JP5468471B2 - Gas turbine blade repair method and gas turbine blade - Google Patents

Gas turbine blade repair method and gas turbine blade Download PDF

Info

Publication number
JP5468471B2
JP5468471B2 JP2010132340A JP2010132340A JP5468471B2 JP 5468471 B2 JP5468471 B2 JP 5468471B2 JP 2010132340 A JP2010132340 A JP 2010132340A JP 2010132340 A JP2010132340 A JP 2010132340A JP 5468471 B2 JP5468471 B2 JP 5468471B2
Authority
JP
Japan
Prior art keywords
gas turbine
turbine blade
welding
build
repair method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010132340A
Other languages
Japanese (ja)
Other versions
JP2011256795A (en
Inventor
武久 日野
勝康 伊藤
渉 河野
義明 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010132340A priority Critical patent/JP5468471B2/en
Publication of JP2011256795A publication Critical patent/JP2011256795A/en
Application granted granted Critical
Publication of JP5468471B2 publication Critical patent/JP5468471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Laser Beam Processing (AREA)

Description

本発明の実施形態は、ガスタービン翼の補修方法及びガスタービン翼に関する。   Embodiments described herein relate generally to a gas turbine blade repair method and a gas turbine blade.

ガスタービンは燃焼温度の高温化により燃焼効率向上を図ることができる。そのため、1990年代は静翼入口ガス温度が1100℃のものが主流であったが、2000年代に入り1300℃、1500℃の機種が開発され、運用されるようになってきている。燃焼温度の上昇に対する対策として耐用温度の高いNi基超合金の開発、翼冷却方法の改良、遮熱コーティングの採用が行われてきている。しかしながら翼冷却方法の改良は、翼内面と翼外面の温度差を増加させ、動翼についてはプラットフォーム側面に熱応力によるき裂を発生させる原因となっている。   Gas turbines can improve combustion efficiency by increasing the combustion temperature. Therefore, in the 1990s, the mainstream of the stationary blade inlet gas temperature was 1100 ° C, but since the 2000s, models of 1300 ° C and 1500 ° C have been developed and put into operation. Development of Ni-based superalloys with high service temperatures, improvement of blade cooling methods, and adoption of thermal barrier coatings have been carried out as countermeasures against the increase in combustion temperature. However, the improvement of the blade cooling method increases the temperature difference between the blade inner surface and the blade outer surface, and causes a crack due to thermal stress on the side surface of the platform.

Ni基超合金は難溶接材であり、特にγ’(ガンマプライム)相と呼ばれるNiAl相を析出し強化した合金であり溶接は非常に困難である。その溶接性は、(Al+0.84Ti)%と(0.28Cr+0.043Co)%で定性的に整理され、(Al+0.84Ti)%が高く、(0.28Cr+0.043Co)%が低いほど溶接性が悪く、溶接時に凝固割れ、液化割れ、延性低下割れ、再熱割れなどの溶接割れを引き起こす(例えば、非特許文献1参照。)。 The Ni-base superalloy is a difficult-to-weld material, and in particular, an alloy in which a Ni 3 Al phase called γ ′ (gamma prime) phase is precipitated and strengthened, so that welding is very difficult. The weldability is qualitatively organized by (Al + 0.84Ti)% and (0.28Cr + 0.043Co)%, and the higher (Al + 0.84Ti)% and the lower (0.28Cr + 0.043Co)%, the better the weldability. It is bad and causes weld cracking such as solidification cracking, liquefaction cracking, ductility deterioration cracking, and reheat cracking during welding (see Non-Patent Document 1, for example).

表1に現在ガスタービン動翼材として使用されているGTD−111(商品名)とIN−738LC(商品名)の合金組成を示す。   Table 1 shows alloy compositions of GTD-111 (trade name) and IN-738LC (trade name) currently used as gas turbine blade materials.

上記の合金組成のGTD−111とIN−738LCを、(Al+0.84Ti)%と(0.28Cr+0.043Co)%で整理した図上にプロットすると図1に示す領域となり、非常に溶接が困難な材料であることがわかる。しかしながら、近年の技術開発によってプラットフォームの表面に発生したき裂に対する溶接補修も可能となってきている(例えば、特許文献1参照。)。   When the above alloy compositions GTD-111 and IN-738LC are plotted on a diagram arranged by (Al + 0.84Ti)% and (0.28Cr + 0.043Co)%, the region shown in FIG. 1 is obtained, which is very difficult to weld. It turns out that it is material. However, it has become possible to repair the cracks generated on the surface of the platform by recent technological development (for example, see Patent Document 1).

特開2008−31999号公報JP 2008-31999 A

溶接学会編「溶接・接合技術便覧」産報出版 197頁Welding Society edition, “Handbook of welding and joining technology”, 197 pages

ガスタービン翼の補修において、溶接補修を行うと割れ等の欠陥が発生し易く、確実に良好な補修を行えるようにすることが望まれている。また、ガスタービンにおいて、き裂はプラットフォーム表面のみでなく側面にも発生する。このため、プラットフォーム側面に発生したき裂等の補修を行えるようにすることが望まれている。   In repairing gas turbine blades, if welding repair is performed, defects such as cracks are likely to occur, and it is desired to reliably perform good repair. In a gas turbine, a crack occurs not only on the platform surface but also on the side surface. For this reason, it is desired to be able to repair a crack or the like generated on the side surface of the platform.

本発明は、プラットフォーム側面に発生したき裂等であっても、確実に良好な補修を行うことのできるガスタービン翼の補修方法及びガスタービン翼を提供することを目的とする。   An object of the present invention is to provide a gas turbine blade repair method and a gas turbine blade capable of reliably performing good repair even if a crack or the like is generated on a side surface of a platform.

実施形態によれば、析出強化型Ni基超合金からなるガスタービン翼に発生したき裂を補修するガスタービン翼の補修方法であって、前記ガスタービン翼のγ’相をγ相に固溶させる溶体化処理工程と、前記ガスタービン翼を切削し、断面形状がU字状のU溝を形成してき裂を除去する工程と、前記U溝内にレーザ溶接にて肉盛溶接を行う肉盛溶接工程と、肉盛後に肉盛前と同一寸法に加工する工程と、溶体化熱処理を行う工程を有し、前記肉盛溶接工程では、固溶強化型Ni基超合金粉末を溶加材とし、レーザビームの照射部位におけるレーザビームとU溝内壁の接線とがなすU溝開口端部側の角度が、常に60度以上90度以下の範囲となるようにして肉盛溶接を行うことを特徴とする。   According to the embodiment, there is provided a gas turbine blade repair method for repairing a crack generated in a gas turbine blade made of a precipitation strengthened Ni-base superalloy, wherein the γ ′ phase of the gas turbine blade is dissolved in the γ phase. A solution treatment step of cutting, a step of cutting the gas turbine blade to form a U-shaped U-groove and removing a crack, and a build-up for performing overlay welding by laser welding in the U-groove A welding process, a process of processing to the same dimensions as before the overlaying, and a process of solution heat treatment. In the overlay welding process, solid solution strengthened Ni-base superalloy powder is used as the filler material. The overlay welding is performed such that the angle on the U groove opening end side formed by the laser beam and the tangent to the inner wall of the U groove is always in the range of 60 degrees to 90 degrees. And

本発明によれば、プラットフォーム側面に発生したき裂等であっても、確実に良好な補修を行うことのできるガスタービン翼の補修方法及びガスタービン翼を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a crack etc. which generate | occur | produced in the platform side surface, the repair method of a gas turbine blade and gas turbine blade which can perform reliable repair reliably can be provided.

Ni基超合金の溶接性を示す図。The figure which shows the weldability of Ni base superalloy. ガスタービン翼の欠陥発生部位を示す図。The figure which shows the defect generation | occurrence | production site | part of a gas turbine blade. 実施形態のガスタービン翼の補修方法の工程を示す図。The figure which shows the process of the repair method of the gas turbine blade of embodiment. レーザ照射方法を示す図。The figure which shows the laser irradiation method. 実施形態におけるレーザ照射方法を示す図。The figure which shows the laser irradiation method in embodiment. 実施例1の溶接条件における1層目のビード形成方向を模式的に示す図。The figure which shows typically the bead formation direction of the 1st layer in the welding conditions of Example 1. FIG. 実施例1の溶接部の断面組織を示す顕微鏡写真。2 is a photomicrograph showing the cross-sectional structure of the welded portion of Example 1. 実施例2の溶接部の断面組織を示す顕微鏡写真。5 is a photomicrograph showing a cross-sectional structure of a welded portion of Example 2. 比較例1の溶接部の断面組織を示す顕微鏡写真。4 is a photomicrograph showing a cross-sectional structure of a welded portion of Comparative Example 1. 比較例2の溶接部の断面組織を示す顕微鏡写真。9 is a photomicrograph showing a cross-sectional structure of a welded portion of Comparative Example 2. 比較例2の溶接条件における溶接ビードを模式的に示す図。The figure which shows the welding bead in the welding conditions of the comparative example 2 typically.

以下、図面を参照して実施形態を詳細に説明する。   Hereinafter, embodiments will be described in detail with reference to the drawings.

図2は、ガスタービン翼の一部を模式的に示すものであり、ガスタービン動翼1のプラットフォーム2の側面にき裂3が形成されている。本実施形態では、このようなき裂3を補修する。   FIG. 2 schematically shows a part of the gas turbine blade, and a crack 3 is formed on the side surface of the platform 2 of the gas turbine rotor blade 1. In the present embodiment, such a crack 3 is repaired.

前述した析出強化型Ni基超合金GTD−111やIN738LCの肉盛補修において、同一材料の肉盛は溶接性の点で非常に困難である。そこで、表2に合金組成を示すIN625(商品名)やIN600(商品名)のような(Al+0.84Ti)%が低く(0.28Cr+0.043Co)%が高い固溶強化型合金の粉末を溶加材として用いてき裂部の肉盛補修を行う。なお、表2において、IN600は、他にSi:0.2mass%、Mn:0.3mass%を含んでいる。   In the build-up repair of the precipitation-strengthened Ni-base superalloy GTD-111 or IN738LC described above, build-up of the same material is very difficult in terms of weldability. Therefore, a solid solution strengthened alloy powder such as IN625 (trade name) and IN600 (trade name) showing a composition of alloy in Table 2 with a low (Al + 0.84Ti)% and a high (0.28Cr + 0.043Co)% is dissolved. Use as a material to repair the crack. In Table 2, IN600 additionally includes Si: 0.2 mass% and Mn: 0.3 mass%.

具体的には、図3に示すシーケンスに従って補修を実施する。ガスタービン翼の受入検査を行った後(ステップ101)、最初にγ’相をγ相に固溶させる溶体化処理を行う(ステップ102)。   Specifically, the repair is performed according to the sequence shown in FIG. After performing an acceptance inspection of the gas turbine blade (step 101), first, a solution treatment for dissolving the γ ′ phase into the γ phase is performed (step 102).

次に、グラインダー等によってガスタービン使用時に入ったき裂部分をグラインダー等で切削し、断面形状がU字状のU溝を形成してき裂を除去する(ステップ103)。   Next, the crack portion that has entered when using the gas turbine is cut with a grinder or the like, and a U-shaped groove having a U-shaped cross section is formed to remove the crack (step 103).

次に、レーザ肉盛溶接法により、上記したIN625、IN600等の粉末を溶加材として用いて、き裂を除去した領域のU溝内に肉盛溶接を行う(ステップ104)。   Next, build-up welding is performed in the U groove in the region where the crack has been removed by using the above-described powder of IN625, IN600 or the like as a filler material by laser build-up welding (step 104).

次に、肉盛部を肉盛前と同一寸法になるようにグラインダー等で加工する仕上げ加工を行い(ステップ105)、この後、溶体化熱処理を行う(ステップ106)。   Next, a finishing process is performed in which the build-up portion is processed with a grinder or the like so as to have the same dimensions as before the build-up (step 105), and then a solution heat treatment is performed (step 106).

次に、補修部位の表面に、他の部位に施されているのと同様なコーティングを行い(ステップ107)、この後、時効熱処理を行う(ステップ108)。以上の工程で、タービン翼の補修が完了する。   Next, the same coating as that applied to the other part is performed on the surface of the repaired part (step 107), and then an aging heat treatment is performed (step 108). The turbine blade repair is completed through the above steps.

Ni基超合金の溶接において問題となるのが、後熱処理(PWHT;Post Weld Heat Treatment)割れである。これは溶接後の熱処理において溶接により導入された残留応力が緩和される際、被溶接材の熱影響部にγ’相が析出し強度が高くなるために、融点が低く強度が弱い結晶粒界等にき裂が入る現象である。   A problem in the welding of Ni-base superalloys is post-weld heat treatment (PWHT) cracking. This is because when the residual stress introduced by welding in the heat treatment after welding is relaxed, the γ 'phase precipitates in the heat-affected zone of the welded material and the strength increases, so that the grain boundary has a low melting point and low strength. This is a phenomenon in which cracks enter.

一般に、溶接入熱、すなわちレーザ出力を溶接速度で除した値が大きいほどき裂が生じやすいと考えられている。しかしながら、試験検討を行った結果、溶接時の熱影響部の割れは、溶接入熱だけではなく単位面積あたりの入熱と関係があることが明らかとなった。具体的には、被溶接材をGTD−111、溶加材をIN625粉末とし、YAGレーザによる溶接試験を行った場合、後述の実施例および比較例に示すように、溶接入熱が小さいにもかかわらず、溶接割れが発生することがあることが明らかとなり、溶接割れを発生させず、溶接し得る条件としてレーザビームのスポット径をφ5〜7mmとし20.8W/mm以上23.4W/m以下の出力密度という条件を見出した。 In general, it is considered that cracks are more likely to occur as the value of welding heat input, that is, the laser output divided by the welding speed increases. However, as a result of examination, it became clear that cracks in the heat-affected zone during welding are related not only to welding heat input but also to heat input per unit area. Specifically, when the welded material is GTD-111, the filler material is IN625 powder, and a welding test using a YAG laser is performed, the welding heat input is small as shown in Examples and Comparative Examples described later. Regardless, it becomes clear that weld cracks may occur, and as a condition that welding cracks do not occur and can be welded, the spot diameter of the laser beam is 5 to 7 mm and 20.8 W / mm 2 to 23.4 W / m A condition of power density of 2 or less was found.

ここで、上記レーザビームのスポット径の測定は、次のようにして行った。すなわち、所定のスポット径が得られると考えられる位置に感光紙をおき、レーザビームがあたると考えられる箇所に50リットル/分以上のアルゴンガス、又は窒素ガス、あるいは空気等のガスを吹き付ける。このガスを吹き付けた箇所に溶接を行う出力に調整したレーザビームを0.5秒照射して感光紙を焼き抜き、焼き抜いたスポット径をノギスで測定してレーザビームのスポット径を規定した。   Here, the spot diameter of the laser beam was measured as follows. That is, a photosensitive paper is placed at a position where a predetermined spot diameter can be obtained, and a gas such as argon gas, nitrogen gas, or air of 50 liters / minute or more is sprayed to a position where a laser beam is considered to be hit. The photosensitive paper was burned out by irradiating the laser beam adjusted to the welding output to the location where the gas was blown for 0.5 seconds, and the spot diameter was measured with a caliper to define the spot diameter of the laser beam.

図4に示すように、き裂補修時には、き裂部分を切削して、被溶接材4に断面形状がU字状のU溝5を形成する。このU溝5内のU溝開口側端部5b近傍の溶接において、被溶接材4を水平に維持したままレーザビーム6をU溝5の底5aに直角となる方向で照射した場合、図中に矢印7で示すように、溶加材粉末および溶解した溶加材粉末が重力にてレーザ照射部と異なる位置に落下する。また、後述する図11に模式的に示すように、U溝5の傾斜と溶接金属の溶け込み深さの関係から、一部、溶け込み深さが浅くなる箇所が生じる。これらの原因により、U溝5内の肉盛溶接において融合不良が生じ易くなっていた。   As shown in FIG. 4, at the time of repairing a crack, the crack portion is cut to form a U-shaped groove 5 having a U-shaped cross section in the workpiece 4. In the welding in the vicinity of the U-groove opening side end portion 5b in the U-groove 5, when the laser beam 6 is irradiated in a direction perpendicular to the bottom 5a of the U-groove 5 while maintaining the workpiece 4 horizontal, As indicated by an arrow 7, the filler metal powder and the melted filler metal powder fall by gravity to a position different from the laser irradiation part. Further, as schematically shown in FIG. 11 to be described later, a part where the penetration depth becomes shallow partly arises from the relationship between the inclination of the U groove 5 and the penetration depth of the weld metal. Due to these causes, poor fusion is likely to occur in the overlay welding in the U groove 5.

上記溶加材粉末等の落下、融合不良の発生を抑制するため、本実施形態では、例えば、図5,6に示すように、レーザビーム6を上方から垂直に照射するとともに、U溝5内におけるレーザ照射部位におけるレーザビーム6(光軸8)とU溝5内壁の接線9とがなすU溝開口端部5b側の角度θが、常に60度以上90度以下の範囲となるようにして肉盛溶接を行う。図6の場合、溶接部位によって被溶接材4を傾けることによって、角度θが60度以上90度以下となるように調整している。なお、溶加材の供給方向はレーザビーム6の照射方向と同一である。   In the present embodiment, for example, as shown in FIGS. 5 and 6, the laser beam 6 is irradiated vertically from above and the inside of the U groove 5 in order to suppress the occurrence of the fusion powder powder and the like and the occurrence of poor fusion. The angle θ on the U groove opening end 5b side formed by the laser beam 6 (optical axis 8) at the laser irradiation site and the tangent line 9 of the inner wall of the U groove 5 is always in the range of 60 ° to 90 °. Perform overlay welding. In the case of FIG. 6, the workpiece 4 is adjusted so that the angle θ is 60 degrees or more and 90 degrees or less by inclining the material to be welded 4 depending on the welding site. Note that the supply direction of the filler material is the same as the irradiation direction of the laser beam 6.

上記の条件にて補修を行えば、例えば、図2に示したガスタービン動翼1のプラットフォーム2の側面に発生した1mm以上のき裂3であっても、補修を行うことができる。   If repair is performed under the above conditions, for example, even a crack 3 of 1 mm or more generated on the side surface of the platform 2 of the gas turbine rotor blade 1 shown in FIG. 2 can be repaired.

(実施例1)
被溶接材には、GE社製GTD−111実使用翼材、溶加材にはスペシャルメタル社製IN625相当粉末であるPlaxair社製NI−328(商品名)を用い、最大肉盛厚さ4mmとしてYAGレーザを用いて肉盛溶接を行った。溶接条件としてレーザ出力を800W、溶接速度を150mm/minとし、溶接雰囲気はアルゴン雰囲気、レーザビームのスポット径はφ7mmとした。本条件での単位面積あたりのレーザ出力は20.8W/mm、溶接入熱は3.2J/cmと計算される。
Example 1
The welded material uses GTD-111 wing material actually manufactured by GE, and the filler material is NI-328 (trade name) manufactured by Plaxair, which is a powder equivalent to IN625 manufactured by Special Metal, and has a maximum thickness of 4 mm. Overlay welding was performed using a YAG laser. As welding conditions, the laser output was 800 W, the welding speed was 150 mm / min, the welding atmosphere was an argon atmosphere, and the spot diameter of the laser beam was 7 mm. Under this condition, the laser output per unit area is calculated as 20.8 W / mm 2 , and the welding heat input is calculated as 3.2 J / cm.

また、本肉盛溶接では、1層目の溶接を、図6に示すようにレーザビーム6を上方から垂直に照射するとともに、U溝5内におけるレーザ照射部位におけるレーザビーム6(光軸8)とU溝5内壁の接線9とがなすU溝開口端部5b側の角度θが、常に60度以上90度以下の範囲となるようにして、溶接を行った。図7に実施例1にて得られた溶接部断面組織の顕微鏡写真を示す。図7の顕微鏡写真に示されるとおり、後述する比較例1に対し溶接入熱は大きいにもかかわらず、溶接熱影響部に割れのない溶接組織を得ることができた。   Further, in this build-up welding, the first layer welding is performed by vertically irradiating the laser beam 6 from above as shown in FIG. 6, and the laser beam 6 (optical axis 8) at the laser irradiation site in the U groove 5. Welding was performed so that the angle θ on the U groove opening end 5b side formed by the tangent 9 of the inner wall of the U groove 5 was always in the range of 60 degrees or more and 90 degrees or less. FIG. 7 shows a photomicrograph of the weld cross-sectional structure obtained in Example 1. As shown in the micrograph of FIG. 7, although the welding heat input was larger than that of Comparative Example 1 described later, a weld structure having no cracks in the weld heat affected zone could be obtained.

(実施例2)
被溶接材には、GE社製GTD−111実使用翼、溶加材にはスペシャルメタル社製IN625相当粉末であるPlaxair社製NI−328を用い、最大肉盛厚さ1mmとしてYAGレーザを用いて肉盛溶接を行った。溶接条件としてレーザ出力を900W、溶接速度を150mm/minとし、溶接雰囲気はアルゴン雰囲気、レーザビームのスポット径はφ7mmとした。本条件での単位面積あたりのレーザ出力は23.4W/mm、溶接入熱は3.6J/cmと計算される。
(Example 2)
The welded material is a GTD-111 blade used by GE, and the filler material is NI-328 made by Plaxair, which is a powder equivalent to IN625 made by Special Metal, and a YAG laser is used with a maximum thickness of 1 mm. Overlay welding was performed. As welding conditions, the laser output was 900 W, the welding speed was 150 mm / min, the welding atmosphere was an argon atmosphere, and the spot diameter of the laser beam was 7 mm. Under this condition, the laser output per unit area is calculated to be 23.4 W / mm 2 and the welding heat input is calculated to be 3.6 J / cm.

また、本肉盛溶接では、1層目の溶接を、図6に示すようにレーザビーム6を上方から垂直に照射するとともに、U溝5内におけるレーザ照射部位におけるレーザビーム6(光軸8)とU溝5内壁の接線9とがなすU溝開口端部5b側の角度θが、常に60度以上90度以下の範囲となるようにして、溶接を行った。図8に実施例2にて得られた溶接部断面組織の顕微鏡写真を示す。図8の顕微鏡写真に示されるとおり、後述する比較例1に対し溶接入熱は大きいにもかかわらず、溶接熱影響部に割れのない溶接組織を得ることができた。   Further, in this build-up welding, the first layer welding is performed by vertically irradiating the laser beam 6 from above as shown in FIG. 6, and the laser beam 6 (optical axis 8) at the laser irradiation site in the U groove 5. Welding was performed so that the angle θ on the U groove opening end 5b side formed by the tangent 9 of the inner wall of the U groove 5 was always in the range of 60 degrees or more and 90 degrees or less. FIG. 8 shows a micrograph of the weld cross-sectional structure obtained in Example 2. As shown in the micrograph of FIG. 8, although the welding heat input was larger than that of Comparative Example 1 described later, it was possible to obtain a weld structure having no cracks in the weld heat affected zone.

(比較例1)
被溶接材には、GE社製GTD−111実使用翼、溶加材にはスペシャルメタル社製IN625相当粉末であるPlaxair社製NI−328を用い最大肉盛厚さ4mmとして肉盛溶接を行った。レーザ出力を600W、溶接速度を150mm/min、レーザビームのスポット径はφ5mmとし肉盛溶接を行った。本条件での単位面積あたりのレーザ出力は30.6W/mm、溶接入熱は2.4J/cmと計算される。
(Comparative Example 1)
Welding welding was performed with a maximum overlay thickness of 4 mm using GE's GTD-111 actual use blade for the welded material, and Plaxair's NI-328 equivalent to IN625 equivalent powder made by Special Metal for the filler material. It was. Overlay welding was performed with a laser output of 600 W, a welding speed of 150 mm / min, and a laser beam spot diameter of 5 mm. The laser output per unit area under this condition is calculated to be 30.6 W / mm 2 and the welding heat input is calculated to be 2.4 J / cm.

本比較例1では、図4に示したように、U溝5の底5aに垂直になるようにレーザビーム6を照射した。図9に比較例1にて得られた溶接部断面組織の顕微鏡写真を示す。図9の顕微鏡写真に示されるとおり、溶接入熱は実施例1,2と比較し、0.67〜0.75倍と小さいにもかかわらず、溶接熱影響部に割れが発生した。   In this comparative example 1, as shown in FIG. 4, the laser beam 6 was irradiated so as to be perpendicular to the bottom 5 a of the U groove 5. FIG. 9 shows a micrograph of the weld cross-sectional structure obtained in Comparative Example 1. As shown in the micrograph of FIG. 9, cracks occurred in the weld heat affected zone, although the welding heat input was 0.67 to 0.75 times smaller than those in Examples 1 and 2.

(比較例2)
被溶接材には、GE社製GTD−111実使用翼、溶加材にはスペシャルメタル社製IN625相当粉末であるPlaxair社製NI−328を用い最大肉盛厚さ4mmとしてYAGレーザを用いて肉盛溶接を行った。溶接条件としてレーザ出力を900W、溶接速度を150mm/minとし、溶接雰囲気はアルゴン雰囲気、レーザビームのスポット径はφ7mmとした。本条件での単位面積あたりのレーザ出力は23.4W/mm、溶接入熱は3.6J/cmと計算される。
(Comparative Example 2)
The welded material is a GTD-111 blade used by GE, and the filler material is NI-328 made by Plaxair, which is IN625 equivalent powder made by Special Metal, using a YAG laser with a maximum build-up thickness of 4 mm. Overlay welding was performed. As welding conditions, the laser output was 900 W, the welding speed was 150 mm / min, the welding atmosphere was an argon atmosphere, and the spot diameter of the laser beam was 7 mm. Under this condition, the laser output per unit area is calculated to be 23.4 W / mm 2 and the welding heat input is calculated to be 3.6 J / cm.

本比較例2では、図4に示したように、U溝5の底5aに垂直になるようにレーザビーム6を照射した。図10に比較例2にて得られた溶接部断面組織の顕微鏡写真を示す。図10の顕微鏡写真に示されるとおり、被溶接材と溶接金属界面に沿って図中に矢印で示す箇所に欠陥が生じていた。これは図11に模式的に示すように、被溶接材4のU溝内壁10(図中点線で示す。)の傾斜と溶接金属の溶け込み深さ(図中溶接ビードの状態を実線で示す。)の関係から、一部、溶け込み深さが浅くなる箇所があり、そこで融合不良が発生し溶接欠陥11が発生したものと考えられる。   In Comparative Example 2, as shown in FIG. 4, the laser beam 6 was irradiated so as to be perpendicular to the bottom 5 a of the U groove 5. FIG. 10 shows a micrograph of the weld cross-sectional structure obtained in Comparative Example 2. As shown in the photomicrograph of FIG. 10, defects occurred at locations indicated by arrows in the drawing along the interface between the workpiece and the weld metal. As schematically shown in FIG. 11, the inclination of the U-groove inner wall 10 (shown by a dotted line in the figure) of the workpiece 4 and the penetration depth of the weld metal (the state of the weld bead in the figure is shown by a solid line). )), There is a part where the penetration depth becomes shallow, and it is considered that a fusion defect has occurred there and a weld defect 11 has occurred.

(比較例3)
被溶接材には、GE社製GTD−111実使用翼、溶加材にはIN625相当粉末であるPlaxair社製NI−328を用い、最大肉盛厚さ4mmとしてYAGレーザを用いて肉盛溶接を行った。溶接条件としてレーザ出力を800W、溶接速度を150mm/minとし、溶接雰囲気はアルゴン雰囲気、レーザビームのスポット径はφ7mmとした。本条件での単位面積あたりのレーザ出力は20.8w/mm、溶接入熱は3.2J/cmと計算される。
(Comparative Example 3)
The welded material is a GTD-111 actual use blade manufactured by GE, the filler material is NI-328 made by Plaxair, which is equivalent to IN625, and the maximum build-up thickness is 4 mm by overlay welding using a YAG laser. Went. As welding conditions, the laser output was 800 W, the welding speed was 150 mm / min, the welding atmosphere was an argon atmosphere, and the spot diameter of the laser beam was 7 mm. The laser output per unit area under this condition is calculated as 20.8 w / mm 2 and the welding heat input is calculated as 3.2 J / cm.

なお本比較例3では、1層目の溶接を、U溝5内におけるレーザ照射部位におけるレーザビーム6(光軸8)とU溝5内壁の接線9とがなすU溝開口端部5b側の角度θが、常に60度以上90度以下の範囲となるように設定した実施例1に対し、角度θが50度以下となるように設定し、溶接を行った。比較例3では、実施例1および2に対し、比較例1と同様に、溶接入熱は0.67〜0.75と小さいにもかかわらず、溶接熱影響部に割れが発生した。   In Comparative Example 3, the first layer welding is performed on the side of the U groove opening end 5b formed by the laser beam 6 (optical axis 8) at the laser irradiation site in the U groove 5 and the tangent 9 of the inner wall of the U groove 5. Welding was performed by setting the angle θ to be 50 degrees or less with respect to Example 1 in which the angle θ was always set to be in the range of 60 degrees to 90 degrees. In Comparative Example 3, as compared with Examples 1 and 2, as in Comparative Example 1, although the welding heat input was as small as 0.67 to 0.75, cracks occurred in the weld heat affected zone.

実施形態は、上記の実施形態及び実施例に限られず、拡張、変更可能であり、拡張、変更した実施形態も本発明の技術的範囲に含まれる。   The embodiments are not limited to the above-described embodiments and examples, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

1……ガスタービン動翼、2……プラットフォーム、3……き裂、4……被溶接材、5……U溝、5a……底、5b……U溝開口端部、6……レーザビーム、8……光軸、9……接線。   DESCRIPTION OF SYMBOLS 1 ... Gas turbine blade, 2 ... Platform, 3 ... Crack, 4 ... Material to be welded, 5 ... U groove, 5a ... Bottom, 5b ... U groove open end, 6 ... Laser Beam, 8 ... optical axis, 9 ... tangent.

Claims (6)

析出強化型Ni基超合金からなるガスタービン翼に発生したき裂を補修するガスタービン翼の補修方法であって、
前記ガスタービン翼のγ’相をγ相に固溶させる溶体化処理工程と、
前記ガスタービン翼を切削し、断面形状がU字状のU溝を形成してき裂を除去する工程と、
前記U溝内にレーザ溶接にて肉盛溶接を行う肉盛溶接工程と、
肉盛後に肉盛前と同一寸法に加工する工程と、
溶体化熱処理を行う工程を有し、
前記肉盛溶接工程では、固溶強化型Ni基超合金粉末を溶加材とし、レーザビームの照射部位におけるレーザビームとU溝内壁の接線とがなすU溝開口端部側の角度が、常に60度以上90度以下の範囲となるようにして肉盛溶接を行う
ことを特徴とするガスタービン翼の補修方法。
A gas turbine blade repair method for repairing a crack generated in a gas turbine blade made of a precipitation strengthened Ni-base superalloy,
A solution treatment step in which the γ ′ phase of the gas turbine blade is dissolved in the γ phase;
Cutting the gas turbine blade, forming a U groove having a U-shaped cross section, and removing a crack;
Overlay welding process for performing overlay welding by laser welding in the U groove,
A process of processing to the same dimensions as before overlaying after overlaying;
Having a solution heat treatment step,
In the build-up welding process, a solid solution strengthened Ni-base superalloy powder is used as the filler material, and the angle on the U groove opening end side formed by the laser beam and the tangent to the inner wall of the U groove is always A method for repairing a gas turbine blade, wherein overlay welding is performed so as to be in a range of 60 degrees to 90 degrees.
請求項1記載のガスタービン翼の補修方法であって、
前記肉盛溶接工程では、レーザビームを上方から垂直に照射し、前記ガスタービン翼を傾けながら肉盛溶接を行うことを特徴とするガスタービン翼の補修方法。
A gas turbine blade repair method according to claim 1,
In the build-up welding process, a laser beam is irradiated vertically from above, and build-up welding is performed while tilting the gas turbine blade.
請求項1又は2記載のガスタービン翼の補修方法であって、
前記肉盛溶接工程では、20.8W/mm以上23.4W/mm以下の出力密度のレーザにて肉盛溶接を行うことを特徴とするガスタービン翼の補修方法。
A gas turbine blade repair method according to claim 1 or 2,
In the build-up welding process, build-up welding is performed with a laser having an output density of 20.8 W / mm 2 or more and 23.4 W / mm 2 or less, and the repair method of the gas turbine blade is characterized by the above.
請求項1〜3いずれか1項記載のガスタービン翼の補修方法であって、
前記肉盛溶接工程では、補修雰囲気を不活性ガス雰囲気とすることを特徴とするガスタービン翼の補修方法
A gas turbine blade repair method according to any one of claims 1 to 3,
In the build-up welding process, the repair atmosphere is an inert gas atmosphere.
請求項1〜4いずれか1項記載のガスタービン翼の補修方法であって、
前記肉盛溶接工程では、肉盛厚さが1mm以上の肉盛溶接を行うことを特徴とするガスタービン翼の補修方法
A gas turbine blade repair method according to any one of claims 1 to 4,
In the build-up welding step, build-up welding with a build-up thickness of 1 mm or more is performed.
ガスタービンに使用されるガスタービン翼であって、
請求項1〜5いずれか1項記載のガスタービン翼の補修方法によって補修されたことを特徴とするガスタービン翼。
A gas turbine blade used in a gas turbine,
A gas turbine blade repaired by the gas turbine blade repair method according to claim 1.
JP2010132340A 2010-06-09 2010-06-09 Gas turbine blade repair method and gas turbine blade Expired - Fee Related JP5468471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010132340A JP5468471B2 (en) 2010-06-09 2010-06-09 Gas turbine blade repair method and gas turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010132340A JP5468471B2 (en) 2010-06-09 2010-06-09 Gas turbine blade repair method and gas turbine blade

Publications (2)

Publication Number Publication Date
JP2011256795A JP2011256795A (en) 2011-12-22
JP5468471B2 true JP5468471B2 (en) 2014-04-09

Family

ID=45473233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010132340A Expired - Fee Related JP5468471B2 (en) 2010-06-09 2010-06-09 Gas turbine blade repair method and gas turbine blade

Country Status (1)

Country Link
JP (1) JP5468471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131198B2 (en) 2019-03-19 2021-09-28 Mitsubishi Heavy Industries, Ltd. Unidirectionally solidified article, turbine rotor blade and unidirectionally solidified article repair method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085042B2 (en) * 2012-08-10 2015-07-21 Siemens Energy, Inc. Stud welding repair of superalloy components
GB2510816B (en) * 2013-02-12 2015-04-08 Rolls Royce Plc Material removal method
WO2015065606A1 (en) * 2013-10-30 2015-05-07 United Technologies Corporation Laser powder deposition weld rework for gas turbine engine non-fusion weldable nickel castings
JP2015155110A (en) * 2014-02-21 2015-08-27 株式会社東芝 Laser build-up weld device and method
JP5981474B2 (en) * 2014-03-18 2016-08-31 株式会社東芝 Nozzle device, additive manufacturing apparatus, and additive manufacturing method
JP6711478B2 (en) * 2016-02-09 2020-06-17 前田建設工業株式会社 Tunnel construction method and tunnel boring machine
JP2018173023A (en) * 2017-03-31 2018-11-08 株式会社東芝 Repair method for turbine component
JP6609017B2 (en) * 2018-10-09 2019-11-20 株式会社東芝 Turbine blade repair method
JP7072110B1 (en) 2021-09-21 2022-05-19 Dmg森精機株式会社 How to repair damaged parts

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285664A (en) * 2008-05-27 2009-12-10 Toshiba Corp Braze-repairing material, and braze-repairing method using the material
US20090313823A1 (en) * 2008-06-24 2009-12-24 Todd Jay Rockstroh Imparting deep compressive residual stresses into a gas turbine engine airfoil peripheral repair weldment
JP5038990B2 (en) * 2008-08-07 2012-10-03 株式会社東芝 Heat treatment method and repair method for gas turbine parts and gas turbine parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131198B2 (en) 2019-03-19 2021-09-28 Mitsubishi Heavy Industries, Ltd. Unidirectionally solidified article, turbine rotor blade and unidirectionally solidified article repair method

Also Published As

Publication number Publication date
JP2011256795A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5468471B2 (en) Gas turbine blade repair method and gas turbine blade
US11207751B2 (en) Method of repairing superalloys
JP4928916B2 (en) Gas turbine high temperature part repair method and gas turbine high temperature part
JP5736135B2 (en) Double laser beam welding method for first and second filler metals
RU2624884C2 (en) Localized repair of the component from superalloy
US6596411B2 (en) High energy beam welding of single-crystal superalloys and assemblies formed thereby
JP6086992B2 (en) Superalloy cladding and fusion welding process
EP1738858B1 (en) Shimmed laser beam butt welding process without using a backing for joining superalloys for gas turbine applications
US20160167172A1 (en) Method of cladding, additive manufacturing and fusion welding of superalloys and materialf or the same
US20090057275A1 (en) Method of Repairing Nickel-Based Alloy Articles
US20130316183A1 (en) Localized repair of superalloy component
CN106563929A (en) Method for repairing and manufacturing turbine engine component, and turbine engine component
EP2815841B1 (en) Method for post-weld heat treatment of welded components made of gamma prime strengthened superalloys
US20050120941A1 (en) Methods for repair of single crystal superalloys by laser welding and products thereof
WO2014121060A1 (en) Localized repair of superalloy component
JP2013510000A (en) Single crystal welding of directionally solidified material
JP2008036708A (en) Brazing repair
JP2013068085A (en) Method for repairing gas turbine moving blade with squealer
JP2011214541A (en) Method of repairing turbine blade and repaired turbine blade
JP2011064077A (en) Gas turbine part and method of repairing the same
JP6838832B2 (en) Welding filler for superalloys
JP2015155110A (en) Laser build-up weld device and method
JP2015001163A (en) Method of repairing component pertaining to used jet engine
EP3173175A1 (en) An article treatment method and treated article
JP2013148061A (en) Method for repairing gas turbine moving blade with squealer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140129

R151 Written notification of patent or utility model registration

Ref document number: 5468471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees