JP5466718B2 - Method for producing extrusion molded body - Google Patents

Method for producing extrusion molded body Download PDF

Info

Publication number
JP5466718B2
JP5466718B2 JP2012015006A JP2012015006A JP5466718B2 JP 5466718 B2 JP5466718 B2 JP 5466718B2 JP 2012015006 A JP2012015006 A JP 2012015006A JP 2012015006 A JP2012015006 A JP 2012015006A JP 5466718 B2 JP5466718 B2 JP 5466718B2
Authority
JP
Japan
Prior art keywords
resin composition
thermoplastic resin
extrusion
mold
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012015006A
Other languages
Japanese (ja)
Other versions
JP2012126139A (en
Inventor
博昭 近藤
裕喜 撰
英夫 岩井
高志 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012015006A priority Critical patent/JP5466718B2/en
Publication of JP2012126139A publication Critical patent/JP2012126139A/en
Application granted granted Critical
Publication of JP5466718B2 publication Critical patent/JP5466718B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92695Viscosity; Melt flow index [MFI]; Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/908Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article characterised by calibrator surface, e.g. structure or holes for lubrication, cooling or venting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material

Description

本発明は、押出成形体の製造方法に関し、さらに詳しくは高剛性であり、賦形金型による表面転写性に優れ、高速成形が可能な押出成形体の工業的な製造方法に関するものである。   The present invention relates to a method for producing an extrusion-molded body, and more particularly to an industrial production method for an extrusion-molded body having high rigidity, excellent surface transferability by a shaping mold, and capable of high-speed molding.

従来より、熱可塑性樹脂と無機材料を混練して複合材料を得ることが多くなされている。微細な炭酸カルシウムを充填することにより複合体の衝撃強度や弾性率を向上させたり、ガラス繊維やウォラストナイトのような繊維、針状の強化充填材を充填することにより熱可塑性樹脂の線膨張率を改善したりすることがなされている。しかしながら押出成形において充填率を35(体積%)以上とすることは難しい。   Conventionally, a composite material is often obtained by kneading a thermoplastic resin and an inorganic material. Improve the impact strength and elastic modulus of the composite by filling fine calcium carbonate, or linear expansion of thermoplastic resin by filling fibers such as glass fiber and wollastonite, acicular reinforcing filler The rate has been improved. However, it is difficult to set the filling rate to 35 (volume%) or more in extrusion molding.

もっとも、高充填率のものも提案されてはいるが、問題があり、例えば石炭灰を最大80重量%まで充填した複合体が知られているが(特許文献1参照)、強化充填材の充填量に対して弾性率の向上効果が少ないという問題がある。   Although a high filling rate has been proposed, however, there is a problem. For example, a composite filled with coal ash up to 80% by weight is known (see Patent Document 1), but filling with a reinforcing filler is known. There is a problem that the effect of improving the elastic modulus is small with respect to the amount.

また、押出成形方法において無機材料を熱可塑性樹脂に充填すると、その充填量の増加に伴い、溶融時における樹脂の破断伸びが小さくなる。また、押出成形金型を通過する際に溶融樹脂にせん断力がかかる。こういった場合、溶融樹脂の破断伸びが小さいとせん断力により成形品の表面がささくれたりクラックが発生したりする。そのため、溶融樹脂にかかるせん断力を低減するために多量の滑剤を必要とし、また、ステアリン酸無機塩や炭化水素ワックスのような滑剤が溶融樹脂中に混入すると成形品の物性が低下することがあるし、コストがかかるといった問題がある。
そこで、押出機に直結した冷却金型により、ささくれ等の欠陥が生じる前に樹脂を圧縮し硬化させる方法(固化押出法)が行われることもある。しかしながら、金型内で充分に冷却を行う必要性があるために、低速で成形する必要がある。
Further, when an inorganic material is filled in a thermoplastic resin in the extrusion molding method, the elongation at break of the resin at the time of melting becomes smaller as the filling amount increases. Further, a shearing force is applied to the molten resin when passing through the extrusion mold. In such a case, when the elongation at break of the molten resin is small, the surface of the molded product is rolled up or cracks are generated due to the shearing force. Therefore, a large amount of lubricant is required to reduce the shearing force applied to the molten resin, and if a lubricant such as stearic acid inorganic salt or hydrocarbon wax is mixed in the molten resin, the physical properties of the molded product may be lowered. There is a problem that it is expensive.
Therefore, a method (solidification extrusion method) in which the resin is compressed and cured before defects such as fluffing are generated by a cooling mold directly connected to the extruder may be performed. However, since it is necessary to sufficiently cool the mold, it is necessary to mold at a low speed.

特開2003−335965号公報JP 2003-335965 A

本発明は、このような事情の下、高剛性であり、賦形金型による表面転写性に優れ、高速成形が可能な押出成形体の工業的な製造方法を提供することを課題とするものである。   Under such circumstances, an object of the present invention is to provide an industrial production method of an extruded product that is highly rigid, excellent in surface transferability by a shaping mold, and capable of high-speed molding. It is.

本発明者らは、上記課題を解決すべく鋭意検討した結果、押出成形体を、特定のメルトマスフローレートを有する熱可塑性樹脂と特定含量の強化充填材とを含む熱可塑性樹脂組成物から成るものとすることにより、上記課題が達成されることを見出し、この知見に基づいて本発明をなすに至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention consist of a thermoplastic resin composition containing a thermoplastic resin having a specific melt mass flow rate and a specific content of reinforcing filler. Thus, the present inventors have found that the above-mentioned problems can be achieved, and have reached the present invention based on this finding.

すなわち、本発明の第1の発明によれば、0.2〜30g/10分のメルトマスフローレートを有する熱可塑性樹脂(A)に強化充填材(B)を組成物全量に対し35〜80体積%の割合で配合してなる熱可塑性樹脂組成物を押出成形して成る押出成形体の製造方法であって、
押出機の賦形金型下において、樹脂組成物の見掛け粘度(ηa)(Pa・s)と押出機のせん断速度(γ)(s−1)との関係が下記の数式を満たすように該金型の温度条件を制御し、
熱可塑性樹脂(A)の少なくとも一部がポリオレフィンおよびポリスチレンであり、
強化充填材(B)がフライアッシュであることを特徴とする押出成形体の製造方法が提供される。
ηa=α×γ
ηa:見掛け粘度(Pa・s)
α:係数
γ:せん断速度(s−1
n:係数
(式中、係数αは30000〜350000、係数nは−0.90〜−0.55である。)
That is, according to the first invention of the present invention, the reinforcing filler (B) is added to the thermoplastic resin (A) having a melt mass flow rate of 0.2 to 30 g / 10 min. %, A method for producing an extruded product obtained by extruding a thermoplastic resin composition blended at a ratio of
Under the shaping die of the extruder, the relationship between the apparent viscosity (ηa) (Pa · s) of the resin composition and the shear rate (γ) (s −1 ) of the extruder satisfies the following formula: Control the temperature condition of the mold ,
At least a part of the thermoplastic resin (A) is polyolefin and polystyrene,
Method for manufacturing extrusion molded body reinforcing filler (B) is characterized by fly ash der Rukoto is provided.
ηa = α × γ n
ηa: Apparent viscosity (Pa · s)
α: coefficient γ: shear rate (s −1 )
n: Coefficient (wherein the coefficient α is 30,000 to 350,000, and the coefficient n is −0.90 to −0.55).

また、本発明の第2の発明によれば、第1の発明において、上記熱可塑性樹脂組成物を溶融させ、押出機に直結した賦形金型に通した後、サイジング冷却金型に通す際に、賦形金型に通される直前の樹脂組成物温度に対して賦形金型を通過した直後の樹脂組成物表層部分の温度が高くなるように設定することを特徴とする押出成形体の製造方法が提供される。   Further, according to the second invention of the present invention, in the first invention, when the thermoplastic resin composition is melted and passed through a shaping mold directly connected to an extruder, it is passed through a sizing cooling mold. In addition, the extrusion molded body is characterized in that the temperature of the resin composition surface layer portion immediately after passing through the shaping mold is set higher than the resin composition temperature immediately before passing through the shaping die. A manufacturing method is provided.

また、本発明の第3の発明によれば、第1または2の発明において、押出成形体の押出線速が1m/分以上であることを特徴とする押出成形体の製造方法が提供される。   According to a third aspect of the present invention, there is provided a method for producing an extruded molded body according to the first or second aspect, wherein the extrusion linear velocity of the extruded molded body is 1 m / min or more. .

本発明の製造方法は、熱可塑性樹脂(A)に強化充填材(B)を多量配合してなる熱可塑性樹脂組成物を用いて、高剛性であり、賦形金型による表面転写性に優れ、外観性に優れた押出成形体を生産性よく製造しうるという利点がある。   The production method of the present invention uses a thermoplastic resin composition obtained by blending a large amount of a reinforcing filler (B) with a thermoplastic resin (A), is highly rigid, and has excellent surface transferability by a shaping mold. Further, there is an advantage that an extruded product excellent in appearance can be produced with high productivity.

本発明の製造方法に用いられる成形装置の一例の模式図。The schematic diagram of an example of the shaping | molding apparatus used for the manufacturing method of this invention.

本発明の押出成形体は、特定のメルトマスフローレートを有する熱可塑性樹脂(A)に特定含量の強化充填材(B)を配合してなる熱可塑性樹脂組成物を用い、これを押出成形して成るものである。
以下、本発明の押出成形体について、その構成や、その製造法等について詳細に説明する。
The extruded product of the present invention uses a thermoplastic resin composition obtained by blending a specific content of reinforcing filler (B) with a thermoplastic resin (A) having a specific melt mass flow rate, and this is extruded. It consists of.
Hereinafter, the structure, manufacturing method, and the like of the extruded product of the present invention will be described in detail.

1.押出成形体の構成   1. Extruded body structure

<熱可塑性樹脂>
熱可塑性樹脂組成物において(A)成分として用いられる熱可塑性樹脂は0.2〜30g/10分のメルトマスフローレートを有することが肝要であり、それを満たせば特に限定されず、例えばポリオレフィン、ポリスチレン、ポリ塩化ビニル、ナイロン等のポリアミド、ABS、EVA、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、アクリル系樹脂、フッ素樹脂、ポリウレタン、ポリカーボネート、ポリフェニレンオキシド、ポリフェニレンスルフイド、ポリアセタール等が挙げられる。ポリオレフィンとしては具体的には、LLDPE(線状低密度ポリエチレン)、HDPE(高密度ポリエチレン)、LDPE(低密度ポリエチレン)等のポリエチレン、ポリプロピレン、プロピレン・エチレンブロック共重合体、プロピレン・エチレンランダム共重合体、プロピレン・α−オレフィンブロック共重合体、プロピレン・α−オレフィンランダム共重合体等が挙げられる。
これらは、1種用いてもよいし、また、2種以上組み合わせて用いてもよい。
ポリスチレン樹脂は高い弾性率をもっていることから、それを混合させた熱可塑性樹脂により剛性を向上させることができる。
熱可塑性樹脂としては、特にポリオレフィンは後述の酸変成等の手段により強化充填材との界面密着性を得やすいし、強化充填材とスクリューによるせん断発熱で分解することもないので、好ましく、中でもポリプロピレンや、ポリエチレンや、ポリオレフィンにポリスチレンの混合されたものが好ましい。
熱可塑性樹脂は特にバージン品でなくてもよく、容器・包装リサイクル材であってもよい。
容器・包装リサイクル材は家庭等から排出され、回収された容器・包装材等であって、主としてポリエチレン、ポリプロピレン、ポリスチレンを含み、好ましくはメルトマスフローレートが4〜10(g/10分)の材料である。この容器・包装リサイクル材は、ポリプロピレンを少なくとも20重量%、ポリエチレンを30〜70重量%、ポリスチレンを3〜30重量%含むものである。ポリスチレンは剛性が高く、ポリオレフィン中に分散されることによって剛性が得られやすい。
<Thermoplastic resin>
It is important that the thermoplastic resin used as the component (A) in the thermoplastic resin composition has a melt mass flow rate of 0.2 to 30 g / 10 min, and is not particularly limited as long as it is satisfied. For example, polyolefin, polystyrene Polyamide such as polyvinyl chloride and nylon, ABS, EVA, polyester such as polyethylene terephthalate and polybutylene terephthalate, acrylic resin, fluororesin, polyurethane, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polyacetal and the like. Specific examples of polyolefins include polyethylene such as LLDPE (linear low density polyethylene), HDPE (high density polyethylene), and LDPE (low density polyethylene), polypropylene, propylene / ethylene block copolymer, propylene / ethylene random copolymer. Examples thereof include a copolymer, a propylene / α-olefin block copolymer, and a propylene / α-olefin random copolymer.
These may be used alone or in combination of two or more.
Since the polystyrene resin has a high elastic modulus, the rigidity can be improved by the thermoplastic resin mixed therewith.
As the thermoplastic resin, polyolefin is particularly preferable because it is easy to obtain interfacial adhesion to the reinforcing filler by means such as acid modification described later, and it is not decomposed by shear heat generated by the reinforcing filler and screw. In addition, polyethylene or a mixture of polyolefin and polystyrene is preferable.
The thermoplastic resin may not be a virgin product, and may be a container / packaging recycling material.
Containers and packaging recycling materials are containers and packaging materials that are discharged and collected from homes, etc., and mainly contain polyethylene, polypropylene, and polystyrene, and preferably have a melt mass flow rate of 4 to 10 (g / 10 min) It is. This container / packaging recycle material contains at least 20% by weight of polypropylene, 30 to 70% by weight of polyethylene, and 3 to 30% by weight of polystyrene. Polystyrene has high rigidity, and rigidity is easily obtained by being dispersed in polyolefin.

熱可塑性樹脂としては、さらに、それと強化充填材との界面密着性を向上させ、さらなる弾性率向上効果を得るために、熱可塑性樹脂の少なくとも一部が不飽和カルボン酸により酸変性されたものが好ましい。不飽和カルボン酸としては、無水マレイン酸が好ましい。
熱可塑性樹脂の酸変性度はコスト対効果の観点から、0.02〜0.5%、中でも0.15〜0.3%とするのが好ましい。
As the thermoplastic resin, in order to further improve the interfacial adhesion between the reinforcing resin and the reinforcing filler and to obtain a further elastic modulus improving effect, at least a part of the thermoplastic resin is acid-modified with an unsaturated carboxylic acid. preferable. As the unsaturated carboxylic acid, maleic anhydride is preferred.
From the viewpoint of cost effectiveness, the acid modification degree of the thermoplastic resin is preferably 0.02 to 0.5%, and more preferably 0.15 to 0.3%.

熱可塑性樹脂のメルトマスフローレートが0.2(g/10分)よりも小さいと強化充填材と熱可塑性樹脂との充分な密着性が得られず、剛性が発現しにくいし、また、30(g/10分)よりも大きくても強化充填材混入熱可塑性樹脂組成物の粘度が低すぎて押出成形時にドローダウンを起こすため、固化押出等で低速成形する必要性が生じる。   If the melt mass flow rate of the thermoplastic resin is smaller than 0.2 (g / 10 min), sufficient adhesion between the reinforcing filler and the thermoplastic resin cannot be obtained, rigidity is hardly exhibited, and 30 ( Even if it is larger than g / 10 min), the viscosity of the thermoplastic resin composition with reinforcing filler mixed therein is too low to cause drawdown at the time of extrusion molding, so that it is necessary to perform low-speed molding by solidification extrusion or the like.

<強化充填材>
また、本発明の樹脂組成物において(B)成分として上記樹脂成分と共に用いられる強化充填材は特に限定されないが、好ましくは繊維状や粒状又は粉状の有機・無機物であり、繊維状のものとしては、ガラス繊維、アルミナ繊維、炭化ケイ素繊維、セラミック繊維、アスベスト繊維、セッコウ繊維、ステンレススチール繊維、ボロン繊維、炭素繊維、ポリパラフェニレンテレフタルアミド繊維(例えばデュポン社製、ケブラー)などが、また、粒状又は粉状のものとしては、フライアッシュに代表される石炭灰;ウォラストナイト、バライト、マイカ、セリサイト、カオリン、クレー、ベントナイト、タルク、珪酸カルシウム、珪砂、アルミナシリケート等のケイ酸塩;アルミナ、シリカ、酸化マグネシウム、酸化ジルコニウム、酸化チタン等の酸化物;炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩;硫酸カルシウム、石膏、硫酸バリウム等の硫酸塩;その他ガラスビーズ、ガラスフレーク、ガラス粉粒体、窒化ホウ素、炭化ケイ素、セメントコンクリート粉砕物、岩石粉粒体、バーミキュライト、パーライト、膨張頁岩などが挙げられ、好ましくは無機物、中でも石炭灰、特にフライアッシュが火力発電所からの副産物として多量排出され、安価で入手しやすく、また、環境保全や廃棄物リサイクルの点からも推奨される。また、フライアッシュは球状をしていることから押出成形機内で樹脂の流速が安定し、スクリュー等での混練によるせん断で形状が変化しにくい点でも好ましい。
これらは、1種用いてもよいし、また、2種以上組み合わせて用いてもよい。
強化充填材は粒状のものが、粒径の分布が大きく細密充填しやすいので、好ましく、かかる粒状物の平均粒径は、好ましくは1〜1000μm、より好ましくは10〜300μmとするのがよい。この粒径が小さすぎると熱可塑性樹脂中に均一に分散させることが困難となるし、また、大きすぎても薄肉の成形品を得ることが困難であるし、成形品に外力が加わった際に強化充填材と熱可塑性樹脂との界面に応力集中が発生しやすい。
<Reinforcing filler>
Further, the reinforcing filler used together with the resin component as the component (B) in the resin composition of the present invention is not particularly limited, but is preferably a fibrous, granular or powdery organic / inorganic substance, and is fibrous. Glass fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, gypsum fiber, stainless steel fiber, boron fiber, carbon fiber, polyparaphenylene terephthalamide fiber (for example, DuPont Kevlar), etc. As granular or powdery, coal ash represented by fly ash; silicates such as wollastonite, barite, mica, sericite, kaolin, clay, bentonite, talc, calcium silicate, silica sand, alumina silicate; Alumina, silica, magnesium oxide, zirconium oxide, titanium oxide Oxides such as: carbonates such as calcium carbonate, magnesium carbonate, dolomite; sulfates such as calcium sulfate, gypsum, barium sulfate; other glass beads, glass flakes, glass granules, boron nitride, silicon carbide, cement concrete grinding Materials, rock granule, vermiculite, pearlite, expanded shale, etc., preferably inorganic substances, especially coal ash, especially fly ash, is discharged in large quantities as a by-product from thermal power plants, is cheap and readily available, and the environment Recommended in terms of conservation and waste recycling. Further, since fly ash is spherical, the flow rate of the resin is stable in the extruder, and the shape is not easily changed by shearing by kneading with a screw or the like.
These may be used alone or in combination of two or more.
The reinforcing filler is preferably in the form of particles because the particle size distribution is large and it is easy to pack finely, and the average particle size of such particles is preferably 1 to 1000 μm, more preferably 10 to 300 μm. If this particle size is too small, it will be difficult to disperse uniformly in the thermoplastic resin, and if it is too large, it will be difficult to obtain a thin molded product, and external force will be applied to the molded product. In particular, stress concentration tends to occur at the interface between the reinforcing filler and the thermoplastic resin.

熱可塑性樹脂組成物において、強化充填材は熱可塑性樹脂組成物全量に対し35体積%以上、80体積%以下、好ましくは40〜75体積%、より好ましくは45〜70体積%の割合で含有させることが肝要である。この含有割合が35体積%未満では熱可塑性樹脂組成物の見掛け粘度を充分に向上させることができないし、また、所望の補強効果を得られない。また、80体積%を超えると強化充填材同士の間に熱可塑性樹脂が入りこみにくくなり表面性に不良を生じやすい。   In the thermoplastic resin composition, the reinforcing filler is contained in a proportion of 35% by volume or more and 80% by volume or less, preferably 40 to 75% by volume, more preferably 45 to 70% by volume with respect to the total amount of the thermoplastic resin composition. It is important. If this content is less than 35% by volume, the apparent viscosity of the thermoplastic resin composition cannot be sufficiently improved, and a desired reinforcing effect cannot be obtained. Moreover, when it exceeds 80 volume%, it becomes difficult for a thermoplastic resin to enter between reinforcement fillers, and it is easy to produce a surface property defect.

上記熱可塑性樹脂組成物は、更に必要に応じて、成形性を向上させるための可塑剤、成形性を向上させるための滑剤、耐候性等の耐久性を向上させるための紫外線吸収剤、紫外線劣化防止剤、酸化劣化防止剤、デザイン性や木質感、木目調等の肌理を付与するための顔料、難燃性等を付与する難燃剤、熱可塑性樹脂と強化充填材との親和性を向上させるための酸変性オレフィン等の公知の添加剤を含有してもよい。   The thermoplastic resin composition further comprises a plasticizer for improving moldability, a lubricant for improving moldability, an ultraviolet absorber for improving durability such as weather resistance, and ultraviolet degradation, if necessary. Improves the affinity between anti-oxidants, anti-oxidation degradation agents, pigments for imparting design, wood texture, grain texture, flame retardants for imparting flame retardancy, etc., thermoplastic resins and reinforcing fillers It may contain known additives such as acid-modified olefins.

上記可塑剤としては特に限定されず、例えば、フタル酸エステル、低分子量オレフィン等が挙げられる。上記滑剤としては特に限定されず、例えば、ステアリン酸等の高級脂肪酸、ステアリン酸金属塩等の高級脂肪酸塩などが挙げられる。   The plasticizer is not particularly limited, and examples thereof include phthalic acid esters and low molecular weight olefins. The lubricant is not particularly limited, and examples thereof include higher fatty acids such as stearic acid and higher fatty acid salts such as metal stearate.

2.押出成形体の製造方法
上記押出成形体の製造方法として好ましくは、上記熱可塑性樹脂組成物を押出成形するに当たり、押出機の賦形金型下において、樹脂組成物の見掛け粘度(ηa)(Pa・s)と押出機のせん断速度(γ)(s−1)との関係が下記の数式を満たすように該金型の温度条件を制御する方法が挙げられる。
ηa=α×γ
ηa:見掛け粘度(Pa・s)
α:係数
γ:せん断速度(s−1
n:係数
(式中、係数αは30000〜350000、係数nは−0.90〜−0.55である。)
上記の式は、或る温度におけるせん断速度を変えた際の見掛け粘度の変動について、せん断速度と見掛け粘度をそれぞれ対数表示でXY軸にとりグラフ化し、最小二乗法で近似させ、そのグラフにおいて、傾きをnとし、せん断速度(γ)が1のときの見掛け粘度(ηa)の値をαとしたものである。
上記の式において、係数αは好ましくは50000〜150000、より好ましくは90000〜110000である。
また、係数nは、上記のように負の数値を示し、せん断速度が上昇すると見掛け粘度は低下し、好ましくは−0.75〜−0.55、より好ましくは−0.70〜−0.55であり、この範囲内で係数が0に近い程、見掛け粘度はせん断速度の影響を受けにくく、押出量によって変動を受けにくいためにより好ましい。
また、せん断速度と押出量には正の相関があり、押出量を上げる(高速成形する)と、見掛け粘度が低くなる。
2. Method for Producing Extruded Molded Body Preferably, the method for producing the above extruded molded body is such that, when the thermoplastic resin composition is extruded, the apparent viscosity (ηa) (Pa) of the resin composition under the shaping mold of the extruder. -The method of controlling the temperature conditions of this metal mold | die so that the relationship between s) and the shear rate ((gamma)) (s <-1 >) of an extruder may satisfy | fill the following numerical formula is mentioned.
ηa = α × γ n
ηa: Apparent viscosity (Pa · s)
α: coefficient γ: shear rate (s −1 )
n: Coefficient (wherein the coefficient α is 30,000 to 350,000, and the coefficient n is −0.90 to −0.55).
The above formula shows the change in apparent viscosity when the shear rate at a certain temperature is changed. The shear rate and the apparent viscosity are each plotted on the XY axis in logarithmic form and approximated by the least square method. Where n is the apparent viscosity (ηa) when the shear rate (γ) is 1, and α.
In said formula, coefficient (alpha) becomes like this. Preferably it is 50000-150,000, More preferably, it is 90000-110000.
The coefficient n is a negative value as described above, and when the shear rate is increased, the apparent viscosity is decreased, preferably −0.75 to −0.55, more preferably −0.70 to −0. The apparent viscosity is less affected by the shear rate and is less susceptible to fluctuations depending on the amount of extrusion.
Further, there is a positive correlation between the shear rate and the extrusion amount, and when the extrusion amount is increased (high speed molding), the apparent viscosity is lowered.

さらには、上記熱可塑性樹脂組成物を溶融させ、押出機に直結した賦形金型に通した後、サイジング冷却金型に通す際に、賦形金型に通される直前の樹脂組成物温度に対して賦形金型を通過した直後の樹脂組成物表層部分の温度が高くなるように設定するのが好ましい。このようにすれば、強化充填材を高充填した材料においても固化押出方法以外の方法での成形が可能である。   Further, after the thermoplastic resin composition is melted and passed through a shaping mold directly connected to an extruder, when passing through a sizing cooling mold, the resin composition temperature immediately before passing through the shaping mold On the other hand, it is preferable to set the temperature of the resin composition surface layer portion immediately after passing through the shaping mold to be high. In this way, even a material highly filled with the reinforcing filler can be molded by a method other than the solidification extrusion method.

熱可塑性樹脂に強化充填材が充填されると溶融時の樹脂の破断伸びが小さくなり、表面がささくれたりクラックが発生したりする不良を起こす原因となる。本発明は、強化充填材混入熱可塑性樹脂成形材料としての熱可塑性樹脂組成物において、賦形金型の温度条件下での原材料の見掛け粘度を上記の範囲内とすることにより表面の不良をなくし、高速で成形することを可能としたものである。樹脂組成物が金型を通過する際、摩擦抵抗が生じる。加えて、見掛け粘度が上記式の範囲よりも低い場合、押出金型内での樹脂組成物の流速が安定せず、押出断面の中央部において樹脂組成物の流速が早くなる。そのために表面がささくれる不良が発生する。また、見掛け粘度が上記式の範囲よりも高い場合、樹脂組成物にかかるせん断応力が押出方向に対して垂直方向に向きやすいことから、摩擦抵抗が大きくなり、押出量が安定せず、表面にクラックを生じやすい。見掛け粘度が上記式の範囲内においては樹脂組成物にかかる応力が好適に分散されることにより、高速で成形することが可能である。
見掛け粘度を調整する為には使用する熱可塑性樹脂のメルトマスフローレートと強化充填材の充填量を調整すればよい。強化充填材の量を多くすることにより見掛け粘度は上昇し、少なくすることにより見掛け粘度は低下する。また、メルトマスフローレートが大きくなると見掛け粘度は低下し、小さくなると上昇する。
When the thermoplastic resin is filled with the reinforcing filler, the elongation at break of the resin at the time of melting becomes small, which causes a defect that the surface is rolled up or cracks are generated. The present invention eliminates surface defects by making the apparent viscosity of raw materials under the temperature conditions of a shaping mold within the above range in a thermoplastic resin composition as a thermoplastic resin molding material mixed with reinforcing filler. It is possible to mold at high speed. When the resin composition passes through the mold, frictional resistance is generated. In addition, when the apparent viscosity is lower than the range of the above formula, the flow rate of the resin composition in the extrusion mold is not stable, and the flow rate of the resin composition is increased at the center of the extrusion cross section. For this reason, a defect that causes the surface to be damaged occurs. Further, when the apparent viscosity is higher than the range of the above formula, the shear stress applied to the resin composition tends to be oriented in the direction perpendicular to the extrusion direction, so that the frictional resistance increases, the extrusion amount is not stable, and the surface Prone to cracking. When the apparent viscosity is within the range of the above formula, the stress applied to the resin composition is suitably dispersed, so that molding can be performed at high speed.
In order to adjust the apparent viscosity, the melt mass flow rate of the thermoplastic resin used and the filling amount of the reinforcing filler may be adjusted. Increasing the amount of reinforcing filler increases the apparent viscosity, and decreasing it decreases the apparent viscosity. Further, the apparent viscosity decreases as the melt mass flow rate increases, and increases as it decreases.

また、これらの方法において、押出成形体の押出線速を1m/分以上の高速とするのが好ましい。   Moreover, in these methods, it is preferable that the extrusion linear velocity of the extrusion-molded body is a high speed of 1 m / min or more.

このようにして押出成形体を製造するために用いられる成形装置は、押出機、冷却金型、冷却媒体槽、引取り機を連接してなり、その一例を図1に模式図で示す。押出機1は、シリンダー11内にモーター12で駆動されるスクリュー13が配設され、ホッパー14から、直接個々の原材料、すなわち熱可塑性樹脂や強化充填材等として、あるいはそれらをあらかじめ溶融混練して作製したペレットとして供給し、駆動スクリューにより加熱されたシリンダー11内で溶融混練し、アダプター15を介して賦形金型2に押出し、冷却金型3を通し、冷却水槽4によりさらに冷却して引取り機5で受けて所望形状に成形されるように構成される。   In this way, the molding apparatus used for producing the extruded product is formed by connecting an extruder, a cooling mold, a cooling medium tank, and a take-up machine, an example of which is schematically shown in FIG. The extruder 1 is provided with a screw 13 driven by a motor 12 in a cylinder 11, and directly from the hopper 14 as individual raw materials, that is, thermoplastic resin, reinforcing filler, etc., or by previously kneading them. The prepared pellets are supplied, melted and kneaded in a cylinder 11 heated by a drive screw, extruded into an shaping mold 2 through an adapter 15, passed through a cooling mold 3, and further cooled by a cooling water tank 4 and pulled. It is configured to be received by the take-up machine 5 and molded into a desired shape.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこの例によって何ら限定されるものではない。なお、実施例1〜5及び7〜9は、参考例である。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by this example. Examples 1 to 5 and 7 to 9 are reference examples.

実施例1〜9、比較例1〜3
図1に示す成形装置を用い、フライアッシュ(北陸電力敦賀火力発電所産、平均粒径14.5μm)と表1に示す熱可塑性樹脂とを表1に示す割合で押出機内に投入して成形し、断面が60mm×6mmの平板状成形体を試験片として作製した。
成形時に表面荒れが発生するまでの最大線速を測定した。その際、賦形金型の温度を180℃とし、賦形金型に通される直前の樹脂組成物温度と、該金型通過直後の樹脂組成物表層温度を熱電対で測定した。
また、各サンプルより試験片を切り出し、引張弾性率を測定した。
加えて、キャピログラフにより180℃におけるせん断速度と見掛け粘度の関係を測定した。両者の関係を累積近似した。
なお、熱可塑性樹脂のメルトマスフローレートはJIS K 7210に準拠し、容器・包装リサイクル材はポリエチレンの基準に則り測定した。
また、無水マレイン酸変性ポリプロピレンはユーメックス1010(三洋化成社製、商品名)を用いた。
結果を表1および表2に示す。
Examples 1-9, Comparative Examples 1-3
Using the molding apparatus shown in FIG. 1, fly ash (produced by Hokuriku Electric Power Tsuruga Thermal Power Station, average particle size: 14.5 μm) and the thermoplastic resin shown in Table 1 are charged into the extruder at the ratio shown in Table 1 and molded. A flat plate-shaped body having a cross section of 60 mm × 6 mm was prepared as a test piece.
The maximum linear velocity until surface roughness occurred during molding was measured. At that time, the temperature of the shaping mold was set to 180 ° C., and the temperature of the resin composition immediately before passing through the shaping mold and the surface temperature of the resin composition immediately after passing through the mold were measured with a thermocouple.
Moreover, the test piece was cut out from each sample and the tensile elasticity modulus was measured.
In addition, the relationship between the shear rate at 180 ° C. and the apparent viscosity was measured by a capillograph. A cumulative approximation of the relationship between the two.
The melt mass flow rate of the thermoplastic resin was measured according to JIS K 7210, and the container / packaging recycled material was measured according to the standard of polyethylene.
As the maleic anhydride-modified polypropylene, Umex 1010 (trade name, manufactured by Sanyo Kasei Co., Ltd.) was used.
The results are shown in Tables 1 and 2.

Figure 0005466718
Figure 0005466718

Figure 0005466718
Figure 0005466718

これらの表中、PPはポリプロピレン、PEはポリエチレン、PSはポリスチレンをそれぞれ示す。   In these tables, PP represents polypropylene, PE represents polyethylene, and PS represents polystyrene.

これより、比較例では、押出成形不能であったり、押出成形可能でも成形体の弾性率が低く剛性に劣っているのに対し、実施例では、高剛性の押出成形体を高速成形することができることが分かる。   Thus, in the comparative example, extrusion molding is impossible, or even if extrusion molding is possible, the elastic modulus of the molded body is low and the rigidity is inferior. I understand that I can do it.

本発明は、高剛性であり、賦形金型による表面転写性に優れ、高速成形が可能な押出成形体を製造することを可能にし、産業上大いに有用である。   INDUSTRIAL APPLICABILITY The present invention is highly industrially useful because it can produce an extruded product that has high rigidity, is excellent in surface transferability by a shaping mold, and can be molded at high speed.

1 押出機
11 シリンダー
12 モーター
13 スクリュー
14 ホッパー
15 アダプター
2 賦形金型
3 冷却金型
4 冷却水槽
5 引取り機
1 Extruder 11 Cylinder 12 Motor 13 Screw 14 Hopper 15 Adapter 2 Shaping Mold 3 Cooling Mold 4 Cooling Water Tank 5 Take-up Machine

Claims (3)

0.2〜30g/10分のメルトマスフローレートを有する熱可塑性樹脂(A)に強化充填材(B)を組成物全量に対し35〜80体積%の割合で配合してなる熱可塑性樹脂組成物を押出成形して成る押出成形体の製造方法であって、
押出機の賦形金型下において、樹脂組成物の見掛け粘度(ηa)(Pa・s)と押出機のせん断速度(γ)(s−1)との関係が下記の数式を満たすように該金型の温度条件を制御し、
熱可塑性樹脂(A)の少なくとも一部がポリオレフィンおよびポリスチレンであり、
強化充填材(B)がフライアッシュであることを特徴とする押出成形体の製造方法。
ηa=α×γ
ηa:見掛け粘度(Pa・s)
α:係数
γ:せん断速度(s−1
n:係数
(式中、係数αは30000〜350000、係数nは−0.90〜−0.55である。)
A thermoplastic resin composition comprising a thermoplastic filler (A) having a melt mass flow rate of 0.2 to 30 g / 10 min and a reinforcing filler (B) blended in a proportion of 35 to 80% by volume based on the total amount of the composition. A method for producing an extruded product obtained by extrusion molding,
Under the shaping die of the extruder, the relationship between the apparent viscosity (ηa) (Pa · s) of the resin composition and the shear rate (γ) (s −1 ) of the extruder satisfies the following formula: Control the temperature condition of the mold ,
At least a part of the thermoplastic resin (A) is polyolefin and polystyrene,
Method for manufacturing extrusion molded body reinforcing filler (B) is characterized by fly ash der Rukoto.
ηa = α × γ n
ηa: Apparent viscosity (Pa · s)
α: coefficient γ: shear rate (s −1 )
n: Coefficient (wherein the coefficient α is 30,000 to 350,000, and the coefficient n is −0.90 to −0.55).
上記熱可塑性樹脂組成物を溶融させ、押出機に直結した賦形金型に通した後、サイジング冷却金型に通す際に、賦形金型に通される直前の樹脂組成物温度に対して賦形金型を通過した直後の樹脂組成物表層部分の温度が高くなるように設定することを特徴とする請求項1に記載の押出成形体の製造方法。   When the thermoplastic resin composition is melted and passed through a shaping mold directly connected to an extruder, and then passed through a sizing cooling mold, the resin composition temperature immediately before being passed through the shaping mold The method for producing an extrusion-molded article according to claim 1, wherein the temperature of the resin composition surface layer portion immediately after passing through the shaping mold is set to be high. 押出成形体の押出線速が1m/分以上であることを特徴とする請求項1または2に記載の押出成形体の製造方法。
The method for producing an extruded product according to claim 1 or 2, wherein an extrusion linear velocity of the extruded product is 1 m / min or more.
JP2012015006A 2012-01-27 2012-01-27 Method for producing extrusion molded body Expired - Fee Related JP5466718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015006A JP5466718B2 (en) 2012-01-27 2012-01-27 Method for producing extrusion molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015006A JP5466718B2 (en) 2012-01-27 2012-01-27 Method for producing extrusion molded body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006271973A Division JP5226944B2 (en) 2006-10-03 2006-10-03 Extruded body

Publications (2)

Publication Number Publication Date
JP2012126139A JP2012126139A (en) 2012-07-05
JP5466718B2 true JP5466718B2 (en) 2014-04-09

Family

ID=46643717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015006A Expired - Fee Related JP5466718B2 (en) 2012-01-27 2012-01-27 Method for producing extrusion molded body

Country Status (1)

Country Link
JP (1) JP5466718B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052283A (en) * 2012-09-07 2014-03-20 Yazaki Corp Manufacturing method of float
CN102962977B (en) * 2012-12-03 2015-10-14 安徽耐科挤出科技股份有限公司 Plastics extrusion die cooling pond structure
CN105821805B (en) * 2016-03-28 2017-10-03 中国水利水电第五工程局有限公司 A kind of plastic filler shaping, soft web are installed and prime device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598713B1 (en) * 1986-05-16 1988-11-10 Inst Francais Du Petrole NEW FILLING AND BUOYANCY MATERIAL. MANUFACTURING METHOD AND TUBULAR ASSEMBLIES INCORPORATING SUCH MATERIAL
JP2845594B2 (en) * 1990-09-14 1999-01-13 三井化学株式会社 Multi-filled poly 1-butene resin composition and sheet comprising the same
JPH09263662A (en) * 1996-03-28 1997-10-07 Sekisui Chem Co Ltd Resin composition
JPH09316232A (en) * 1996-03-29 1997-12-09 Sekisui Chem Co Ltd Resin composition
JP2003335965A (en) * 2002-03-13 2003-11-28 Chubu Electric Power Co Inc Molding resin compound, blend therefor pallet, bottom board, planter, and step board for staircase
JP2005187680A (en) * 2003-12-26 2005-07-14 Furukawa Electric Co Ltd:The Thermoplastic resin composition and its molded article

Also Published As

Publication number Publication date
JP2012126139A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
Sodeifian et al. Preparation of polypropylene/short glass fiber composite as Fused Deposition Modeling (FDM) filament
CA2263118C (en) Polymeric compositions and methods for making construction materials from them
CN106687519B (en) Polymer composition
US20050127555A1 (en) Filled granulates consisting of high or ultra-high molecular weight polyethylenes and method for producing said granulates
JP2020506090A (en) Improving adhesion and coalescence between loads in 3D-printed plastic parts
JP5276091B2 (en) Method for producing a polyolefin composition
WO2013020346A1 (en) High-strength wear-resistant plastic-wood composite material and preparation method thereof
CA2814395A1 (en) Nucleating agent for polyethylenes
JP5466718B2 (en) Method for producing extrusion molded body
US20120119414A1 (en) Process for manufacturing a shaped article from a composite material comprising a solid filler and a thermoplastic binder
JP5297808B2 (en) Masterbatch and manufacturing method thereof
JP5226944B2 (en) Extruded body
JP5804932B2 (en) Method for producing molded vinyl chloride resin
KR20230156934A (en) Recycled polymer compositions and methods thereof
CA3033920C (en) Method and composition of making polymer products
JP6843330B2 (en) Method for manufacturing a foam molded product of carbon fiber reinforced / modified polypropylene resin
JP4881111B2 (en) Extruded product manufacturing method
JP4087171B2 (en) Manufacturing method of resin molding containing wood flour
JP6914541B2 (en) Molding machine for thermoplastic resin composition and manufacturing method
CN111703154A (en) High-strength wood-plastic composite material and preparation method thereof
CN112112000A (en) Reinforced composite sleeper and preparation method thereof
KR101106312B1 (en) A Product Method of Pipe
JP2015232102A (en) Soft vinyl chloride resin composition
JPS617343A (en) Low-specific gravity rubber composition
KR102398913B1 (en) Manufacturing apparatus for molded articles, method thereof and molded articles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140124

R151 Written notification of patent or utility model registration

Ref document number: 5466718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees