JP5466255B2 - Electric discharge control method for fine hole electric discharge machine and power supply device for fine hole electric discharge machining - Google Patents

Electric discharge control method for fine hole electric discharge machine and power supply device for fine hole electric discharge machining Download PDF

Info

Publication number
JP5466255B2
JP5466255B2 JP2012051569A JP2012051569A JP5466255B2 JP 5466255 B2 JP5466255 B2 JP 5466255B2 JP 2012051569 A JP2012051569 A JP 2012051569A JP 2012051569 A JP2012051569 A JP 2012051569A JP 5466255 B2 JP5466255 B2 JP 5466255B2
Authority
JP
Japan
Prior art keywords
voltage
electric discharge
electrodes
power supply
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012051569A
Other languages
Japanese (ja)
Other versions
JP2013184255A (en
Inventor
正剛 谷光
朋茂 石綿
茂治 横道
泰正 土井
Original Assignee
株式会社エレニックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エレニックス filed Critical 株式会社エレニックス
Priority to JP2012051569A priority Critical patent/JP5466255B2/en
Publication of JP2013184255A publication Critical patent/JP2013184255A/en
Application granted granted Critical
Publication of JP5466255B2 publication Critical patent/JP5466255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

本発明は細穴放電加工機の放電制御方法および細穴放電加工用電源装置に関する。   The present invention relates to a discharge control method for a fine hole electric discharge machine and a power supply device for fine hole electric discharge machining.

細穴放電加工装置では加工液として水を使用するため、電解作用により被加工物が酸化腐食され加工物表面が変色するという問題がある(図9参照)。また、特許文献1に記載の細穴放電加工装置によれば、正極性のパルス幅を被加工材と電極からなる加工間隙の状態に応じて変化させることにより、前記加工間隙における平均電圧を小さくして電解作用を弱める手段が提案されている。   Since the fine hole electric discharge machining apparatus uses water as a machining fluid, there is a problem that the workpiece is oxidized and corroded by electrolytic action and the surface of the workpiece is discolored (see FIG. 9). Further, according to the narrow hole electric discharge machining apparatus described in Patent Document 1, the average voltage in the machining gap is reduced by changing the pulse width of the positive polarity according to the state of the machining gap consisting of the workpiece and the electrode. Thus, means for weakening the electrolytic action have been proposed.

一方、特許文献1に記載の電圧パルス印加手段よりも効果的に電解作用を抑止できるものとして、正負両極性のパルス電圧を交互に加工間隙に印加することにより、前記加工間隙における平均電圧を0ボルトにする細穴放電加工装置および放電加工用電源装置がある(例えば、図4)。   On the other hand, assuming that the electrolytic action can be suppressed more effectively than the voltage pulse applying means described in Patent Document 1, an average voltage in the machining gap is reduced to 0 by alternately applying positive and negative polarity pulse voltages to the machining gap. There are a thin hole electric discharge machining device and a power supply device for electric discharge machining (for example, FIG. 4).

図4に示す細穴放電加工装置100の放電加工用の電源装置101は、出力電圧がEである正パルス用電源102と、出力電圧がEである負パルス用電源103を有し、正パルス用電源102の正極側には、正パルス用電流制限抵抗Rと正パルス用逆流防止ダイオード素子Dおよびスイッチング素子TR1が直列に接続してあり、同様に、前記負パルス用電源103の正極側には、負パルス用電流制限抵抗Rと負パルス用逆流防止ダイオード素子D、およびスイッチング素子TR2が直列に接続してある。 Power supply 101 for electrical discharge machining of small hole electric discharge machining apparatus 100 shown in FIG. 4 includes a positive pulse power supply 102 to output voltage is E 1, a negative pulse power supply 103 output voltage is E 2, the positive electrode side of the positive pulse power supply 102, Yes positive pulse current limiting resistor R 1 and the positive pulse blocking diode elements D 1 and switching element T R1 is connected in series, similarly, the power supply and the negative pulse A negative pulse current limiting resistor R 2 , a negative pulse backflow prevention diode element D 2 , and a switching element TR 2 are connected in series to the positive electrode side 103.

前記スイッチング素子TR1の出力側は電線104、105を介して被加工材106に接続してあり、前記正パルス用電源102の負極側は電線107、108を介して電極109に接続してある。また、前記スイッチング素子TR2の出力側は電線107、108を介して電極109に接続してあり、負パルス用電源103の負極側は電線104、105を介して被加工材106に接続してある。 The output side of the switching element T R1 is Yes connected via wires 104 and 105 to the workpiece 106, the negative electrode side of the positive pulse power supply 102 is connected to the electrode 109 through an electric wire 107, 108 . Further, the output side of the switching element T R2 is Yes connected to the electrode 109 through an electric wire 107, the negative electrode side of the negative pulse power supply 103 is connected via a wire 104, 105 on the workpiece 106 is there.

なお、前記正パルス用電源102の負極側と前記スイッチング素子TR2の出力側は電線107により接続され、スイッチング素子TR1の出力側と負パルス用電源103の負極側は電線104により接続されている。また、前記電線105、108の間には、静電容量がCの放電エネルギー放出用のコンデンサ110が設けてある。また、電源装置101には、前記スイッチング素子TR1、TR2を制御して加工パルスタイミングを生成する加工パルス生成手段111がが設けてある。 Incidentally, the negative electrode side and the output side of the switching element T R2 of the positive pulse power supply 102 is connected by wire 107, the negative side of the output side and the negative pulse power supply 103 of the switching element T R1 is connected by wire 104 Yes. Further, a discharge energy discharging capacitor 110 having a capacitance C is provided between the electric wires 105 and 108. Further, the power supply apparatus 101 is provided with machining pulse generation means 111 that generates the machining pulse timing by controlling the switching elements T R1 and T R2 .

従来の放電加工用電源装置の目的は、極間の平均電圧Vを0ボルトになるように制御することである。すなわち、

Figure 0005466255
ここに、T1は任意の時間。 The purpose of the conventional discharge machining power supply apparatus is to control the average voltage V W of the machining gap so that the 0 volts. That is,
Figure 0005466255
Here, T1 is an arbitrary time.

上述の電源装置101において、コンデンサ110が無いものと仮定して、便宜上、E=E、R=Rとおき、正パルスのON時間tPPと、負パルス時間のOFF時間tNPとを等しく(tPP=tNP)とり、被加工材106と電極109間の極間電圧をV(t)、平均電圧をV とすれば、図5に示すタイムチャートのように正パルス電圧と負パルス電圧を交互に印加した場合の平均電圧Vは次式(2)により示される。

Figure 0005466255
In the above power supply apparatus 101, assuming that the capacitor 110 is not provided, for convenience, E 1 = E 2 and R 1 = R 2 are set , and the positive pulse ON time t PP and the negative pulse time OFF time t NP Are equal (t PP = t NP ), the interelectrode voltage between the workpiece 106 and the electrode 109 is V W (t), and the average voltage is V W , as shown in the time chart of FIG. The average voltage V W when the pulse voltage and the negative pulse voltage are applied alternately is expressed by the following equation (2).
Figure 0005466255

細穴放電加工装置の場合、正パルスの目的は、極間の絶縁破壊を発生させて放電電流エネルギにより被加工材を掘削するものであり、負パルスの目的は正パルスにより発生した極間の正電圧成分を打ち消すことにより、極間の平均電圧を0ボルトに安定させて電解作用を抑止するためのものである。   In the case of small-hole electrical discharge machining equipment, the purpose of the positive pulse is to generate dielectric breakdown between the electrodes and excavate the workpiece with the discharge current energy, and the purpose of the negative pulse is to connect between the poles generated by the positive pulse. By canceling out the positive voltage component, the average voltage between the electrodes is stabilized at 0 volts to suppress the electrolytic action.

前記電源装置101の電線105、108の間にはコンデンサ110が挿入されている。そして、このコンデンサ110の静電容量Cは極間間隙のそれよりも充分に大きいため、極間電圧Vはコンデンサ110の両端の電圧と見なすことができる。 A capacitor 110 is inserted between the electric wires 105 and 108 of the power supply device 101. Then, the electrostatic capacitance C of the capacitor 110 is for sufficiently larger than that of the machining gap clearance, inter-electrode voltage V W can be regarded as the voltage across the capacitor 110.

いま、前記電源装置101において、正パルス用電源102の出力電圧Eと、静電容量がCのコンデンサ110と正パルス用電流制限抵抗RからなるRC回路における前記コンデンサ110に蓄えられる電荷をQとおくと、次の微分方程式が成り立つ。
(数3)
(dQ/dt)+Q/C=E・・・(3)
ここに、tは時間である。
Now, in the power supply device 101, an output voltage E 1 of the positive pulse power supply 102, a charge capacitance is stored in the capacitor 110 in the RC circuit composed of a capacitor 110 and a positive pulse current limiting resistor R 1 of C If Q is set, the following differential equation holds.
(Equation 3)
R 1 (dQ / dt) + Q / C = E 1 (3)
Here, t is time.

t=0、Q=0を初期条件として微分方程式(3)を解けば、次式(4)が求められる。
(数4)
Q=CE(1−e−t/CR1)・・・・・・(4)
When the differential equation (3) is solved with t = 0 and Q = 0 as initial conditions, the following equation (4) is obtained.
(Equation 4)
Q = CE 1 (1-e− t / CR1 ) (4)

=Q/Cより、極間電圧Vは、
(数5)
=E(1−e−t/CR1)・・・・・・・(5)
ここに、時定数τはCRであり、Eはt-->∞における最終値である。またt=τのとき、V=0.632Eである。
From V W = Q / C, the interelectrode voltage V W is
(Equation 5)
V W = E 1 (1-e− t / CR1 ) (5)
Here, the time constant τ is CR 1 and E 1 is the final value at t-> ∞. The time of t = τ, is V W = 0.632E 1.

また、コンデンサ110へ流入する電流iは、式(4)を時間tで微分すれば、
(数6)
=(E/R)e−t/CR1・・・・・・・・(6)
が求められる。
Further, the current i C flowing into the capacitor 110 can be obtained by differentiating the equation (4) with respect to time t.
(Equation 6)
i C = (E 1 / R 1 ) e −t / CR 1 (6)
Is required.

図6は、前記スイッチング素子TRを時刻t=0においてOFFからONしたときの、極間電圧V(数式5)と、コンデンサへ流入する電流i(数式6)のグラフである。このグラフから、RC回路におけるステップ応答に起因する極間電圧Vの立ち上がり遅れが発生することがわかる。同様に負パルス用電源装置についても極間電圧Vの上がり遅れについて記述することができる。 FIG. 6 is a graph of the interelectrode voltage V W (Formula 5) and the current i C flowing into the capacitor (Formula 6) when the switching element TR 1 is turned on from OFF at time t = 0. From this graph, the rise delay of the inter-electrode voltage V W due to the step response in the RC circuit is seen to occur. About Similarly power supply for a negative pulse can also describe up delay of the inter-electrode voltage V W.

式(5)において、時定数τ=CRであるから、前述のパルス用電流制限抵抗RまたはRが大きくなると、時定数τが大きくなり極間電圧Vの立ち上がりが遅れが増大することがわかる。したがって、図5に示した極間電圧の波形Vにも図7に示すような立ち上がり遅れが生じる。なお、図7は極間間隙が無負荷状態のときの、コンデンサ110へ流入する電流iの変化と極間電圧Vとの関係を示したものである。 In equation (5), since the time constant τ = CR 1 , when the pulse current limiting resistor R 1 or R 2 increases, the time constant τ increases and the rise of the interelectrode voltage V W increases. I understand that. Accordingly, the rise delay as shown in FIG. 7 in the waveform V W of inter-electrode voltage shown in FIG. 5 occurs. FIG. 7 shows the relationship between the change in the current i C flowing into the capacitor 110 and the inter-electrode voltage V W when the inter-electrode gap is in a no-load state.

特開2005−177939号公報JP 2005-177939 A

図4に示した細穴放電加工装置100の放電加工用の電源装置101においては、放電エネルギ放出用のコンデンサの両端に正パルス電圧と負パルス電圧が交互に印加されるため、その度にコンデンサの充放電が繰り返されて、電源の立場から非効率的である。すなわち、極間間隙が無負荷状態でも電源は仕事することになる。   In the power supply device 101 for electric discharge machining of the fine hole electric discharge machining apparatus 100 shown in FIG. 4, a positive pulse voltage and a negative pulse voltage are alternately applied to both ends of the discharge energy discharging capacitor. This is inefficient from the standpoint of power supply. That is, the power supply works even when the gap between the electrodes is in a no-load state.

コンデンサの充放電が繰り返されると、正パルス時間内及び負パルス時間内に、極間電圧の立ち上がりが遅れるため、パルス時間内における放電可能な時間が短くなり、放電効率が悪くなる。また、正パルス時間及び負パルス時間を極間電圧の立ち上がり遅れ時間付近に設定すると、無負荷電圧が絶縁破壊に必要な電圧に達しないために放電せず加工が進行しなくなる。   When the capacitor is repeatedly charged and discharged, the rise of the interelectrode voltage is delayed within the positive pulse time and the negative pulse time, so that the dischargeable time within the pulse time is shortened and the discharge efficiency is deteriorated. Further, if the positive pulse time and the negative pulse time are set near the rise delay time of the interelectrode voltage, the no-load voltage does not reach the voltage necessary for dielectric breakdown, so that the machining does not proceed without discharging.

正パルス用電流制限抵抗Rと負パルス用電流制限抵抗Rについては、加工の目的に応じてそれぞれ異なる抵抗値を設定しているのが実用的であり、そのため、図8に示す如く正パルスから負パルス切り替え時の極間電圧の立ち上がり遅れ時間と、負パルスから正パルス切り替え時の極間電圧の立ち上がり遅れ時間が異なるため、極間の平均電圧Vが0ボルトにならずに正負どちらかに偏ることにより電解作用を抑止できなくなる。 For the positive pulse current limiting resistor R 1 and the negative pulse current limiting resistor R 2, it is practical to set different resistance values according to the purpose of processing. Therefore, as shown in FIG. since the rise delay time of the machining gap voltage during the negative pulse switching from the pulse, the rise delay time of the inter-electrode voltage at the positive pulse switching from the negative pulses different, positive or negative without being average voltage V W of the machining gap is 0 volt It becomes impossible to suppress the electrolytic action by biasing to either.

上述の図8は、一般的に行われている正パルス用電流制限抵抗Rが負パルス用電流制限抵抗Rより小(R<R)の場合、正の極間電圧Vのパルスの時定数τが負の極間電圧Vのパルスの時定数τより小(τ<τ)となり、ここで、tpp=tnpのときは、極間電圧(無負荷電圧)Vの平均値Vは次式(7)で示される。

Figure 0005466255
すなわち、極間の平均電圧Vが正に偏ってしまうことがわかる。なお、ここで、V=0にすべく、tpp<tnpとすると加工速度が遅くなる。 FIG. 8 shows that when the positive pulse current limiting resistor R 1 is generally smaller than the negative pulse current limiting resistor R 2 (R 1 <R 2 ), the positive interelectrode voltage V W is The time constant τ 1 of the pulse is smaller than the time constant τ 2 of the pulse of the negative interelectrode voltage V W12 ). Here, when tpp = tnp, the interelectrode voltage (no load voltage) mean value V W of the V W is expressed by the following equation (7).
Figure 0005466255
That is, it can be seen that the average voltage V W between the poles will be biased positive. Here, if tpp <tnp so that V W = 0, the machining speed becomes slow.

本発明は上述の如き問題を解決するためになされたものであり、本発明の課題は、放電加工用の電源装置において放電エネルギ放出用のコンデンサに無用の充放電を行わず、かつ極間の無負荷電圧の平均電圧がほぼ0ボルトになる効率的な細穴放電加工用電源装置を提供することである。   The present invention has been made in order to solve the above-described problems. An object of the present invention is to avoid unnecessary charging / discharging of a discharge energy discharging capacitor in a power supply device for electric discharge machining, and It is an object to provide an efficient power supply device for fine hole electric discharge machining in which the average voltage of the no-load voltage is almost 0 volts.

かつまた、放電エネルギ放出用のコンデンサの充放電時における極間電圧の立ち上がりが遅れが小さくパルス時間内の放電効率の高い細穴放電加工方法及び細穴放電加工用電源装置を提供することである。   It is another object of the present invention to provide a fine hole electric discharge machining method and a fine hole electric discharge machining power supply device in which the rise of the interelectrode voltage during charging / discharging of the discharge energy discharging capacitor is small and the discharge efficiency is high within the pulse time. .

さらに、電解作用により被加工物が酸化腐食され加工物表面が変色するということがない細穴放電加工用電源装置を提供することである。   It is another object of the present invention to provide a power supply device for small hole electric discharge machining in which the workpiece is not oxidized and corroded by electrolytic action and the surface of the workpiece is not discolored.

上述の課題を解決する手段として請求項1に記載の細穴放電加工用電源装置は、正または負パルス電圧を加工用電極と被加工材との間の極間に交互に印加するパルス制御回路を備えた放電加工用電源装置において、前記加工用電極に対して前記被加工材の電位を高くする正パルス電圧を前記極間に印加する第1の電圧印加手段と、前記電極に対して前記被加工材の電位を低くする負パルス電圧を前記極間に印加する第2の電圧印加手段を設け、前記第1の電圧印加手段と該第2の電圧印加手段の出力側に第1のダイオード素子とコンデンサ素子とを直列に接続した充電回路を設けると共に、第2のダイオード素子とスイッチング素子とを直列接続した放電回路を設け、該放電回路を前記第1のダイオード素子に並列接続してなることを要旨とするものである。   As a means for solving the above-mentioned problems, the thin hole electric discharge machining power supply device according to claim 1 is a pulse control circuit for alternately applying a positive or negative pulse voltage between the electrodes between the machining electrode and the workpiece. A first voltage applying means for applying a positive pulse voltage between the electrodes to increase the potential of the workpiece with respect to the machining electrode; and Second voltage application means for applying a negative pulse voltage for lowering the potential of the workpiece between the electrodes is provided, and a first diode is provided on the output side of the first voltage application means and the second voltage application means. A charging circuit in which an element and a capacitor element are connected in series is provided, and a discharging circuit in which a second diode element and a switching element are connected in series is provided, and the discharging circuit is connected in parallel to the first diode element. With the gist Is shall.

請求項2に記載の細穴放電加工用電源装置は、請求項1に記載の細穴放電加工用電源装置において、前記充電回路の前記第1のダイオード素子は、前記極間に前記正パルス電圧の印加時に前記コンデンサへ電荷を蓄積する方向へ配してなり、前記放電回路のスイッチング素子に直列接続した前記第2のダイオード素子は前記コンデンサに蓄積された電荷による放電電流が前記被加工材から前記電極に向けて流れる方向に配してなることを要旨とするものである。   The thin hole electric discharge machining power supply device according to claim 2 is the thin hole electric discharge machining power supply device according to claim 1, wherein the first diode element of the charging circuit includes the positive pulse voltage between the electrodes. The second diode element connected in series with the switching element of the discharge circuit has a discharge current due to the charge accumulated in the capacitor from the workpiece. The gist of the invention is that it is arranged in the direction of flow toward the electrode.

請求項3に記載の細穴放電加工用電源装置は、請求項2に記載の細穴放電加工用電源装置において、前記放電回路のスイッチング素子は前記正パルス電圧が前記極間に印加されている期間は導通し、前記負パルス電圧が前記極間に印加されている期間は非導通にするパルス制御手段を設けることを要旨とするものである。   The thin hole electric discharge machining power supply device according to claim 3 is the thin hole electric discharge machining power supply device according to claim 2, wherein the positive pulse voltage is applied between the electrodes in the switching element of the discharge circuit. The gist is to provide a pulse control means which is conductive during a period and is non-conductive during a period when the negative pulse voltage is applied between the electrodes.

請求項4に記載の細穴放電加工用電源装置は、請求項3に記載の細穴放電加工用電源装置において、前記極間の無負荷電圧の平均電圧が0ボルトになるように前記パルス制御手段を制御することにより加工物表面の電解作用を抑止することを要旨とするものである。   The fine hole electric discharge machining power supply device according to claim 4 is the fine hole electric discharge machining power supply device according to claim 3, wherein the pulse control is performed so that an average voltage of the no-load voltage between the electrodes becomes 0 volt. The gist is to suppress the electrolytic action on the surface of the workpiece by controlling the means.

請求項5に記載の細穴放電加工機の放電制御方法は、正または負パルス電圧を加工用電極と被加工材との間の極間に交互に印加するパルス制御回路を備えた放電加工用電源装置において、前記加工用電極に対して前記被加工材の電位を高くする正パルス電圧を前記極間に印加する第1の電圧印加手段と、前記電極に対して前記被加工材の電位を低くする負パルス電圧を前記極間に印加する第2の電圧印加手段を設け、前記第1の電圧印加手段と該第2の電圧印加手段の出力側に第1のダイオード素子とコンデンサ素子とを直列に接続した充電回路を設けると共に、第2のダイオード素子とスイッチング素子とを直列接続した放電回路を前記第1のダイオード素子に並列接続し、前記放電回路のスイッチング素子は前記正パルス電圧が前記極間に印加されている期間は導通し、前記負パルス電圧が前記極間に印加されている期間は非導通にすることにより、前記極間の電圧波形を矩形波近い電圧波形に整形することを要旨とするものである。   The electric discharge control method for a fine hole electric discharge machine according to claim 5 is for electric discharge machining provided with a pulse control circuit for alternately applying a positive or negative pulse voltage between the electrode for machining and the workpiece. In the power supply device, a first voltage applying unit that applies a positive pulse voltage between the electrodes to increase the potential of the workpiece with respect to the processing electrode; and a potential of the workpiece with respect to the electrode. Second voltage applying means for applying a negative pulse voltage to be lowered between the electrodes is provided, and a first diode element and a capacitor element are provided on the output side of the first voltage applying means and the second voltage applying means. A charging circuit connected in series is provided, and a discharge circuit in which a second diode element and a switching element are connected in series is connected in parallel to the first diode element. Gap The gist is to shape the voltage waveform between the electrodes into a voltage waveform close to a rectangular wave by conducting during the applied period and non-conducting during the period when the negative pulse voltage is applied between the electrodes. To do.

請求項6に記載の細穴放電加工機の放電制御方法は、請求項5に記載の細穴放電加工機の放電制御方法において、前記充電回路の前記第1のダイオード素子は、前記極間に前記正パルス電圧の印加時に前記コンデンサへ電荷を蓄積する方向へ配してなり、前記放電回路のスイッチング素子に直列接続した前記第2のダイオード素子は前記コンデンサに蓄積された電荷による放電電流が前記被加工材から前記電極に向けて流れる方向に配してなることを要旨とするものである。   The discharge control method for the fine hole electric discharge machine according to claim 6 is the electric discharge control method for the fine hole electric discharge machine according to claim 5, wherein the first diode element of the charging circuit is disposed between the electrodes. The second diode element connected in series with the switching element of the discharge circuit has a discharge current due to the charge accumulated in the capacitor when the positive pulse voltage is applied. The gist of the present invention is that the material is arranged in a flow direction from the workpiece toward the electrode.

請求項7に記載の細穴放電加工機の放電制御方法は、請求項6に記載の細穴放電加工機の放電制御方法において、前記極間の無負荷電圧の平均電圧が0ボルトになるように制御することにより加工物表面の電解作用を抑止することを要旨とするものである。   The discharge control method for the fine hole electric discharge machine according to claim 7 is the electric discharge control method for the fine hole electric discharge machine according to claim 6, wherein the average voltage of the no-load voltage between the electrodes is 0 volt. The gist is to suppress the electrolytic action on the surface of the workpiece by controlling the thickness of the workpiece.

本願発明の細穴放電加工用電源装置によれば、放電加工用電源から放電エネルギ放出用のコンデンサへの充電作用は、正パルス印加時のみであり、極間が無負荷状態のときは、パルス毎に充電作用は発生しない。また、負パルス印加時には、充電回路におけるダイオード素子(D)により前記コンデンサへの充電は制止される。したがって、電源の立場からコンデンサへの毎周期毎の非効率な仕事が開放される。 According to the thin hole electric discharge machining power supply device of the present invention, the charging action from the electric discharge machining power source to the discharge energy discharging capacitor is only when a positive pulse is applied. Charging action does not occur every time. Further, when a negative pulse is applied, charging of the capacitor is stopped by the diode element (D 3 ) in the charging circuit. Therefore, inefficient work for each cycle from the standpoint of the power source to the capacitor is released.

かつまた、無負荷状態における極間電圧の立ち上がり遅れが発生する場合は、正パルス印加時の放電エネルギ放出用のコンデンサへの充電作用が働いたときのみであり、前記コンデンサが満充電状態および負パルス印加時の極間電圧の立ち上がり遅れは従来技術のものよりも短く、矩形波近い電圧波形が得られる。これは、波形整形の効果でありパルス時間内における放電可能な時間が長くなり、放電効率が改善する。また、正パルス時間が放電可能な電圧に達して放電可能となるため加工面の粗さを抑えた短パルス加工に貢献する。   Moreover, the rise delay of the interelectrode voltage in the no-load state occurs only when the charging action for the discharge energy discharging capacitor when the positive pulse is applied, and the capacitor is fully charged and negative. The rise delay of the inter-electrode voltage during pulse application is shorter than that of the prior art, and a voltage waveform close to a rectangular wave can be obtained. This is an effect of waveform shaping, and the dischargeable time within the pulse time becomes longer, and the discharge efficiency is improved. In addition, since the positive pulse time reaches a dischargeable voltage and can be discharged, it contributes to short pulse machining with reduced roughness of the machined surface.

また、波形整形の効果により、極間が無負荷状態のときの正から負パルスへの切り替え時の極間電圧の立ち上がり遅れ時間と、負から正パルスへのそれが等しくなり、正負両者のパルス幅を等しくすることにより、極間の平均電圧を0ボルトに制御することができるため、極間における電解作用が抑止され被加工材表面の変色を防止することができる。   Also, due to the effect of waveform shaping, the rise delay time of the interpolar voltage when switching from positive to negative pulse when the gap is unloaded is equal to that from negative to positive pulse, so both positive and negative pulses By making the widths equal, the average voltage between the electrodes can be controlled to 0 volts, so that the electrolytic action between the electrodes can be suppressed and discoloration of the workpiece surface can be prevented.

さらに、放電エネルギ放出用のコンデンサと極間間隙の間には、前記コンデンサから放電電流を抑止するスイッチング素子(TR3)が配されており、このスイッチング素子(TR3)は、正パルス印加時にONして、負パルス印加時にはOFFするので、負パルス印加時に正の放電エネルギが前記コンデンサから加工エネルギとして放出されることが抑止され、正パルス負パルスの切り替えで加工を制御できるようになり加工の安定化に貢献することができる。 Further, a switching element (T R3 ) that suppresses the discharge current from the capacitor is disposed between the discharge energy discharging capacitor and the gap between the electrodes, and this switching element (T R3 ) is used when a positive pulse is applied. Since it is turned on and turned off when a negative pulse is applied, positive discharge energy is prevented from being released as machining energy from the capacitor when a negative pulse is applied, and machining can be controlled by switching between positive and negative pulses. Can contribute to the stabilization of

本発明の細穴放電加工用電源装置におけるパルス制御回路と放電加工用電源装置を示す回路図。The circuit diagram which shows the pulse control circuit in the power supply apparatus for thin hole electrical discharge machining of this invention, and the power supply apparatus for electrical discharge machining. 本発明の細穴放電加工用電源装置における加工パルスのタイミングチャート。The timing chart of the process pulse in the power supply apparatus for thin hole electrical discharge machining of this invention. 本発明の細穴放電加工用電源装置における極間電圧波形と放電エネルギ放出用のコンデンサの電流波形を従来のそれと対比したグラフ。The graph which contrasted the voltage waveform between electrodes in the power supply device for fine hole electrical discharge machining of this invention, and the current waveform of the capacitor | condenser for discharge energy discharge | emission. 従来の細穴放電加工用電源装置におけるパルス制御回路と放電加工用電源装置を示す回路図。The circuit diagram which shows the pulse control circuit and the power supply apparatus for electrical discharge machining in the conventional power supply apparatus for fine hole electrical discharge machining. 正負両極性のパルス電圧を交互に印加する従来の放電加工用電源装置で、極間の平均電圧が0ボルトになるように制御した場合のタイムチャート。The time chart at the time of controlling so that the average voltage between poles may be set to 0 volt | bolt in the conventional power supply apparatus for electric discharge machining which applies a positive and negative polarity pulse voltage alternately. RC回路におけるステップ応答について極間電圧Vとコンデンサへ流入する電流i関係を示すグラフ。Graph showing current i C relationship flowing the step response in the RC circuit to the inter-electrode voltage V W and the capacitor. 極間間隙が無負荷状態のときのコンデンサへの充電電流iの変化と極間電圧(充電電圧)Vのとの関係を示したグラフ。Graph interpolar gap showed the charging current change and inter-electrode voltage (charging voltage) of the i C V W Noto relation to the capacitor when the unloaded condition. RC回路を含む従来の細穴放電加工用電源装置において、正パルス用電流制限抵抗Rが負パルス用電流制限抵抗Rより小(R<R)の場合、極間の平均電圧Vが正に偏よる様子を示した図。In conventional small hole electric discharge machining power supply apparatus including an RC circuit, when the positive pulse current limiting resistor R 1 is smaller than the negative pulse current limiting resistor R 2 (R 1 <R 2 ), an average gap voltage V The figure which showed a mode that W was biased positively. 極間の平均電圧を0ボルトになるように制御できない従来の細穴放電加工用電源装置を使用した際の電解作用に起因する加工表面の変色状態を示した図。The figure which showed the discoloration state of the process surface resulting from the electrolysis at the time of using the conventional power supply apparatus for fine hole electric discharge machining which cannot control the average voltage between electrodes to be 0 volt.

以下、本発明の実施の形態を図面によって説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の細穴放電加工用電源装置におけるパルス制御回路と放電加工用電源装置の回路図である。   FIG. 1 is a circuit diagram of a pulse control circuit and a power supply apparatus for electric discharge machining in a thin hole electric discharge machining power supply apparatus of the present invention.

図1を参照するに、細穴放電加工装置1の放電加工用の電源装置3は、出力電圧がEである第1の電圧印加手段である正パルス用電源5と、出力電圧がEである第2の電圧印加手段である負パルス用電源7を有し、前記正パルス用電源5には、正パルス用電流制限抵抗R、正パルス用逆流防止ダイオード素子Dおよびスイッチング素子(例えば、EFT)TR1が正パルス用電源5の正極側から順に直列に接続してある。 Referring to FIG. 1, a power supply device 3 for electric discharge machining of the narrow hole electric discharge machining apparatus 1 includes a positive pulse power supply 5 which is a first voltage applying means having an output voltage E 1 , and an output voltage of E 2. A negative pulse power source 7 as a second voltage application means, and the positive pulse power source 5 includes a positive pulse current limiting resistor R 1 , a positive pulse backflow prevention diode element D 1, and a switching element ( for example, EFT) T R1 is Aru from the positive electrode side of the positive pulse power supply 5 are connected in series in this order.

同様に、出力電圧がEの前記負パルス用電源7には、負パルス用電流制限抵抗R、負パルス用逆流防止ダイオード素子Dおよびスイッチング素子TR2が負パルス用電源7の正極側から順に直列に接続してある。 Similarly, the negative pulse power supply 7 whose output voltage is E 2 includes a negative pulse current limiting resistor R 2 , a negative pulse backflow prevention diode element D 2, and a switching element TR 2 on the positive side of the negative pulse power supply 7. Are connected in series.

前記スイッチング素子TR1の出力側は、電線9、11を介して前記細穴放電加工装置1の被加工材13に接続すると共に、前記電線9を介して前記負パルス用電源7の負極側に接続してある。 The output side of the switching element T R1 serves to connect the workpiece 13 of the small hole electric discharge machining apparatus 1 through an electric wire 9, 11, the negative electrode side of the negative pulse power supply 7 through the wires 9 Connected.

一方、前記スイッチング素子TR2の出力側は、電線15を介して前記正パルス用電源5の負極側に接続すると共に、電線17を介して前記被加工材13に放電間隙を有して対向する加工用の電極19に接続してある。 On the other hand, the output side of the switching element TR2 is connected to the negative electrode side of the positive pulse power source 5 through the electric wire 15 and faces the workpiece 13 through the electric wire 17 with a discharge gap. It is connected to the processing electrode 19.

上述の第1の電圧印加手段としての正パルス用電源5は、前記電極19に対して被加工材13の電位を高くする正パルス電圧を前記被加工材13と電極19の極間に印加するものであり、前記第2の電圧印加手段としての負パルス用電源7は、前記電極19に対して前記被加工材13の電位を低くする負パルス電圧を前記極間に印加するものである。   The positive pulse power source 5 serving as the first voltage applying means described above applies a positive pulse voltage that raises the potential of the workpiece 13 with respect to the electrode 19 between the electrode of the workpiece 13 and the electrode 19. The negative pulse power supply 7 as the second voltage applying means applies a negative pulse voltage between the electrodes to lower the potential of the workpiece 13 with respect to the electrode 19.

前記スイッチング素子TR1の出力側に接続された電線11の分岐点Aと、前記スイッチング素子TR2の出力側に接続された電線17の分岐点Bとの間には、第1のダイオード素子Dと静電容量がCのコンデンサ素子21とを直列に接続した充電回路が設けてある。また、第2のダイオード素子Dとスイッチング素子TR3とを直列接続してなる放電回路が前記第1のダイオード素子Dに並列に設けてある。なお、分岐点Aと分岐点Bは前記電極19と被加工材13の近傍に設けてある。 Between the branch point A of the electric wire 11 connected to the output side of the switching element T R1 and the branch point B of the electric wire 17 connected to the output side of the switching element T R2 , the first diode element D 3 and a capacitor element 21 having a capacitance C are connected in series. In addition, the discharge circuit and a second diode element D 4 and the switching element T R3 formed by the series connection are provided in parallel to the first diode element D 3. The branch point A and the branch point B are provided in the vicinity of the electrode 19 and the workpiece 13.

前記充電回路におけるダイオード素子Dの極性は、前記正パルス電圧の印加時に前記コンデンサ21へ電荷を蓄積する方向へ向けて設けてある。また、前記ダイオード素子Dとスイッチング素子TR3は、前記コンデンサに蓄積された電荷による放電電流が前記被加工材13から前記電極19に向けて流れる方向に直列に接続してある。 The polarity of the diode element D 3 in the charging circuit, is provided toward a direction of accumulating the electric charge to the capacitor 21 upon application of the positive pulse voltage. Further, the diode element D 4 and the switching element T R3, the discharge current due to electric charges accumulated in the capacitor is connected in series in the direction of flow toward the electrode 19 from the workpiece 13.

上述の放電回路のスイッチング素子TR3は前記正パルス電圧が前記極間に印加されている期間は導通され、前記負パルス電圧が前記極間に印加されている期間は非導通になるように前記パルス制御手段23により制御される。なお、パルス制御手段23は信号線S1で前記スイッチング素子TR3に接続されると共に、信号線S2、S3により前記スイッチング素子TR1、TR2に接続されている。 The switching element T R3 of the discharge circuit described above is turned on while the positive pulse voltage is applied between the electrodes, and is turned off when the negative pulse voltage is applied between the electrodes. It is controlled by the pulse control means 23. The pulse control means 23 is connected to the switching element T R3 through a signal line S1, and is connected to the switching elements T R1 and T R2 through signal lines S2 and S3.

図2を参照するに、上述のパルス制御手段23による前記スイッチング素子TR1、TR2およびTR3へ出力されるパルスと極間電圧Vの関係を時間軸tを横軸に、ON、OFF状態を縦軸にとって示してある。 Referring to FIG. 2, the relationship between the pulses output by the pulse control means 23 to the switching elements T R1 , T R2, and T R3 and the interelectrode voltage V W is set to ON, OFF with the time axis t as the horizontal axis. The state is shown on the vertical axis.

上述のスイッチング素子TR1とスイッチング素子TR3がONで、スイッチング素子TR2がOFF状態のときには、(図2における正スイッチングTR1とコンデンサスイッチングTR3がONで負スイッチングTR2がOFF)正パルス用電源5から前記電極19に対して被加工材13の電位を高くする正パルス電圧が極間に印加さる。 In the above-mentioned switching element T R1 and the switching element T R3 is ON, when the switching element T R2 is OFF, the (negative switching T R2 is OFF positive switching T R1 and capacitor switching T R3 is ON in FIG. 2) a positive pulse A positive pulse voltage for increasing the potential of the workpiece 13 is applied across the electrode 19 from the power source 5 for electric power.

また、スイッチング素子TR1とスイッチング素子TR3がOFFで、スイッチング素子TR2がON状態のときには、(図2における正スイッチングTR1とコンデンサスイッチングTR3がOFFで負スイッチングTR2がON)のときには、負パルス用電源7から前記電極19に対して被加工材13の電位を低くする負パルス電圧が極間に印加される。 Further, the switching element T R1 and the switching element T R3 is OFF, when the switching element T R2 is in the ON state, when the (negative switching T R2 is ON positive switching T R1 and capacitor switching T R3 is OFF in Fig. 2) A negative pulse voltage that lowers the potential of the workpiece 13 is applied to the electrode 19 from the negative pulse power source 7 between the electrodes.

上述のパルス制御手段23によるパルス制御において、コンデンサ放電用のスイッチング素子TR3のON/OFFのタイミングは正パルス用スイッチング素子TR1と同期するように制御している。なお、正パルスのON時間tPPと負パルス時間のOFF時間tNPを等しくしてある。 In the pulse control by the pulse control means 23 described above, the ON / OFF timing of the capacitor discharge switching element TR3 is controlled to be synchronized with the positive pulse switching element TR1 . The positive pulse ON time t PP and the negative pulse time OFF time t NP are made equal.

図2に示すように、前記コンデンサが満充電状態の極間電圧Vの立ち上がり遅れ時間(t)と負パルス印加時の立ち上がり遅れ時間(t)は、従来技術に比較して非常に小さくなって電圧波形はほぼ矩形波が得られる。よって、極間電圧Vの正パルス波形の面積と負パルス波形の面積がほぼ等しくなり、極間の平均電圧Vをほぼ0ボルトにすることが可能となる。 As shown in FIG. 2, the rise delay time (t + ) of the inter-electrode voltage V W when the capacitor is fully charged and the rise delay time (t ) when applying a negative pulse are much higher than those of the prior art. The voltage waveform is reduced and a rectangular wave is obtained. Thus, approximately equal the area of the area and a negative pulse waveform of a positive pulse waveform of the machining gap voltage V W, it is possible to the average voltage V W of the machining gap to approximately 0 volts.

図3は、本発明の細穴放電加工用電源装置における効果を分かり易く説明するため、極間電圧波形と放電エネルギ放出用のコンデンサの電流波形の違いを従来のものと対比して示した図である。   FIG. 3 is a diagram showing the difference between the inter-electrode voltage waveform and the current waveform of the discharge energy discharging capacitor in comparison with the conventional one in order to easily understand the effect of the power supply device for narrow hole electric discharge machining of the present invention. It is.

図3を参照するに、本発明の技術では放電加工用電源から放電エネルギ放出用のコンデンサへの充電作用は、ダイオードDの効果により正パルス印加時のみであり、極間が無負荷状態のときはパルス毎に充電作用は発生しないことが判る。 Referring to FIG. 3, the charging action of the electric discharge machining power supply in the technique of the present invention to the capacitor for discharge energy release is only when a positive pulse is applied by the effect of the diode D 3, the machining gap is in the unloaded condition It can be seen that the charging action does not occur every pulse.

また、正の充電後に放電が発生しなかった場合には、コンデンサへの充電は行われず、負パルス印加時には充電回路におけるダイオード素子Dにより前記コンデンサへの充電は制止される。したがって、電源の立場からコンデンサへの毎周期毎の非効率な仕事が開放されることが理解される。 Also, when the discharge positive after charging has not been generated, the charging of the capacitor is not performed, at the time of negative pulse applied charging of the capacitor by a diode element D 3 in the charging circuit is restrained. Therefore, it is understood that inefficient work for each cycle from the standpoint of the power source to the capacitor is released.

1 細穴放電加工装置
3 電源装置
5 正パルス用電源
7 負パルス用電源
9、11、15、17 電線
13 被加工材
19 電極
21 コンデンサ素子
正パルス用逆流防止ダイオード素子
負パルス用逆流防止ダイオード素子
第1のダイオード素子
第2のダイオード素子
正パルス用電流制限抵抗
負パルス用電流制限抵抗
S1、S2、S3 信号線
R1、TR2、TR3 スイッチング素子
DESCRIPTION OF SYMBOLS 1 Thin hole electric discharge machining apparatus 3 Power supply apparatus 5 Power supply for positive pulses 7 Power supply for negative pulses 9, 11, 15, 17 Electric wire 13 Workpiece material 19 Electrode 21 Capacitor element D 1 Reverse current prevention diode element for 1 positive pulse D 2 For negative pulse blocking diode element D 3 first diode element D 4 second diode element R 1 positive pulse current limiting resistor R 2 negative pulse current limiting resistor S1, S2, S3 signal line T R1, T R2, T R3 switching element

Claims (7)

正または負パルス電圧を加工用電極と被加工材との間の極間に交互に印加するパルス制御回路を備えた放電加工用電源装置において、前記加工用電極に対して前記被加工材の電位を高くする正パルス電圧を前記極間に印加する第1の電圧印加手段と、前記電極に対して前記被加工材の電位を低くする負パルス電圧を前記極間に印加する第2の電圧印加手段を設け、前記第1の電圧印加手段と該第2の電圧印加手段の出力側に第1のダイオード素子とコンデンサ素子とを直列に接続した充電回路を設けると共に、第2のダイオード素子とスイッチング素子とを直列接続した放電回路を設け、該放電回路を前記第1のダイオード素子に並列接続してなることを特徴とする細穴放電加工用電源装置。 In an electric discharge machining power supply device having a pulse control circuit for alternately applying a positive or negative pulse voltage between the electrodes between the machining electrode and the workpiece, the potential of the workpiece relative to the machining electrode A first voltage applying means for applying a positive pulse voltage between the electrodes, and a second voltage application for applying a negative pulse voltage between the electrodes to lower the potential of the workpiece relative to the electrodes. And a charging circuit in which a first diode element and a capacitor element are connected in series are provided on the output side of the first voltage applying means and the second voltage applying means, and the second diode element and switching are provided. A thin hole electric discharge machining power supply device comprising: a discharge circuit connected in series to an element; and the discharge circuit connected in parallel to the first diode element. 請求項1に記載の細穴放電加工用電源装置において、前記充電回路の前記第1のダイオード素子は、前記極間に前記正パルス電圧の印加時に前記コンデンサへ電荷を蓄積する方向へ配してなり、前記放電回路のスイッチング素子に直列接続した前記第2のダイオード素子は前記コンデンサに蓄積された電荷による放電電流が前記被加工材から前記電極に向けて流れる方向に配してなることを特徴とする細穴放電加工用電源装置。 2. The power supply device for fine hole electric discharge machining according to claim 1, wherein the first diode element of the charging circuit is arranged in a direction in which electric charge is accumulated in the capacitor when the positive pulse voltage is applied between the electrodes. The second diode element connected in series to the switching element of the discharge circuit is arranged in a direction in which a discharge current due to the electric charge accumulated in the capacitor flows from the workpiece toward the electrode. Power supply device for fine hole electrical discharge machining. 請求項2に記載の細穴放電加工用電源装置において、前記放電回路のスイッチング素子は前記正パルス電圧が前記極間に印加されている期間は導通し、前記負パルス電圧が前記極間に印加されている期間は非導通にするパルス制御手段を設けることを特徴とする細穴放電加工用電源装置。 3. The power supply device for fine hole electric discharge machining according to claim 2, wherein the switching element of the discharge circuit is conductive during a period in which the positive pulse voltage is applied between the electrodes, and the negative pulse voltage is applied between the electrodes. A fine hole electric discharge machining power supply device, characterized in that a pulse control means for discontinuity is provided during a period of time. 請求項3に記載の細穴放電加工用電源装置において、前記極間の無負荷電圧の平均電圧が0ボルトになるように前記パルス制御手段を制御することにより加工物表面の電解作用を抑止することを特徴とする細穴放電加工用電源装置。 4. The thin hole electric discharge machining power supply device according to claim 3, wherein the pulsed control means is controlled so that the average voltage of the no-load voltage between the electrodes becomes 0 volts, thereby suppressing the electrolytic action on the workpiece surface. A power supply device for fine hole electric discharge machining. 正または負パルス電圧を加工用電極と被加工材との間の極間に交互に印加するパルス制御回路を備えた放電加工用電源装置において、前記加工用電極に対して前記被加工材の電位を高くする正パルス電圧を前記極間に印加する第1の電圧印加手段と、前記電極に対して前記被加工材の電位を低くする負パルス電圧を前記極間に印加する第2の電圧印加手段を設け、前記第1の電圧印加手段と該第2の電圧印加手段の出力側に第1のダイオード素子とコンデンサ素子とを直列に接続した充電回路を設けると共に、第2のダイオード素子とスイッチング素子とを直列接続した放電回路を前記第1のダイオード素子に並列接続し、前記放電回路のスイッチング素子は前記正パルス電圧が前記極間に印加されている期間は導通し、前記負パルス電圧が前記極間に印加されている期間は非導通にすることにより、前記極間の電圧波形を矩形波近い電圧波形に整形することを特徴とする細穴放電加工機の放電制御方法。 In an electric discharge machining power supply device having a pulse control circuit for alternately applying a positive or negative pulse voltage between the electrodes between the machining electrode and the workpiece, the potential of the workpiece relative to the machining electrode A first voltage applying means for applying a positive pulse voltage between the electrodes, and a second voltage application for applying a negative pulse voltage between the electrodes to lower the potential of the workpiece relative to the electrodes. And a charging circuit in which a first diode element and a capacitor element are connected in series are provided on the output side of the first voltage applying means and the second voltage applying means, and the second diode element and switching are provided. A discharge circuit connected in series with an element is connected in parallel to the first diode element, the switching element of the discharge circuit is conductive during a period in which the positive pulse voltage is applied between the electrodes, and the negative pulse voltage is Period is applied between Kikyoku is by non-conductive, the discharge control method of the small hole electric discharge machine, characterized by shaping the voltage waveform between the poles to the rectangular wave voltage close waveform. 請求項5に記載の細穴放電加工機の放電制御方法において、前記充電回路の前記第1のダイオード素子は、前記極間に前記正パルス電圧の印加時に前記コンデンサへ電荷を蓄積する方向へ配してなり、前記放電回路のスイッチング素子に直列接続した前記第2のダイオード素子は前記コンデンサに蓄積された電荷による放電電流が前記被加工材から前記電極に向けて流れる方向に配してなることを特徴とする細穴放電加工機の放電制御方法。 6. The discharge control method for a fine hole electric discharge machine according to claim 5, wherein the first diode element of the charging circuit is arranged in a direction in which electric charge is accumulated in the capacitor when the positive pulse voltage is applied between the electrodes. The second diode element connected in series with the switching element of the discharge circuit is arranged in a direction in which a discharge current due to the electric charge accumulated in the capacitor flows from the workpiece toward the electrode. A discharge control method for a fine hole electric discharge machine. 請求項6に記載の細穴放電加工機の放電制御方法において、前記極間の無負荷電圧の平均電圧が0ボルトになるように制御することにより加工物表面の電解作用を抑止することを特徴とする細穴放電加工機の放電制御方法。 7. The discharge control method for a fine hole electric discharge machine according to claim 6, wherein the electrolytic action on the surface of the work piece is suppressed by controlling the average voltage of the no-load voltage between the electrodes to be 0 volt. A discharge control method for a fine hole electric discharge machine.
JP2012051569A 2012-03-08 2012-03-08 Electric discharge control method for fine hole electric discharge machine and power supply device for fine hole electric discharge machining Active JP5466255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012051569A JP5466255B2 (en) 2012-03-08 2012-03-08 Electric discharge control method for fine hole electric discharge machine and power supply device for fine hole electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012051569A JP5466255B2 (en) 2012-03-08 2012-03-08 Electric discharge control method for fine hole electric discharge machine and power supply device for fine hole electric discharge machining

Publications (2)

Publication Number Publication Date
JP2013184255A JP2013184255A (en) 2013-09-19
JP5466255B2 true JP5466255B2 (en) 2014-04-09

Family

ID=49386159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012051569A Active JP5466255B2 (en) 2012-03-08 2012-03-08 Electric discharge control method for fine hole electric discharge machine and power supply device for fine hole electric discharge machining

Country Status (1)

Country Link
JP (1) JP5466255B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990871A (en) * 2014-06-16 2014-08-20 厦门大学 Nanosecond-pulse-width pulsed power supply used for electrosparking

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475886B (en) * 2014-12-25 2017-02-22 西安建筑科技大学 Chopped-mode energy-saving electromachining pulse power supply

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692510B2 (en) * 1991-12-02 1997-12-17 三菱電機株式会社 Electric discharge machine
JP3436019B2 (en) * 1996-10-15 2003-08-11 日立ビアメカニクス株式会社 Wire electric discharge machine
JP2984664B2 (en) * 1998-08-28 1999-11-29 三菱電機株式会社 Electric discharge machine
JP2004106130A (en) * 2002-09-19 2004-04-08 Chuo Seisakusho Ltd Pulse power supply device
CN100562394C (en) * 2004-10-28 2009-11-25 三菱电机株式会社 Electric discharge machining power supply and discharge-treating method
JP4850317B1 (en) * 2011-04-12 2012-01-11 三菱電機株式会社 Power supply device for electric discharge machine and electric discharge machining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990871A (en) * 2014-06-16 2014-08-20 厦门大学 Nanosecond-pulse-width pulsed power supply used for electrosparking
CN103990871B (en) * 2014-06-16 2016-03-02 厦门大学 A kind of nanosecond width pulse power supply for spark machined

Also Published As

Publication number Publication date
JP2013184255A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
EP1806197B1 (en) Electric discharge machining power supply apparatus, and small-hole drilling electric discharge machining
US9197201B2 (en) Impulse voltage generation device
JP5264788B2 (en) EDM machine
JP5183827B1 (en) Electric discharge machine power supply
JP5414864B1 (en) Machining power supply for wire-cut electrical discharge machining equipment
JP2015042432A (en) Wire electric discharge machine including average discharge delay time calculation means
JP4850317B1 (en) Power supply device for electric discharge machine and electric discharge machining method
JP5466255B2 (en) Electric discharge control method for fine hole electric discharge machine and power supply device for fine hole electric discharge machining
JP5409963B1 (en) EDM machine
JP5642810B2 (en) Power supply for electric discharge machining
JPWO2009096025A1 (en) Electric discharge machining apparatus and electric discharge machining method
US9770773B2 (en) Electric discharge machining apparatus
KR20180006989A (en) Wire electric discharge machine
JP6165210B2 (en) Machining power supply for wire electrical discharge machining equipment
JP6230481B2 (en) Multi-wire electric discharge machine
US20200198037A1 (en) Wire electrical discharge machine and control method of wire electrical discharge machine
US11752565B2 (en) Power source device for electric discharge machine
RU133451U1 (en) TECHNOLOGICAL CURRENT GENERATOR POWER PULSE MODULE
JPS63295124A (en) Wire electric discharge machine
KR20150102437A (en) Average Voltage Compensation Apparatus of Wire Cut Discharge Machine
JP2012006116A (en) Short circuit detection device and working machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140123

R150 Certificate of patent or registration of utility model

Ref document number: 5466255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250