JP5467648B2 - Contact combustion type methane detection apparatus and methane detection method - Google Patents

Contact combustion type methane detection apparatus and methane detection method Download PDF

Info

Publication number
JP5467648B2
JP5467648B2 JP2010189247A JP2010189247A JP5467648B2 JP 5467648 B2 JP5467648 B2 JP 5467648B2 JP 2010189247 A JP2010189247 A JP 2010189247A JP 2010189247 A JP2010189247 A JP 2010189247A JP 5467648 B2 JP5467648 B2 JP 5467648B2
Authority
JP
Japan
Prior art keywords
methane
piece
output
temperature
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010189247A
Other languages
Japanese (ja)
Other versions
JP2012063141A (en
Inventor
一哉 新西
邦之 井澤
浩美 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP2010189247A priority Critical patent/JP5467648B2/en
Publication of JP2012063141A publication Critical patent/JP2012063141A/en
Application granted granted Critical
Publication of JP5467648B2 publication Critical patent/JP5467648B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

この発明は、接触燃焼式ガスセンサを用いたメタンの検出に関する。   The present invention relates to detection of methane using a catalytic combustion type gas sensor.

発明者らは、半導体基板の空洞部に検知片と補償片とを設けた接触燃焼式ガスセンサにより、メタンを検出することを検討している。メタンの検出温度は約500℃で、1回の検出サイクルは例えば10秒で、この内100msの間ガスセンサを加熱し、他は室温とする。発明者はこの条件でガスセンサを駆動すると、数ヶ月程度でヒータ抵抗が1%程度変化することを見出した(図11,図16)。これはメタン濃度に換算すると10000ppm程度に相当する。また検知片と補償片とでヒータ抵抗の変化は同じではなかったので、検知片と補償片とをブリッジ回路に組み込んでも、出力の変動を打ち消すことはできなかった。そこで発明者は、接触燃焼式ガスセンサのヒータ抵抗の変化を補正することを検討して、この発明に至った。   The inventors have studied to detect methane with a catalytic combustion gas sensor in which a detection piece and a compensation piece are provided in a cavity of a semiconductor substrate. The detection temperature of methane is about 500 ° C., and one detection cycle is, for example, 10 seconds. Among them, the gas sensor is heated for 100 ms, and the others are set to room temperature. The inventor has found that when the gas sensor is driven under these conditions, the heater resistance changes by about 1% in several months (FIGS. 11 and 16). This corresponds to about 10000 ppm in terms of methane concentration. Further, since the change in the heater resistance was not the same between the detection piece and the compensation piece, even if the detection piece and the compensation piece were incorporated in the bridge circuit, the fluctuation in output could not be canceled. Therefore, the inventor studied to correct the change in the heater resistance of the contact combustion type gas sensor, and reached the present invention.

ここで関連する先行技術を示す。特許文献1(JP2006-112911A)は、一般的な接触燃焼式ガスセンサに対し、センサ温度を300〜500℃程度の温度と、100〜250℃程度の温度とに変化させ、300〜500℃での出力と100〜250℃での出力の差から、炭化水素を検出することを開示している。特許文献1は、100〜250℃との出力の差を求めることにより、水素の影響を補正し、センサの温度依存性を補正し、その他の特性変化を相殺できるとしている。特許文献1は、半導体基板の空洞にヒータ薄膜を設けた接触燃焼式ガスセンサについては、検討していない。   Here is related prior art. Patent Document 1 (JP2006-112911A) describes a general catalytic combustion type gas sensor in which the sensor temperature is changed to a temperature of about 300 to 500 ° C and a temperature of about 100 to 250 ° C. It discloses that hydrocarbons are detected from the difference between the output and the output at 100 to 250 ° C. Japanese Patent Application Laid-Open No. H10-228707 calculates the difference in output from 100 to 250 ° C., thereby correcting the influence of hydrogen, correcting the temperature dependence of the sensor, and canceling other characteristic changes. Patent Document 1 does not consider a contact combustion type gas sensor in which a heater thin film is provided in a cavity of a semiconductor substrate.

特許文献2(JP4035099B)は、MEMS(Micro Electro Mechanical System)を用いた接触燃焼式ガスセンサによりエタノール等の有極性ガスを検出する載荷、センサを複数の温度に変化させ、温度の異なる信号で補正することにより、湿度の影響を補正することを提案している。   Patent Document 2 (JP4035099B) describes a load for detecting a polar gas such as ethanol by a catalytic combustion type gas sensor using MEMS (Micro Electro Mechanical System), changes the sensor to a plurality of temperatures, and corrects with signals having different temperatures. Therefore, it is proposed to correct the influence of humidity.

JP2006-112911AJP2006-112911A JP4035099BJP4035099B

この発明の課題は、半導体基板の空洞にヒータ薄膜を設けた接触燃焼式メタンセンサに対して、ヒータ抵抗のドリフトを補正することにある。   An object of the present invention is to correct a drift of a heater resistance with respect to a contact combustion type methane sensor in which a heater thin film is provided in a cavity of a semiconductor substrate.

この発明は、半導体基板の空洞に、薄膜ヒータをメタンの燃焼触媒で被覆した検知片と、薄膜ヒータを補償用材料で被覆した補償片とを設け、検知片と補償片とを組み込んだブリッジ回路の出力により、メタンを検出するメタン検出装置において、
前記ブリッジ回路は、
検知片と補償片との直列片と、複数の抵抗の直列片とを並列に接続した回路、
あるいは、検知片と抵抗との直列片と、補償片と抵抗との直列片とを並列に接続した回路から成り、
前記ブリッジ回路に、検知片がメタンの着火点以上に昇温しないように、駆動回路により電力を加え、
検知片がメタンの着火点未満の温度での、ブリッジ回路の出力を0点出力とし、ガス検出部で複数の0点出力を基に基準値を発生させてメモリに記憶し、
検知片がメタンの着火点以上の温度でのブリッジ回路の出力を、ガス検出部で前記基準値により、薄膜ヒータの抵抗変化を補正してメタンを検出することを特徴とする。
The present invention provides a bridge circuit in which a detection piece in which a thin film heater is covered with a methane combustion catalyst and a compensation piece in which a thin film heater is covered with a compensation material are provided in a cavity of a semiconductor substrate, and the detection piece and the compensation piece are incorporated. In the methane detection device that detects methane by the output of
The bridge circuit is
A circuit in which a series piece of a detection piece and a compensation piece and a series piece of a plurality of resistors are connected in parallel;
Alternatively, it consists of a circuit in which a series piece of a sensing piece and a resistor and a series piece of a compensation piece and a resistor are connected in parallel,
To the bridge circuit, power is applied by the drive circuit so that the temperature of the detection piece does not rise above the ignition point of methane,
When the detection piece is at a temperature below the ignition point of methane, the output of the bridge circuit is set to 0 point output, and the gas detection unit generates a reference value based on a plurality of 0 point outputs and stores it in the memory.
The output of the bridge circuit when the detection piece is at a temperature equal to or higher than the ignition point of methane, and methane is detected by correcting the change in resistance of the thin film heater by the gas detection unit based on the reference value.

この発明はまた、半導体基板の空洞に、薄膜ヒータをメタンの燃焼触媒で被覆した検知片と、薄膜ヒータを補償用材料で被覆した補償片とを設け、検知片と補償片とを組み込んだブリッジ回路の出力により、メタンを検出する方法において、
前記ブリッジ回路は、
検知片と補償片との直列片と、複数の抵抗の直列片とを並列に接続した回路、
あるいは、検知片と抵抗との直列片と、補償片と抵抗との直列片とを並列に接続した回路から成り、
前記ブリッジ回路に、検知片がメタンの着火点以上に昇温しないように、駆動回路により電力を加え、
検知片がメタンの着火点未満の温度での、ブリッジ回路の出力を0点出力とし、ガス検出部で複数の0点出力を基に基準値を発生させてメモリに記憶し、
検知片がメタンの着火点以上の温度でのブリッジ回路の出力を、ガス検出部で前記基準値により、薄膜ヒータの抵抗変化を補正してメタンを検出することを特徴とする。
The present invention also provides a bridge in which a detection piece in which a thin film heater is coated with a methane combustion catalyst and a compensation piece in which the thin film heater is covered with a compensation material are provided in a cavity of a semiconductor substrate, and the detection piece and the compensation piece are incorporated. In the method of detecting methane by the output of the circuit,
The bridge circuit is
A circuit in which a series piece of a detection piece and a compensation piece and a series piece of a plurality of resistors are connected in parallel;
Alternatively, it consists of a circuit in which a series piece of a sensing piece and a resistor and a series piece of a compensation piece and a resistor are connected in parallel,
To the bridge circuit, power is applied by the drive circuit so that the temperature of the detection piece does not rise above the ignition point of methane,
When the detection piece is at a temperature below the ignition point of methane, the output of the bridge circuit is set to 0 point output, and the gas detection unit generates a reference value based on a plurality of 0 point outputs and stores it in the memory.
The output of the bridge circuit when the detection piece is at a temperature equal to or higher than the ignition point of methane, and methane is detected by correcting the change in resistance of the thin film heater by the gas detection unit based on the reference value.

この発明ではメタンの着火点未満の温度でのブリッジ回路の出力を0点出力とし、複数の0点出力を用いて、即ち複数の0点出力の平均値、メジアン等を用いて、基準値を発生させる。ここで0点出力を発生させたときと、メタンを検出するときとで、ブリッジ回路に加える電圧が異なる場合、電圧の比に応じた補正を加える。そしてメタンの着火点以上の温度でのブリッジ回路の出力を基準値により補正し、例えばブリッジ回路の出力と基準値との差により、メタンを検出する。なお基準値の寄与を小さくし、例えばブリッジ回路の出力と(基準値×1/2)の差を用いても良い。この発明では、薄膜ヒータの抵抗値のドリフトを補正でき、例えばドリフトによる誤差を数分の1に補正できる。また基準値は、複数回測定した0点出力から発生させるので、信頼性が高い。この明細書において、メタン検出装置に関する記載はそのままメタン検出方法にも当てはまり、逆にメタン検出方法に関する記載はそのままメタン検出装置にも当てはまる。またこの発明の実施に際しては、当業者の常識、先行技術の開示等を参照し、実施例を変更できる。特許請求の範囲の用語の意味は、当業者の常識及びガスセンサでの周知技術を参酌して定める。   In this invention, the output of the bridge circuit at a temperature lower than the ignition point of methane is set to 0 point output, and a reference value is generated using a plurality of 0 point outputs, that is, using an average value, median, etc. of the plurality of 0 point outputs. Let Here, when the voltage applied to the bridge circuit differs between when the zero-point output is generated and when methane is detected, correction according to the voltage ratio is added. Then, the output of the bridge circuit at a temperature equal to or higher than the ignition point of methane is corrected by the reference value, and for example, methane is detected by the difference between the output of the bridge circuit and the reference value. Note that the contribution of the reference value may be reduced, and for example, the difference between the output of the bridge circuit and (reference value × ½) may be used. In this invention, the drift of the resistance value of the thin film heater can be corrected, and for example, an error due to the drift can be corrected to a fraction. Moreover, since the reference value is generated from the zero point output measured a plurality of times, the reliability is high. In this specification, the description related to the methane detection device also applies to the methane detection method as it is, and conversely, the description related to the methane detection method also applies to the methane detection device as it is. In carrying out the present invention, the embodiments can be changed with reference to common sense of those skilled in the art and disclosure of prior art. The meanings of the terms in the claims are determined by taking into account common knowledge of those skilled in the art and well-known techniques in gas sensors.

好ましくは、ブリッジ回路の0点出力が定常値に達する時間以上の間、検知片を前記駆動回路によりメタンの着火点未満の温度に加熱する。定常値に達する時間以上の間とは、例えば90%応答時間以上の間を意味する。0点出力とは室温で測定しても良いが、極く小さな駆動電圧を作り出すことが難しく、またメタンを検出する温度に近い温度で測定する方が、誤差が小さい。そこで例えば100〜250℃で0点出力を測定する。するとブリッジ回路出力が安定するまでに時間が必要で、ブリッジ回路の0点出力が定常値に達する時間以上の間、検知片を前記駆動回路によりメタンの着火点未満の温度に加熱すると、0点出力の安定値を測定できる。
より好ましくは、検知片を室温、メタンの着火点未満の温度、メタンの着火点以上の温度の順に、前記駆動回路により温度変化させるサイクルを繰り返す。すると例えば100〜250℃に予熱した後に、500℃程度に検知片と補償片を加熱するので、検知片及び補償片に加わる熱衝撃が小さい。
Preferably, the detection piece is heated to a temperature lower than the ignition point of methane by the drive circuit for a time longer than the time when the zero point output of the bridge circuit reaches a steady value. Between the time to reach the steady value means, for example, between 90% response time or more. The zero point output may be measured at room temperature, but it is difficult to produce a very small driving voltage, and the error is smaller when measured at a temperature close to the temperature at which methane is detected. Therefore, for example, the zero point output is measured at 100 to 250 ° C. Then, it takes time for the bridge circuit output to stabilize, and when the detection piece is heated to a temperature lower than the ignition point of methane by the drive circuit for a time longer than the time when the zero point output of the bridge circuit reaches a steady value, the zero point output Can be measured.
More preferably, the cycle in which the temperature of the detection piece is changed by the drive circuit in the order of room temperature, temperature below the methane ignition point, and temperature above the methane ignition point is repeated. Then, for example, since the detection piece and the compensation piece are heated to about 500 ° C. after preheating to 100 to 250 ° C., the thermal shock applied to the detection piece and the compensation piece is small.

好ましくは、メモリに記憶した基準値の初期値と基準値との差が許容範囲を越えると、故障であることを出力する。このようにすると、ヒータ抵抗のドリフトを補正できる限界を定め、限界を越えると故障を報知できる。
特に好ましくは、検知片がメタンの着火点以上の温度でのブリッジ回路の出力中で、メタンが存在しない側の出力を参照出力としてメモリに記憶し、基準値と参照出力との差が第2の許容範囲を越えると故障であることを出力する。このようにすると、基準値の信頼性をより確実に確認できる。
Preferably, when the difference between the initial value of the reference value stored in the memory and the reference value exceeds an allowable range, a failure is output. In this way, a limit that can correct the drift of the heater resistance is set, and if the limit is exceeded, a failure can be notified.
Particularly preferably, the output of the bridge circuit when the detection piece is at a temperature equal to or higher than the ignition point of methane is stored in the memory as the reference output, and the difference between the reference value and the reference output is the second value. If it exceeds the allowable range, a failure is output. In this way, the reliability of the reference value can be confirmed more reliably.

実施例のガス検出装置のブロック図Block diagram of the gas detector of the embodiment 実施例のマイクロコンピュータのブロック図Block diagram of microcomputer of embodiment 実施例で用いたメタンセンサの要部平面図Plan view of the main part of the methane sensor used in the example 実施例での1サイクル分の動作を示すフローチャートThe flowchart which shows the operation | movement for 1 cycle in an Example. 実施例の1サイクル分の動作を示す図で、PHはヒータ電力を、ΔTは昇温幅を、Voutはブリッジ回路出力を表す。FIG. 4 is a diagram illustrating an operation for one cycle of the embodiment, where PH represents heater power, ΔT represents a temperature increase width, and Vout represents a bridge circuit output. 変形例の1サイクル分の動作を示す図で、PHはヒータ電力を、ΔTは昇温幅を、Voutはブリッジ回路出力を表す。FIG. 6 is a diagram showing an operation for one cycle of a modification, where PH represents heater power, ΔT represents a temperature increase width, and Vout represents a bridge circuit output. 実施例での基準値の管理を示す図The figure which shows the management of the reference value in an Example 実施例での基準値の管理を示すフローチャートFlow chart showing management of reference values in the embodiment 400℃へパルス加熱した際の、高温側でのヒータ抵抗の変化を示す特性図Characteristic diagram showing the change in heater resistance on the high temperature side when pulse heating to 400 ° C 450℃へパルス加熱した際の、高温側でのヒータ抵抗の変化を示す特性図Characteristic diagram showing changes in heater resistance on the high temperature side when pulse heating to 450 ° C 500℃へパルス加熱した際の、高温側でのヒータ抵抗の変化を示す特性図Characteristic diagram showing changes in heater resistance on the high temperature side when pulse heating to 500 ° C 550℃へパルス加熱した際の、高温側でのヒータ抵抗の変化を示す特性図Characteristic diagram showing changes in heater resistance on the high temperature side when pulse heating to 550 ° C 600℃へパルス加熱した際の、高温側でのヒータ抵抗の変化を示す特性図Characteristic diagram showing the change in heater resistance on the high temperature side when pulse heating to 600 ° C 400℃へパルス加熱した際の、低温側でのヒータ抵抗の変化を示す特性図Characteristic diagram showing changes in heater resistance on the low temperature side when pulse heating to 400 ° C 450℃へパルス加熱した際の、低温側でのヒータ抵抗の変化を示す特性図Characteristic diagram showing changes in heater resistance on the low temperature side when pulse heating to 450 ° C 500℃へパルス加熱した際の、低温側でのヒータ抵抗の変化を示す特性図Characteristic diagram showing changes in heater resistance on the low temperature side when pulse heating to 500 ° C 550℃へパルス加熱した際の、低温側でのヒータ抵抗の変化を示す特性図Characteristic diagram showing changes in heater resistance on the low temperature side when pulse heating to 550 ° C 600℃へパルス加熱した際の、低温側でのヒータ抵抗の変化を示す特性図Characteristic diagram showing changes in heater resistance on the low temperature side when pulse heating to 600 ° C

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

図1〜図18に、実施例を示す。図1において、2はガス検出装置で、4はマイクロコンピュータであり、6はトランジスタ等のスイッチ、8はダイオード、10はコイルあるいは磁性体などのインダクタンス素子、12はコンデンサである。そしてトランジスタ6〜コンデンサ12により、H/L2段階の出力の電源を構成し、電源の構成は任意である。 R1,R2は固定抵抗、14は補償片、16は検知片で、固定抵抗R1,R2及び補償片14,検知片16でブリッジ回路を構成する。そしてブリッジ回路の出力を差動増幅器18で増幅し、出力Voutとする。なお図1の鎖線の範囲に示すように、固定抵抗R1と補償片14とを直列に、固定抵抗R2と検知片16とを直列に接続してブリッジ回路としてもよい。   An example is shown in FIGS. In FIG. 1, 2 is a gas detection device, 4 is a microcomputer, 6 is a switch such as a transistor, 8 is a diode, 10 is an inductance element such as a coil or a magnetic material, and 12 is a capacitor. The transistor 6 to the capacitor 12 constitute an H / L two-stage output power source, and the configuration of the power source is arbitrary. R1 and R2 are fixed resistors, 14 is a compensation piece, 16 is a detection piece, and the fixed resistors R1 and R2, the compensation piece 14 and the detection piece 16 constitute a bridge circuit. Then, the output of the bridge circuit is amplified by the differential amplifier 18 to obtain the output Vout. As shown in the range of the chain line in FIG. 1, the fixed resistor R1 and the compensation piece 14 may be connected in series, and the fixed resistance R2 and the detection piece 16 may be connected in series to form a bridge circuit.

マイクロコンピュータ4の構成を図2に示し、タイマ22は例えば10秒周期で動作し、例えば100msecが0点出力の測定用の区間、次の100msecがメタンの検出用の区間、残る9.8secが室温への放置区間である。電源制御ぶ24はタイマ22の信号に従ってトランジスタ6を制御し、例えば0点出力の測定用の区間では、トランジスタ6を例えば100kHzでオン/オフさせ、ブリッジ回路に実効電圧で0.5〜1.5V程度の電圧を加える。またメタン検出区間でトランジスタ6を常時オン、もしくはオン/オフさせ、ブリッジ回路に実効電圧で3V程度の電圧を加える。図5,図6にヒータ電力のパターンを示す。好ましくはブリッジ回路に加える電力を、図5,図6のように方形波状に変化させずに緩やかに変化させ、補償片14,検知片16へ加える熱衝撃を弱める。ガス検出部26は、メタンガス検出温度でのブリッジ回路の出力Voutと、基準値記憶部30に記憶した基準値との差からメタンガスを検出する。基準値管理部28は、複数の0点出力を基に基準値を発生させ、また基準値が許容範囲内であるかどうかを確認し、許容範囲を越えると故障信号を出力する。またA/D変換部32は出力VoutをA/D変換する。   The configuration of the microcomputer 4 is shown in FIG. 2. The timer 22 operates, for example, at a cycle of 10 seconds. For example, 100 msec is a section for measuring zero point output, the next 100 msec is a section for detecting methane, and the remaining 9.8 sec is room temperature. It is a neglected section. The power supply control unit 24 controls the transistor 6 in accordance with the signal of the timer 22, and for example, in the interval for measuring the zero point output, the transistor 6 is turned on / off at 100 kHz, for example, and the bridge circuit has an effective voltage of about 0.5 to 1.5V. Apply voltage. In the methane detection section, the transistor 6 is always turned on or turned on / off, and an effective voltage of about 3 V is applied to the bridge circuit. 5 and 6 show heater power patterns. Preferably, the power applied to the bridge circuit is gradually changed without changing to a square wave shape as shown in FIGS. 5 and 6, and the thermal shock applied to the compensation piece 14 and the detection piece 16 is weakened. The gas detection unit 26 detects methane gas from the difference between the output Vout of the bridge circuit at the methane gas detection temperature and the reference value stored in the reference value storage unit 30. The reference value management unit 28 generates a reference value based on a plurality of zero-point outputs, checks whether the reference value is within the allowable range, and outputs a failure signal when the allowable range is exceeded. The A / D converter 32 performs A / D conversion on the output Vout.

図3に接触燃焼式メタンセンサ34を示し、35はシリコンなどの半導体基板で、例えば一対の空洞36,36が設けられている。空洞36上に二酸化ケイ素,五二酸化タンタルなどの薄膜のブリッジ37、あるいは薄膜のダイアフラムが設けられ、その中央部に空洞40が設けられ、空洞36と連通し、ブリッジ37の底面側は空洞36に接している。ブリッジ37上に薄膜ヒータ38が設けられ、例えば膜厚500nm程度のPt膜から成り、検知片16も補償片14も、薄膜ヒータ38の構成は共通である。補償片14側では薄膜ヒータ38をメタン酸化活性の低い材料、例えばアルミナで覆い、検知片16側では薄膜ヒータ38をメタン燃焼触媒、例えばアルミナにPdもしくはPtを添加した触媒で覆う。薄膜ヒータ38をパッド41〜43に接続し、ワイヤボンディングなどにより、図1の回路を搭載した基板に接続する。なおメタンセンサ34の構造は任意で、例えば補償片14と検知片16とを別の基板に搭載してもよく、空洞40の有無は任意で、薄膜ヒータ38の材質も任意である。さらにブリッジ37無しで、薄膜ヒータ38をアルミナ等の補償片材料とメタン酸化触媒で被覆し、検知片16と補償片14とにしても良い。   FIG. 3 shows a contact combustion type methane sensor 34, 35 is a semiconductor substrate such as silicon, and a pair of cavities 36, 36, for example, are provided. A thin film bridge 37 of silicon dioxide, tantalum pentoxide or the like or a thin film diaphragm is provided on the cavity 36, a cavity 40 is provided at the center thereof, communicates with the cavity 36, and the bottom side of the bridge 37 is connected to the cavity 36. It touches. A thin film heater 38 is provided on the bridge 37 and is made of, for example, a Pt film having a film thickness of about 500 nm. On the compensation piece 14 side, the thin film heater 38 is covered with a material having low methane oxidation activity, for example, alumina, and on the detection piece 16 side, the thin film heater 38 is covered with a methane combustion catalyst, for example, a catalyst obtained by adding Pd or Pt to alumina. The thin film heater 38 is connected to the pads 41 to 43 and connected to the substrate on which the circuit of FIG. 1 is mounted by wire bonding or the like. The structure of the methane sensor 34 is arbitrary. For example, the compensation piece 14 and the detection piece 16 may be mounted on different substrates, the presence or absence of the cavity 40 is arbitrary, and the material of the thin film heater 38 is also arbitrary. Further, without the bridge 37, the thin film heater 38 may be covered with a compensation piece material such as alumina and a methane oxidation catalyst to form the detection piece 16 and the compensation piece 14.

図4,図5に1サイクル分のガス検出装置の動作を示し、1サイクルは例えば10秒である。センサをT1秒間(例えば100msecで、好ましくは50〜150msec)電力P1で例えば100〜250℃程度に加熱する。なおメタンの着火点は一般に300℃以上で、この温度ではCO,エタノール,水素などは燃焼するが、メタンは燃焼しない。室温と200℃程度の間で温度変化させた際の、ブリッジ回路の出力の90%応答時間は例えば50m秒程度である。接触燃焼式ガスセンサを温度変化させた際の熱時定数は、補償片14と検知片16とで一般に異なる。そこでセンサを温度変化させると、検知片と補償片とは共に定常温度に向けて接近し、この間ブリッジ回路の出力は安定しない。このためT1秒間の期間をT2秒間の期間とほぼ等しくしし、センサ出力が定常値に達するのを待って、0点出力V1をサンプリングする。 そしてT1秒目の増幅回路の出力Voutを0点出力として記憶する。なお0点出力はT1秒目である必要はなく、ブリッジ回路の出力が定常値に達した後の出力であればよい。   4 and 5 show the operation of the gas detection apparatus for one cycle, and one cycle is, for example, 10 seconds. The sensor is heated to, for example, about 100 to 250 ° C. with electric power P1 for T1 seconds (for example, 100 msec, preferably 50 to 150 msec). In general, methane has an ignition point of 300 ° C or higher. At this temperature, CO, ethanol, hydrogen, etc. burn, but methane does not burn. The 90% response time of the output of the bridge circuit when the temperature is changed between room temperature and about 200 ° C. is, for example, about 50 milliseconds. The thermal time constant when the temperature of the catalytic combustion gas sensor is changed generally differs between the compensation piece 14 and the detection piece 16. Therefore, when the temperature of the sensor is changed, both the detection piece and the compensation piece approach toward the steady temperature, and the output of the bridge circuit is not stabilized during this period. Therefore, the period of T1 seconds is made substantially equal to the period of T2 seconds, and the zero point output V1 is sampled after the sensor output reaches a steady value. Then, the output Vout of the amplifier circuit at T1 second is stored as a zero point output. The 0-point output does not need to be at T1 second, and may be an output after the bridge circuit output reaches a steady value.

センサを室温へ冷却することなく、直ちにT2秒間電力P2で加熱する。ここでの加熱温度は例えば500℃とし、加熱時間T2は例えば100m秒(好ましくは80〜150msec)とし、電力P2と電力P1との比は例えば10:1〜3:1程度とする。時間T2秒程度の間かけて、センサ出力は定常値に近づき、500℃程度の区間での最後の信号をサンプリングし、0点出力を元に発生させた基準値との差からメタンを検出する。次いで例えば9.8秒間、ヒータ電力を0として待機する。図5のV1はT1秒間の加熱での最後の時点でのブリッジ回路出力(0点出力)を、V2はT2秒間の加熱での最後の時点でのブリッジ回路出力(メタン検出用の出力)を示す。ΔTは室温からの昇温幅を示す。   The sensor is immediately heated with power P2 for T2 seconds without cooling to room temperature. The heating temperature here is, for example, 500 ° C., the heating time T 2 is, for example, 100 msec (preferably 80-150 msec), and the ratio of the power P 2 to the power P 1 is, for example, about 10: 1-3: 1. The sensor output approaches the steady value over a period of about T2 seconds, the last signal in the section of about 500 ° C is sampled, and methane is detected from the difference from the reference value generated based on the zero point output. . Next, for example, the heater power is set to 0 for 9.8 seconds and the apparatus is on standby. V1 in Fig. 5 is the bridge circuit output (0 point output) at the last time of heating for T1 seconds, and V2 is the bridge circuit output (output for methane detection) at the last time of heating for T2 seconds. Show. ΔT represents the temperature rise width from room temperature.

基準値は例えば次にように発生させる。最初に複数サイクルの0点出力を、平均値を求める、分布の中央値を求める等により統計化する。0点出力を測定した時点と、メタンを検出する時点とで、ブリッジ回路に加える電圧が異なる場合、これに応じた補正を施し、基準値とする。例えば0点出力を測定する時点の回路電圧がU1、メタンを検出する時点での回路電圧がU2であれば、0点出力を統計化した値にU2/U1を乗算し基準値とする。加熱電力がPWM制御により制御され、回路電圧が一定であれば、回路電圧に対する補正は不要である。なお複数サイクルの0点出力を用いる代わりに、1サイクル内で複数回0点出力を測定して平均化しても良い。ただしこの手法では少数個の0点出力から基準値を発生させるので、信頼性が低く、この発明には含まれない。また各サイクル毎に0点出力をサンプリングする必要はなく、例えば1日に数回程度0点出力をサンプリングしても良い。0点出力から基準値への統計化には、0点出力の平均値、分布のメディアンなどを用い、0点出力は例えば1日1回程度の頻度、好ましくは1週間に1回程度の頻度で、かつ毎月1回以上の頻度で更新する。 The reference value is generated as follows, for example. First, the zero-point output of a plurality of cycles is statistically obtained by obtaining an average value, obtaining a median value of distribution, and the like. When the voltage applied to the bridge circuit is different between the time when the zero point output is measured and the time when methane is detected, a correction corresponding to this is applied to obtain the reference value. For example, if the circuit voltage at the time of measuring the zero point output is U1 and the circuit voltage at the time of detecting methane is U2, the value obtained by statisticalizing the zero point output is multiplied by U2 / U1 to obtain the reference value. If the heating power is controlled by PWM control and the circuit voltage is constant, correction for the circuit voltage is unnecessary. Instead of using the zero point output of a plurality of cycles, the zero point output may be measured and averaged a plurality of times within one cycle. However, since this method generates a reference value from a small number of 0-point outputs, it has low reliability and is not included in the present invention. Further, it is not necessary to sample the zero point output for each cycle. For example, the zero point output may be sampled about several times a day. For statisticalization from the zero point output to the reference value, the average value of the zero point output, the median of the distribution, etc. are used. The zero point output is, for example, about once a day, preferably about once a week. And update it at least once a month.

図6は変形例を示し、例えば10m秒程度の短い時間の間、センサを極めて小さな電力P3で室温より僅かに加熱する。この時の温度変化の幅は例えば10℃〜20℃程度とする。すると温度変化の幅が小さいので、検知片と補償片とのヒータ抵抗の変化も僅かであり、室温でのヒータ抵抗を測定することができる。   FIG. 6 shows a modification in which the sensor is heated slightly from room temperature with a very small electric power P3 for a short time, for example, about 10 milliseconds. The width of the temperature change at this time is about 10 ° C. to 20 ° C., for example. Then, since the width of the temperature change is small, the change in the heater resistance between the detection piece and the compensation piece is slight, and the heater resistance at room temperature can be measured.

図7,図8に基準値の管理を示す。基準値記憶部30は基準値の推移を記憶し、基準値の初期値に対し、許容範囲±Aを定め、基準値がこの範囲から逸脱すると、故障を出力する。このようにして薄膜ヒータ38の抵抗値が初期値に対し所定値以上変化すると、故障と見なす。メタン検出の信頼性をさらに高めるため、メタン検出温度でのセンサ出力のうちで、即ち図5,図6の出力V2のうちで、メタンが存在しない側の出力を参照値として記憶する。メタンが存在すれば検知片16の抵抗値が増加し、補償片14の抵抗値は変化しないので、ブリッジ回路からの最低出力がメタンが存在しない際の出力に相当する。そこで例えば1日などの所定の期間での、メタン検出温度でのブリッジ回路の出力の最低値、あるいはブリッジ回路の出力のメディアンなどから、メタンが存在しない際の出力を参照値としてサンプリングし記憶する。そして参照値と基準値の差が第2の許容範囲±Bを越えると故障とする。   7 and 8 show management of reference values. The reference value storage unit 30 stores the transition of the reference value, sets an allowable range ± A with respect to the initial value of the reference value, and outputs a failure when the reference value deviates from this range. Thus, if the resistance value of the thin film heater 38 changes by a predetermined value or more with respect to the initial value, it is regarded as a failure. In order to further improve the reliability of methane detection, among the sensor outputs at the methane detection temperature, that is, among the outputs V2 in FIGS. 5 and 6, the output on the side where no methane exists is stored as a reference value. If methane is present, the resistance value of the detection piece 16 increases and the resistance value of the compensation piece 14 does not change, so the minimum output from the bridge circuit corresponds to the output when no methane is present. Therefore, for example, from a minimum value of the output of the bridge circuit at the methane detection temperature or a median of the output of the bridge circuit in a predetermined period such as one day, the output when there is no methane is sampled and stored as a reference value. . If the difference between the reference value and the reference value exceeds the second allowable range ± B, a failure is assumed.

図9〜図18に薄膜ヒータ38の挙動を示し、10秒間に100m秒ずつ400〜600℃まで加熱した際の、初期値に対する抵抗値の変化率を示す。図9〜図13は加熱温度での抵抗値の変化を示し、加熱温度は図9で400℃、図10で450℃、図11で500℃、図12で550℃、図13で600℃である。図14〜図18は同じ条件での室温での抵抗値の挙動を示し、加熱温度は図14で400℃、図15で450℃、図16で500℃、図17で550℃、図18で600℃である。また加熱温度が同じ図で、同じ記号は同じ薄膜ヒータを示している。図9〜図18の縦軸は、薄膜ヒータの抵抗変化率を示し、ブリッジ回路の出力ではない。さらに検知片16と補償片14のいずれかが特に抵抗値のドリフトが大きいということはなく、検知片も補償片も同程度に抵抗値がドリフトした。   FIGS. 9 to 18 show the behavior of the thin film heater 38 and show the rate of change of the resistance value with respect to the initial value when heated to 400 to 600 ° C. for 100 milliseconds every 10 seconds. 9 to 13 show changes in resistance value with heating temperature. The heating temperature is 400 ° C. in FIG. 9, 450 ° C. in FIG. 10, 500 ° C. in FIG. 11, 550 ° C. in FIG. is there. 14 to 18 show the behavior of the resistance value at room temperature under the same conditions. The heating temperature is 400 ° C. in FIG. 14, 450 ° C. in FIG. 15, 500 ° C. in FIG. 16, 550 ° C. in FIG. 600 ° C. Also, the same temperature indicates the same thin film heater in the same heating temperature. The vertical axis in FIGS. 9 to 18 indicates the resistance change rate of the thin film heater, not the output of the bridge circuit. Further, either the detection piece 16 or the compensation piece 14 did not have a particularly large drift in resistance value, and the resistance value drifted to the same extent in both the detection piece and the compensation piece.

図9〜図18から明らかなように、薄膜ヒータ38の抵抗値は経時的にドリフトし、加熱温度が高いほどドリフトが著しい。また加熱温度が同じ図を比較すると、加熱温度での抵抗値と室温での抵抗値は平行に変化しており、このことは抵抗温度係数の変化が小さく、加熱温度での抵抗値と室温での抵抗値が強く相関することを意味している。そこでメタンの着火点未満の温度での抵抗値と、メタン検出温度での抵抗値とを組み合わせることにより、薄膜ヒータ38のドリフトを補正できる。そして具体的には、図5,図6での出力V2と基準値との差を求めることにより、ドリフトの影響を補正できる。   As is apparent from FIGS. 9 to 18, the resistance value of the thin film heater 38 drifts with time, and the drift increases as the heating temperature increases. In addition, when comparing figures with the same heating temperature, the resistance value at the heating temperature and the resistance value at the room temperature change in parallel, which means that the change in the resistance temperature coefficient is small, and the resistance value at the heating temperature and the room temperature. This means that the resistance value is strongly correlated. Therefore, the drift of the thin film heater 38 can be corrected by combining the resistance value at a temperature below the methane ignition point and the resistance value at the methane detection temperature. More specifically, the influence of drift can be corrected by obtaining the difference between the output V2 and the reference value in FIGS.

薄膜ヒータ38の抵抗値が著しく変化した状況で、ガスの検出を続けることは好ましいことではない。例えばセンサの加熱温度が変化していることが考えられる。このため基準値が初期値に対して、許容範囲±A以上変動すると故障とする。また一般に参照値と基準値との差は、第2の許容範囲±Bの範囲に収まるはずである。そこでこの範囲から逸脱した場合にも、故障を検出する。   It is not preferable to continue gas detection in a situation where the resistance value of the thin film heater 38 has changed significantly. For example, it is conceivable that the heating temperature of the sensor is changing. For this reason, if the reference value fluctuates by more than the allowable range ± A with respect to the initial value, a failure occurs. In general, the difference between the reference value and the reference value should be within the range of the second allowable range ± B. Therefore, a failure is detected even when the value deviates from this range.

実施例では以下の効果が得られる。
(1) 図9〜図18の測定を続け、1年分のデータを取得した。加熱温度500℃での5個の薄膜ヒータの内で、初期値に対する1年後の抵抗値が最大のものと最小のものとを組み合わせ、接触燃焼式の検知片と補償片とすると、メタン5000ppmでの出力は15000〜-5000ppmとなる。これに対して実施例の補正を施すと、メタン5000ppmでの出力は7000〜3000ppmとなり、メタンセンサとして許容される範囲に含まれている。
(2) 図5のように100〜250℃まで100m秒程度かけて検知片と補償片とを加熱すると、検知片と補償片との間の熱時定数の差の影響を避けて、基準値を測定できる。そしてこの後、室温に戻すことなく、500℃程度まで加熱することにより、熱衝撃を弱めることができる。
(3) 基準値が初期値からどの程度変動したかを管理することにより、センサの信頼性を評価できる。
(4) 基準値とメタン検出温度でのメタンが無い際の出力に対応する参照値とを比較することにより、センサの信頼性をさらにチェックできる。
In the embodiment, the following effects can be obtained.
(1) The measurement of FIGS. 9-18 was continued and the data for one year were acquired. Of the five thin film heaters at a heating temperature of 500 ° C, the combination of the maximum and minimum resistance values one year after the initial value, and the catalytic combustion type detection and compensation pieces, methane 5000ppm The output at 15000 to -5000ppm. On the other hand, when the correction of the embodiment is performed, the output at 5000 ppm of methane is 7000 to 3000 ppm, which is included in the allowable range for the methane sensor.
(2) When the detection piece and the compensation piece are heated to 100-250 ° C for about 100 milliseconds as shown in Fig. 5, avoiding the influence of the difference in the thermal time constant between the detection piece and the compensation piece, the reference value Can be measured. And after this, a thermal shock can be weakened by heating to about 500 degreeC, without returning to room temperature.
(3) The reliability of the sensor can be evaluated by managing how much the reference value has changed from the initial value.
(4) The reliability of the sensor can be further checked by comparing the reference value with the reference value corresponding to the output when there is no methane at the methane detection temperature.

2 ガス検出装置
4 マイクロコンピュータ
6 トランジスタ
8 ダイオード
10 インダクタンス素子
12 コンデンサ
R1,R2 固定抵抗
14 補償片
16 検知片
18 増幅器
22 タイマ
24 電源制御部
26 ガス検出部
28 基準値管理部
30 基準値記憶部
32 A/D変換部
34 接触燃焼式メタンセンサ
35 半導体基板
36,40 空洞
37 ブリッジ
38 薄膜ヒータ
41〜43 パッド
2 Gas detector 4 Microcomputer 6 Transistor 8 Diode 10 Inductance element 12 Capacitor
R1, R2 Fixed resistance 14 Compensation piece 16 Detection piece 18 Amplifier 22 Timer 24 Power supply control unit 26 Gas detection unit 28 Reference value management unit 30 Reference value storage unit 32 A / D conversion unit 34 Contact combustion methane sensor 35 Semiconductor substrate 36, 40 Cavity 37 Bridge 38 Thin film heater 41 to 43 Pad

Claims (6)

半導体基板の空洞に、薄膜ヒータをメタンの燃焼触媒で被覆した検知片と、薄膜ヒータを補償用材料で被覆した補償片とを設け、検知片と補償片とを組み込んだブリッジ回路の出力により、メタンを検出する装置において、
前記ブリッジ回路は、
検知片と補償片との直列片と、複数の抵抗の直列片とを並列に接続した回路、
あるいは、検知片と抵抗との直列片と、補償片と抵抗との直列片とを並列に接続した回路から成り、
前記ブリッジ回路に駆動回路から電力を加えることにより、検知片を室温、メタンの着火点未満の温度、メタンの着火点以上の温度とに温度変化させるサイクルを複数回行い、
検知片がメタンの着火点未満の温度での、ブリッジ回路の出力を0点出力とし、ガス検出部で複数のサイクルでの0点出力を基に基準値を発生させてメモリに記憶し、
検知片がメタンの着火点以上の温度でのブリッジ回路の出力を、ガス検出部で前記基準値により補正することにより、薄膜ヒータの抵抗変化を補正してメタンを検出する、
ように構成されていることを特徴とする、メタン検出装置。
In the cavity of the semiconductor substrate, a detection piece in which the thin film heater is coated with a combustion catalyst of methane and a compensation piece in which the thin film heater is covered with a compensation material are provided, and by the output of the bridge circuit incorporating the detection piece and the compensation piece, In an apparatus for detecting methane,
The bridge circuit is
A circuit in which a series piece of a detection piece and a compensation piece and a series piece of a plurality of resistors are connected in parallel;
Alternatively, it consists of a circuit in which a series piece of a sensing piece and a resistor and a series piece of a compensation piece and a resistor are connected in parallel,
By applying electric power from the drive circuit to the bridge circuit , the detection piece is subjected to a cycle that changes the temperature to room temperature, a temperature below the ignition point of methane, and a temperature above the ignition point of methane, multiple times,
When the detection piece is at a temperature below the ignition point of methane, the output of the bridge circuit is set to 0 point output, and the gas detection unit generates a reference value based on the 0 point output in a plurality of cycles and stores it in the memory.
The detection piece detects the methane by correcting the resistance change of the thin film heater by correcting the output of the bridge circuit at a temperature equal to or higher than the ignition point of methane by the reference value in the gas detection unit.
A methane detection device, characterized in that it is configured as described above.
ブリッジ回路の0点出力が定常値に達する時間以上の間、検知片を前記駆動回路によりメタンの着火点未満の温度に加熱するように、構成されていることを特徴とする、請求項1のメタン検出装置。   2. The methane according to claim 1, wherein the detection piece is configured to be heated by the drive circuit to a temperature lower than the ignition point of methane for a time longer than a time when the zero point output of the bridge circuit reaches a steady value. Detection device. 検知片を室温、メタンの着火点未満の温度、メタンの着火点以上の温度の順に、前記駆動回路により温度変化させるサイクルを繰り返すように構成されていることを特徴とする、請求項2のメタン検出装置。   The methane detection device according to claim 2, wherein the detection piece is configured to repeat a cycle in which the temperature is changed by the drive circuit in the order of room temperature, temperature below the methane ignition point, and temperature above the methane ignition point. . メモリに記憶した基準値の初期値と基準値との差が許容範囲を越えると、故障であることを出力するように構成されていることを特徴とする、請求項1〜3のいずれかのメタン検出装置。   4. The apparatus according to claim 1, wherein a failure is output when a difference between an initial value of the reference value stored in the memory and the reference value exceeds an allowable range. 5. Methane detector. 検知片がメタンの着火点以上の温度でのブリッジ回路の出力中で、メタンが存在しない側の出力を参照出力としてメモリに記憶し、基準値と参照出力との差が第2の許容範囲を越えると故障であることを出力するように構成されていることを特徴とする、請求項4のメタン検出装置。   The output of the bridge circuit when the detection piece is at a temperature equal to or higher than the ignition point of methane, the output on the side where no methane exists is stored in the memory as a reference output, and the difference between the reference value and the reference output exceeds the second allowable range. The methane detection device according to claim 4, wherein the methane detection device is configured to output a failure. 半導体基板の空洞に、薄膜ヒータをメタンの燃焼触媒で被覆した検知片と、薄膜ヒータを補償用材料で被覆した補償片とを設け、検知片と補償片とを組み込んだブリッジ回路の出力により、メタンを検出する方法において、
前記ブリッジ回路は、
検知片と補償片との直列片と、複数の抵抗の直列片とを並列に接続した回路、
あるいは、検知片と抵抗との直列片と、補償片と抵抗との直列片とを並列に接続した回路から成り、
前記ブリッジ回路に駆動回路から電力を加えることにより、検知片を室温、メタンの着火点未満の温度、メタンの着火点以上の温度とに温度変化させるサイクルを複数回行い、
検知片がメタンの着火点未満の温度での、ブリッジ回路の出力を0点出力とし、ガス検出部で複数のサイクルでの0点出力を基に基準値を発生させてメモリに記憶し、
検知片がメタンの着火点以上の温度でのブリッジ回路の出力を、ガス検出部で前記基準値により、薄膜ヒータの抵抗変化を補正してメタンを検出することを特徴とする、メタン検出方法。
In the cavity of the semiconductor substrate, a detection piece in which the thin film heater is coated with a combustion catalyst of methane and a compensation piece in which the thin film heater is covered with a compensation material are provided, and by the output of the bridge circuit incorporating the detection piece and the compensation piece, In a method for detecting methane,
The bridge circuit is
A circuit in which a series piece of a detection piece and a compensation piece and a series piece of a plurality of resistors are connected in parallel;
Alternatively, it consists of a circuit in which a series piece of a sensing piece and a resistor and a series piece of a compensation piece and a resistor are connected in parallel,
By applying electric power from the drive circuit to the bridge circuit , the detection piece is subjected to a cycle that changes the temperature to room temperature, a temperature below the ignition point of methane, and a temperature above the ignition point of methane, multiple times,
When the detection piece is at a temperature below the ignition point of methane, the output of the bridge circuit is set to 0 point output, and the gas detection unit generates a reference value based on the 0 point output in a plurality of cycles and stores it in the memory.
A method for detecting methane, comprising: detecting a methane by correcting a change in resistance of a thin film heater based on an output of a bridge circuit when a detection piece is at a temperature equal to or higher than an ignition point of methane, using the reference value by a gas detection unit.
JP2010189247A 2010-08-18 2010-08-26 Contact combustion type methane detection apparatus and methane detection method Expired - Fee Related JP5467648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010189247A JP5467648B2 (en) 2010-08-18 2010-08-26 Contact combustion type methane detection apparatus and methane detection method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010182833 2010-08-18
JP2010182833 2010-08-18
JP2010189247A JP5467648B2 (en) 2010-08-18 2010-08-26 Contact combustion type methane detection apparatus and methane detection method

Publications (2)

Publication Number Publication Date
JP2012063141A JP2012063141A (en) 2012-03-29
JP5467648B2 true JP5467648B2 (en) 2014-04-09

Family

ID=46059025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010189247A Expired - Fee Related JP5467648B2 (en) 2010-08-18 2010-08-26 Contact combustion type methane detection apparatus and methane detection method

Country Status (1)

Country Link
JP (1) JP5467648B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105414A (en) * 2012-12-20 2013-05-15 江苏三恒科技股份有限公司 Automatic zero setting system of methane sensor
CN108732212B (en) * 2018-05-23 2020-12-15 哈尔滨工程大学 Manufacturing method of multi-effect detection integrated gas sensor, sensor and application of sensor

Also Published As

Publication number Publication date
JP2012063141A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP4871776B2 (en) Gas detection device and gas detection method
US6812708B2 (en) Combustible-gas measuring instrument
JP5467648B2 (en) Contact combustion type methane detection apparatus and methane detection method
JP4939128B2 (en) Fluid velocity measuring device
JP6477303B2 (en) Particulate matter detection system
WO2003029759A1 (en) Flow rate measuring instrument
JP2018200283A (en) Gas sensor, gas alarm, control device, control method, and heater driving method
US11506622B2 (en) Gas detector comprising plural gas sensors and gas detection method thereby
JP2010217139A (en) Gas sensor and gas detection method
JP6729197B2 (en) Gas sensor
JP4830714B2 (en) Anomaly detection method for thin film gas sensor
JP5111180B2 (en) Thermal flow meter
JP6679859B2 (en) Gas detector
JP2016050825A (en) Gas sensor
JP4820174B2 (en) Heater control circuit and thermal conductivity measuring device
JP5467775B2 (en) Gas sensor performance evaluation method
JP2001188056A (en) Gas detector
JP4151596B2 (en) Gas detector
JP2009229093A (en) Thermal flowmeter
JP3555013B2 (en) Thermal flow meter
JP5878748B2 (en) Gas detection device and control method thereof
JP2011145091A (en) Gas detector
JP4408553B2 (en) Gas detection device and gas detection method
JP4711332B2 (en) Hydrogen detector
JP2022025887A (en) Gas detector and method for controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140124

R150 Certificate of patent or registration of utility model

Ref document number: 5467648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees