT2のコールター計数による細胞数を示し、横軸は、膵臓癌細胞SUIT2と共に異なる培養時間(図中0、48、72時間)で培養された相互作用ペプチドを示す。
図4Aは、AsPC1に関するGli1のmRNA量に対する相互作用ペプチドの影響を示す。縦軸は、ヘッジホッグシグナル伝達経路の活性のマーカーであるGli1の相対的mRNA量を示し、横軸は、AsPC1と72時間培養された相互作用ペプチドを示す。また、相対mRNA量についてはその平均値±標準偏差(SD)を示す(以下、図4B、図6Cおよび図6Dにおいて同じ。)。
図4Bは、SUIT2に関するGli1の相対的mRNA量に対する相互作用ペプチドの影響を示す。縦軸は、ヘッジホッグシグナル伝達経路の活性のマーカーであるGli1の相対的mRNA量を示し、横軸は、SUIT2と72時間培養された相互作用ペプチドを示す。
図5は、ペプチドA、ペプチドB、ペプチドCおよびペプチドGと共に培養されたAsPC1細胞に関するソニックヘッジホッグの染色レベル(上部の写真)およびそれらの位相差画像(下部の写真)を示す。また、横棒は50μmを示す。
図6Aは、 移植したAsPC1膵臓癌細胞に対するペプチドAおよびペプチドCの増殖抑制効果を示す。縦軸は、膵臓癌細胞の容積を示し、横軸は、ペプチドAおよびペプチドCの膵臓癌細胞移植後の日数を示す。
図6Bは、膵臓癌細胞を移植されたマウスであって、それぞれペプチドAを注入されたもの(写真左)およびペプチドCを注入されたもの(写真右)を示し、矢印は移植腫瘍を示す。
図6Cは、AsPC1に関するGli1の相対的mRNA量に対するペプチドA(左図)およびペプチドC(右図)の影響を示す。縦軸は、ヘッジホッグシグナル伝達経路の活性のマーカーであるGli1の相対的mRNA量を示し、横軸は、投与されたペプチドを示す。
図6Dは、SUIT2に関するGli1の相対的mRNA量に対するペプチドA(左図)およびペプチドG(右図)の影響を示す。縦軸は、ヘッジホッグシグナル伝達経路の活性のマーカーであるGli1の相対的mRNA量を示し、横軸は、投与されたペプチドを示す。
図6Eは、相互作用ペプチドがPtch1とヘッジホッグシグナル伝達経路の間の相互作用を妨げる推論上のメカニズムを示す。NおよびCはそれぞれ、Nアミノ末端およびCカルボキシ末端を示す。
FIG. 1 shows the absorbance by an assay using 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide as an interacting peptide for pancreatic cancer cell AsPC1 (hereinafter referred to as “MTT assay”). The growth inhibitory effect as an index is shown. The horizontal axis shows the concentration (μg / ml (RPMI + 5% FCS)) of interacting peptides (in the figure, peptides A, B, C, D, F, G and H) cultured with AsPC1 cells, and the vertical axis , Shows absorbance (A570) by MTT assay. NC represents a normal control (buffer alone (RPMI + 5% FCS)) (hereinafter the same), and the absorbance represents an average value ± standard deviation (SD) (hereinafter the same in FIG. 2). An asterisk (* in the figure) indicates that the risk rate is less than 5% (P <0.05) (the same applies hereinafter).
FIG. 2 shows the growth inhibitory effect of the interacting peptide on pancreatic cancer cell line SUIT2 as an index of absorbance by MTT assay. The horizontal axis indicates the concentration (μg / ml (RPMI + 5% FCS)) of interacting peptides (in the figure, peptides A, B, C, D, F, G and H) cultured with SUIT2 cells, and the vertical axis , Shows absorbance (A570) by MTT assay.
FIG. 3A shows the growth inhibitory effect using the number of interacting peptide cells for pancreatic cancer cell AsPC1 as an index. The vertical axis shows the number of cells obtained by Coulter counting of pancreatic cancer cells AsPC1, and the horizontal axis shows interacting peptides cultured with different culture times (0, 48, 72 hours in the figure) with pancreatic cancer cells AsPC1. For NC, Peptide B, Peptide C and Peptide G, the mean number of cells ± standard deviation (SD) is also shown (hereinafter the same in FIG. 3B). A, B, C, D, F, G, and H represent peptide A, peptide B, peptide C, peptide D, peptide F, peptide G, and peptide H, respectively (the same applies hereinafter).
FIG. 3B shows the growth-suppressing effect using the number of interacting peptides on pancreatic cancer cell SUIT2 as an index. The vertical axis shows the number of cells by Coulter counting of pancreatic cancer cells SUIT2, and the horizontal axis shows interacting peptides cultured with different culture times (0, 48, 72 hours in the figure) with pancreatic cancer cells SUIT2.
FIG. 4A shows the effect of interacting peptides on the amount of Gli1 mRNA for AsPC1. The vertical axis represents the relative mRNA level of Gli1, which is a marker for the activity of the hedgehog signal transduction pathway, and the horizontal axis represents an interacting peptide cultured with AsPC1 for 72 hours. In addition, the average mRNA standard deviation (SD) is shown for the relative mRNA amount (hereinafter the same in FIG. 4B, FIG. 6C and FIG. 6D).
FIG. 4B shows the effect of interacting peptides on the relative mRNA level of Gli1 for SUIT2. The vertical axis represents the relative mRNA level of Gli1, which is a marker for the activity of the hedgehog signaling pathway, and the horizontal axis represents an interacting peptide cultured with SUIT2 for 72 hours.
FIG. 5 shows Sonic hedgehog staining levels (top photo) and phase contrast images (bottom photo) for AsPC1 cells cultured with peptide A, peptide B, peptide C and peptide G. Moreover, a horizontal bar shows 50 micrometers.
FIG. 6A shows the growth inhibitory effect of peptide A and peptide C on transplanted AsPC1 pancreatic cancer cells. The vertical axis shows the volume of pancreatic cancer cells, and the horizontal axis shows the number of days after transplantation of pancreatic cancer cells of peptide A and peptide C.
FIG. 6B shows mice transplanted with pancreatic cancer cells, each injected with peptide A (left photo) and injected with peptide C (right photo), and arrows indicate transplanted tumors.
FIG. 6C shows the effect of peptide A (left panel) and peptide C (right panel) on the relative mRNA level of Gli1 with respect to AsPC1. The vertical axis shows the relative mRNA level of Gli1, which is a marker of the activity of the hedgehog signaling pathway, and the horizontal axis shows the administered peptide.
FIG. 6D shows the effect of peptide A (left panel) and peptide G (right panel) on the relative mRNA level of Gli1 for SUIT2. The vertical axis shows the relative mRNA level of Gli1, which is a marker of the activity of the hedgehog signaling pathway, and the horizontal axis shows the administered peptide.
FIG. 6E shows a speculative mechanism by which interacting peptides prevent the interaction between Ptch1 and the hedgehog signaling pathway. N and C represent the N amino terminus and the C carboxy terminus, respectively.

以下、本発明を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
(A)新規ペプチド
本発明に係る新規ペプチドは、配列表の配列番号3に記載のアミノ酸配列で表される。以下該ペプチド(実施例におけるペプチドCを参照)について説明する。
該ペプチドは、図6Eに示す推論上のメカニズムに従いPatched−1蛋白質と相互作用することが予想されるペプチドをソフトウェアおよび独自のノウハウを用いて設計したもののうち、該相互作用の可能性が高い7種のペプチド(以下「相互作用ペプチド」という。)について合成を行ない(実施例1参照)、Patched−1蛋白質との相互作用を検証した結果、試験管内(in vitro)および生体内(in vivo)においてヒト膵臓癌細胞系(AsPC1およびSUIT2)に対する特に優れた増殖抑制効果を有することが見出されたものである。該ペプチドは、16個のアミノ酸(Asp Thr Leu Ser Cys Gln Ser Pro Glu Ser Thr Ser Ser Thr Arg Asp)により構成され、その構成アミノ酸Asp、Thr、Leu、Ser、Cys、Gln、Pro、Glu、Argは、それぞれ、天然型アミノ酸のアスパラギン酸、スレオニン、ロイシン、セリン、システイン、グルタミン、プロリン、グルタミン酸、アルギニンを示す。
本発明の新規ペプチドのN末端のアミノ基はアセチル化してもよいが、該アセチル化は、自体公知の方法(例えば、Atherton,E.and Sheppard,R.C.(1989)Solid phase peptide synthesis;a practical approach.IRL Press,Oxford.および生化学実験講座 蛋白質の化学 IV p449、日本生化学会編、東京化学同人(1977))により、もしくはこれらに準じた方法により、行なうことができる。
本発明のペプチドのC末端のカルボキシル基はアミド化してもよいが、該アミド化は、自体公知の方法(例えば、Neises,B.;Steglich,W.Angew.Chem.Int.Ed.1978,17,522.)により、もしくはこれに準じた方法により、行なうことができる。
該C末端のカルボキシル基のアミド化または前記のN末端のアミノ基のアセチル化により、本発明に係る新規ペプチドの安定化を図ることができる。
(B)膵臓癌に対する抗癌剤
本発明に係る膵臓癌に対する抗癌剤、すなわち、前記の新規ペプチド(配列表の配列番号3に記載のアミノ酸配列からなるペプチド、そのN末端のアミノ基をアセチル化したもの、そのC末端のカルボキシル基をアミド化したもの)のいずれか、又はそれらのペプチドの薬学的に許容される塩を含有する膵臓癌の抗癌剤について、以下に説明する。
本発明のペプチドの薬学的に許容される塩とは、塩酸塩、硫酸塩、臭化水素酸塩等の無機酸との塩、酢酸塩、クエン酸塩、メタンスルホン酸塩などの有機酸との塩、ナトリウム塩、カリウム塩等の無機塩基との塩、イソプロピルアミン、2−エチルアミノエタノール等の有機塩基との塩をいう。
本発明の抗癌剤は、有効成分として本発明のペプチドを含有し、経直腸、経鼻、経肺、経膣、外用(局所)、経口または非経口(皮下、植込み、静脈内および筋肉内を含む)投与に適した固体、半固体または液体(錠剤、ペレット剤、トローチ剤、カプセル剤、坐剤、クリーム剤、軟膏剤、エアゾール剤、散剤、液剤、乳剤、懸濁剤、シロップ剤、注射液など)等の医薬製剤の形態で使用できる。
本発明の抗癌剤は、製薬目的で慣用されている種々の有機または無機担体、例えば賦形剤(スクロース、デンプン、マンニトール、ソルビトール、ラクトース、グルコース、セルロース、タルク、リン酸カルシウム、炭酸カルシウムなど)、縮合剤(セルロース、メチルセルロース、ヒドロキシプロピルセルロース、ポリプロピルピロリドン、ゼラチン、アラビアゴム、ポリエチレングリコール、スクロース、デンプンなど)、崩壊剤(デンプン、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、ヒドロキシプロピルデンプン、炭酸水素ナトリウム、リン酸カルシウム、クエン酸カルシウムなど)、滑沢剤(ステアリン酸マグネシウム、エアロシル、タルク、ラウリル硫酸ナトリウムなど)、矯味剤(クエン酸、メントール、グリシン、オレンジ末など)、保存剤(安息香酸ナトリウム、亜硫酸水素ナトリウム、メチルパラベン、プロピルパラベンなど)、安定化剤(クエン酸、クエン酸ナトリウム、酢酸など)、懸濁剤(メチルセルロース、ポリビニルピロリドン、ステアリン酸アルミニウムなど)、分散剤(ヒドロキシプロピルメチルセルロースなど)、希釈剤(水など)、基材ワックス(カカオバター、ポリエチレングリコール、白色ワセリンなど)を用いる常法によっても製造することができる。
(C)膵臓癌の治療方法
本発明に係る膵臓癌の治療方法、すなわち、前記の抗癌剤を投与する工程を含む膵臓癌の治療方法において、本発明の抗癌剤は、ヒトを含む哺乳動物に上記慣用の医薬製剤の形で、特に限定なく投与することができる。その中でも静脈内、筋肉内または経口投与するのが好ましい。なお、相互作用ペプチドのうち、配列表の配列番号2、配列番号5および配列番号6に記載のアミノ酸配列で表されるペプチド(それぞれ実施例におけるペプチドB、FおよびGを参照)についてもヒト膵臓癌細胞系に対して優れた増殖抑制効果を有しているため、これらのペプチド(そのN末端のアミノ基をアセチル化したものおよびそのC末端のカルボキシル基をアミド化したものを含む。)は、本発明に係るペプチドと同様に、それぞれのペプチド又はそれらのペプチドの薬学的に許容される塩を含有する膵臓癌の抗癌剤において用いることができ、また該抗癌剤を投与する工程を含む膵臓癌の治療方法においても用いることができる。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described with reference to the drawings. In addition, embodiment described below shows an example of typical embodiment of this invention, and, thereby, the range of this invention is not interpreted narrowly.
(A) Novel peptide The novel peptide according to the present invention is represented by the amino acid sequence set forth in SEQ ID NO: 3 in the Sequence Listing. The peptide (see peptide C in the examples) will be described below.
Among the peptides that are designed using software and unique know-how, peptides that are expected to interact with the Patched-1 protein according to the inference mechanism shown in FIG. As a result of synthesizing a kind of peptide (hereinafter referred to as “interactive peptide”) (see Example 1) and verifying its interaction with Patched-1 protein, in vitro and in vivo Has been found to have a particularly excellent growth inhibitory effect on human pancreatic cancer cell lines (AsPC1 and SUIT2). The peptide is composed of 16 amino acids (Asp Thr Leu Ser Cys Gln Ser Pro Glu Ser Thr Ser Ser Thr Arg Asp), and its constituent amino acids Asp, Thr, Leu, Ser, Cys, Gln, Pro, Glu, Arg Respectively represent the natural amino acids aspartic acid, threonine, leucine, serine, cysteine, glutamine, proline, glutamic acid, and arginine.
Although the N-terminal amino group of the novel peptide of the present invention may be acetylated, the acetylation may be performed by a method known per se (for example, Atherton, E. and Sheppard, RC (1989) Solid phase peptide synthesis; a practical appl.IRL Press, Oxford, and Biochemistry Experiment Course Protein Chemistry IV p449, edited by the Japanese Biochemical Society, Tokyo Kagaku Dojin (1977)), or a method based thereon.
Although the carboxyl group at the C-terminal of the peptide of the present invention may be amidated, the amidation is carried out by a method known per se (for example, Neises, B .; Steglich, W. Angew. Chem. Int. Ed. 1978, 17). , 522.) or a method according thereto.
The novel peptide according to the present invention can be stabilized by amidation of the C-terminal carboxyl group or acetylation of the N-terminal amino group.
(B) Anticancer agent against pancreatic cancer Anticancer agent against pancreatic cancer according to the present invention, that is, the above-mentioned novel peptide (peptide comprising the amino acid sequence described in SEQ ID NO: 3 in the sequence listing, acetylated N-terminal amino group, An anticancer agent for pancreatic cancer containing any one of the C-terminal carboxyl groups) or a pharmaceutically acceptable salt of the peptide thereof will be described below.
The pharmaceutically acceptable salts of the peptides of the present invention include salts with inorganic acids such as hydrochloride, sulfate, hydrobromide, organic acids such as acetate, citrate, methanesulfonate, and the like. Salts with inorganic bases such as sodium salts, sodium salts and potassium salts, and salts with organic bases such as isopropylamine and 2-ethylaminoethanol.
The anticancer agent of the present invention contains the peptide of the present invention as an active ingredient and includes transrectal, nasal, pulmonary, vaginal, topical (topical), oral or parenteral (subcutaneous, implantation, intravenous and intramuscular) ) Solid, semi-solid or liquid suitable for administration (tablets, pellets, troches, capsules, suppositories, creams, ointments, aerosols, powders, solutions, emulsions, suspensions, syrups, injections) Etc.) and the like.
The anticancer agent of the present invention includes various organic or inorganic carriers conventionally used for pharmaceutical purposes, such as excipients (sucrose, starch, mannitol, sorbitol, lactose, glucose, cellulose, talc, calcium phosphate, calcium carbonate, etc.), condensing agents (Cellulose, methylcellulose, hydroxypropylcellulose, polypropylpyrrolidone, gelatin, gum arabic, polyethylene glycol, sucrose, starch, etc.), disintegrant (starch, carboxymethylcellulose, carboxymethylcellulose calcium, hydroxypropyl starch, sodium bicarbonate, calcium phosphate, citrate Acid), lubricants (magnesium stearate, aerosil, talc, sodium lauryl sulfate, etc.), flavoring agents (citric acid, men , Glycine, orange powder, etc.), preservatives (sodium benzoate, sodium bisulfite, methylparaben, propylparaben, etc.), stabilizers (citric acid, sodium citrate, acetic acid, etc.), suspending agents (methylcellulose, polyvinyl) It can also be produced by a conventional method using pyrrolidone, aluminum stearate, etc.), a dispersant (hydroxypropylmethylcellulose, etc.), a diluent (water, etc.), and a base wax (cocoa butter, polyethylene glycol, white petrolatum, etc.).
(C) Method for treating pancreatic cancer In the method for treating pancreatic cancer according to the present invention, that is, the method for treating pancreatic cancer comprising the step of administering the anticancer agent, the anticancer agent of the present invention is commonly used for mammals including humans. And can be administered without any particular limitation. Of these, intravenous, intramuscular or oral administration is preferred. Of the interacting peptides, peptides represented by the amino acid sequences set forth in SEQ ID NO: 2, SEQ ID NO: 5 and SEQ ID NO: 6 (see peptides B, F and G in the examples, respectively) also represent human pancreas. These peptides (including those obtained by acetylating the N-terminal amino group and those obtained by amidating the C-terminal carboxyl group) have an excellent growth inhibitory effect on cancer cell lines. The pancreatic cancer can be used in an anticancer agent for pancreatic cancer containing each peptide or a pharmaceutically acceptable salt of the peptide as well as the peptide according to the present invention, and the method further comprises a step of administering the anticancer agent. It can also be used in therapeutic methods.

癌細胞の生育に対するペプチドの生物学的効果が ヘッジホッグシグナル伝達経路の(転写)活性の減衰により生じたことを確認するために、該経路に対する合成ペプチドである相互作用ペプチド(ペプチドA、B、C、D、F、G、H)の影響を検討した結果を実施例に示す。以下に実施例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
(Ptch1に対する相互作用ペプチドの設計および合成)
Ptch1の標的配列に対する相互作用ペプチドは、アミノ酸をランダムに変更することで標的に対する親和性が高いと予想されるペプチド配列5000種を設計する遺伝的アルゴリズムを採用し、且つ設計した各ペプチド配列について、疎水性親水性指標の相補性最適化、平均的構造類似性最適化、側鎖の干渉の最小化および骨格の配列を含む幾つかの物理化学的パラメータに基づき点数が割り当てられるMIMETICプログラムと称するソフトウェア(Campbell W,Kleiman L,Barany L,Li Z,Khorchid A,Fujita E,et al.A novel genetic algorithm for designing mimetic peptides that interfere with the function of a target molecule.Microbiol Immunol.2002;46:211−5.およびBaranyi L,Campbell W,Ohshima K,Fujimoto S,Boros M,Okada H.The antisense homology box:a new motif within proteins that encodes biologically active peptides.Nat Med.1995;1:894−901.を参照)により設計され、下記の表1に示す高い点数の7個のペプチドが選択された。これら7個のペプチドは、固相合成法(Gerald F.Sigler,Anne K.Soutar,Louis C.Smith,Antonio M.Gotto,Jr.,James T.Sparrow.The solid phase synthesis of a protein activator for lecithin−cholesterol acyltransferase corresponding to human plasma apoC−I.Proc.Natl.Acad.Sci.USA,Vol.73,No.5,pp.1422−1426,May 1976,Biochemistryを参照)により製造した。
実施例2
(ヒト膵臓癌細胞系(AsPC1およびSUIT2)の増殖アッセイ)
ヒト膵臓癌細胞系AsPC1(アメリカンタイプカルチャーコレクション、Rock ville、Med.、USAより入手)およびSUIT2(JCRB細胞バンクより入手)の増殖アッセイは、次の細胞培養条件による培養細胞について、分光光度的に測定可能なブルーホルマザンに対する、代謝的活性細胞のミトコンドリアデヒドロゲナーゼによる黄色3−(4,5−ジメチルチアゾール−2−イル)−2,5−ジフェニルテトラゾリウムブロミド(MTT)(Sigma Chemical Co.セントルイス、MO)の還元に基づくMTTアッセイ法およびコールターカウンター(Beckman Coulter,Fullerton,CA,USA)による細胞数計測法(Kubo M,Nakamura M,Tasaki A,Yamanaka N,Nakashima H,Nomura M,et al.Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer.Cancer Res.2004;64:6071−4.を参照)により行なった。
(細胞培養条件)
ヒト膵臓癌細胞系AsPC1およびSUIT2は、ウシ胎児血清(FBS;Life Technologies)と抗生物質(100units/mlのペニシリンおよび100μg/mlのストレプトマイシン、明治製菓株式会社製)を補ったRPMI1640完全培地(Life Technologies,Grand Island,NY,USA製)中で、加湿した二酸化炭素5%および空気95%下37℃で培養した(Nakamura M,Masuda H,Horii J,Kuma K,Yokoyama N,Ohba T,et al.When overexpressed,a novel centrosomal protein,RanBPM,causes ectopic microtubule nucleation similar to gamma−tubulin.J Cell Biol.1998;143:1041−52.およびKameda C,Tanaka H,Yamasaki A,Nakamura M,Koga K,Sato N,et al.The Hedgehog pathway is a possible therapeutic target for patients with estrogen receptor−negative breast cancer.Anticancer Res.2009;29:871−9.を参照)。
(MTTアッセイ法による増殖アッセイ)
ヒト膵臓癌細胞系AsPC1およびSUIT2は、3x10細胞/ウェルの濃度で96ウェルプレートに接種され、上記の細胞培養条件に従い、一夜培養した後、それぞれ1.0μg/mlおよび10.0μg/mlの7種の各相互作用ペプチド(ペプチドA、B、C、D、F、G、H)を含む新たな培地に変えられ72時間培養された。その後、細胞はトリプシンを用いて収集し、生存細胞はMTTアッセイに付された。正常対照(NC)としては緩衝液単独(RPMI+5%FCS)を用い、各相互作用ペプチドは当該緩衝液(RPMI+5%FCS)に溶解して使用した(以下同じ。)。
結果を図1および図2に示す。ペプチドB、CおよびGは、ヒト膵臓癌細胞系AsPC1細胞の成長に対して、いずれも1.0μg/mlの濃度および10.0μg/mlの濃度において用量依存的に、それぞれ抑制傾向および有意な抑制効果を示した(図1参照)。また、ペプチドB、C、FおよびGは、ヒト膵臓癌細胞系SUIT2細胞の成長に対して、いずれも1.0μg/mlの濃度および10.0μg/mlの濃度において用量依存的に、それぞれ抑制傾向および有意な抑制効果を示した(図2参照)。ペプチドFの例外はあるものの、前記AsPC1の場合と類似していた。なお、ペプチドA、DおよびHは、いずれもヒト膵臓癌細胞系AsPC1およびSUIT2細胞の成長に対して抑制効果を示さなかった(図1および図2参照)。
(コールターカウンターによる細胞数計測法による増殖アッセイ)
MTTアッセイにより検出された相互作用ペプチドの生物学的効果を更に確認するため、相互作用ペプチドと共に培養されたヒト膵臓癌細胞系AsPC1細胞およびSUIT2細胞について以下に示すコールター計測を行なった。ヒト膵臓癌細胞系AsPC1およびSUIT2は、1x10細胞/ウェルの濃度で24ウェルプレートに接種され、上記の細胞培養条件に従い、一夜培養した後、それぞれ10μg/mlの7種の各相互作用ペプチド(ペプチドA、B、C、D、F、G、H)を含む新たな培地に変えられ48時間および72時間培養された。その後、細胞はトリプシンを用いて収集し、生存細胞はコールターカウンターを用いる細胞数計測に付された。
結果を図3A、3Bに示す。MTTアッセイの結果と矛盾すること無く、同様の結果が得られた。すなわち、ペプチドB、CおよびGは、ヒト膵臓癌細胞系AsPC1細胞の増殖に対して、いずれも48時間および72時間の培養時間において、それぞれ抑制傾向および有意な抑制効果を示した(図3A)。ペプチドB、C、FおよびGは、ヒト膵臓癌細胞系SUIT2細胞の増殖に対して、いずれも48時間および72時間の培養時間において、それぞれ抑制傾向および有意な抑制効果を示した(図3B)。ペプチドFは、SUIT2についてのみ効果を示した。
なお、ペプチドA、DおよびHは、いずれもヒト膵臓癌細胞系AsPC1およびSUIT2細胞の増殖に対して抑制効果を示さなかった(図1および図2参照)。
実施例3
(Gli1のmRNAの発現量に対するPtch1相互作用ペプチドの影響)
Gli1はヘッジホッグシグナル伝達経路の転写因子であるだけでなくヘッジホッグ経路の標的遺伝子でもあるため、Gli1のmRNAの発現量をヘッジホッグ経路の活性のマーカーとして用いた。実施例2においてAsPC1の増殖を抑制することが確認された、3個のペプチド、即ちペプチドB、CおよびGは、AsPC1と共に72時間培養され、陰性対照としてペプチドAもAsPC1と共に同時間培養された。培養後、mRNAは培養細胞から調製され、次に述べるリアルタイムRT−PCRによる定量分析に付された。また、実施例2においてSUIT2の増殖を抑制することが確認された、4個の相互作用ペプチド、即ちペプチドB、C、FおよびGについても、AsPC1の場合と同様に、SUIT2の増殖に対して抑制効果を示したので、これら4個の相互作用ペプチドについてもSUIT2と共に72時間培養され、陰性対照としてペプチドAもSUIT2と共に同時間培養された。培養後、mRNAは培養細胞から調製され、次に述べるリアルタイムRT−PCRによる定量分析に付された。
(RT−PCRを用いたGli1のmRNAの発現量の定量)
Gli1のmRNAの発現量の定量は、リアルタイム逆転写ポリメラーゼ連鎖反応(RT−PCR)を用いて以下のように行なった。即ち、総RNAは、RNeasyミニキット(Qiagen,Valencia,CA,USA)を用いて抽出され、分光光度法(Ultrospec 2100 Pro;Amersham Pharmacia Biotech,Cambridge,UK)により定量された。RNA(700ng)は、DNaseで処理され、Quantitect Reverse Transcription Kit(Qiagen)を用いてそのプロトコールに従いcDNAに逆転写された。反応は、SYBR Premix ExTaq(タカラバイオ株式会社製)を用い、DNA Engine Opticon 2 System(MJ Research,Waltham,MA,USA)により実施された。pGli1−GFP(緑色蛍光蛋白質)は、連続的に10倍単位で希釈され、Gli1の標準曲線を作成するためにプライマー対を用いて増幅された。各サンプルは3回実施された。全てのプライマーの組は200塩基対の長さの断片を増幅した。使用されたプライマーの配列は次の通りである。beta−actin、順方向、50−TTG CCG ACA GGA TGC AGA AGG A−30、逆方向、50−AGG TGG ACA GCG AGG CCA GGA T−30およびGli1、順方向、50−GGT TCA AGA GCC TGG GCT GTG T−30、逆方向、50−GGC AGC ATT CTC AGT GAT GCT G−30。あるサンプル中の遺伝子の量は、そのサンプル中のβ−actin量に対して規準化された(Kameda C,Nakamura M,Tanaka H,Yamasaki A,Kubo M,Tanaka M,et al.Oestrogen receptor−alpha contributes to the regulation of the hedgehog signalling pathway in ER alphapositive gastric cancer.Br J Cancer.2010;102:738−47.を参照)。
結果を図4Aおよび図4Bに示す。Gli1の相対mRNA量は、ペプチドAと共に若しくは相互作用ペプチド無しで培養されたAsPC1細胞(NC参照)に比して、ペプチドB、CおよびGと共に培養されたAsPC1細胞においてより有意に抑制されている(図4A参照)。また、ペプチドB、C、FおよびGと共に培養されたSUIT2細胞のmRNA量が、ペプチドAと共にまたは相互作用ペプチド無しに培養されたSUIT2細胞のmRNA量と比較して有意に抑制されることを示している(図4B参照)。この結果は、Ptch1に対する相互作用ペプチドの癌細胞の生育に対する抑制効果がヘッジホッグシグナル伝達経路の(転写)活性を減衰させることにより誘起されることを強く示唆している。
実施例4
(培養細胞のソニックヘッジホッグ(Shh)の免疫染色)
Ptch1に対する相互作用ペプチドは、小さ過ぎて抗体により染色されないため、相互作用ペプチドのPtch1タンパクに対する特異性を、ペプチドが競合的にPtch1とShhとの間の相互作用を阻害する効果により確証した。AsPC1細胞(2x10/well)は、24ーウェルプレートのカバーグラス(AGCテクノグラス株式会社製)の上で実施例2の細胞培養条件に従い一夜培養された。次にその培地は、Ptch1に対する10μg/mlの相互作用ペプチド(ペプチドA、ペプチドB、ペプチドC,ペプチドG)を含む新しい培地にかえられた。24時間培養後、スライドは、空気乾燥され8%フォルムアルデヒドに30分間浸漬された。一次抗体は、4℃で一夜浸漬された。使用された一次抗体は、1:250の濃度のShh(N−19;Santa Cruz Biotechnology,Santa Cruz,CA,USA社製)であった。二次抗体(ウサギ抗ヤギ免疫グロプリン;株式会社ニチレイ製)は室温下で1時間反応した。ベクタシールド マウンティング メディウム[Vectashield mounting medium、ベクターラボ(Vector Laboratories,Burlingame,California,USA)社製]に載せた後、サンプルは、レーザー走査型共焦点蛍光顕微鏡(LSM−GB200 System;オリンパス光学工業株式会社製)下で視覚化した。
結果を図5に示す。図5の上部パネルは、Patched−1(Ptch1)に対する相互作用ペプチド(ペプチドB、CおよびG)を伴うAsPC1細胞の周囲にあるShhの染色レベルは、ペプチドA(対照ペプチド)を伴う細胞の染色レベルより低いことを示している。これは、ペプチドB、CおよびGがShhとの所定の結合部位において特異的にPtch1と相互作用をしていることを支持している。なお、下部のパネルは、ペプチドA、BおよびG(左から右へ)の位相差による画像(位相)であり、細胞の外形が示されている。ペプチドAに比較して、ペプチドB、C、Dを加えた細胞では、位相差画像で認められる細胞外形に従った染色像が認められない。
実施例5
(動物モデルおよびAsPC1の臀部皮下移植
動物実験のために遵守する手順は、九州大学の実験動物の管理と使用に関するガイドライおよび文部科学省の研究機関等における動物実験等の実施に関する基本指針に従った。4〜6週令の雌のNOD―SCID(NOD/severe combined immunodeficiency)マウスは、日本エスエルシー株式会社より購入した。マウスは、九州大学で承認された施設の特定病原体除去の状態下にある水平層流キャビネットに収容された。AsPC1またはSUIT2細胞は、無血清のRPMI/Matrigel(日本ベクトン・ディッキンソン株式会社製)混合物(1:1容量、合計1×10cells/0.4ml)に懸濁し、次にマウスの臀部に27番径の針を用いて注入した。腫瘍形成後、200μgの相互作用ペプチド(AsPC1細胞については、ペプチドA、ペプチドC、SUIT2細胞については、ペプチドA,ペプチドG)が腫瘍部位に27番径の針を用いて、一日1回で5日間注入された。腫瘍形成、腫瘍サイズおよびマウスの体重は、2日置きに46日間測定された(Akiyoshi T,Nakamura M,Yanai K,Nagai S,Wada j,Koga K,et al.Gamma−secretase inhibitors enhance taxane−induced mitotic arrest and apoptosis in colon cancer cells.Gastroenterology.2008;134:131−44.に記載の方法に順じて行なった)。
結果を図6A、図6Bに示す。図6A、図6B共に、ペプチドAと比較してペプチドCがAsPC1細胞の異種移植による膵臓腫瘍の生体内での生育を抑制する傾向を示している。
(RT−PCRを用いたGli1のmRNAの発現量の定量)
前記臀部皮下移植後の最終日(46日目)に腫瘍を切除し回収した当該腫瘍組織を用い実施例3に記載のリアルタイムPCRにより、そのGli1のmRNAの発現量の定量を行なった。
結果を図6Cに示す。図6Cから明らかなように、ペプチドCが注入されたAsPC1腫瘍細胞のGli1発現量は、ペプチドAが注入されたAsPC1腫瘍細胞に比して有意に減少した。また、図6Dに示すように、ペプチドGが注入されたSUIT2腫瘍細胞のGli1発現量は、ペプチドAが注入された腫瘍細胞に比して有意に減少している。この結果は、Ptch1に対する相互作用ペプチド(ペプチドCおよびペプチドG)の癌細胞の生育に対する抑制効果がヘッジホッグシグナル伝達経路の(転写)活性を減衰させることにより誘起されることを強く示唆している。
(統計解析)
スチューデントt検定が統計解析に用いられた。全ての計算は、スタットビュー5.0Jソフトウェア(StatView 5.0J software、Abacus Concepts,Berkeley,CA,USA)を用いて行なわれた。0.05未満のP値は有意と看做された(Kameda C,Nakamura M,Tanaka H,Yamasaki A,Kubo M,Tanaka M,et al.Oestrogen receptor−alpha contributes to the regulation of the hedgehog signalling pathway in ER alphapositive gastric cancer.Br J Cancer.2010;102:738−47.を参照)。
In order to confirm that the biological effect of the peptide on the growth of cancer cells was caused by the attenuation of the (transcriptional) activity of the hedgehog signaling pathway, interacting peptides (peptides A, B, The results of studying the influence of C, D, F, G, and H) are shown in Examples. EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
Example 1
(Design and synthesis of interacting peptides for Ptch1)
The interaction peptide for the target sequence of Ptch1 employs a genetic algorithm for designing 5000 kinds of peptide sequences that are expected to have high affinity for the target by randomly changing amino acids, and for each designed peptide sequence, Software called MIMETIC program in which scores are assigned based on several physicochemical parameters including optimization of complementation of hydrophobic hydrophilicity index, optimization of average structural similarity, minimization of side chain interference and backbone sequence (Campbell W, Kleiman L, Barany L, Li Z, Khorchid A, Fujita E, et al. A novel genetic algorithm for designing peptides interstituting. e function of a target molecule.Microbiol Immunol.2002; 46:. 211-5 and Baranyi L, Campbell W, Ohshima K, Fujimoto S, Boros M, Okada H.The antisense homology box: a new motif within proteins that encodes biologically active peptides.Nat Med.1995; 1: 894-901.) and the high score 7 peptides shown in Table 1 below were selected. These seven peptides were synthesized by the solid phase synthesis method (Gerald F. Sigler, Anne K. Soutar, Louis C. Smith, Antonio M. Gotto, Jr., James T. Sparrow. The solid phase of the synthetic phase. -Manufactured by cholesterol acyltransferase corresponding to human plasma apo C-I. Proc. Natl. Acad. Sci. USA, Vol. 73, No. 5, pp. 1422-1426, May 1976, Biochemistry.
Example 2
(Proliferation assay of human pancreatic cancer cell lines (AsPC1 and SUIT2))
Proliferation assays of the human pancreatic cancer cell lines AsPC1 (obtained from American Type Culture Collection, Rockville, Med., USA) and SUIT2 (obtained from JCRB cell bank) were performed spectrophotometrically for cultured cells under the following cell culture conditions: Yellow 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) by mitochondrial dehydrogenase of metabolically active cells against measurable blue formazan (Sigma Chemical Co. St. Louis, MO) MTT assay based on reduction of cells and cell counting (Kubo M, Nakamura M, Tasaki A, Beckman Coulter, Fullerton, CA, USA) Yamanaka N, Nakashima H, Nomura M, et al., Hedgehog signaling pathway is a new therapeutic target for patent with breast.
(Cell culture conditions)
Human pancreatic cancer cell lines AsPC1 and SUIT2 were prepared from RPMI 1640 complete medium (Life Technologies) supplemented with fetal bovine serum (FBS; Life Technologies) and antibiotics (100 units / ml penicillin and 100 μg / ml streptomycin, manufactured by Meiji Seika Co., Ltd.). , Grand Island, NY, USA) at 37 ° C. under humidified carbon dioxide 5% and air 95% (Nakamura M, Masuda H, Horii J, Kuma K, Yokoyama N, Ohba T, et al. When overexpressed, a novel centrosomal protein, RanBPM, casuals electrical microtubule nucleation similar to gamma-tubulin.J Cell Biol.1998; 143: 1041-52. and Kameda C, Tanaka H, Yamazaki A, Nakamura M, Koga K, Sato N, et al. The Hedgehep. with estrogen receptor-negative breast cancer. Anticancer Res. 2009; 29: 871-9.).
(Proliferation assay by MTT assay)
Human pancreatic cancer cell lines AsPC1 and SUIT2 were inoculated into 96-well plates at a concentration of 3 × 10 3 cells / well and cultured overnight according to the cell culture conditions described above, then 1.0 μg / ml and 10.0 μg / ml, respectively. The medium was changed to a new medium containing 7 kinds of interacting peptides (peptides A, B, C, D, F, G, H) and cultured for 72 hours. Cells were then harvested using trypsin and viable cells were subjected to MTT assay. As a normal control (NC), buffer alone (RPMI + 5% FCS) was used, and each interacting peptide was dissolved in the buffer (RPMI + 5% FCS) and used (the same applies hereinafter).
The results are shown in FIG. 1 and FIG. Peptides B, C and G both inhibited and significantly inhibited the growth of human pancreatic cancer cell line AsPC1 cells in a dose-dependent manner at concentrations of 1.0 μg / ml and 10.0 μg / ml, respectively. The suppression effect was shown (refer FIG. 1). In addition, peptides B, C, F and G each inhibited the growth of human pancreatic cancer cell line SUIT2 cells in a dose-dependent manner at a concentration of 1.0 μg / ml and a concentration of 10.0 μg / ml, respectively. The tendency and the significant inhibitory effect were shown (refer FIG. 2). Although there was an exception for peptide F, it was similar to that for AsPC1. Peptides A, D and H did not show an inhibitory effect on the growth of human pancreatic cancer cell lines AsPC1 and SUIT2 cells (see FIGS. 1 and 2).
(Proliferation assay by cell counting with Coulter counter)
In order to further confirm the biological effect of the interacting peptide detected by MTT assay, the following Coulter measurements were performed on human pancreatic cancer cell line AsPC1 cells and SUIT2 cells cultured with interacting peptides. Human pancreatic cancer cell lines AsPC1 and SUIT2 were inoculated into a 24-well plate at a concentration of 1 × 10 4 cells / well, cultured overnight according to the above cell culture conditions, and then each of the 7 interacting peptides (10 μg / ml each) ( The medium was changed to a fresh medium containing peptides A, B, C, D, F, G, and H) and cultured for 48 hours and 72 hours. Thereafter, cells were collected using trypsin, and viable cells were subjected to cell count using a Coulter counter.
The results are shown in FIGS. 3A and 3B. Similar results were obtained consistent with the results of the MTT assay. That is, peptides B, C, and G showed a tendency to suppress and a significant inhibitory effect on the proliferation of human pancreatic cancer cell line AsPC1 cells, respectively, at a culture time of 48 hours and 72 hours, respectively (FIG. 3A). . Peptides B, C, F and G both showed a tendency to suppress and a significant inhibitory effect on the growth of human pancreatic cancer cell line SUIT2 cells at 48 hours and 72 hours of culture, respectively (FIG. 3B). . Peptide F was only effective for SUIT2.
Peptides A, D and H did not show an inhibitory effect on the growth of human pancreatic cancer cell lines AsPC1 and SUIT2 cells (see FIGS. 1 and 2).
Example 3
(Effect of Ptch1-interacting peptide on Gli1 mRNA expression level)
Since Gli1 is not only a transcription factor of the hedgehog signaling pathway but also a target gene of the hedgehog pathway, the expression level of Gli1 mRNA was used as a marker for hedgehog pathway activity. Three peptides confirmed to inhibit AsPC1 growth in Example 2, namely peptides B, C and G, were cultured with AsPC1 for 72 hours, and peptide A was also incubated with AsPC1 for the same time as a negative control. . After culture, mRNA was prepared from cultured cells and subjected to quantitative analysis by real-time RT-PCR described below. In addition, the four interacting peptides that were confirmed to suppress the proliferation of SUIT2 in Example 2, ie, peptides B, C, F, and G, also against the proliferation of SUIT2 as in the case of AsPC1. Since they showed an inhibitory effect, these four interacting peptides were also cultured with SUIT2 for 72 hours, and peptide A was also cultured with SUIT2 for the same time as a negative control. After culture, mRNA was prepared from cultured cells and subjected to quantitative analysis by real-time RT-PCR described below.
(Quantification of expression level of Gli1 mRNA using RT-PCR)
The expression level of Gli1 mRNA was quantified using real-time reverse transcription polymerase chain reaction (RT-PCR) as follows. That is, total RNA was extracted using the RNeasy mini kit (Qiagen, Valencia, CA, USA) and quantified by spectrophotometry (Ultratroc 2100 Pro; Amersham Pharmacia Biotech, Cambridge, UK). RNA (700 ng) was treated with DNase and reverse transcribed into cDNA according to the protocol using Quantitative Reverse Transcription Kit (Qiagen). The reaction was carried out using DNA Engineer Opticon 2 System (MJ Research, Waltham, MA, USA) using SYBR Premix ExTaq (manufactured by Takara Bio Inc.). pGli1-GFP (green fluorescent protein) was serially diluted 10-fold and amplified using primer pairs to create a standard curve for Gli1. Each sample was performed in triplicate. All primer sets amplified a 200 base pair long fragment. The primer sequences used are as follows. beta-actin, forward direction, 50-TTG CCG ACA GGA TGC AGA AGG A-30, reverse direction, 50-AGG TGG ACA GCG AGG CCA GGA T-30 and Gli1, forward direction, 50-GGT TCA AGA GCC TG T-30, reverse direction, 50-GGC AGC ATT CTC AGT GAT GCT G-30. The amount of gene in a sample was normalized to the amount of β-actin in the sample (Kameda C, Nakamura M, Tanaka H, Yamazaki A, Kubo M, Tanaka M, et al. Oestrogen receptor-alpha. (see contributes to the regulation of the hedgehog signaling pathway in ER alphapositive gastric cancer. Br J Cancer. 2010; 102: 738-47.).
The results are shown in FIGS. 4A and 4B. The relative mRNA level of Gli1 is more significantly suppressed in AsPC1 cells cultured with peptides B, C and G compared to AsPC1 cells cultured with peptide A or without interacting peptide (see NC) (See FIG. 4A). It is also shown that the amount of mRNA in SUIT2 cells cultured with peptides B, C, F and G is significantly suppressed compared to the amount of mRNA in SUIT2 cells cultured with peptide A or without interacting peptide. (See FIG. 4B). This result strongly suggests that the inhibitory effect on the growth of cancer cells of the peptide interacting with Ptch1 is induced by attenuating the (transcription) activity of the hedgehog signaling pathway.
Example 4
(Immunostaining of sonic hedgehog (Shh) of cultured cells)
Since the interacting peptide for Ptch1 was too small to be stained by the antibody, the specificity of the interacting peptide for the Ptch1 protein was confirmed by the effect of the peptide competitively inhibiting the interaction between Ptch1 and Shh. AsPC1 cells (2 × 10 4 / well) were cultured overnight according to the cell culture conditions of Example 2 on a 24-well plate cover glass (manufactured by AGC Techno Glass Co., Ltd.). The medium was then replaced with fresh medium containing 10 μg / ml interacting peptides (Peptide A, Peptide B, Peptide C, Peptide G) to Ptch1. After 24 hours incubation, the slides were air dried and soaked in 8% formaldehyde for 30 minutes. The primary antibody was soaked overnight at 4 ° C. The primary antibody used was Shh at a concentration of 1: 250 (N-19; Santa Cruz Biotechnology, Santa Cruz, CA, USA). The secondary antibody (rabbit anti-goat immune globulin; manufactured by Nichirei Co., Ltd.) reacted for 1 hour at room temperature. After mounting on a vector shield mounting medium (Vectashield mounting medium, Vector Laboratories, Burlingame, California, USA), the sample was a laser scanning confocal fluorescence microscope (LSM-GB200 System, Inc .; Olympus Optical Co., Ltd .; Visualization under).
The results are shown in FIG. The upper panel of FIG. 5 shows the level of staining for Shh around AsPC1 cells with interacting peptides (Peptides B, C and G) against Patched-1 (Ptch1). Staining of cells with Peptide A (control peptide) It is lower than the level. This supports that peptides B, C and G interact specifically with Ptch1 at a given binding site with Shh. The lower panel is an image (phase) based on the phase difference of peptides A, B and G (from left to right), and shows the outline of the cells. Compared with peptide A, in the cells to which peptides B, C, and D were added, a stained image according to the cell shape observed in the phase contrast image was not observed.
Example 5
(Animal model and AsPC1 scalp subcutaneous procedure Follow the guidelines for animal experiments at Kyushu University for the management and use of laboratory animals and the basic guidelines for conducting animal experiments at the Ministry of Education, Culture, Sports, Science and Technology) 4-6 weeks old female NOD-SCID (NOD / severe combined immunofidelity) mice were purchased from Japan SLC Co., Ltd. under the condition of specific pathogen removal in a facility approved by Kyushu University. The AsPC1 or SUIT2 cells were housed in a horizontal laminar flow cabinet in a serum-free RPMI / Matrigel (Nippon Becton Dickinson) mixture (1: 1 volume, 1 × 10 5 cells / 0.4 ml total). Suspend, then use a # 27 needle on the mouse buttock After tumor formation, 200 μg of interacting peptide (peptide A, peptide C for AsPC1 cells, peptide A, peptide G for SUIT2 cells) was placed on the tumor site using a 27th diameter needle. Tumor formation, tumor size and mouse body weight were measured every other day for 46 days (Akiyoshi T, Nakamura M, Yanai K, Nagai S, Wadaj, Koga K, et al. Gamma-secretase inhibitors enhance taxane-induced mitotic array and apoptosis in colon cancer cells.Gastroenterology.2008; 134: 131-44. Carried out was).
The results are shown in FIGS. 6A and 6B. 6A and 6B show that peptide C tends to suppress the growth of pancreatic tumors in vivo by AsPC1 cell xenograft as compared to peptide A. FIG.
(Quantification of expression level of Gli1 mRNA using RT-PCR)
The expression level of Gli1 mRNA was quantified by real-time PCR described in Example 3 using the tumor tissue excised and collected on the last day (46th day) after the subcutaneous transplantation of the buttocks.
The result is shown in FIG. 6C. As is clear from FIG. 6C, the expression level of Gli1 in AsPC1 tumor cells injected with peptide C was significantly reduced compared to AsPC1 tumor cells injected with peptide A. In addition, as shown in FIG. 6D, the expression level of Gli1 in SUIT2 tumor cells injected with peptide G is significantly reduced as compared with tumor cells injected with peptide A. This result strongly suggests that the inhibitory effect of Ptch1 interacting peptides (peptide C and peptide G) on the growth of cancer cells is induced by attenuating the (transcription) activity of the hedgehog signaling pathway. .
(Statistical analysis)
Student t test was used for statistical analysis. All calculations were performed using Statview 5.0J software (StatView 5.0J software, Abacus Concepts, Berkeley, CA, USA). P values less than 0.05 were considered significant (Kameda C, Nakamura M, Tanaka H, Yamazaki A, Kubo M, Tanaka M, et al. Oestrogen receptor-alpha conjugation to the tributaries. ER alphapositive gastric cancer.Br J Cancer.2010; 102: 738-47.).

本発明に係る新規ペプチドは、ヒト膵臓癌細胞系(AsPC1およびSUIT2)に対して試験管内(in vitro)および生体内(in vivo)においてPatched−1蛋白質と相互作用することにより、そのヘッジホッグシグナル伝達系の活性を抑制し、膵臓癌細胞の増殖を抑制する傾向を示す。また、該ペプチドは膵臓癌に対し抗癌性を有するペプチド開発のリード化合物としても利用することができる。従って、本発明は、膵臓癌の治療に利用することができ、該産業分野の発展に大きく貢献することができる。
[配列表]
The novel peptide according to the present invention interacts with the Patched-1 protein in vitro and in vivo against human pancreatic cancer cell lines (AsPC1 and SUIT2), thereby producing its hedgehog signal. It shows a tendency to suppress the activity of the transmission system and suppress the proliferation of pancreatic cancer cells. The peptide can also be used as a lead compound for peptide development having anticancer activity against pancreatic cancer. Therefore, the present invention can be used for the treatment of pancreatic cancer and can greatly contribute to the development of the industrial field.
[Sequence Listing]

Claims (4)

配列表の配列番号3に記載のアミノ酸配列からなるペプチド。 The peptide which consists of an amino acid sequence of sequence number 3 of a sequence table. ペプチドのN末端のアミノ基がアセチル化されていることを特徴とする請求項1に記載のペプチド。   The peptide according to claim 1, wherein the amino group at the N-terminal of the peptide is acetylated. ペプチドのC末端のカルボキシル基がアミド化されていることを特徴とする請求項1に記載のペプチド。   The peptide according to claim 1, wherein the C-terminal carboxyl group of the peptide is amidated. 請求項1乃至3のいずれかに記載のペプチド、又は該ペプチドの薬学的に許容される塩を含有する膵臓癌の抗癌剤。
An anticancer agent for pancreatic cancer comprising the peptide according to any one of claims 1 to 3, or a pharmaceutically acceptable salt of the peptide.
JP2013539059A 2012-06-12 2012-06-12 Anti-pancreatic cancer peptide Active JP5469282B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065447 WO2013186934A1 (en) 2012-06-12 2012-06-12 Anti-pancreatic-cancer peptide

Publications (2)

Publication Number Publication Date
JP5469282B1 true JP5469282B1 (en) 2014-04-16
JPWO2013186934A1 JPWO2013186934A1 (en) 2016-02-01

Family

ID=49757795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013539059A Active JP5469282B1 (en) 2012-06-12 2012-06-12 Anti-pancreatic cancer peptide

Country Status (2)

Country Link
JP (1) JP5469282B1 (en)
WO (1) WO2013186934A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008400B2 (en) 2016-11-18 2022-01-25 東亞合成株式会社 Antitumor peptides and their uses

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012046074; 中村雅史, et al.: 'Hedgehogシグナルを標的とした癌治療法の可能性' 福岡医学雑誌 Vol.99, No.5, 2008, p.102-106 *
JPN6012046076; 中村雅史, et al.: 'Hedgehogシグナルを利用した癌分子標的治療' 癌と化学療法 Vol.34, No.12, 2007, p.1914-1916 *
JPN6012046078; HAHN, H., et al.: 'A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region as' The Journal of Biological Chemistry Vol.271, No.21, 1996, p.12125-12128 *

Also Published As

Publication number Publication date
JPWO2013186934A1 (en) 2016-02-01
WO2013186934A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
Groneberg et al. Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier PEPT1
Li et al. An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke
Sun et al. Functional and molecular expression of the proton-coupled oligopeptide transporters in spleen and macrophages from mouse and human
CN106459079B (en) The medical application of artemisinin compounds and pontin protein agonist
KR101413005B1 (en) Compositions and methods to modulate cell membrane resealing
Wu et al. DISC1-related signaling pathways in adult neurogenesis of the hippocampus
CN110049769A (en) Treatment and mitochondria stress relevant disease method
Wang et al. Lung damage induced by hyperglycemia in diabetic rats: The role of signal transducer and activator of transcription 3 (STAT3)
Chen et al. 14, 15-epoxyeicosatrienoic acid alleviates pathology in a mouse model of Alzheimer's disease
Wen et al. Characterization of intracellular translocation of Forkhead transcription factor O (FoxO) members induced by NGF in PC12 cells
Bridges et al. Induction of cystine-glutamate transporter xc− by human immunodeficiency virus type 1 transactivator protein tat in retinal pigment epithelium
Wagner et al. Every beat you take—the Wilms′ tumor suppressor WT1 and the heart
Hironaka et al. The well-developed actin cytoskeleton and Cthrc1 expression by actin-binding protein drebrin in myofibroblasts promote cardiac and hepatic fibrosis
Wang et al. A polypeptide inhibitor of calcineurin blocks the calcineurin-NFAT signalling pathway in vivo and in vitro
JP5469282B1 (en) Anti-pancreatic cancer peptide
Sasaki et al. Involvement of kallikrein‐PAR2‐proinflammatory pathway in severe trastuzumab‐induced cardiotoxicity
Cohen et al. Synapse integrity and function: Dependence on protein synthesis and identification of potential failure points
US20070292406A1 (en) Pharmaceutical composition for preventing and treating restenosis comprising peroxiredoxin 2 protein as an active ingredient and composition for screening therapeutics of restenosis comprising peroxiredoxin 2 gene or its protein product, and method for screening therapeutics of restenosis using said composition
EP2270505A1 (en) A method of screening a cell death inhibitor using macrophage migration inhibitory factor (MIF)
US8796215B2 (en) Neurotrophic peptides
JP7034151B2 (en) Peptide derived from propeptide NTSR3, and its use in the treatment of depression
JP4408615B2 (en) Composition containing eosinophil cationic protein
Feng et al. Protective Effects of 4-Trifluoromethyl-(E)-cinnamoyl]-L-4-F-phenylalanine Acid against Chronic Cerebral Hypoperfusion Injury through Promoting Brain-Derived Neurotrophic Factor-Mediated Neurogenesis
KR20160042543A (en) Method for regulation of brown adipocyte differentiation using cofilin-1
He et al. An optimized NIR fluorescent probe for visualizing DPP IV and applications in the diagnosis and therapy of inflammatory bowel diseases

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140130

R150 Certificate of patent or registration of utility model

Ref document number: 5469282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250