JP5468432B2 - Method for producing thin film on metal powder sintered porous substrate - Google Patents

Method for producing thin film on metal powder sintered porous substrate Download PDF

Info

Publication number
JP5468432B2
JP5468432B2 JP2010061799A JP2010061799A JP5468432B2 JP 5468432 B2 JP5468432 B2 JP 5468432B2 JP 2010061799 A JP2010061799 A JP 2010061799A JP 2010061799 A JP2010061799 A JP 2010061799A JP 5468432 B2 JP5468432 B2 JP 5468432B2
Authority
JP
Japan
Prior art keywords
thin film
film
porous substrate
liquid phase
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010061799A
Other languages
Japanese (ja)
Other versions
JP2011195857A (en
Inventor
哲朗 仮屋
勝 柳本
潔 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2010061799A priority Critical patent/JP5468432B2/en
Publication of JP2011195857A publication Critical patent/JP2011195857A/en
Application granted granted Critical
Publication of JP5468432B2 publication Critical patent/JP5468432B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Powder Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、金属多孔体基板上への薄膜の製造方法、特に燃料電池部材をはじめとする機能性薄膜全般に関する多孔体基板上への緻密成膜法として適用可能な製造方法に関するものである。   The present invention relates to a method for producing a thin film on a metal porous substrate, and more particularly to a production method applicable as a dense film forming method on a porous substrate for functional thin films including fuel cell members in general.

近年、高エネルギー変換が可能で、地球環境に優しいクリーンエネルギー源として燃料電池が注目されている。その原理は水素と酸素が持つエネルギーを、燃料反応ではなく電気化学反応によって、直接、電気エネルギーの形で取り出すものである。燃料電池は電解質としてイオン導電性電解質膜を用い、この電解質膜の両面に多孔性電極を取り付け、この電解質膜を隔壁として、一方の電極(燃料極)に水素や炭化水素などの燃料ガスを供給すると共に、他方の電極(空気極)に空気又は酸素ガスを供給して行うものであり、使用する電解質膜や作動する温度によっていくつかの種類がある。   In recent years, fuel cells have attracted attention as a clean energy source capable of high energy conversion and friendly to the global environment. The principle is to extract the energy of hydrogen and oxygen directly in the form of electrical energy not by fuel reaction but by electrochemical reaction. A fuel cell uses an ion conductive electrolyte membrane as an electrolyte. Porous electrodes are attached to both sides of the electrolyte membrane, and fuel gas such as hydrogen or hydrocarbon is supplied to one electrode (fuel electrode) using this electrolyte membrane as a partition. At the same time, air or oxygen gas is supplied to the other electrode (air electrode), and there are several types depending on the electrolyte membrane used and the operating temperature.

現在、燃料電池として高分子型燃料電池(PEFC)の研究開発が主に進められているが、100℃程度の作動温度であり、電極触媒として貴金属であるPtを主成分とするため、燃料電池の低コスト化の大きな制約となっている。この燃料電池の動作温度を200℃以上に高めることができれば安価なFeやNiなどの材料を電極触媒として用いることが可能で燃料電池の実用化を大きく推進できる。   At present, research and development of polymer fuel cells (PEFC) as fuel cells are mainly underway. However, since it has an operating temperature of about 100 ° C. and Pt which is a noble metal as an electrode catalyst, it is a fuel cell. This is a major limitation of cost reduction. If the operating temperature of the fuel cell can be increased to 200 ° C. or higher, an inexpensive material such as Fe or Ni can be used as an electrode catalyst, and the practical application of the fuel cell can be greatly promoted.

一方、動作温度が800〜1000℃という高温になる固体酸化物型燃料電池(SOFC)においては、電極などにセラミックス材料を使用する必要があり、コスト及び機械的強度の面で問題がある。そのため、コストおよび機械的強度で有利なFeやNiなどの安価な金属材料が使用できる200〜600℃程度の中温度域で動作する燃料電池の開発が求められている。   On the other hand, in a solid oxide fuel cell (SOFC) whose operating temperature is as high as 800 to 1000 ° C., it is necessary to use a ceramic material for an electrode or the like, which is problematic in terms of cost and mechanical strength. Therefore, development of a fuel cell that operates in an intermediate temperature range of about 200 to 600 ° C. that can use an inexpensive metal material such as Fe or Ni, which is advantageous in terms of cost and mechanical strength, is demanded.

このような問題を解決する中温度領域で動作する燃料電池セルとして電解質としてプロトン伝導性を有する酸化物を用いた燃料電池が提案されている。しかしながら、プロトン伝導体電解質の電気伝導度は未だ十分といえず、発電損失が多いのが課題となっている。発電出力密度を向上させるためには、電解質自体の電気伝導度を改善または電解質を薄膜化して膜抵抗を極力低減させることが重要であるが、電解質はバルクセラミックを用いているため電解質自体の高伝導度化が困難である。   A fuel cell using an oxide having proton conductivity as an electrolyte has been proposed as a fuel cell operating in an intermediate temperature range to solve such problems. However, the electrical conductivity of the proton conductor electrolyte is still not sufficient, and there is a problem that the power generation loss is large. In order to increase the power generation output density, it is important to improve the electrical conductivity of the electrolyte itself or to reduce the membrane resistance as much as possible by reducing the thickness of the electrolyte. However, since the electrolyte uses bulk ceramic, Conductivity is difficult.

また、電解質自体を薄膜化(1μm以下)する場合は、電解質が電池としての機能を確保するために、ある程度以上の大きさの面積が要求されることから、電解質膜を含む部材が自重によって壊れない機械的強度が要求される。そのため、電解質として強度がない薄膜を使用する場合は機械的強度をもつ支持体上に電解質膜を形成する方法が採用されている。例えば特開2006−253071号公報(特許文献1)に開示されているように、多孔体燃料極(セラミック)を支持体として電解質を薄膜化した構造のものや特開2007−200663号公報(特許文献2)に開示されているように、多孔体燃料極(セラミック)を支持体として電解質を薄膜化した構造のものや特開2004−273343号公報(特許文献3)に開示されているように、アノード側に炭化水素系化合物を用いて吸熱を伴う反応を生じさせるための触媒とを備えた燃料電池システムが提案されている。   In addition, when the electrolyte itself is made thin (1 μm or less), the electrolyte needs to have an area of a certain size or more in order to ensure the function as a battery. Therefore, the member including the electrolyte membrane is broken by its own weight. No mechanical strength is required. Therefore, when a thin film having no strength is used as the electrolyte, a method of forming an electrolyte membrane on a support having mechanical strength is employed. For example, as disclosed in Japanese Patent Application Laid-Open No. 2006-253071 (Patent Document 1), a structure in which an electrolyte is thinned using a porous fuel electrode (ceramic) as a support, or Japanese Patent Application Laid-Open No. 2007-200663 (Patent). As disclosed in the literature 2), the porous fuel electrode (ceramic) is used as a support and the electrolyte is made into a thin film, or as disclosed in Japanese Patent Application Laid-Open No. 2004-273343 (patent document 3). There has been proposed a fuel cell system including a catalyst for causing a reaction with endotherm using a hydrocarbon compound on the anode side.

しかし、これらは支持体としてアノードもしくはカソードのセラミックス材料部の厚みを増大させることで強度を確保しており、機械的特性やコスト、電気伝導性、更に起動停止に伴う熱ショックに弱く耐久性に劣るという問題があった。これに対し、機械的特性やコスト、電気伝導性に優れる金属多孔体を支持体として用いて、この上に電解質膜を成膜する場合、電解質を隔壁としての機能も付加するために、多孔体上にピンホールが無い緻密な膜を形成する必要がある。しかし、セラミックス支持体上に薄膜を配置することについては前述した例があるものの、金属多孔体はその空孔径がセラミックス多孔体に比して大きいため、緻密でピンホール無く成膜するためには膜厚を増加させる必要あり、本発明が目指す薄膜化が困難であった。
特開2006−253071号公報 特開2007−200663号公報 特開2004−273343号公報
However, these have secured the strength by increasing the thickness of the ceramic material part of the anode or cathode as a support, and are resistant to mechanical properties, cost, electrical conductivity, and heat shock due to starting and stopping, and durable. There was a problem of being inferior. On the other hand, when a porous metal body having excellent mechanical properties, cost, and electrical conductivity is used as a support and an electrolyte membrane is formed thereon, the porous body is added to add the function of the electrolyte as a partition wall. It is necessary to form a dense film with no pinholes on it. However, although there is an example as described above for disposing a thin film on a ceramic support, a metal porous body has a larger pore diameter than a ceramic porous body. It was necessary to increase the film thickness, and it was difficult to achieve a thin film aimed by the present invention.
JP 2006-253071 A JP 2007-200633 A JP 2004-273343 A

上述したように、中温度領域で動作する燃料電池セルの発電出力密度を向上させるためには、電解質自体の電気伝導度を改善または電解質を薄膜化して膜抵抗を極力低減させることが重要であるが、電解質はバルクセラミックを用いているため電解質自体の高伝導度化が困難であり、実用化および汎用化における大きな課題がある。   As described above, in order to improve the power generation output density of the fuel cell operating in the middle temperature range, it is important to improve the electrical conductivity of the electrolyte itself or reduce the membrane resistance as much as possible by reducing the thickness of the electrolyte. However, since the electrolyte uses bulk ceramic, it is difficult to increase the conductivity of the electrolyte itself, and there is a big problem in practical use and general use.

本発明は上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、本発明による研磨加工およびCVD法および/またはPVD法にて酸化物薄膜を成膜した後に、さらに液相法を実施することで、CVD法で完全に封孔できずに残存する空孔、欠陥、凹凸等を、さらに効果的に封孔または改善することが可能となり、多孔体基板上へのより高品位で緻密な薄膜形成を可能とすることで、発電特性に優れる中温型燃料電池の製造方法を提供するものである。   In order to solve the above-described problems, the present inventors have intensively developed, and as a result, after the oxide thin film is formed by the polishing process and the CVD method and / or the PVD method according to the present invention, By implementing the liquid phase method, it becomes possible to more effectively seal or improve voids, defects, irregularities, etc. that remain without being completely sealed by the CVD method. The present invention provides a method for producing an intermediate temperature fuel cell having excellent power generation characteristics by enabling the formation of a high-quality and dense thin film.

その発明の要旨とするところは、
(1)金属粉末焼結多孔体基板を研磨加工した面をCVD法および/またはPVD法にて酸化物薄膜を成膜した後、引き続いて液相法により成膜を行うことを特徴とする金属粉末焼結多孔体基板への薄膜製造方法。
(2)前記(1)に記載の液相法がMOD法、またはゾルゲル法であることを特徴とする金属粉末焼結多孔体基板への薄膜製造方法。
The gist of the invention is that
(1) A metal characterized by forming a thin oxide film on a polished surface of a sintered metal powder porous substrate by a CVD method and / or a PVD method, and subsequently forming a film by a liquid phase method A method for producing a thin film on a powder sintered porous substrate.
(2) A method for producing a thin film on a metal powder sintered porous substrate, wherein the liquid phase method described in (1) is a MOD method or a sol-gel method.

)前記(1)または(2)に記載のCVD法、液相法、およびPVD法のいずれかの方法で成膜する材料に触媒を添加することを特徴とする金属粉末焼結多孔体基板への薄膜製造方法。
)前記(1)〜()のいずれか1項に記載の薄膜製造法燃料電池部材に用いることを特徴とする金属粉末焼結多孔体基板への薄膜製造方法にある。
( 3 ) A metal powder sintered porous body characterized by adding a catalyst to a material to be deposited by any of the CVD method, liquid phase method, and PVD method described in (1) or (2) above A method for producing a thin film on a substrate.
( 4 ) A method for producing a thin film on a metal powder sintered porous substrate, wherein the method for producing a thin film according to any one of (1) to ( 3 ) is used for a fuel cell member.

以上述べたように、本発明による研磨加工およびCVD法やPVD法の後に液相法を実施することで、CVD法やPVD法で完全に封孔できずに残存する空孔、欠陥、凹凸等を、さらに効果的に封孔または改善することが可能となり、多孔体基板上へのより高品位で緻密な薄膜形成を可能とすることで、燃料電池の発電特性向上と、さらに、CVD法に比べて装置の構造が簡便でかつ成膜速度の速いPVD法や液相法の適用はトータルの成膜コストの低減を図ることができる極めて優れた効果を奏するものである。   As described above, by performing the liquid phase method after the polishing process and the CVD method or PVD method according to the present invention, vacancies, defects, irregularities, etc. remaining without being completely sealed by the CVD method or PVD method, etc. Can be more effectively sealed or improved, and by forming a high-quality and dense thin film on the porous substrate, it is possible to improve the power generation characteristics of the fuel cell and further to the CVD method. In comparison, the application of the PVD method or the liquid phase method, which has a simple apparatus structure and a high film formation rate, has an extremely excellent effect of reducing the total film formation cost.

以下、本発明について詳細に説明する。
本発明に係るアノードと電解質、必要に応じ電解質と支持体の間にカソード材料を配した燃料電池セルにおいて、支持体が金属焼結多孔体からなり、特にガスアトマイズ法にて作製したステンレス鋼の球状粉末を焼結させて成形した金属焼結孔質体はステンレス鋼による良好な高温耐食性、ガスアトマイズ球状粉末による良好な通気性と焼結密度が高いことによる良好な機械的特性が両立でき、機械加工や冷間加工等により表面を平滑化するための焼結体基材として最適である。
Hereinafter, the present invention will be described in detail.
In a fuel cell in which a cathode material is disposed between an anode and an electrolyte according to the present invention, and if necessary, an electrolyte and a support, the support is made of a sintered metal porous body, and particularly a stainless steel spherical material produced by a gas atomization method. The sintered metal porous body formed by sintering powder has both good high temperature corrosion resistance by stainless steel, good air permeability by gas atomized spherical powder and good mechanical properties due to high sintering density, and machining It is most suitable as a sintered compact base material for smoothing the surface by cold working or the like.

上記金属焼結多孔体の表面を機械加工や冷間加工等により表面を平滑にした表面上に成膜する。このように平滑にした金属焼結多孔体上に化学的気相成長法(CVD)/または、PVD法によって成膜する。成膜した後、引き続いて液相法によって、金属多孔体基板上に成膜された膜中に存在する空孔等の欠陥を封孔し均一な成膜が可能となり、成膜面が細孔を塞ぐ形で成長するためにピンホールや割れ等の欠陥のない成膜を得ることができる。また、液相法やPVD法の適用により全体の成膜速度を増すことが可能となり、コスト削減を可能とする。   A film is formed on the surface of the sintered metal porous body, the surface of which is smoothed by machining or cold working. A film is formed on the metal sintered porous body smoothed in this way by chemical vapor deposition (CVD) / or PVD. After film formation, defects such as vacancies existing in the film formed on the porous metal substrate are sealed by the liquid phase method, and uniform film formation becomes possible. Therefore, a film without defects such as pinholes and cracks can be obtained. Further, the application of the liquid phase method or the PVD method makes it possible to increase the overall film forming speed, thereby enabling cost reduction.

CVD成膜方法は以下の通りである。一例としてYドープSrZrO3 (SZYO)酸化物の成膜方法について述べる。成膜原料となるSr、Zr、およびYには、Sr(METHD)2 、Zr(METHD)4 、Y(EDMDD)3を用いた(METHD=C14254、EDMDD=C14252の配位子)。それぞれの原料は有機溶媒(エチルシクロヘキサン:以下ECHという)にSrとZrの原料が0.1mol/L、Y原料が0.01mol/Lの濃度となるように溶解して使用した。また、それぞれの原料は液体マスフローコントローラにより供給量制御され、例えば原料の総流量を0.7g/minに設定して原料気化器に導入した。本発明に係る構成の装置では原料気化にミスト−気化方式を導入して行った。 The CVD film forming method is as follows. As an example, a method for forming a Y-doped SrZrO 3 (SZYO) oxide will be described. Sr (METHD) 2 , Zr (METHD) 4 , and Y (EDMDD) 3 were used as Sr, Zr, and Y as film forming materials (METHD = C 14 H 25 O 4 , EMDDD = C 14 H 25 O 2 ligand). Each raw material was dissolved in an organic solvent (ethylcyclohexane: hereinafter referred to as ECH) so that the raw materials of Sr and Zr were 0.1 mol / L and the Y raw material was 0.01 mol / L. The supply amount of each raw material was controlled by a liquid mass flow controller. For example, the total flow rate of the raw material was set to 0.7 g / min and introduced into the raw material vaporizer. In the apparatus of the configuration according to the present invention, the mist-vaporization method was introduced for the material vaporization.

上記、原料溶液を超音波振動子により、いったんミスト(霧)化し、それを加熱したキャリアガスによりヒータ等に接触させることなく気化するもので、ミスト化により原料溶液の比表面積が大幅に増加するため、気化効率を大きく向上させることができる。この場合、例えばキャリアガスに窒素を使用し、流量を300sccm、原料気化器の温度を280℃に設定した。また、原料気化器内の圧力は約23Torrとして行った。このようにして気化された原料は反応ガス(酸素)と混合された後堆積用基板に導入される。その時の酸素供給量を例えば、1000sccmに設定して行った。また、成膜は基板温度600℃とし、成膜時間を30分に設定して、約200nmのSZYO酸化物薄膜を支持体上に得た。   The raw material solution is mist (mist) once by an ultrasonic vibrator, and vaporized without contacting the heater with a heated carrier gas. The specific surface area of the raw material solution is greatly increased by the mist formation. Therefore, the vaporization efficiency can be greatly improved. In this case, for example, nitrogen was used as the carrier gas, the flow rate was set to 300 sccm, and the temperature of the raw material vaporizer was set to 280 ° C. The pressure in the raw material vaporizer was about 23 Torr. The raw material thus vaporized is mixed with the reaction gas (oxygen) and then introduced into the deposition substrate. The oxygen supply amount at that time was set to 1000 sccm, for example. In addition, the film formation was carried out at a substrate temperature of 600 ° C., the film formation time was set to 30 minutes, and an SZYO oxide thin film of about 200 nm was obtained on the support.

また、CVD法にて成膜した後、引き続いて液相法により金属多孔体基板上に成膜されたCVD膜中に存在する空孔等の欠陥を封孔し均一な成膜が可能とするものであるが、その液相法がMOD法、またはゾルゲル法を適用することが好ましい。そのMOD法とは、有機金属酸塩などの金属元素を含む有機分子を有機溶媒などで希釈したMOD(Metal Organic Deposition)液を原料として用いるもので、当該MOD液をスピンオンやディップ法などにより基板表面をコートし、その後塗布物を加熱して乾燥、熱分解、焼成を行うことにより所定の酸化物薄膜を得る手法である。   In addition, after film formation by the CVD method, defects such as vacancies existing in the CVD film formed on the metal porous substrate by the liquid phase method are sealed to enable uniform film formation. However, it is preferable to apply the MOD method or the sol-gel method as the liquid phase method. The MOD method uses, as a raw material, a MOD (Metal Organic Deposition) solution obtained by diluting an organic molecule containing a metal element such as an organometallic acid salt with an organic solvent. This is a method of obtaining a predetermined oxide thin film by coating the surface, and then heating, drying, pyrolyzing, and baking the coated material.

また、ゾルゲル法とは、金属アルコキシドを加水分解したゲル体を有機溶媒で希釈し塗布に適した粘度に調整したゾルゲル液を原料として用いるもので、当該ゾルゲル液をMOD液と同様にスピンオンやディップ法などにより基板表面をコートし、その後塗布物を加熱して乾燥、熱分解、焼成を行うことにより所定の酸化物薄膜を得る手法である。このようにして得られた成膜について、ガスバリア性の確認を行った。   The sol-gel method uses a sol-gel solution prepared by diluting a gel body obtained by hydrolyzing a metal alkoxide with an organic solvent to a viscosity suitable for coating as a raw material. The sol-gel method is spin-on or dipped like a MOD solution. In this method, the surface of the substrate is coated by a method or the like, and then the coating is heated, dried, pyrolyzed, and fired to obtain a predetermined oxide thin film. The film barrier properties of the film thus obtained were confirmed.

図1は、成膜基板の緻密性を確認するためのガスバリア性試験装置の概略を示す図である。この図1に示す装置を用い、Heタンク1からHeガスを成膜面2と基板3に0.2MPaの圧力で流し、大気出口4でキュポフレックスによるガス検出を行い、Heガスの0.1MPaなる差圧によるガス透過性の有無を確認するものである。なお、符号5は圧力計である。この確認の結果、ピンホールや割れがなく、かつガスバリア性があるものを緻密化膜が成膜できているとし、それ以外は緻密化が不十分であると判定した。   FIG. 1 is a diagram showing an outline of a gas barrier property test apparatus for confirming the denseness of a film formation substrate. Using the apparatus shown in FIG. 1, He gas is flowed from the He tank 1 to the film formation surface 2 and the substrate 3 at a pressure of 0.2 MPa, gas detection is performed by cupoflex at the atmospheric outlet 4, and 0.1 MPa of He gas The presence or absence of gas permeability due to the differential pressure is confirmed. Reference numeral 5 denotes a pressure gauge. As a result of this confirmation, it was determined that the densified film had been formed without pinholes or cracks and had gas barrier properties, and other than that, it was determined that the densification was insufficient.

図2は、薄膜燃料電池セルの一例の模式図である。この図2に示すように、平滑化したステンレス多孔体6上に必要に応じて触媒7、例えば固体電解質型燃料電池のカソード材料として汎用されているLaSrMnO3 (LSM)粉末を用い、ステンレス多孔体に担持、塗布または成膜させる。この多孔体6の平滑面に、緻密な酸化物薄膜からなる電解質膜8を成膜し、その電解質膜8上にアノード膜9を形成する。このように、多孔体を除く部材を全て薄膜で配置することで、素材の伝導性に関わらず、伝導性と厚みとの積で計算される伝導度を高めることができるため、燃料電池セルの固有抵抗が小さくなり、燃料電池としての出力特性の向上に繋がる。 FIG. 2 is a schematic diagram of an example of a thin film fuel cell. As shown in FIG. 2, on a smoothed stainless porous body 6, if necessary, a catalyst 7, for example, a LaSrMnO 3 (LSM) powder widely used as a cathode material for a solid oxide fuel cell is used. Is supported, applied, or formed into a film. An electrolyte film 8 made of a dense oxide thin film is formed on the smooth surface of the porous body 6, and an anode film 9 is formed on the electrolyte film 8. In this way, by arranging all the members excluding the porous body as a thin film, the conductivity calculated by the product of the conductivity and the thickness can be increased regardless of the conductivity of the material. The specific resistance is reduced, leading to an improvement in output characteristics as a fuel cell.

さらに、CVD法、液相法、およびPVD法のいずれかの方法で成膜する材料に触媒を添加する。触媒としては、上述したように、LaSrMnO3 (LSM)粉末や(La,Sr)(Co,Fe)O3(LSCF)粉末などを用い、これを固体電解質用の原料となるMOD液やゾルゲル液に添加して塗布した後に焼結することで、固体電解質と触媒が混在する領域を形成することができる。また、添加するLSMやLSCFの混合量を増やすことにより導電性を発現させ、固体電解質/触媒混在領域をそのまま電極として使用することもできる。 Further, a catalyst is added to a material to be deposited by any one of the CVD method, the liquid phase method, and the PVD method. As described above, LaSrMnO 3 (LSM) powder, (La, Sr) (Co, Fe) O 3 (LSCF) powder or the like is used as the catalyst, and this is used as a raw material for a solid electrolyte, such as a MOD liquid or a sol-gel liquid. By adding and applying to sinter, a region where the solid electrolyte and the catalyst are mixed can be formed. Further, by increasing the amount of LSM or LSCF to be added, conductivity can be expressed, and the solid electrolyte / catalyst mixed region can be used as an electrode as it is.

以下、本発明を実施例によって具体的に説明する。
支持体として、ステンレス鋼(SUS316L)ガスアトマイズ粉末を準備(平均粒度12μm)、これを所定の型に流し込み、焼結温度1050℃にて加熱し、φ25×1mmの焼結多孔体を作製、この表面を湿式エメリー研磨、バフ研磨を経て粗さRa=0.1μmに平滑化した平滑金属焼結多孔体を作製した。その後CVD法を用いて約0.4mmの固体電解質(SZYO)を形成し、その後液相法を用いてSZYOを約0.15mm堆積して残存する空孔、欠陥、凹凸等を封孔した。さらに、同じ液相法プロセスを繰り返し、倍の0.15mmを堆積した場合についても調べた。
Hereinafter, the present invention will be specifically described by way of examples.
As a support, stainless steel (SUS316L) gas atomized powder was prepared (average particle size 12 μm), poured into a predetermined mold, heated at a sintering temperature of 1050 ° C., and a sintered porous body of φ25 × 1 mm was produced. Was subjected to wet emery polishing and buff polishing to prepare a smooth metal sintered porous body smoothed to a roughness Ra = 0.1 μm. Thereafter, a solid electrolyte (SZYO) having a thickness of about 0.4 mm was formed using a CVD method, and then about 0.15 mm of SZYO was deposited using a liquid phase method to seal the remaining vacancies, defects and irregularities. Furthermore, the same liquid phase process was repeated, and the case where 0.15 mm of double was deposited was also examined.

比較材として、焼結のままで未平滑処理のステンレス鋼粉末焼結多孔体および市販のアルミナ製多孔質(φ25mm×1mm、平均空孔径0.5μm)支持体を準備した。各基材上に固体電解質としてプロトン伝導性酸化物であるSZYOをCVD法により成膜した。成膜は液体供給MOCVD法にて行い、成膜温度600℃にて30分成膜を行い、250nmの薄膜を平滑多孔体上に成膜し、燃料電池セルの作製を行った。この成膜した状態を顕微鏡写真により、目標とするコンセプト通りの膜があり、薄膜配置の燃料電池構造となっている。得られた多孔体成膜について、ガスバリア性の確認を行った。その結果を表1に示す。   As a comparative material, an unsmoothed stainless steel powder sintered porous body and a commercially available alumina porous support (φ25 mm × 1 mm, average pore diameter 0.5 μm) were prepared as sintered. On each substrate, SZYO, which is a proton conductive oxide, was formed as a solid electrolyte by a CVD method. Film formation was performed by a liquid supply MOCVD method, and film formation was performed at a film formation temperature of 600 ° C. for 30 minutes, and a 250 nm thin film was formed on a smooth porous body to produce a fuel cell. The film formation state has a film as a target concept based on a microphotograph, and has a fuel cell structure with a thin film arrangement. The obtained porous film was confirmed for gas barrier properties. The results are shown in Table 1.

Figure 0005468432
表1に示すように、CVD法による成膜直後では未平滑のステンレス鋼粉末焼結多孔体並びにルミナ製多孔質支持体に比べ、平滑化したステンレス鋼粉末焼結多孔体がより高いガスバリア性を持つことがわかる。しかし、この場合においても燃料電池として実用化するにはガスバリア性が不十分なため、この上にSZYOを液相法により成膜を行った。1回の液相法による堆積は約0.15mmであったが、ガスバリア性が改善されていることがわかる。さらに液相法による堆積を繰り返することにより、ガスバリア性が改善していることがわかる。
Figure 0005468432
As shown in Table 1, the smoothed stainless steel powder sintered porous body has a higher gas barrier property immediately after film formation by the CVD method than the smooth stainless steel powder sintered porous body and Lumina porous support. I understand that I have it. However, even in this case, since the gas barrier property is insufficient for practical use as a fuel cell, a film of SZYO was formed thereon by a liquid phase method. Deposition by one liquid phase method was about 0.15 mm, but it can be seen that the gas barrier property is improved. Further, it can be seen that the gas barrier property is improved by repeating the deposition by the liquid phase method.

Figure 0005468432
一般にCVD法の成膜速度は遅く0.4mmのSZYO薄膜の堆積には5〜6時間必要とするが、液相法によれば数十分程度であり、電解質膜の形成には液相法の使用が望ましい。しかし、液相法で形成する場合、多孔質体の空孔に原料液が多量にしみ込んでしまい、良好な薄膜の形成が困難である。また、表2に示すように、CVDに比べガスバリア性が良くないという問題がある。そこで、本発明によればCVD法で全ての電解質膜を形成するのではなく、液相法を併用することで成膜時間の大幅な短縮を図ることができるとともに、良好なガスバリア性を持つ薄膜を形成することができる。
Figure 0005468432
In general, the deposition rate of the CVD method is slow, and it takes 5 to 6 hours to deposit a 0.4 mm SZYO thin film. However, according to the liquid phase method, it is about several tens of minutes. Is desirable. However, in the case of forming by a liquid phase method, a large amount of the raw material liquid penetrates into the pores of the porous body, and it is difficult to form a good thin film. Further, as shown in Table 2, there is a problem that gas barrier properties are not good as compared with CVD. Therefore, according to the present invention, not all the electrolyte membranes are formed by the CVD method, but the film formation time can be greatly shortened by using the liquid phase method together, and a thin film having good gas barrier properties. Can be formed.

なお、本実施例では電解質の形成にCVD法を用い、その後液相法による成膜を行って
いるが、CVD法に代わりにより成膜速度の速いスパッタ法やAD(エアロゾルデポジッション)法などのPVD法としてもよく、この場合においても追加の液相法による成膜によりガスバリア性の向上が期待できる。実際、AD法でステンレス鋼粉末焼結多孔体上に形成した固体電解質膜についてガスバリア性を調べたところ、約40mmという厚い膜厚にもかかわらず、圧力減少時間は約19分であった。燃料電池の動作温度の低減には固体電解質膜を1mm以下にする必要があるが、AD法だけによる成膜では良好なガスバリア性の発現は困難である。そのため、液相法で追加の成膜を行い、封孔を行う本発明はAD法においても有効に機能するものと考えられる。
In this embodiment, the CVD method is used for forming the electrolyte, and the film formation is performed by the liquid phase method. However, instead of the CVD method, a sputtering method or an AD (aerosol deposition) method with a high film formation rate can be used. The PVD method may be used, and even in this case, an improvement in gas barrier properties can be expected by film formation by an additional liquid phase method. Actually, when the gas barrier property of the solid electrolyte membrane formed on the stainless steel powder sintered porous body by the AD method was examined, the pressure reduction time was about 19 minutes despite the thick film thickness of about 40 mm. In order to reduce the operating temperature of the fuel cell, it is necessary to make the solid electrolyte membrane 1 mm or less, but it is difficult to develop a good gas barrier property only by the AD method. Therefore, it is considered that the present invention in which additional film formation is performed by the liquid phase method and sealing is performed effectively also in the AD method.

以上にように、本発明による研磨加工およびCVD法やPVD法の後に、さらに液相法を実施することで、CVD法あるいはPVD法で完全に封孔できずに残存する空孔、欠陥、凹凸等を、さらに効果的に封孔または改善することが可能となり、多孔体基板上へのより高品位で緻密な薄膜形成を可能とすることで、燃料電池の発電特性向上と、さらに、CVD法に比べて装置の構造が簡便でかつ成膜速度の速い液相法やPVD法の適用はトータルの成膜コストの低減を図ることができる高強度で、薄膜化により燃料電池や水素精製、製造部材に求められる所望の機能性を向上できる金属粉末焼結多孔体基板上への薄膜製造方法を提供可能と
なる。
As described above, by carrying out the liquid phase method after the polishing process and the CVD method or PVD method according to the present invention, vacancies, defects, irregularities remaining without being completely sealed by the CVD method or PVD method. Etc. can be more effectively sealed or improved, and a high-quality and dense thin film can be formed on the porous substrate, thereby improving the power generation characteristics of the fuel cell, and the CVD method. Compared with, the application of the liquid phase method or PVD method, which has a simpler structure and faster film formation speed, is capable of reducing the total film formation cost. It becomes possible to provide a method for producing a thin film on a metal powder sintered porous substrate capable of improving desired functionality required for a member.

成膜基板の緻密性を確認するためのガスバリア性試験装置の概略を示す図である。It is a figure which shows the outline of the gas barrier property test apparatus for confirming the denseness of the film-forming board | substrate. 薄膜燃料電池セルの一例の模式図である。It is a schematic diagram of an example of a thin film fuel cell.

1 Heタンク
2 成膜面
3 多孔体基板
4 ガス出口
5 圧力計
6 ステンレス多孔体
7 触媒
8 酸化物薄膜からなる電解質膜
9 アノード膜


特許出願人 山陽特殊製鋼株式会社 他1名
代理人 弁理士 椎 名 彊
DESCRIPTION OF SYMBOLS 1 He tank 2 Film-forming surface 3 Porous board | substrate 4 Gas outlet 5 Pressure gauge 6 Stainless steel porous body 7 Catalyst 8 Electrolyte film | membrane consisting of oxide thin film 9 Anode film


Patent applicant Sanyo Special Steel Co., Ltd. and 1 other
Attorney: Attorney Shiina

Claims (4)

金属粉末焼結多孔体基板を研磨加工した面上にCVD法および/またはPVD法にて酸化物薄膜を成膜した後、その上に液相法により成膜を行うことを特徴とする金属粉末焼結多孔体基板への薄膜製造方法。 A metal powder characterized by depositing an oxide thin film on a polished surface of a sintered metal powder porous substrate by a CVD method and / or a PVD method and then depositing the oxide thin film on the surface by a liquid phase method A method for producing a thin film on a sintered porous substrate. 請求項1に記載の液相法がMOD法、またはゾルゲル法であることを特徴とする金属粉末焼結多孔体基板への薄膜製造方法。 A method for producing a thin film on a metal powder sintered porous substrate, wherein the liquid phase method according to claim 1 is a MOD method or a sol-gel method. 請求項1または2に記載のCVD法、液相法、およびPVD法のいずれかの方法で成膜する材料に触媒を添加することを特徴とする金属粉末焼結多孔体基板への薄膜製造方法。 A method for producing a thin film on a metal powder sintered porous substrate, comprising adding a catalyst to a material to be deposited by any one of the CVD method, liquid phase method, and PVD method according to claim 1 . 請求項1〜のいずれか1項に記載の薄膜製造法燃料電池部材に用いることを特徴とする金属粉末焼結多孔体基板への薄膜製造方法。 A method for producing a thin film on a metal powder sintered porous substrate, wherein the method for producing a thin film according to any one of claims 1 to 3 is used for a fuel cell member.
JP2010061799A 2010-03-18 2010-03-18 Method for producing thin film on metal powder sintered porous substrate Expired - Fee Related JP5468432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010061799A JP5468432B2 (en) 2010-03-18 2010-03-18 Method for producing thin film on metal powder sintered porous substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010061799A JP5468432B2 (en) 2010-03-18 2010-03-18 Method for producing thin film on metal powder sintered porous substrate

Publications (2)

Publication Number Publication Date
JP2011195857A JP2011195857A (en) 2011-10-06
JP5468432B2 true JP5468432B2 (en) 2014-04-09

Family

ID=44874447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010061799A Expired - Fee Related JP5468432B2 (en) 2010-03-18 2010-03-18 Method for producing thin film on metal powder sintered porous substrate

Country Status (1)

Country Link
JP (1) JP5468432B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255537B1 (en) * 2018-01-12 2021-05-25 주식회사 엘지에너지솔루션 The Pouch Film And The Method For Manufacturing Thereof
JP6919899B2 (en) * 2018-07-23 2021-08-18 国立研究開発法人産業技術総合研究所 Laminated body and its manufacturing method

Also Published As

Publication number Publication date
JP2011195857A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
RU2236068C1 (en) Zirconium-based electrode-electrolyte couple (alternatives), its manufacturing process (alternatives), and organogel
US9670586B1 (en) Solid oxide fuel cells, electrolyzers, and sensors, and methods of making and using the same
Shin et al. Ultrathin atomic layer-deposited CeO2 overlayer for high-performance fuel cell electrodes
Park et al. Fabrication and Characterization of High‐Conductivity Bilayer Electrolytes for Intermediate‐Temperature Solid Oxide Fuel Cells
JP2013501330A (en) Metal-supported electrochemical cell and manufacturing method thereof
US20040018298A1 (en) Method for fabricating ceria-based solid oxide fuel cells
JP5179380B2 (en) DLI-MOCVD method for forming electrodes for electrochemical reactors.
Lee et al. Bimodally integrated anode functional layer for lower temperature solid oxide fuel cells
Doan et al. Influence of IrO2/TiO2 coated titanium porous transport layer on the performance of PEM water electrolysis
JP6644363B2 (en) Electrochemical element, solid oxide fuel cell, and method for producing these
KR101939666B1 (en) Gas diffusion layer with corrosion protective coating and method for manufacturing thereof, and membrane electrode assembly having the gas diffusion layers
US10707496B2 (en) Method for depositing layer of ceramic material onto a metallic support for solid oxide fuel cells
CN115066774A (en) Separator for solid oxide cell
Cho et al. Optimization of Y2O3 dopant concentration of yttria stabilized zirconia thin film electrolyte prepared by plasma enhanced atomic layer deposition for high performance thin film solid oxide fuel cells
Feng et al. Exploring the structural uniformity and integrity of protonic ceramic thin film electrolyte using wet powder spraying
Hamedani et al. Fabrication of gradient porous LSM cathode by optimizing deposition parameters in ultrasonic spray pyrolysis
Shin et al. A highly activated and integrated nanoscale interlayer of cathodes in low-temperature solid oxide fuel cells via precursor-solution electrospray method
Lin et al. Atmospheric plasma spraying to fabricate metal‐supported solid oxide fuel cells with open‐channel porous metal support
JP5468432B2 (en) Method for producing thin film on metal powder sintered porous substrate
JP5419034B2 (en) Ion conductive material, conductive membrane for fuel cell, membrane electrode assembly and fuel cell
Jasinski et al. Applications of spin coating of polymer precursor and slurry suspensions for solid oxide fuel cell fabrication
KR101657242B1 (en) high temperature solid oxide cell comprising barrier layer, manufacturing method thereof
JP2009252416A (en) Fuel battery cell, and manufacturing method therefor
CN106558716B (en) A kind of novel solid oxide fuel cell barrier layer and preparation method thereof
TW201417383A (en) A porous oxide electrode layer and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140129

R150 Certificate of patent or registration of utility model

Ref document number: 5468432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees