JP5464548B2 - Measurement method of fresh salt water interface - Google Patents

Measurement method of fresh salt water interface Download PDF

Info

Publication number
JP5464548B2
JP5464548B2 JP2010182921A JP2010182921A JP5464548B2 JP 5464548 B2 JP5464548 B2 JP 5464548B2 JP 2010182921 A JP2010182921 A JP 2010182921A JP 2010182921 A JP2010182921 A JP 2010182921A JP 5464548 B2 JP5464548 B2 JP 5464548B2
Authority
JP
Japan
Prior art keywords
fresh
salt water
water
tdr
boundary surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010182921A
Other languages
Japanese (ja)
Other versions
JP2011039064A (en
Inventor
祐二 伊藤
英揮 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Publication of JP2011039064A publication Critical patent/JP2011039064A/en
Application granted granted Critical
Publication of JP5464548B2 publication Critical patent/JP5464548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

本発明は、淡水と塩水との境界面を計測する方法に関するものである。   The present invention relates to a method for measuring a boundary surface between fresh water and salt water.

大きな河川やダムなどがなく利用できる地表水が少ない沿岸地域では、農工業や生活用水などの地域の水資源として、地下水が利用される場合が多い。沿岸帯水層では、一般に高密度の海水が地下水下部に楔状に侵入している(図1(a))。こうした地域で地下水を利用する場合、淡水域への海水侵入が良質な水資源を確保する上で障害となる場合がある。塩分濃度の低い淡水を持続的に利用していくためには、揚水、降雨、潮汐などによって変化する淡水層厚を把握すること、すなわち海水侵入によって創出される淡水と塩水との境界面(以下、「淡塩水境界面」と称す。)をモニタリングすることが重要である。
淡塩水境界面の測定法として、電気探査法が挙げられる。この方法は、地表面から与えた電流によって測定される地中の比抵抗分布から、淡塩水境界面を非破壊的に検出するものである。しかし、機器の出力や電極間隔などによって測定深度が制限されるうえ、井戸での直接観測に比べて測定精度が低い(例えば、電磁法では誤差が10m以上になる場合がある)。また、井戸にセンサーを手動で落しこみ、地下水の鉛直電気伝導度プロファイルの急変点に基づき塩水浸入状況を観測する直接法でも、潮汐や降雨による境界面の時間変動を調べるのに多大な労力、費用、時間を要する。
その一方で、近年、時間領域反射法(TDR)により土壌含水量、導電率、水位等を計測することが、例えば、特許文献1において紹介されている。
しかしながら、TDRは、高塩分環境下では信号減衰のため計測ができなくなる場合があるという問題があった。
In coastal areas with little surface water that can be used without large rivers and dams, groundwater is often used as water resources for areas such as agriculture and industrial water. In coastal aquifers, generally high-density seawater penetrates into the lower groundwater in a wedge shape (Fig. 1 (a)). When groundwater is used in such areas, seawater intrusion into freshwater bodies can be an obstacle to securing good quality water resources. In order to continuously use fresh water with low salinity, it is necessary to grasp the thickness of the fresh water layer that changes due to pumping, rainfall, tide, etc. It is important to monitor the “fresh salt water interface”.
An electric exploration method can be cited as a method for measuring the fresh saltwater interface. In this method, a fresh saltwater boundary surface is detected nondestructively from a specific resistance distribution in the ground measured by a current applied from the ground surface. However, the measurement depth is limited by the output of the equipment and the electrode spacing, and the measurement accuracy is lower than that of direct observation in a well (for example, the error may be 10 m or more in the electromagnetic method). In addition, the direct method of manually dropping the sensor into the well and observing the state of salt water intrusion based on the sudden change point of the vertical conductivity profile of groundwater also requires a great deal of effort to investigate the time variation of the interface due to tides and rainfall, Cost and time are required.
On the other hand, in recent years, for example, Patent Document 1 introduces the measurement of soil water content, electrical conductivity, water level, and the like by time domain reflection (TDR).
However, TDR has a problem that measurement may be impossible due to signal attenuation in a high salinity environment.

特開2009-204601号公報JP 2009-204601 A

そこで、本発明は、高塩分環境下でのマイクロ波信号の減衰の特性を逆に利用し、淡塩水境界面の測定方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide a method for measuring a fresh salt water boundary surface by reversely utilizing the attenuation characteristics of microwave signals in a high salinity environment.

上記課題を解決するために下記の通り解決手段を見出した。
即ち、本発明の淡塩水境界面の測定方法は、請求項1に記載の通り、a)淡水と塩水との重層系に、淡水側からTDRプローブを挿入して、前記TDRプローブの根端及び先端の間に、淡水と塩水との境界面が位置するように前記TDRプローブを配置するステップ、
b)TDR波形の急減点までの時間tfwを測定するステップ、及び
c)前記TDRプローブの先端から前記境界面までの距離hiを下記数1から求めるステップ

Figure 0005464548
(数1中、εfwは前記淡水の比誘電率、Lは前記TDRプローブのロッド長、cは光速とする。)
とから構成されることを特徴とする。
また、請求項2記載の本発明は、請求項1記載の発明において、前記TDRプローブの根端側をケーブルに接続し、地表面から前記淡塩水境界面までの距離を、前記地表面以下のケーブル長とロッド長の和から前記hiを差し引いた距離として求めることを特徴とする。 In order to solve the above-mentioned problems, the solution means has been found as follows.
That is, according to the method for measuring a fresh salt water interface of the present invention, as described in claim 1, a) a TDR probe is inserted into a multilayer system of fresh water and salt water from the fresh water side, and the root end of the TDR probe and Placing the TDR probe so that the interface between fresh water and salt water is located between the tips,
b) measuring the time t fw until the TDR waveform sudden decrease point; and
c) A step of obtaining a distance h i from the tip of the TDR probe to the boundary surface from the following formula 1.
Figure 0005464548
(In Equation 1, ε fw is the relative permittivity of the fresh water, L is the rod length of the TDR probe, and c is the speed of light.)
It is comprised from these.
Further, the present invention according to claim 2 is the invention according to claim 1, wherein the root end side of the TDR probe is connected to a cable, and the distance from the ground surface to the fresh salt water interface is less than the ground surface. It is obtained as a distance obtained by subtracting the h i from the sum of the cable length and the rod length.

本発明によれば、淡塩水境界面を高い精度で検出することができる。   According to the present invention, the fresh salt water boundary surface can be detected with high accuracy.

淡塩水境界面の(a)観測イメージと(b)計測されるTDR波形の模式図Schematic diagram of (a) observation image and (b) measured TDR waveform of fresh saltwater interface 本発明の淡塩水境界面の測定を実施するための実験概略図Schematic of the experiment for carrying out the measurement of the fresh salt water interface of the present invention 蒸留水(σfw=0.0005S・m-1)と塩水(σsw=5.2S・m-1)との境界面計測で得られたTDR波形TDR waveform obtained by measuring the boundary surface between distilled water (σ fw = 0.0005S · m -1 ) and salt water (σ sw = 5.2S · m -1 ) 伝播時間tfwと淡塩水境界面位置hiの実測値又は数1 による計算値との関係を示すグラフA graph showing the relationship between the propagation time t fw and the measured value of the fresh saltwater interface position h i or the value calculated by Equation 1 蒸留水中及び導電性の異なるNaCl溶液中で計測されたTDR波形TDR waveforms measured in distilled water and NaCl solutions with different conductivity 導電性の異なる淡水(σfw=0.1〜0.4S・m-1)と塩水(σsw=5.2S・m-1)との境界面計測で得られたTDR波形TDR waveform obtained by interface measurement between fresh water (σ fw = 0.1 to 0.4 S · m -1 ) and salt water (σ sw = 5.2 S · m -1 ) with different conductivity 導電性の異なる淡水と塩水との境界面位置hiの実測値と数1による計算値の比較Comparison of measured values of interface position h i between fresh water and salt water with different electrical conductivity and values calculated by Equation 1 淡塩水境界面が変動した場合のTDR波形TDR waveform when the fresh salt water interface changes 淡塩水境界面が変動した場合のhiの実測値と計算値の比較Comparison of measured and calculated values of h i when the fresh brine boundary changes

TDR(Time Domain Reflectometry)では,マイクロ波等の電磁波が、電極ロッドに沿って導電性媒質中を伝播する過程において、その電気エネルギーが媒質に吸収される。エネルギー吸収量は、パルスの伝播距離が長くなるほど、また周囲媒質の導電性が高くなるほど増大する。したがって、パルスの伝播距離が同じ条件で淡水と塩水とのエネルギー吸収量の違いを比較すると、塩水の吸収量の方が極めて大きい。
本発明では、上記知見に基づき、TDRで計測されるマイクロ波ステップパルスのエネルギー吸収特性から淡塩水境界面を検出するものである。
In TDR (Time Domain Reflectometry), electromagnetic energy such as microwaves is absorbed by the medium in the process of propagating through the conductive medium along the electrode rod. The amount of energy absorption increases as the propagation distance of the pulse increases and the conductivity of the surrounding medium increases. Therefore, when the difference in energy absorption between fresh water and salt water is compared under the same pulse propagation distance, the absorption amount of salt water is much larger.
In the present invention, based on the above findings, the fresh salt water boundary surface is detected from the energy absorption characteristics of the microwave step pulse measured by TDR.

[淡塩水境界面の計測モデル]
TDRプローブに与えたマイクロ波ステップパルスがプローブのロッドを往復するのに要する時間をtt(s)とすると、プローブ周囲の媒質の比誘電率εtは,tt,光速c(3.0×108m・s-1)及びロッド長L(m)を用いて以下の数2で表される。
[Measurement model of fresh salt water interface]
When the time required for the microwave step pulse applied to the TDR probe to reciprocate the probe rod is t t (s), the relative permittivity ε t of the medium around the probe is t t , the speed of light c (3.0 × 10 8 m · s −1 ) and rod length L (m) are expressed by the following formula 2.

Figure 0005464548
Figure 0005464548

図1(a)、(b)に示すような、淡水(上部)と塩水(下部)との重層系にプローブ1を垂直に挿入した場合、ロッド根端2aから先端2bに向けて伝播するパルスが塩水領域に達すると、その電気工ネルキーは塩水に吸収される。その吸収量は、電気伝導度と正の相関を持ち、反射係数ρ(電気エネルギーの指標)の急減としてTDR波形上に現れる(図1(b))。その急減点(図1(b)におけるt=t1の位置)を淡塩水境界面3の位置と考え、ロッド根端2a位置(図1(b)におけるt=t0の位置)から境界面3までのパルスの伝播時間、すなわち淡水中のパルスの伝播時間をtfw(s)、ロッド先端2bから境界面3までの距離をhi(m)とすると、淡水の比誘電率εfwは数2に基づいて次式で与えられる。 Pulses propagating from the rod root 2a toward the tip 2b when the probe 1 is inserted vertically into a layered system of fresh water (upper) and salt water (lower) as shown in FIGS. 1 (a) and 1 (b) When the water reaches the salt water area, the electric nelkey is absorbed into the salt water. The amount of absorption has a positive correlation with the electrical conductivity, and appears on the TDR waveform as a sudden decrease in the reflection coefficient ρ (electric energy index) (FIG. 1 (b)). Considering the sudden decrease point (t = t 1 position in Fig. 1 (b)) as the position of the fresh salt water boundary surface 3, the boundary surface from the rod root 2a position (t = t 0 position in Fig. 1 (b)). Assuming that the propagation time of pulses up to 3, that is, the propagation time of pulses in fresh water is t fw (s) and the distance from the rod tip 2b to the boundary surface 3 is h i (m), the relative permittivity ε fw of fresh water is Based on Equation 2, it is given by

Figure 0005464548
Figure 0005464548

上記数3より、hiは次の数1により表される。 From the above equation 3, h i is expressed by the following equation 1.

Figure 0005464548
Figure 0005464548

εfwが既知のとき、TDRで計測されるtfwを数1に代入することでhiが得られる。 When ε fw is already known, h i can be obtained by substituting t fw measured by TDR into equation (1).

[実験及び解析概要]
淡水の水質(電気伝導度)又は境界面位置が変動する状況を室内実験で再現し、TDRにおけるマイクロ波のエネルギー吸収特性を利用した淡塩水境界面の計測の可否と精度について検討した。
図2に本実験の概略図を示す。実験では、ロッド長が48cmの2線式TDRプローブ1を1502C型ケーブルテスター4(Tektronix)に接続し、計測制御及びTDR波形の記録にソフトウェア(WinTDR18)を用いた。海水の電気伝導度に相当するσsw=5.2S・m-1のNaCl溶液を塩水の代替溶液と考え、電気伝導度σfw=0.0005,0.013,0.1,0.2,0.3,0.4S・m-1のNaCl溶液を淡水の代替溶液とした。本実施例では、上述の電気伝導度を有するNaCl溶液を便宜的に塩水又は淡水と呼ぶこととする。なお、各々の溶液温度は約22℃であった。
[Outline of experiment and analysis]
The situation of fluctuation of fresh water quality (electrical conductivity) or boundary position was reproduced by laboratory experiments, and the feasibility and accuracy of measurement of fresh salt water boundary using microwave energy absorption characteristics in TDR were investigated.
Figure 2 shows a schematic diagram of this experiment. In the experiment, a 2-wire TDR probe 1 with a rod length of 48 cm was connected to a 1502C type cable tester 4 (Tektronix), and software (WinTDR18) was used for measurement control and TDR waveform recording. A NaCl solution with σ sw = 5.2 S ・ m −1 corresponding to the electrical conductivity of seawater is considered as an alternative solution for salt water, and the electrical conductivity σ fw = 0.0005,0.013,0.1,0.2,0.3,0.4 S ・ m -1 The NaCl solution was used as an alternative solution for fresh water. In this embodiment, the NaCl solution having the above electric conductivity is referred to as salt water or fresh water for convenience. Each solution temperature was about 22 ° C.

式(3)に与えるεfwを得るために、内径7cm、高さ52cmのアクリル製円筒型カラム5の中心部にプローブ1の長手方向が鉛直となるように設置し、プローブ1のロッド2の根端2aまで淡水を満たした状態でTDR波形を計測した。取得した波形をWinTDRで解析しεfw(=75.11)を求めた。これを、モデル式数1のεfwの実測値として与えることにした。計測したεfwは水温22℃における理論値(=79.63)を過小評価したが、これは実験に用いたアクリル製円筒カラム5(アクリルの比誘電率は約3)の壁面が比誘電率の計測に影響をおよぼしたためであった。その後、カラム5の下端からロッド2の根端2aまで塩水をゆっくりと給水した。このようにして再現した淡塩水境界面の上昇実験では、塩水がロッド先端2bに達したときをhi=0cmとし、それ以降、hiが5cm間隔のTDR波形を計測した。 In order to obtain ε fw given by Equation (3), the longitudinal direction of the probe 1 is installed in the center of an acrylic cylindrical column 5 having an inner diameter of 7 cm and a height of 52 cm so that the rod 2 of the probe 1 The TDR waveform was measured with fresh water filled to the root tip 2a. The acquired waveform was analyzed with WinTDR to obtain ε fw (= 75.11). This is given as an actual measurement value of ε fw of the model formula number 1. The measured ε fw underestimated the theoretical value (= 79.63) at a water temperature of 22 ° C. This is the measurement of the relative permittivity of the wall of the acrylic cylindrical column 5 (the relative permittivity of acrylic is about 3) used in the experiment. It was because of the influence. Thereafter, salt water was slowly supplied from the lower end of the column 5 to the root end 2 a of the rod 2. In the experiment for ascending the fresh salt water interface reproduced in this way, the time when the salt water reached the rod tip 2b was set to h i = 0 cm, and thereafter, a TDR waveform with a h i interval of 5 cm was measured.

また、塩水楔が前進又は後退した場合の本法の有効性を確認するために、淡塩水境界面の上下変動を室内実験で再現することにした。すなわち、上述の方法で、塩水をカラム下端からhi=30cmまでゆっくりと給水することにより、境界面の上昇過程を再現した。その後、カラム5の下端から塩水を排水するのと同時に排水量と等量の淡水をカラム5の上端から静かに給水して満水状態を維持し、hi=10cmまでの境界面の下降過程を再現した。一連の上昇と下降を3反復し、5cm間隔の高さでTDR波形を記録した。なお、この実験で境界面変動範囲をhi=10〜30cmとしたのは、上端及び下端における給排水に伴う淡塩水境界面の攪乱を避けるためである。
以上の実験における境界面の位置は、変動幅に応じたカラム容量を予め測定しておき、それと等量の塩水を給排水することによって決定した。
In addition, in order to confirm the effectiveness of this method when the saltwater wedge moves forward or backward, we decided to reproduce the vertical fluctuation of the fresh saltwater interface by laboratory experiments. That is, the rising process of the boundary surface was reproduced by slowly supplying salt water from the lower end of the column to h i = 30 cm by the method described above. After that, salt water is drained from the lower end of the column 5 and at the same time, fresh water of the same amount as the drainage amount is gently supplied from the upper end of the column 5 to maintain the full state, and the descending process of the interface up to h i = 10 cm is reproduced. did. A series of ascent and descent was repeated three times, and TDR waveforms were recorded at intervals of 5 cm. In this experiment, the boundary surface fluctuation range was set to h i = 10 to 30 cm in order to avoid disturbance of the fresh salt water boundary surface due to water supply and drainage at the upper and lower ends.
The position of the boundary surface in the above experiment was determined by measuring the column capacity corresponding to the fluctuation range in advance and supplying and draining an equal amount of salt water.

各実験で取得した波形データは、スプレッドシートに展開し、マニュアルで解析した。すなわち、本解析ではカラム内において空気中と蒸留水中で予め計測したTDR波形を重ね合わせたときに生じる分岐点をt0(図1(b)参照)、ρ値の急減点前後における波形線に描いた近似直線の交点をt1とした。t0とt1との差からtfwを求め、求めたtfwと予め決定したεfwとを数1に代入することにより、各段階のhiを計算した。 The waveform data acquired in each experiment was developed into a spreadsheet and analyzed manually. That is, in this analysis, the branch point that occurs when the TDR waveforms measured in advance in the column in air and distilled water are superimposed on t 0 (see Fig. 1 (b)), and the waveform line before and after the sudden decrease of the ρ value. the point of intersection of the approximate straight line drawn was t 1. By calculating t fw from the difference between t 0 and t 1 and substituting the determined t fw and the predetermined ε fw into Equation 1, h i at each stage was calculated.

[結果と考察]
(1)非導電性の蒸留水が上層に位置する場合
hiが変化した場合に計測されるTDR波形の一例として、上層の蒸留水(σfw=0.0005S・m-1)を塩水(σsw=5.2S・m-1)が押し上げる過程で測定した波形を図3に示す。蒸留水は非導電性の媒質であるため、ロッド2に与えたステップパルスの電気エネルギー吸収量は小さい。そのため、hi=0mでは、ロッド先端2bのt2に急峻な立ち上がりを伴うTDR波形となった。他のhi条件では、立ち上がり点が認められない代わりにρ値の急減点t1(図中の上向き矢印)が認められ、t1の位置は、hiが大きくなるにしたがって図の左方にシフトした。このt1から求めたtfwは、hiが増大するにしたがって直線的に減少し(図4)、またhiの実測値と数1に基づくTDR計測値の平均二乗誤差の平方根RMSE(Root mean square error)は0.8cmとなった。
現実の沿岸帯水層では上層に位置する淡水が導電性を示すが、上層にエネルギー吸収の小さい蒸留水のような媒質が存在する理想条件では、TDRにより高い精度でhiの評価が可能であると考えられる。
[Results and discussion]
(1) When non-conductive distilled water is located in the upper layer
As an example of the TDR waveform measured when h i changes, the upper layer distilled water (σ fw = 0.0005S ・ m -1 ) was measured in the process of pushing up the salt water (σ sw = 5.2S ・ m -1 ) The waveform is shown in FIG. Since distilled water is a non-conductive medium, the amount of electric energy absorbed by the step pulse applied to the rod 2 is small. Therefore, when h i = 0 m, a TDR waveform with a sharp rise at t 2 of the rod tip 2b was obtained. In the other h i conditions, instead of the rising point being recognized, a sudden decrease point t 1 (upward arrow in the figure) is recognized, and the position of t 1 is to the left of the figure as h i increases. Shifted to. T fw obtained from t 1 decreases linearly as h i increases (Fig. 4), and the square root RMSE (Root Root Mean Square Error) of the measured value of h i and the measured TDR value based on Equation 1 mean square error) was 0.8cm.
In reality the coastal aquifer show fresh water conductivity Located at the top, in the ideal condition is a medium, such as a small distilled water energy absorbed in the upper layer is present, can be evaluated in h i with high accuracy by TDR It is believed that there is.

(2)導電性の淡水が上層に位置する場合
伝播経路が同一である場合、導電性媒質による電気エネルギーの吸収量は、伝播距離が長いほど、また媒質の導電性が高いほど増大することを先に述べた。そのため、淡塩水境界面のような電気伝導度の局所変化を示さない均質な媒質中では、ロッドが長くなるほど、また媒質の導電性が高くなるほど、TDR波形の凹凸も不明瞭となり、t2の位置を特定するのが困難となった(図5)。
(2) When conductive fresh water is located in the upper layer When the propagation path is the same, the amount of electrical energy absorbed by the conductive medium increases as the propagation distance increases and the conductivity of the medium increases. I mentioned earlier. Therefore, in a homogeneous medium that does not show a local change in electrical conductivity, such as a fresh salt water interface, the longer the rod and the higher the conductivity of the medium, the more uneven the TDR waveform becomes, and the t 2 It became difficult to specify the position (Fig. 5).

同様の傾向は、淡塩水境界面の計測においても生じた(図6)。上層の淡水にσfw=0.1,0.2,0.3,0.4S・m-1のNaCl溶液を用いた場合の各t1位置におけるρ値は、図3の上層に蒸留水(σfw=0.0005S・m-1)を用いた場合と比べて小さかった。いずれのσfw条件においても、パルスが境界面に達するまでに喪失するエネルギー量は、蒸留水の場合と比べて大きい。このことが原因で、t1位置が不明確になる傾向が認められ、hiが小さいほど、またσfwが大きいほどtl位置の検出が困難になった。特に、σfw=0.3S・m-1ではhi=0.05〜0.2m,σfw=0.4S・m-1ではhi=0.05〜0.3mに対するt1を検出することができなかった。t1が得られた各σfw条件においてhiの実測値と数1に基づくTDR計測値とを比較したところ、σfw=0.1,0.2,0.3,0.4S・m-1における各hiのRMSEは、0.5,0.8,0.7,0.7cmであり(図7)、理想条件と考えられた蒸留水の場合(図4)と、ほぼ同等の計測精度であることが判明した。 A similar trend occurred in the measurement of the fresh salt water interface (Fig. 6). The ρ value at each t 1 position when NaCl solution of σ fw = 0.1,0.2,0.3,0.4S ・ m -1 was used for the fresh water in the upper layer is the distilled water (σ fw = 0.0005S ・m -1 ) was smaller than that used. In any of the σ fw conditions, the amount of energy lost until the pulse reaches the boundary surface is larger than in the case of distilled water. Due to this, the tendency of the t 1 position to become unclear was recognized, and the detection of the t l position became more difficult as h i was smaller and σ fw was larger. In particular, it was not possible to detect the t 1 for sigma fw = the 0.3S · m -1 h i = 0.05~0.2m , σ fw = 0.4S · m -1 in h i = 0.05~0.3m. It was compared with the measured values and the TDR measurement value based on the number 1 of the h i in each sigma fw condition t 1 is obtained, for each h i in σ fw = 0.1,0.2,0.3,0.4S · m -1 RMSE was 0.5, 0.8, 0.7, and 0.7 cm (Fig. 7), and it was found that the measurement accuracy was almost equivalent to that of distilled water (Fig. 4) considered to be ideal conditions.

高σfw条件ではt1が検出できない場合が認められたことから、本発明の方法の適用限界を調べるために、t1が検出できる淡水層の最大厚、すなわち最大淡水層厚Dmax(m)を調べた。その結果、σfw=0.1と0.2S・m-1に対するDmaxは0.45m以上であり、σfw=0.3S・m-1ではDmax=0.23m,σfw=0.4S・m-1ではDmax=0.13mであると考えられる。つまり、hiが計測できる範囲は、σfw=0.1と0.2S・m-1ではhi=0〜0.48m又はそれよりも広い範囲、σfw=0.3S・m-1ではhi=0.25〜0.48m、σfw=0.4S・m-lではhi=0.35〜0.48mであった。
以上の結果より、Dmaxを超えない範囲であればσfwが高い場合でも、数1を介して淡塩水境界面を十分な精度で評価できるものと考える。
Since it was observed that t 1 could not be detected under the high σ fw condition, in order to investigate the application limit of the method of the present invention, the maximum thickness of the fresh water layer that can detect t 1 , that is, the maximum fresh water layer thickness D max (m ) Was investigated. As a result, D max for sigma fw = 0.1 and 0.2 S · m -1 is at least 0.45 m, the σ fw = 0.3S · m -1 D max = 0.23m, the σ fw = 0.4S · m -1 It is considered that D max = 0.13 m. That is, the range where h i can be measured is, sigma fw = 0.1 and 0.2 S · m -1 in h i = 0~0.48M or a range wider than, σ fw = 0.3S · m -1 in h i = 0.25 It was h i = 0.35 to 0.48 m at ˜0.48 m and σ fw = 0.4 S · m −l .
From the above results, it is considered that the fresh brine boundary surface can be evaluated with sufficient accuracy through Equation 1 even when σ fw is high as long as it does not exceed D max .

(3)境界面が上下に変動した場合
図8は、淡塩水境界面の位置が上下に変動した場合のTDR波形の中から、上昇過程におけるhi=0.15m及び下降過程におけるhi=025mに対する波形を示す。境界面が変動すると、淡水と塩水との混合が促進されることで電気伝導度の鉛直勾配が小さくなり両者の境界が不明瞭になると考えられたが、hi=0.15と0.25mのいずれの場合においても、上昇と下降を1〜3反復してもTDR波形の形状に大きな差異は認められなかった。また、いずれの波形においても明確なρ値の急減が認められた。類似した傾向は他のhi条件(hi=0.1,0.2,0.3m)にも共通した。すべてのhi条件におけるTDR波形ではt1位置が概ね等しく、hiの計算値と実測値はよく一致した(図9)。
(3) When 8 the boundary surface fluctuates up and down, the light from the TDR waveform in a case where the position of the saltwater boundary fluctuates up and down, h i = 025m in h i = 0.15 m and descending processes at elevated process The waveform for is shown. When the boundary surface fluctuated, it was thought that the vertical gradient of electrical conductivity was reduced by promoting mixing of fresh water and salt water, and the boundary between the two became unclear, but either h i = 0.15 or 0.25 m In some cases, no significant difference was observed in the shape of the TDR waveform even when the rise and fall were repeated 1 to 3 times. In addition, a clear sharp decrease in ρ value was observed in any waveform. Similar trend was also common in other h i conditions (h i = 0.1,0.2,0.3m). In the TDR waveforms under all h i conditions, the t 1 position was almost equal, and the calculated value of h i and the measured value were in good agreement (FIG. 9).

本実験結果から、TDRによる淡塩水境界面の検出には、淡水と塩水との導電性の較差が保持され、そこに電気的特性の急変点の存在が必要であることが確認された。実際の観測井戸では、降雨や潮汐に伴う淡塩水境界面の挙動は周囲の水文地質によって特徴づけられ、例えば境界面の変動や地下水の流れが激しい場所では導電性の較差が本実施例で形成された較差よりも小さくなる可能性がある。しかし、地下水流などによって境界面が常時攪乱されるような特殊な水文地質でなければ、その位置が潮汐や降雨によって変動したとしても、TDRによって検出できる可能性は高いと考える。   From the results of this experiment, it was confirmed that the detection of the boundary surface of fresh saltwater by TDR maintained the electrical conductivity difference between freshwater and saltwater, and that there must be a sudden change point of electrical characteristics. In an actual observation well, the behavior of the fresh salt water boundary surface due to rainfall and tide is characterized by the surrounding hydrogeology. For example, in this example, a conductivity difference is formed in this example in places where the boundary surface variation and groundwater flow are intense. There is a possibility that it is smaller than the calculated difference. However, unless the hydrologic geology is such that the boundary surface is constantly disturbed by groundwater flow, etc., it is highly possible that the location can be detected by TDR even if the position fluctuates due to tides or rainfall.

本研究では、円筒カラム内に淡水と塩水との二重層を再現し、時間領域反射法TDRを利用して淡塩水境界面の検出を試みた。
蒸留水と塩水との境界面に垂直にTDRプローブを挿入し、そこにマイクロ波のステップパルスを与えたところ、TDR波形上に反射係数ρ(電気エネルギーの指標)の急減点t1が記録された。t1から求めたプローブのロッド根端から境界面までのパルスの伝播時間tfwと、ロッド先端から境界面までの距離hiとの関係は1次式(数1)で表され、同式を介してRMSE<1cmの範囲でhiを計測できることが明らかとなった。
In this study, a double layer of fresh water and salt water was reproduced in a cylindrical column, and an attempt was made to detect the fresh salt water interface using time domain reflection TDR.
When a TDR probe was inserted perpendicularly to the boundary surface between distilled water and salt water, and a microwave step pulse was applied thereto, a sharp decrease point t 1 of the reflection coefficient ρ (electrical energy index) was recorded on the TDR waveform. It was. The relationship between the pulse propagation time t fw from the probe root to the boundary surface obtained from t 1 and the distance h i from the rod tip to the boundary surface is expressed by a linear expression (Equation 1). ability to measure h i in the range of RMSE <1 cm through the revealed.

一方、淡水の電気伝導度σfwが高くなると、パルスが淡水中を伝播する過程で失うエネルギーが大きくなり、t1の検出が困難になる場合が生じた(図6又は図7)。しかし、淡水層厚が薄い場合には、正味のエネルギー損失量が少なくなるため、t1が検出可能となり、そのような条件におけるRMSEは1cm未満であった。また、境界面の位置が上下に変動しても、乱れのない流れ場では同一の精度でhiを決定できることを確認した。
しかしながら、現場レベルでの実用化には、いくつかの課題もある。降雨や潮汐による境界面の変動幅を考慮し、計測範囲は比較的広いほうが望ましいが、本発明の方法の適用範囲は、t1が検出できるロッド根端からの最大淡水層厚Dmaxに依存することを論じた.実験結果からも明らかなように、Dmaxは、σfwが高く淡水のエネルギー吸収が大きいほど小さくなる。そのため、hiの計測は、対象水域のσfwに対するDmaxを超えない範囲に制限されることに留意する必要がある。
On the other hand, when the electrical conductivity σ fw of fresh water is increased, energy lost in the process of propagation of the pulse in fresh water is increased, and it may be difficult to detect t 1 (FIG. 6 or FIG. 7). However, when the fresh water layer thickness is thin, the net energy loss is reduced, so t 1 can be detected, and the RMSE under such conditions is less than 1 cm. It was also confirmed that even if the position of the boundary surface fluctuates up and down, h i can be determined with the same accuracy in a flow field without disturbance.
However, there are some problems in practical use at the field level. Considering the fluctuation range of the boundary surface due to rainfall and tide, it is desirable that the measurement range is relatively wide, but the application range of the method of the present invention depends on the maximum freshwater layer thickness D max from the rod root that can detect t 1 I discussed what to do. As is clear from the experimental results, D max decreases as σ fw increases and the energy absorption of fresh water increases. Therefore, it should be noted that the measurement of h i is limited to a range that does not exceed D max for σ fw of the target water area.

1 プローブ
2 ロッド
3 淡塩水境界面
4 ケーブルテスター
5 アクリル製円筒型カラム
DESCRIPTION OF SYMBOLS 1 Probe 2 Rod 3 Fresh salt water interface 4 Cable tester 5 Acrylic cylindrical column

Claims (2)

a)淡水と塩水との重層系に、淡水側からTDRプローブを挿入して、前記TDRプローブの根端及び先端の間に、淡水と塩水との境界面が位置するように前記TDRプローブを配置するステップ、
b)TDR波形の急減点までの時間tfwを測定するステップ、及び
c)前記TDRプローブの先端から前記境界面までの距離hiを下記数1から求めるステップ
Figure 0005464548
(数1中、εfwは前記淡水の比誘電率、Lは前記TDRプローブのロッド長、cは光速とする。)
とから構成されることを特徴とする淡塩水境界面の測定方法。
a) Insert the TDR probe into the layered system of fresh water and salt water from the fresh water side, and place the TDR probe so that the boundary surface between fresh water and salt water is located between the root and tip of the TDR probe Step to do,
b) measuring the time t fw until the TDR waveform sudden decrease point; and
c) A step of obtaining a distance h i from the tip of the TDR probe to the boundary surface from the following formula 1.
Figure 0005464548
(In Equation 1, ε fw is the relative permittivity of the fresh water, L is the rod length of the TDR probe, and c is the speed of light.)
A method for measuring a boundary surface of a fresh salt water characterized by comprising:
前記TDRプローブの根端側をケーブルに接続し、地表面から前記淡塩水境界面までの距離を、前記地表面以下のケーブル長とロッド長の和から前記hiを差し引いた距離として求めることを特徴とする請求項1記載の淡塩水境界面の測定方法。 The root end side of the TDR probe is connected to a cable, and the distance from the ground surface to the fresh salt water boundary surface is obtained as a distance obtained by subtracting the h i from the sum of the cable length and the rod length below the ground surface. The method of measuring a fresh salt water boundary surface according to claim 1, wherein:
JP2010182921A 2009-08-18 2010-08-18 Measurement method of fresh salt water interface Active JP5464548B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27212109A 2009-08-18 2009-08-18
US61/272,121 2009-08-18

Publications (2)

Publication Number Publication Date
JP2011039064A JP2011039064A (en) 2011-02-24
JP5464548B2 true JP5464548B2 (en) 2014-04-09

Family

ID=43766940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010182921A Active JP5464548B2 (en) 2009-08-18 2010-08-18 Measurement method of fresh salt water interface

Country Status (1)

Country Link
JP (1) JP5464548B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101319270B1 (en) * 2012-04-26 2013-10-17 한국지질자원연구원 Position-tracking device for freshwater-saltwater interface and a device for installing thereof
KR101255352B1 (en) * 2012-04-26 2013-04-16 한국지질자원연구원 Monitoring system for coastal groundwater and saline water level
CN103270994B (en) * 2013-04-27 2014-08-13 中国水产科学研究院长江水产研究所 Device and method for establishing high continuous gradient salinity selecting experiment through grading attenuation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198424B1 (en) * 1999-01-21 2001-03-06 Rosemount Inc. Multiple process product interface detection for a low power radar level transmitter
US6445192B1 (en) * 2000-04-04 2002-09-03 Rosemount Inc. Close proximity material interface detection for a microwave level transmitter
JP2006091018A (en) * 2004-08-27 2006-04-06 Newjec Inc Method for understanding and examining shape of interface between salt water and fresh water
US20070090992A1 (en) * 2005-10-21 2007-04-26 Olov Edvardsson Radar level gauge system and transmission line probe for use in such a system

Also Published As

Publication number Publication date
JP2011039064A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
Blenkinsopp et al. Measurements of the time-varying free-surface profile across the swash zone obtained using an industrial LIDAR
Kirkegaard et al. Salinity distribution in heterogeneous coastal aquifers mapped by airborne electromagnetics
Krause et al. Investigating patterns and controls of groundwater up-welling in a lowland river by combining Fibre-optic Distributed Temperature Sensing with observations of vertical hydraulic gradients
US10234320B2 (en) Device and method for measuring the depth of media
Cao et al. A distributed measurement method for in-situ soil moisture content by using carbon-fiber heated cable
Yu et al. Time domain reflectometry automatic bridge scour measurement system: principles and potentials
Besson et al. The spatial and temporal organization of soil water at the field scale as described by electrical resistivity measurements
Scheuermann et al. Spatial time domain reflectometry and its application for the measurement of water content distributions along flat ribbon cables in a full‐scale levee model
CN106770478B (en) Nondestructive detection method for dam stability
Blasch et al. New field method to determine streamflow timing using electrical resistance sensors
JP5464548B2 (en) Measurement method of fresh salt water interface
Weller et al. Geotechnical and geophysical long-term monitoring at a levee of Red River in Vietnam
Gräff et al. A quality assessment of spatial TDR soil moisture measurements in homogenous and heterogeneous media with laboratory experiments
Sebok et al. The effect of sediment thermal conductivity on vertical groundwater flux estimates
Lin et al. New types of time domain reflectometry sensing waveguides for bridge scour monitoring
CN108980636A (en) Reserve underground leakage method of real-time
Irmak et al. Performance of frequency-domain reflectometer, capacitance, and psuedo-transit time-based soil water content probes in four coarse-textured soils
Chung et al. New TDR waveguides and data reduction method for monitoring of stream and drainage stage
CN110967767A (en) Method for detecting karst cave by cross-hole induced polarization
Yu et al. Algorithm for time domain reflectometry bridge scour measurement system
RU2408036C1 (en) Focused current marine geoelectric prospecting method
Preko et al. Comparison of invasive and non-invasive electromagnetic methods in soil water content estimation of a dike model
Arnaud et al. Use of a resistive rods network to monitor bathymetric evolution in the surf/swash zone
Wahab et al. Potential of time domain reflectometry as early warning system in slope stability monitoring project: A review
Mallants Field-scale solute transport parameters derived from tracer tests in large undisturbed soil columns

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5464548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250